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ABSTRACT

Text-to-3D generation has shown rapid progress in recent days with the advent of
score distillation sampling (SDS), a methodology of using pretrained text-to-2D
diffusion models to optimize a neural radiance field (NeRF) for a zero-shot setting.
However, the lack of 3D awareness in the 2D diffusion model often destabilizes
previous methods from generating a plausible 3D scene. To address this issue,
we propose 3DFuse, a novel framework that incorporates 3D awareness into the
pretrained 2D diffusion model, enhancing the robustness and 3D consistency of
score distillation-based methods. Specifically, we introduce a consistency injec-
tion module that constructs a 3D point cloud from the image generated from the
text prompt and utilizes its projected depth map at a given view as a condition for
the 2D diffusion model. The diffusion model, through its generative capability,
robustly infers dense structure from the sparse point cloud depth map and gener-
ates a geometrically consistent and coherent 3D scene. We also introduce a new
technique called semantic coding that reduces the semantic ambiguity of the text
prompt for improved results. Our method can be easily adapted to various text-to-
3D baselines. We experimentally demonstrate how our method notably enhances
the 3D consistency of generated scenes compared to previous baselines, achiev-
ing state-of-the-art performance in geometric robustness and fidelity. The project
page is available at https://ku-cvlab.github.io/3DFuse/

1 INTRODUCTION

Text-to-3D generation, the task of generating 3D content through given text prompts (Sanghi et al.,
2022; Liu et al., 2022; Jain et al., 2022), has seen a rapid growth surge thanks to the advancements
in diffusion models (Ho et al., 2020; Rombach et al., 2022). This innovation allows people to easily
create 3D content without dealing with professional modeling tools, gaining significant attention
across a wide range of industries, such as gaming, graphics, VR/AR, and animation.

One of the most popular methodologies currently used for text-to-3D generation tasks is score dis-
tillation sampling (SDS) (Poole et al., 2022), which employs the gradients of 2D diffusion models
to optimize a 3D representation, i.e., a Neural radiance field (NeRF) (Mildenhall et al., 2020). This
approach has gained prominence due to its leveraging the generation capability of pretrained 2D
diffusion models to create expressive and detailed 3D scenes. However, various works (Wang et al.,
2023; Shi et al., 2023) show that 3D scenes generated by SDS often display distortions and artifacts
depending on text prompts. One notable failure case is a 3D inconsistency problem (dubbed the
“Janus problem” (Wang et al., 2023; Shi et al., 2023)), where a frontal feature (such as a frontal
face) pertaining to the text prompt is replicated at other sides of the generated scene. As shown in
(a) of Fig. 1, this problem arises from the inherent limitation of the 2D diffusion model – it lacks
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Figure 1: Motivation. (a) Previous methods (Poole et al., 2022; Song et al., 2020) solely use noised
rendered images and text prompts for score distillation, often resulting in scenes with poor 3D
consistency. Our 3DFuse addresses this issue by giving diffusion models 3D awareness through a
consistency injection module, drastically improving the 3D consistency of generated scenes.

awareness of the camera pose from which it views the scene. Therefore, it is prone to produce frontal
geometric features across all scene directions, generating distorted and unrealistic 3D scenes.

A possible approach to solve this issue would be training a diffusion model that can be conditioned
explicitly on camera pose values to produce plausible images of novel viewpoints (Liu et al., 2023).
However, there are inherent hurdles to this approach. As the pose-conditioned diffusion model
operates solely on the 2D domain and has no explicit knowledge of 3D space, it has difficulty
in modeling 3D transformations as well as subsequent self-occlusions, resulting in geometrically
inconsistent novel view inferences (Liu et al., 2024). The training also requires ground-truth 3D data,
whose creations require either human effort or expensive 3D sensors, leading to smaller data size
and inferior quality compared to that using the vast 2D data (Schuhmann et al., 2022) available. This
limits the generative capability of this model from reaching that of ordinary 2D diffusion models.
We solve this dilemma between 2D diffusion models and explicit 3D geometry with a middle-ground
approach that combines the best of both worlds – a pretrained 2D diffusion model imbued with 3D
awareness, conditioned on coarse yet explicit 3D geometry.

We propose a novel methodology, dubbed 3DFuse, to improve the geometric consistency of gener-
ated 3D scenes. Central to our method is a consistency injection module, which effectively imbues
pretrained 2D diffusion models with 3D awareness and is easily adaptable to existing SDS-based
text-to-3D baselines. Specifically, our consistency injection module creates a 3D coarse geometry
of given text through an off-the-shelf point cloud generation model (Nichol et al., 2022; Wu et al.,
2023), which can be projected to arbitrary views to generate coarse depth maps. As this coarse depth
map is explicitly 3D consistent and outlines the overall structure of the scene expected at the view-
point, the diffusion model conditioned on it can optimize the given viewpoint in a 3D-aware manner.
To this end, we add a ControlNet (Zhang & Agrawala, 2023) module to the diffusion model and fine-
tune it, leveraging the generative capability of the pretrained diffusion model toward inferring dense
structures of the scene despite the sparsity of the depth map. We also introduce semantic coding to
add controllability and specificity in the generation process and show how it can be leveraged with
Low-rank adaptation (LoRA) (Hu et al., 2021) for more semantically consistent results.

