
Rethinking Benign Overfitting in Two-Layer Neural Networks

Ruichen Xu 1 Kexin Chen 2

Abstract
Recent theoretical studies (Kou et al., 2023; Cao
et al., 2022) revealed a sharp phase transition
from benign to harmful overfitting when the
noise-to-feature ratio exceeds a threshold—a sit-
uation common in long-tailed data distributions
where atypical data is prevalent. However, such
harmful overfitting rarely happens in overparam-
eterized neural networks. Further experimen-
tal results suggested that memorization is nec-
essary for achieving near-optimal generalization
error in long-tailed data distributions (Feldman &
Zhang, 2020). We argue that this discrepancy be-
tween theoretical predictions and empirical ob-
servations arises because previous feature-noise
data models overlook the heterogeneous nature
of noise across different data classes. In this pa-
per, we refine the feature-noise data model by in-
corporating class-dependent heterogeneous noise
and re-examine the overfitting phenomenon in
neural networks. Through a comprehensive anal-
ysis of the training dynamics, we establish test
loss bounds for the refined model. Our findings
reveal that neural networks can leverage "data
noise" to learn implicit features that improve the
classification accuracy for long-tailed data. Our
analysis also provides a training-free metric for
evaluating data influence on test performance.
Experimental validation on both synthetic and
real-world datasets supports our theoretical re-
sults.

1. Introduction
Overfitting, also known as memorization, had long been
considered detrimental to model generalization perfor-
mance (Hastie et al., 2009). However, with the advent of
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over-parameterized neural networks, models can perfectly
fit the training data while still exhibiting improved general-
ization as model complexity increases. When and why this
benign overfitting phenomenon happens garnered signifi-
cant interest within the learning theory community. Recent
works, e.g., Frei et al. (2022); Cao et al. (2022); Kou et al.
(2023), showed a sharp phase transition between benign
and harmful overfitting in two-layer neural networks with
a feature-noise data model (Allen-Zhu & Li, 2020), which
assumes data is composed of a feature vector as its mean
and a random Gaussian vector as its data-specific noise.
Specifically, when the magnitude of the noise exceeds a
threshold, neural networks memorize the data noise, lead-
ing to harmful overfitting. Nevertheless, such harmful
overfitting is rarely observed in modern over-parameterized
neural networks.

Empirical evidence (Feldman & Zhang, 2020; Hartley &
Tsaftaris, 2022; Wang et al., 2024; Garg & Roy, 2023) in-
dicates that memorization can, in fact, enhance generaliza-
tion, especially in long-tailed data distributions character-
ized by substantial data-specific noise. These findings con-
tradict current theories of the phase transition to harmful
overfitting. Consequently, the following problem remains
open:

How can we theoretically explain benign overfitting in
overparameterized neural networks?

Inspired by the heterogeneous intra-class distributions in
real-world datasets (as shown in Figure 1), we refine the
feature-noise data model by incorporating class-dependent
noise and re-examine the benign overfitting phenomenon
in two-layer ReLU convolutional neural networks (CNNs).
In this paper, we make the following contributions:

• We establish an enhanced feature-noise model by con-
sidering heterogeneous noise across classes. Our re-
sults with this model theoretically explain how mem-
orization of long-tailed data boosts model perfor-
mance, which cannot be predicted by existing theo-
retical frameworks for neural networks.

• We derive general theoretical phase transition results
between benign and harmful overfitting by analyzing
the test error bounds of the refined model. Our results
demonstrate that although the trained neural networks
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can classify data through explicit features, they can
additionally utilize implicit features learned through
memorization of class-dependent noise to classify
long-tailed data. The findings are well-supported by
real-world datasets. Our results also show a proba-
bly counterintuitive result that a class’s classification
accuracy for long-tailed data may decrease with the
dataset sizes of other classes, giving an explanation to
the observations in Sagawa et al. (2020).

• We derive new proof techniques to tackle the random-
ness involved in feature learning. Unlike explicit fea-
ture learning, which exhibits stable activation states
and magnitudes, data noise has random activation
states and magnitudes. Specifically, to tackle the ran-
dom activation states, we explore the singular value
distributions of neural networks to characterize the
variability. Moreover, we demonstrate that the output
strength of neurons randomly activated by data noise
is influenced by intra-class covariance matrices.

• Our analysis provides a simple training-free metric for
evaluating data memorization, unlike previous met-
rics that rely on training or storing multiple models.
The data with high scores on our metric correspond
to visually atypical samples, which are memorized to
benefit model generalization, aligning with Feldman
& Zhang (2020); Garg & Roy (2023).

1.1. Related Work

We review the topics of empirical observations and theoret-
ical studies of memorization.

Empirical observations of memorization. A lot of re-
cent empirical studies showed that memorization inevitably
happens in modern over-parameterized neural networks.
For instance, Feldman & Zhang (2020); Garg & Roy (2023)
studied the memorization of training examples and found
that neural networks tend to memorize visually atypical
examples, i.e., those are rich in data-specific information.
These observations motivate us to study the impact of data-
specific information on benign overfitting. Our results pro-
vide a theoretical justification for these empirical observa-
tions in neural networks.

Theoretical analyses for memorization. A body of
work theoretically examined memorization within classi-
cal machine learning frameworks, demonstrating its sig-
nificance for achieving near-optimal generalization perfor-
mance across various contexts, including high-dimensional
linear regression (Cheng et al., 2022), prediction models
(Brown et al., 2021), and generalization on discrete distri-
butions and mixture models (Feldman, 2020). This line of

Figure 1. Left: Examples of MNIST long-tailed atypical data,
which tend to be memorized by neural networks (Feldman &
Zhang, 2020). Right: t-SNE visualization of MNIST. The hetero-
geneous shapes imply real-world datasets, such as MNIST, prac-
tically show heterogeneously correlated structures, providing ex-
perimental evidence for our theory.

research failed to explain learning dynamics and general-
ization performance in non-convex and non-smooth neural
networks.

Another line of work theoretically studied memorization
in neural networks by analyzing the feature learning pro-
cess during training, providing analytical frameworks that
extend beyond the neural tangent kernel (NTK) regime (Ja-
cot et al., 2018; Allen-Zhu et al., 2019; Du et al., 2018).
For example, Cao et al. (2022) and Kou et al. (2023) ex-
plored benign overfitting in two-layer neural networks us-
ing the feature-noise data model with homogeneous data
noise distributions and showed a sharp phase transition be-
tween benign and harmful overfitting. However, they all
assumed that the data-specific noise is homogeneous, lead-
ing to the conclusion that it is harmful to memorize data-
specific noise. They thus fail to explain the empirical ob-
servations with long-tailed data.

1.2. Notation

We use lowercase letters, lowercase boldface letters, and
uppercase boldface letters to denote scalars, vectors, and
matrices, respectively. We use [m] to denote the set
{1, · · · ,m}. Given two sequences {xn} and {yn}, we de-
note xn = O(yn) if |xn| ≤ C1|yn| for some positive con-
stant C1 and xn = Ω(yn) if |xn| ≥ C2|yn| for some pos-
itive constant C2. We use xn = Θ(yn) if xn = O(yn)
and xn = Ω(yn) both hold. We use Õ(·), Θ̃(·), and Ω̃(·) to
hide the logarithmic factors in these notations. Given a ma-
trix A, we use ∥A∥F to denote its Frobenius norm, ∥A∥op
to denote its operator norm, Tr(A) to denote its trace,
λi(A) to denote its ith largest singular value, λ+

max(A) and
λ+
min(A) to denote its maximum and minimum absolute

values of non-zero singular values, and rank(A) to denote
its rank. We use the notation (x, y) ∼ D to denote that the
data sample (x, y) is generated from a distribution D.
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2. Problem Setup
In this section, we introduce the problem setup, including
the data model, CNNs, and the training algorithm.