To demonstrate our method’s adaptability and its universally powerful performance at various base-
lines, we employ our framework across a range of text-to-3D baseline models, i.e. Dreamfu-
sion (Poole et al., 2022), SJC (Wang et al., 2022a), and ProlificDreamer (Wang et al., 2023). The
results show significant improvements in both generation quality and geometric consistency on all
baselines. We extensively demonstrate the effectiveness of our framework with qualitative analyses
and ablation studies. Moreover, we introduce an innovative metric for quantitatively assessing the
3D consistency of the generated scenes.

2 RELATED WORK

Diffusion models (Ho et al., 2020; Song et al., 2021) have gained much attention as generative
models due to their stability, diversity, and scalability. Given these advantages, diffusion models
have been applied in various fields, such as image translation (Rombach et al., 2022; Seo et al.,
2022) and conditional generation (Kanizo et al., 2013; Rombach et al., 2022). Especially, text-to-
image generation has been highlighted with the introduction of various guidance techniques (Ho &
Salimans, 2021; Dhariwal & Nichol, 2021). GLIDE (Nichol et al., 2021) utilizes CLIP (Radford
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et al., 2021) guidance to enable text-to-image generation, followed by large-scale text-to-image
models such as DALL-E2 (Ramesh et al., 2022) and Stable Diffusion (Rombach et al., 2022). Such
emergence has led to the utilization of pretrained text-to-image models for tasks such as endowing
additional conditions (Wang et al., 2022b) or performing manipulations (Gal et al., 2022; Kwon
et al., 2022).
Text-to-3D generation models generally employ pretrained vision-and-language models, such as
CLIP (Radford et al., 2021) to generate 3D shapes and scenes from text prompts. DreamFields (Jain
et al., 2022) incorporates CLIP with neural radiance fields (NeRF) (Mildenhall et al., 2020), demon-
strating the potential for zero-shot NeRF optimization using only CLIP as guidance. Recently,
Dreamfusion (Poole et al., 2022) and SJC (Wang et al., 2022a) have demonstrated an impressive
ability to generate NeRF with frozen diffusion models instead of CLIP. Concurrently, some ap-
proaches bring performance improvement through coarse-to-fine pipeline such as Magic3D (Lin
et al., 2022) and Fantasia3D (Chen et al., 2023). ProlificDreamer (Wang et al., 2023) demonstrates
extremely high-fidelity results through utilizing a variational version of SDS, named VSD. How-
ever, despite their impressive performance, the 3D inconsistency problem fundamentally remains,
causing them to often generate distorted geometries.
Image-to-3D generation models generate 3D scenes from a conditioning image, which is analogous
to the task of generation-based novel view synthesis. There are 3D native diffusion models such as
Point-E (Nichol et al., 2022), trained upon several million internal 3D models to generate point
clouds, as well as SDS-based methods such as NeRDi (Deng et al., 2023). NeuralLift-360 (Xu
et al., 2023) and Realfusion (Melas-Kyriazi et al., 2023) utilize reconstruction loss combined with
monodepth estimation and textual inversion, respectively, to strengthen the semantic alignment of
3D scene to the image. Among these, a concurrent work Zero123 (Liu et al., 2023) bears similarity
to our work as it models 3D scenes in the 2D image domain by finetuning a 2D diffusion model
to infer a novel view of the input image given relative camera pose. Our work diverges from this
approach in that we model the coarse 3D geometry explicitly. This explicit geometry enables a
view-aligned depth map to be given as a condition for the diffusion model, allowing it to model 3D
consistency more effectively.

3 PRELIMINARY

For the task of text-to-image generation, diffusion models such as Stable Diffusion (Rombach et al.,
2022) receive a text prompt as an additional condition. Specifically, when a text prompt c is given,
a mapping model T (·) maps the prompt c into the embedding e = T (c). Then, the embedding e is
injected into the diffusion model with parameters θ. Formally, we denote a score prediction network
of the text-to-image diffusion model as ϵθ(xt, t, T (c)), where xt represents a noisy image with a
noise level t added to a clean image x0. For the sake of brevity, we shall omit the variable t and refer
to the function ϵθ(xt, T (c)).

Score distillation sampling (SDS) (Poole et al., 2022) optimizes NeRF parameters toward following
the direction of the score predicted by a frozen diffusion model towards higher-density regions.
Specifically, let us denote Θ as parameters of NeRF, and RΘ(π) as a rendering function given a
camera pose π. In SDS, a random camera pose π is sampled, and the diffusion model is utilized to
infer the 2D score of the rendered image, i.e., x = RΘ(π). This score is used to optimize the NeRF
parameters Θ by letting the rendered image move to the high-density regions, i.e., to be realistic.
It can be understood as minimizing a standard noise prediction loss function (Ho et al., 2020) with
respect to the NeRF parameters Θ instead of the diffusion model’s parameters θ such that:

Θ∗ = argmin
Θ

Et,ϵ,π
[
w(t)

∥∥ϵθ(xt, T (c)
∣∣x = RΘ(π)

)
− ϵ

∥∥2
2

]
, (1)

where ϵ is a Gaussian noise and w(t) is a weighting function. The Jacobian term of diffusion U-net
∂ϵθ

(
xt, T (c)

)
/∂xt from the gradient of Eq. 1 can be omitted, formulating the new gradient as:

∇ΘLSDS(x = RΘ(π); θ) ≜ Et,ϵ
[
w̃
(
t
)(
ϵθ
(
xt, T (c)

)
− ϵ

) ∂x
∂Θ

]
, (2)

w̃(t) is a weighting function from the DDPM (Ho et al., 2020) diffusion process.
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Figure 2: Overall architecture of 3DFuse. Our framework consists of semantic code sampling,
followed by a consistency injection module that gives 3D-aware conditions to the diffusion model
through a sparse depth injector. Semantic code, along with LoRA (Hu et al., 2021) layers, helps
maintain the semantic consistency of 3D generation.