Given the evidence that real-world datasets have heteroge-
neous class-dependent structures (as shown in Figure 1),
we consider a data distribution as follows.

Data distribution. We define a data distribution D that
each sample (x, y) is generated as

1. Sample the label y following a distribution K, whose
support is [K] (K = Θ(1)).

2. The data x =
(
x(1),x(2)

)
, where x(1),x(2) ∈ Rd con-

tains either feature or class-dependent noise patch:

• Feature patch: One patch is randomly selected as the
feature patch, containing a feature vector uy ∈ Rd.

• Noise patch: The remaining patch ξ is generated as
Ayζ, where each coordinate of ζ is i.i.d. drawn from
Dζ , a symmetric σp = Θ(1) sub-Gaussian distri-
bution1 with variance 1, and Ay ∈ Rd×d satisfies
u⊤
k Ay = 0, for any k ∈ [K]. 2

Without loss of generality, we assume that the feature
vectors u1, · · · ,uK are orthogonal and their norms are
bounded, i.e., ⟨ui,uj⟩ = 0, ∥ui∥2 = Θ(1) for all i, j ∈
[K] and i ̸= j.
Remark 2.1. The sub-Gaussian distribution of noise
patches is general. In practice, pixel magnitudes in the clas-
sification tasks are bounded and thus are sub-Gaussian.

Learner model. We consider a two-layer CNN with ReLU
activation as the learner model. Given an input x =(
x(1),x(2)

)
, the model with weights W outputs a K-length

vector [F1, · · · , FK ] whose elements are

Fk (W,x) =
1

m

m∑
r=1

2∑
j=1

σ
(〈

wk,r,x
(j)
〉)

, (1)

where σ(z) = max{0, z} denotes the ReLU activation
function, and wk,r denotes the weight vector for the rth

neuron (totally m neurons) associated with Fk(W,x).

Training objective. Given a training dataset with n sam-
ples S = {(xi, yi)}ni=1 drawn from the distribution D, we

1Here, we simply refer an α sub-Gaussian variable as a sub-
Gaussian variable with variance proxy α.

2This condition ensures that the noise patch is orthogonal
to the feature patch. Our data distribution includes the widely
adopted feature-noise data distribution with homogeneous data
noise (Cao et al., 2022; Zou et al., 2023; Jelassi & Li, 2022)
as a special case. By setting K = 2 and AkA

⊤
k = I −∑K

k=1 uku
⊤
k / ∥uk∥22 for all k, y ∈ [K], our data distribution be-

comes the same as theirs.

train the neural network by minimizing the empirical risk
with the cross-entropy loss:

LS (W) =
1

n

n∑
i=1

L(W,xi, yi), (2)

where L(W,x, y) = − log(logity(W,x)), and logit(·)
represents the output probability of the neural network:

logity(W,x) =
exp(Fy(W,x))∑K
k=1 exp(Fk(W,x))

. (3)

Initialization. The initial weights of the neural network’s
parameters are generated i.i.d. from a Gaussian distribu-
tion, i.e., w(0)

j,r ∼ N (0, σ2
0I), for all j ∈ [K], r ∈ [m].

Training algorithm. We train the neural network by
gradient descent (GD) with a learning rate η, i.e.,

W(t+1) = W(t) − η

n

∑
(x,y)∈S

∇L(W(t),x, y). (4)

3. Main Results
In this section, we present our main theoretical results. We
start by introducing some conditions for our theory.

Condition 3.1. Suppose there exists a sufficiently large
constant C. For certain probability parameter δ ∈ (0, 1),
the following conditions hold:

(a) To ensure that the neurons can learn the data patterns3,
for any i, j ∈ [K], the noise patch distributions sat-
isfy:
Tr(A⊤

i Ai) ≥ Cnmax
{∥∥A⊤

i Aj

∥∥
F
log(n2/δ),

n1/2maxi,j∈[K]{
∥∥A⊤

i Aj

∥∥1/2
F

}log1/2(n2/δ)/|Si|
}
,∥∥A⊤

i Aj

∥∥
F
/
∥∥A⊤

i Aj

∥∥
op ≥ C

√
log(K/δ),∥∥A⊤

i Aj

∥∥
F
≥ C−1 maxk ̸=j{

∥∥A⊤
i Ak

∥∥
F
}.

Moreover, there exists a threshold c′ > 0 such that
P[ζ > c′] ≥ 0.4.

(b) To ensure that the learning problem is in a sufficiently
over-parameterized setting, the training dataset size n,
network width m, and dimension d satisfy:
m ≥ C log(n/δ)maxi{(λ+

max(Ai))
2/(λ+

min(Ai))
2},

n ≥ C log(m/δ),m ≥ Ω
(
log(n/δ) log(T )2/nσ2

0

)
,

min{m, d, rank(Aj)} − 0.9m ≥ Cn,

d ≥ C log(mn/δ).
3Conditions (a) on the noise patches generalize the conditions

on dimension d in Kou et al. (2023). Setting AkA
⊤
k = I −∑K

k=1 uku
⊤
k / ∥uk∥22 for all k ∈ [K], Condition (a) is similar

to the dimension condition in Kou et al. (2023).
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(c) To ensure that gradient descent can minimize the
training loss, the learning rate η and initialization σ0

satisfy:
η≤
(
Cmaxk∈[K]

(
∥uk∥2+

√
1.5Tr

(
A⊤

k Ak

))
2
)−1

,

η ≤ mn log(T )/maxj∈[K]{Tr(A⊤
j Aj)},

σ0 ≤C−1n−1ϕ·(
maxk∈[K]{

√
log(Km/δ)∥uk∥2,log(Km/δ)∥Ak∥F}

)
−1,

where ϕ := mink1,k2∈[K]{
∥∥A⊤

k1
Ak2

∥∥
F
, ∥uk1∥

2
2}.

Based on Condition 3.1, we study the model convergence
and generalization performance by bounding the training
loss and the zero-one test loss (accuracy) of the trained
model W(T ) on distribution Dk whose probability density
function is PDk

[(x, y)] = PD[(x, y)|y = k], i.e., for all
k ∈ [K],

L0−1
Dk

(W(T ))

=P(x,y)∼Dk

[
Fy(W

(T ),x) ̸= max
j∈[K]

{Fj(W
(T ),x)}

]
.

Before presenting the main theorem, we define the set of
long-tailed data with respect to the trained model W(T ).

Definition 3.2 (L-Long-tailed data set). The L-long-tailed
data distribution Tj for each j ∈ [K] with model W(T ) is
defined as

PTj
[(x, y)] =

PDj

(x, y)|⟨ ∑
r∈R(ξ)

w(T )
y,r , ξ⟩ ≥ L∥A⊤

y

∑
r∈R(ξ)

w(T )
y,r ∥2

 ,

where R(ξ) = {r ∈ [m] : ⟨w(T )
y,r , ξ⟩ > 0}.

Definition 3.2 identifies data whose equivalent noise ζ ′

exceeds a threshold. Specifically, for data (x, y) ∼
D, the inner product term ⟨

∑
r∈R(ξ) w

(T )
y,r , ξ⟩ satis-

fies ⟨
∑

r∈R(ξ) w
(T )
y,r , ξ⟩ = Θ

(∥∥∥A⊤
y

∑
r∈R(ξ) w

(T )
y,r

∥∥∥
2
ζ ′
)