4 METHOD

4.1 MOTIVATION AND OVERVIEW

The method of score distillation-based text-to-3D generation (Poole et al., 2022), despite its effec-
tiveness, currently possesses a crucial problem: inconsistent and distorted geometry in generated
scenes due to 2D diffusion models not having explicit awareness of the 3D space nor the camera
viewpoint it is optimizing from (Wang et al., 2023). Previous works (Poole et al., 2022; Wang et al.,
2022a) attempt to circumvent this problem by adding the text prompts that roughly describe the
camera viewpoint (e.g., “side view”). However, this ad-hoc approach is severely limited, as a wide
range of different pose values is ambiguously represented by few text prompts, leaving the gener-
ation process still vulnerable to geometric inconsistencies and severe deformations. Therefore, to
overcome this problem, the objective boils down to how we can inject more specific and explicit 3D
awareness into pretrained 2D diffusion models.

Our method, 3DFuse, achieves this objective by conditioning a 2D diffusion model to projected
depth maps of coarsely generated 3D structures. Specifically, we first conduct semantic code sam-
pling, in which we initially generate an image x̂ from the given text prompt to specify the semantics
of the 3D scene we wish to generate (Sec. 4.2). From this image x̂, we construct a coarse point
cloud using an off-the-shelf point cloud generation model (Nichol et al., 2022; Wu et al., 2023). For
every rendering view, we leverage its projected depth maps as explicitly 3D consistent conditions
for the 2D diffusion model. As the sparse depth map contains rich 3D information describing the
scene from a given viewpoint, this approach effectively enables the diffusion model to generate the
3D scene in a 3D-aware manner (Sec. 4.3). We further leverage the semantic code through low-rank
adaptation (LoRA) (Hu et al., 2021) layers to ensure semantic consistency of the scene (Sec. 4.4).
The overall architecture of 3DFuse is described in Fig. 2.

4.2 SEMANTIC CODE SAMPLING

We focus on the fact that when generating a 3D scene from a text, inherent ambiguity exists within
the text prompt. For instance, the text prompt “a cute cat” is ambiguous regarding color, as it could
refer to either a black or a white cat. Such lack of specificity leaves the possibility for the 3D scene
to be erroneously guided toward vastly different textures and semantics at different viewpoints,
resulting in a semantically inconsistent 3D scene overall, as further demonstrated in Sec. 5.4.

We introduce a simple yet effective technique to reduce such text prompt ambiguity called semantic
code sampling. To specify and secure the semantic identity of the scene we want to optimize towards,
a 2D image x̂ is generated from the text prompt c. Then, we optimize the text prompt embedding e
to better fit the generated image, similarly to the textual inversion (Gal et al., 2022):

ê = argmin
e

||ϵθ(x̂t, e)− ϵ||22, (3)

4



Published as a conference paper at ICLR 2024

where x̂t is a noised image of the generated image x̂ with the noise ϵ and the noise level t. We
refer to this pair of the generated image x̂ and the optimized embedding ê as a semantic code s, i.e.,
s := (x̂, ê), which would be an input for our consistency injection module.

4.3 INCORPORATING A COARSE 3D PRIOR

Our main objective is injecting 3D awareness into a pretrained diffusion model to enhance the 3D
consistency of generated scenes, while fully leveraging the 2D diffusion model’s expressive gen-
erative capabilities. We achieve this with a novel consistency injection module, which conditions
diffusion models on sparse depth projections of a constructed point cloud.

Specifically, we employ an off-the-shelf 3D model D(·) to construct a 3D point cloud from the
initial image x̂ included in the semantic code s. D(·) can be chosen from a wide variety of models:
it could be a point cloud generative model such as Point-E (Nichol et al., 2022) or a single-image
3D reconstruction model such as MCC (Wu et al., 2023). For every SDS optimization step, as an
image of the 3D scene is rendered using the diffusion model at camera viewpoint π, the constructed
point cloud is projected to the same viewpoint π resulting in a point cloud depth map p:

p = P(D(x̂), π), (4)
where P(·, π) is a depth-projection function with a camera pose π. Adopting the architecture of
ControlNet (Zhang & Agrawala, 2023), our sparse depth injector Eϕ receives the sparse depth map
p, and we add its output features to the intermediate features within pretrained diffusion U-net of
ϵθ
(
x̂t, ê

)
in a residual manner, which can be further formulated as ϵθ

(
x̂t, ê, Eϕ(p)

)
.

The effectiveness of this approach can be understood from multiple aspects: most importantly, the
sparse depth map p, explicitly modeled in 3D, provides the 2D diffusion model with the 3D consis-
tent outline of the scene it is expected to generate, effectively encouraging 3D geometric consistency
in the generation process. This approach also adds much-needed controllability to the text-to-3D
generation pipeline: because our method enables the overall shape of the scene to be decided before
the lengthy SDS optimization process, the user can pick and choose from a variety of initial point
cloud shapes, allowing one to more easily generate specific 3D scenes tailored to their needs.

(a) (b) (c) (d)

Figure 3: Qualitative results conditioned on the
sparse depth map. Given sparse depth maps (a),
(b) are results of depth-conditional Stable Diffu-
sion, (c) are results of ControlNet trained on Mi-
DaS depths only, and (d) are 3DFuse results.
Given text prompts are “a front view of an owl”
and “a majestic eagle,” respectively.

Training the sparse depth injector. As the
sparse point cloud obtained by the off-the-shelf
3D model inevitably contains errors and ar-
tifacts, its depth map also displays artifacts,
shown in Fig. 3(a). Therefore, our module must
be able to handle the inherent sparsity and the
errors present in the projected depth map.

To this end, we employ two training strategies
for our sparse depth injector Eϕ(·). First, we
train our sparse depth injector using a paired
dataset of real-life images and their point cloud
depths (Reizenstein et al., 2021). Our model
is trained to generate real-life images given its
point cloud depth as a condition, enabling it
to infer dense structures from sparse geometry
given in point cloud depths. To increase the ro-
bustness of our model against errors and arti-
facts, we impose augmentations by randomly
subsampling and adding noisy points to the point clouds from which the depth maps originate.

Second, the injector Eϕ(·) is also trained on dense depth maps of text-to-image pairs, predicted using
MiDaS (Ranftl et al., 2020). This strengthens the model’s generalization capability, enabling it to
infer dense structural information from categories not included in the 3D point cloud dataset for
sparse depth training. In combination, given the depth map p along with the corresponding image y
and caption c, the training objective of the depth injector Eϕ(·) is as follows:

Linject(ϕ) = Ey,c,p,t,ϵ
[
||ϵθ

(
yt, c, Eϕ(p)

)
− ϵ||22

]
. (5)

Note that only the depth injector Eϕ(·) is trained while the diffusion model remains frozen, making
the training process more efficient, akin to finetuning.
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Figure 4: Qualitative comparisons. We demonstrate the effectiveness of our approach on a Prolific-
Dreamer (Wang et al., 2023) baseline. Incorporation of 3DFuse framework drastically enhances
3D consistency and fidelity of generated scenes.

These training strategies enable our model to receive sparse and noisy depth maps directly as input
and successfully infer dense and robust structural information without needing an auxiliary network
for depth completion. As shown in Fig. 3, our approach generates realistic results without being
restricted to the domain of the point cloud dataset. Note the category of images (birds) used for the
experiment is not included in the category of the point cloud dataset we use.

4.4 IMPROVING SEMANTIC CONSISTENCY

To result in a scene semantically consistent at all viewpoints, the diffusion model should produce
a score that maintains a certain degree of semantic consistency regardless of given viewpoints. Al-
though optimized embedding ê partially achieves this, we further enhance this effect by adopting
LoRA (Hu et al., 2021) technique motivated by (Ryu, 2022). LoRA layers with parameters ψ con-
sist of linear layers inserted into the residual path of the attention layers in the diffusion U-net.
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Figure 5: 3DFuse adaptation to other baselines. We demonstrate the effectiveness our approach
on Stable-DreamFusion (Poole et al., 2022) and SJC (Wang et al., 2022a) baselines. Incorporation
of 3DFuse drastically enhances 3D consistency and fidelity of generated scenes.

Training the LoRA layers in this manner instead of the entire diffusion model further helps it avoid
overfitting to a specific viewpoint. In practice, given an image x̂ generated from text prompt c, we
fix the optimized embedding ê and tune the LoRA layers ψ (Roich et al., 2022):

LLoRA(ψ) = Eϵ,t
[
||ϵθ,ψ(x̂t, ê, Eϕ(p))− ϵ||22

]
. (6)

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

We conduct all experiments with a Stable Diffusion model based on LDM (Rombach et al., 2022),
and train the sparse depth injector using a subset of the Co3D dataset from the weights (Zhang &
Agrawala, 2023) trained using the image-text pairs along with the depth maps predicted by MiDaS.
We conduct experiments with two off-the-shelf modules, mainly using the Point-E and in certain
experiments also leveraging MCC (Wu et al., 2023) with MiDaS. For the semantic code sampling,
we adopt Karlo (Donghoon Lee et al., 2022) based on unCLIP (Ramesh et al., 2022), as we find that
it tends to follow user prompt more closely.
5.2 TEXT-TO-3D GENERATION

Figure 6: Qualitative results of 3DFuse with
MCC (Wu et al., 2023). Our 3DFuse framework
yields high-fidelity results with MCC model.

We apply 3DFuse’s methodology to previous
SDS-based text-to-3D frameworks DreamFu-
sion, Score Jacobian Chaining (SJC), and Pro-
lificDreamer. All experiments utilize the Sta-
ble Diffusion as its diffusion model, which is a
publicly available large-scale text-to-image dif-
fusion model. Because DreamFusion’s official
implementation uses publicly unavailable Ima-
gen (Saharia et al., 2022), we instead resort to
using Stable Diffusion for implementation.
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Figure 7: Quantitative evaluation. We
compare 3D consistency with our proposed
metric using the COLMAP Schonberger &
Frahm (2016).

Method Variance ↓
SJC + 3DFuse (Ours) 0.0499

SJC Wang et al. (2022a) 0.0870

Figure 8: User study. The user study is conducted
by surveying 102 participants to evaluate 3D co-
herence, prompt adherence, and rendering quality.

Method 3D Prompt Overall
coherence adherence quality

SJC + 3DFuse (Ours) 60.1% 59.2% 60.9%

Stable-DreamFusion 23.4% 23.4% 22.7%
SJC 16.5% 17.4% 16.4%

Qualitative evaluation. We present our qualitative evaluation in Fig. 4 and Fig. 5, which clearly
demonstrates the effectiveness of our method in ensuring the geometric consistency and high fidelity
of generated 3D scenes. While the baseline methods produce inconsistent, distorted geometry in
multiple directions, combined with 3DFuse, they are empowered to generate robust geometry at
every viewpoint, as evidenced by the figure as well as video results provided in the supplementary
materials. In Fig. 6, we also present the qualitative results of our approach when utilizing MCC (Wu
et al., 2023) for the 3D prior, which also show consistent high-fidelity 3D scene generation results.

Quantitative evaluation. It is difficult to conduct a quantitative evaluation on a zero-shot text-to-3D
generative model due to the absence of ground truth 3D scenes corresponding to the text prompts.
In this light, we propose a new metric that utilizes COLMAP (Schonberger & Frahm, 2016) to
measure the 3D consistency of a generated scene. In Table 7, we report the average variance scores
over 42 generated 3D scenes. Our 3DFuse framework outperforms baseline SJC by a large margin,
demonstrating that our framework achieves more geometrically consistent text-to-3D generation.
The details of our metric are given in Appendix C.2.

User study. We have conducted a user study with 102 participants, which is shown in Table. 8.
We have asked the participants to choose their preferred result regarding 3D coherence, prompt
adherence, and overall quality between Stable-DreamFusion, SJC, and our 3DFuse-combined SJC.
The results show that 3DFuse generates 3D scenes that the majority of people judge as having
higher fidelity and better geometric consistency than previous methods. Further details are described
in Appendix C.1.

5.3 VIEW-DEPENDENT TEXT-TO-IMAGE GENERATION
“A side view of”“A front view of” “A backside view of”

(a)

“a blue bird with a beak and feathered wings”

“a black horse”

· · · · · ·

(b)

(a)

(b)

· · · · · ·

· · · · · · · · · · · ·

Figure 9: View-dependent image generation
comparison. (a) are the results of naive view
augmented prompting, and (b) our results with
3DFuse framework.

We conduct text-to-image generation experi-
ments with 3DFuse to verify our framework’s
capability to inject 3D awareness into 2D dif-
fusion models. We observe whether the im-
ages are generated in a 3D-aware manner when
viewpoints are given as conditions through our
3DFuse framework. Fig. 9 demonstrates the
effectiveness of our framework: it allows for
highly precise control of the camera pose in 2D
images, with even small changes in viewpoint
being reflected well on the generated images.
Our approach shows superior performance to
previous prompt-based methods (e.g., “A front
view of ”) regarding both precision and control-
lability of injected 3D awareness.

5.4 ABLATION STUDY

Comparison with Zero-123. We conduct
a qualitative comparison with concurrent work
Zero-123, which bears similarity to our work in
that it aims to inject 3D awareness into diffusion models through view conditioning. We compare
the two methods by conducting SDS-based 3D scene generation, one with Zero-123 as its diffu-
sion model and the other with our 3DFuse framework as its diffusion backbone model, with all
other settings identical. As shown in Fig. 10, we notice that our 3DFuse results are generally more
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Figure 10: Qualitative result for comparison
with Zero-1-to-3 (Liu et al., 2023). With ref-
erence image directly given as input, 3DFuse
generates more expressive, high-fidelity 3D
scenes than Zero-1-to-3.

Condition “a fancy chair” “a beach chair”

Condition “a simple mug” “a rusty mug”

Figure 11: 3D reconstruction with differ-
ent prompts given a single 3D structure.
The first column represents the given point
clouds as conditions, and the second and third
columns show synthesized results.

expressive and high-fidelity results. We hypothesize this phenomenon is related to the fact that, un-
like Zero-123, which requires finetuning of the diffusion model itself for incorporation of 3D pose
awareness, our framework only finetunes an external conditioning module in a manner similar to
ControlNet (Zhang & Agrawala, 2023), leaving the diffusion model untouched. This allows our
framework to leverage the pretrained diffusion model’s generative capability to the fullest, resulting
in more expressive and high-fidelity scene generation. We provide additional experiment results
applying Zero-123 for text-to-3D generation, like our methodology, in section B of our Appendix.

Different prompts with single 3D representation. 3D representation, i.e. point cloud obtained
from off-the-shelf models (Nichol et al., 2022; Wu et al., 2023) is typically coarse and sparse. To in-
vestigate how the diffusion model implicitly refines the coarse 3D structure, we conduct an ablation
study using a fixed point cloud and different text prompts instead of inferring a point cloud from the
initial image x̂ of semantic code s. Fig. 11 shows that our 3DFuse is flexible in responding to the
error and sparsity inherent in the point cloud, depending on the semantics of text input.

Left side Right side Left side Right side

w/o semantic code sampling w/ semantic code sampling

Figure 12: Ablation study on semantic
code sampling. The given prompts are “a
round orange pumpkin with a stem and a tex-
tured surface” (top) and “a product photo of
a toy tank” (bottom).

Semantic code sampling. We conduct an ablation
study on semantic code sampling in our 3DFuse
framework. The results in the first two columns
of Fig. 12 show significant differences in geome-
try (pumpkin’s smooth left surface and bumpy right
surface) and semantic details (the tank’s absence of
wheel on the left) without semantic code sampling,
depending on viewpoints. In contrast, using seman-
tic code sampling ensures both geometric and se-
mantic consistency across viewpoints, demonstrat-
ing its prominence in preserving the semantic iden-
tity of the 3D scene.

6 CONCLUSION

In this paper, we address the 3D inconsistency problem within SDS-based text-to-3D generation.
We propose a novel framework, 3DFuse, that incorporates 3D awareness into a pretrained 2D dif-
fusion model. Our method utilizes viewpoint-specific depth maps from a coarse 3D structure passed
through a sparse depth injector and semantic code sampling for semantic consistency. Our work
offers a practical solution for addressing the limitations of current text-to-3D generation techniques
and opens up possibilities for more realistic 3D scenes from text prompts. Our experimental results
demonstrate the effectiveness of our framework, outperforming previous models in quantitative met-
rics and qualitative human evaluation.
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Appendix

In Sec. A, we provide additional implementation details for our proposed method, 3DFuse. In
Sec. B, we present the results of additional experiments to validate our approach. In Sec. C, we
provide details regarding the user study and the evaluation of our method. In Sec. D, we discuss the
limitations of our approach.

A IMPLEMENTATION DETAILS

A.1 TRAINING DETAILS

We use the Co3D (Reizenstein et al., 2021) dataset to train our sparse depth injector. The dataset
is comprised of 50 categories and 5,625 annotated point cloud videos. From these point cloud-
annotated videos, we randomly subsample three frames to create 16,875 pairs of RGB images and
their projected depth map. We use 3k-5k points, augmented with 0-10% noise points, sampled
from the dense point clouds provided in the Co3D dataset. We employ the rasterizer from Py-
Torch3D (Ravi et al., 2020) library to project the point clouds and synthesize sparse depth maps.
To relieve domain constraints from the Co3D dataset, we also employ text-to-image pairs along
with MiDaS (Ranftl et al., 2020)-predicted dense depth maps. For ease of training, we start from
the weights (Zhang & Agrawala, 2023) trained on the text-to-image pairs with MiDaS depth and
fine-tune the model using the sparse depth maps synthesized from the Co3D dataset for 2 additional
epochs.

A.2 INTENSITY CONTROLS

All networks equipped with a pretrained diffusion model in our framework are designed to add ex-
ternal features to the intermediate features of the diffusion U-Net in a residual manner. Therefore,
their intensities can be adjusted by multiplying scaling factors. This enables us to control the in-
fluence of the LoRA layers, used for semantic consistency, and the sparse depth injector, used for
geometric consistency, on the diffusion model. In particular, adjusting the intensities of the LoRA
layers is effective in controlling how much our 3D scene overfits the initial image. We use scaling
factors of 0.3 and 1.0 on the features passing through the LoRA layers and the sparse depth injector,
respectively.

A.3 SEMANTIC CODE SAMPLING

To perform semantic code sampling, an initial image is first generated based on the text prompt,
followed by optimization of corresponding text prompt embedding. The specific method follows
that of Textual Inversion (Gal et al., 2022), wherein a new word is added to the embedding space
and then optimized. Additionally, this initially generated image is used as input for the off-the-shelf
3D model in the auxiliary module. To facilitate the optimization and 3D shape inference processes,
we add “a front view of ” and “, white background” before and after the text prompt.

A.4 ARCHITECTURAL CHOICES

There are manifold text-to-image diffusion models that have been trained at a large scale, including
DALL-E2 (Ramesh et al., 2022), Imagen (Saharia et al., 2022), and Stable Diffusion (Rombach et al.,
2022). However, as DALL-E2 and Imagen are not publicly available, we adopt Stable Diffusion, the
most popular and widely used model.

To impose an additional condition on pretrained text-to-image diffusion models, various methods
such as PITI (Wang et al., 2022b) and ControlNet (Zhang & Agrawala, 2023) have been proposed.
Recently, Depth-conditional Stable Diffusion (Rombach et al., 2022) has been introduced, which
finetunes Stable Diffusion to receive MiDaS (Ranftl et al., 2020) depth map as a condition for image
translation. After conducting experiments with the above methods to find the optimal solution for our
setting, we find that ControlNet achieves the best efficiency in training a sparse depth-conditioned
diffusion model. We thus incorporate ControlNet architecture into our framework. Fig. 13 illustrates
our architectural choice incorporating ControlNet architecture into our 3DFuse framework.
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Figure 13: Architectural choices for 3DFuse framework. The sparse depth injector follows the
architecture of ControlNet (Zhang & Agrawala, 2023), with the encoder side comprised of encoder
blocks copied from the diffusion U-Net and the decoder side comprised of convolutional layers.
The sparse depth map features are added to the intermediate features in the decoder blocks of the
diffusion U-Net. LoRA layers are attached to every attention layer of the diffusion U-Net.

B ADDITIONAL EXPERIMENTS

B.1 COMPARISONS WITH NOVEL VIEW MODEL-BASED CONCURRENT WORKS

In Figure 14, we conduct a comparison of our model with different image-to-3D models (Liu et al.,
2023; Qian et al., 2023), we first generate images from a single text prompt (through the Stable
Diffusion (Metzer et al., 2022) model) and give these images Zero-123 (Liu et al., 2023) and Magic-
123 Qian et al. (2023) for 3D scene generation. This experiment setting can be seen as observing
what happens if the image-to-3D component of our 3DFuse methodology is replaced with other
existing explicit image-to-3D models. Our 3DFuse undergoes its original generation process with
the identical text prompt, and the images given to each model are not curated. Also, to remove the
aliasing-like effect in the renderings that occurred due to the feature rendering architecture of SJC,
we have changed the backbone NeRF model of Zero-123 and 3DFuse from feature-level SJC to
pixel-level Instant-NGP backbone, which allows us to gain clearer results.

The experiment results show that our method’s generative capabilities enable our model to generate
more detailed, high-fidelity results in comparison to image-to-3D models that attempt explicit novel
view synthesis of conditioning images. We hypothesize the reason for this is that strict image-to-3D
models struggle to predict novel views of an image when an image is outside the domain of training
data, while our model is loosely conditioned and therefore gives the generative model more freedom
to generate realistic details, fully realizing its generative capability. This agrees with what we have
explained in our comparison Zero-123 in our main paper.

B.2 ROBUSTNESS

In the main paper, we present experimental results of 3DFuse with fixed random seeds for a fair
comparison. Here, we conduct an additional experiment to verify the robustness of our approach. We
compare our method with previous works (Poole et al., 2022; Wang et al., 2022a) with combinations
of fixed text prompts and varying random seeds. Fig. 15 demonstrates that our approach exhibits
enhanced robustness compared to previous works in terms of stochasticity.
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Figure 14: Comparisons with novel view model-based concurrent works (Liu et al., 2023; Qian
et al., 2023). The experiment results show that our method’s generative capabilities enable our
model to generate more detailed, high-fidelity results in comparison to image-to-3D models that
attempt explicit novel view synthesis of conditioning images.

B.3 SPARSITY VARIATION

We provide additional analysis of our model’s robustness against sparsity and ambiguity of point
cloud. We drastically change the number of points in a point cloud and generate images from its
depth map. As shown in Fig. 16, despite varying sparsity, our model shows consistency in inferring
dense structures and generates realistic images.
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Figure 15: Qualitative comparison for robustness. Qualitative results with varying random seeds
show our model’s robustness against stochastic factors. We visualize the results generated with the
seed from 0 to 4.

B.4 ADDITIONAL QUALITATIVE RESULTS

Fig. 17 displays additional qualitative results. Our qualitative results demonstrate that the outputs of
our model have superior robustness and 3D-consistency compared to previous methods.

B.5 ABLATION ON SPARSE DEPTH INJECTOR

We conducted an ablation study regarding the effectiveness of conditional depth maps. Specifically,
we remove the sparse depth injector from the diffusion model that receives an optimized embedding
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Figure 16: Sparsity variation with a fixed random seed.

with LoRA layers. Fig. 18 presents the result of our framework with and without the sparse depth
injector, confirming its importance in achieving geometric consistency.

C EVALUATION DETAILS

C.1 USER STUDY

To qualitatively compare our 3DFuse with previous methods, DreamFusion (Poole et al., 2022) and
SJC (Wang et al., 2022a), we conduct a user study. As the Imagen (Saharia et al., 2022) model used
in DreamFusion is publicly unavailable, we utilize Stable-DreamFusion (Tang, 2022), which uses
Stable Diffusion (Rombach et al., 2022). All methods employ Stable Diffusion v1.5 checkpoint.

Our user study questionnaire shows rendered images of 3D scenes generated by 3DFuse, SJC, and
Stable-DreamFusion, using identical prompts. We ask the participants to select the result that best
fits each of the questions given below. We use 7 prompts and generate three 3D scenes per prompt
using 3DFuse, SJC, and Stable-DreamFusion. We give 5 rendered images for each 3D scene, with
the camera poses identical across different models for a fair comparison. We do not disclose the
models used to generate the results and randomize the order of methods for each question in order
to keep the selection process fair. Our final user study is the statistics summarizing responses from
a total of 102 participants.

The questions used in the user study are as follows:

• These images are rendered by rotating the camera horizontally from 0 to 360 degrees.
Which result has the most natural shape? (3D coherence)

• Which result seems to follow the user input text the best? (prompt adherence)
• Which result has the best overall quality? (overall quality)

C.2 COLMAP-BASED METRIC

We provide additional details of the COLMAP (Schonberger & Frahm, 2016)-based metric we pro-
pose. We sample 100 uniformly spaced cameras whose origin points are on a hemisphere of fixed
radius at an identical elevation angle, which is 30 degrees in our setting. All cameras are directed
towards the center of the hemisphere, and we render 100 images of the 3D scene from these camera
viewpoints. Subsequently, COLMAP predicts the camera pose of each image for point cloud recon-
struction. We measure the difference between the predicted camera poses of image pairs that were
adjacent at the previous rendering stage.

The variance between the different values is used as a metric for the 3D consistency evaluation.
As initial differences between all adjacent camera pairs are identical at the rendering stage, a high
variance in predicted difference values indicates the magnitude of inaccuracy in the COLMAP op-
timization process that predicts cameras. Such inaccuracies are caused by distortions and repeating
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“a cozy fireplace with flickering flames and crackling logs”
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Figure 17: More qualitative results. Additional qualitative results show 3DFuse’s superior perfor-
mance in ensuring geometric and semantic consistency.

artifacts in a 3D scene, whose ambiguous and repetitive nature confuses COLMAP optimization by
offering multiple erroneous solutions in the camera pose prediction process. Therefore, it can be
argued that this variance value corresponds to the prominence of 3D inconsistent features that make
optimization for COLMAP difficult.

Fig. 19 visualizes the point cloud and the camera poses reconstructed through COLMAP optimiza-
tion. The left columns show COLMAP optimization results of inconsistent 3D scenes generated by
SJC (Wang et al., 2022a), and the right columns show COLMAP optimization results of consistent
3D scenes generated by 3DFuse. It is noticeable that the cameras predicted from 3DFuse’s scene
are more uniformly spaced and stable than those of SJC. In the left-right figure showing a horse
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“a cozy cabin in woods with a chimney and a porch”

“a colorful candy house”
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“a photo of cute hippo”
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w/o Sparse Depth Injector w/ Sparse Depth Injector

Figure 18: Ablation on sparse depth injector. Our results demonstrate that the absence of sparse
depth injection induces the breakdown of geometry, resulting in blurry and inconsistent 3D shapes,
proving the prominence of the sparse depth injector in our framework.

Rendered image Reconstruction Rendered image Reconstruction

Figure 19: Visualization of predicted camera pose from COLMAP (Schonberger & Frahm,
2016) optimization. Left columns visualize COLMAP optimization results from the renderings of
SJC-generated scenes (Wang et al., 2022a), while the right columns visualize the results from our
3DFuse.

generated by SJC, COLMAP displays evident difficulty in handling the ambiguous, repetitive fea-
tures of the 3D-inconsistent horse, leading it to mistakenly predict that all cameras are distributed
on only one side of the hemisphere. As this phenomenon is consistently observed throughout mul-
tiple scenes, we demonstrate that such distortions and 3D inconsistencies increase the difficulty of
COLMAP optimization and harm the camera pose prediction quality.

Please note that a limitation of the COLMAP-based metric lies in its resolution. If the generated
output lacks sufficient 3D consistency, the optimization process within COLMAP may fail to con-
verge, resulting in significantly lower scores. Consequently, it becomes challenging to differentiate
between such samples. However, this metric retains an advantage in assessing the 3D consistency
among samples of reasonably high quality.

C.3 LIMITATION OF CLIP-BASED METRIC

For 2D image generation, metrics such as FID (Heusel et al., 2017) and Inception score (Salimans
et al., 2016) are used to quantify the generation quality by measuring the similarity between the
distribution of ground truth images and generated images. However, the same approach cannot be
applied to score distillation-based text-to-3D generation, due to the absence of 3D scenes corre-
sponding to the text prompts. This presents a challenge for conducting a quantitative evaluation of
zero-shot text-to-3D generative models, which previous works have bypassed by showcasing var-
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(a) Average of CLIP score : 19.9

Average of CLIP score : 19.2

(a) (b)

· · · · · ·

· · · · · ·

(a) 

(b) Average of CLIP score : 19.2

Figure 20: Scenes evaluated by CLIP-based metric. (a) An inconsistent 3D scene and (b) a
consistent 3D scene. The inconsistent 3D scene achieves a higher score in the CLIP-based metric.

ious qualitative results instead of quantitative evaluation (Wang et al., 2022a) or conducting user
study (Lin et al., 2022).

Another approach used in previous works (Jain et al., 2022; Poole et al., 2022) is to use CLIP-based
metrics, such as CLIP R-precision, which measures retrieval accuracy based on CLIP (Radford
et al., 2021) through projected 2D image and text input. Nevertheless, such CLIP-based metrics
are ineffective in measuring the quality and consistency of generated 3D geometry. For example,
when geometric failure such as a multiple-face problem occurs, producing frontal geometric fea-
tures multiple times around the 3D scene, the CLIP-based metric measures all such viewpoints with
frontal features as having high similarity with the text prompts. This causes such 3D scenes to have
misleadingly high scores despite having incorrect geometry. Fig. 20 illustrates an example of this
phenomenon, where each image rendered in a geometric inconsistent scene (first row) achieves a
higher CLIP score than each image generated in a geometric consistent scene (second row).

D LIMITATION

We have proposed a novel 3DFuse framework that infuses 3D awareness into a pretrained 2D diffu-
sion model while preserving its original generalization capability. While 3DFuse stably optimizes
NeRF for text-to-3D generation, demonstrating superior performance, there are still several limita-
tions that need to be addressed. First, our approach inherits the difficulty in reflecting complex user
prompts faithfully, as it relies on the ability of the pretrained diffusion model to follow text prompts.
Additionally, our approach may face various societal biases inherent in the dataset (Schuhmann
et al., 2021), similar to the text-to-image generation models (Rombach et al., 2022).
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