,

where ζ ′ is an equivalent random sub-Gaussian variable
with variance 1.
Remark 3.3. Classical definitions of long-tailedness often
hinge on simple one-dimensional statistics (such as Zipf
distribution). However, such metrics may fail to capture
the nuances of high-dimensional data. For instance, for
sub-Gaussian data, norms alone cannot capture which sam-
ples are “rare” or “hard” to learn due to concentration ef-
fects. To address this, we draw inspiration from prior work
that uses trained models to identify "long-tailed" samples.
Specifically, Feldman & Zhang (2020) defined the long-
tailed data using an influence score that quantifies the train-

ing loss difference resulting from the removal of a spe-
cific sample from the dataset. Garg & Roy (2023) de-
fined the long-tailedness of data using a curvature met-
ric that approximates a loss Hessian matrix-related quan-
tity of trained models averaged over all training epochs.
In a similar manner, our definition leverages the trained
model W(T ) to map high-dimensional samples to a one-
dimensional metric, allowing us to identify long-tailed data
points from the perspective of the network’s learned repre-
sentations.

We denote Sj as the set containing training data with label
j in the training dataset S. We present our main result in
the following theorem.

Theorem 3.4. For any ϵ > 0 and k ∈
[K], under Condition 3.1, there exists T =
Õ(η−1ϵ−1max{nmaxj∈[K]{Tr(A⊤

j Aj)},
√
mdσ0,

√
mK}),

with probability at least 1− δ, the following holds:

1. The training loss satisfies: LS(W
(T )) ≤ ϵ.

2. Benign overfitting:

(a) (For all data) When the signal-to-noise ra-
tio is large, i.e., |Sk|2 ∥uk∥42 ≥ C1 ·
maxj ̸=k{|Sj |

∥∥A⊤
k Aj

∥∥2
F
}, the zero-one test loss

satisfies:

L0−1
Dk

(W(T ))≤
∑
j ̸=k

exp

−c1 ·
|Sk|2 ∥uk∥42

|Sj |
∥∥A⊤

k Aj

∥∥2
F︸ ︷︷ ︸

signal-to-noise ratio

.

(b) (Only for long-tailed data) When the noise cor-

relation ratio is large, i.e.,|Sk|
∥∥A⊤

k Ak

∥∥2
F

≥
C2 ·maxj ̸=k{|Sj |

∥∥A⊤
k Aj

∥∥2
F
}, the zero-one test

loss satisfies:

L0−1
Tk

(W(T ))

≤
∑
j ̸=k

exp

−c2L
2 ·

|Sk|
∥∥A⊤

k Ak

∥∥2
F

|Sj |
∥∥A⊤

k Aj

∥∥2
F︸ ︷︷ ︸

noise correlation ratio Γk,j

 .

3. Harmful overfitting: When the signal-to-noise ra-
tio and noise correlation ratio are small, i.e.,
|Sk|2 ∥uk∥42 ≤ C3 · maxj ̸=k{|Sj |

∥∥A⊤
k Aj

∥∥2
F
} and

|Sk|
∥∥A⊤

k Ak

∥∥2
F

≤ C3 · maxj ̸=k{|Sj |
∥∥A⊤

k Aj

∥∥2
F
},

the zero-one test loss satisfies L0−1
Dk

(W(T )) ≥ c3.

Here, C1, C2, C3, c1, c2, c3 are some absolute constants.
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Figure 2. Illustration of the generalized phased transition between
benign and harmful overfitting (memorization). The blue region
represents a benign overfitting regime where the test loss is small.
The orange region represents a harmful overfitting regime where
the test loss is at a constant order. The gray band region is the
setting where the test loss is not well characterized.

Theorem 3.4 characterizes a sharp phase transition be-
tween benign and harmful overfitting (memorization), vi-
sualized in Figure 2. As per Theorem 3.4, after T itera-
tions, CNNs converge to nearly optimal training loss (State-
ment 1). When the signal-to-noise ratio is high, the trained
CNNs can achieve optimal test loss by effectively detecting
explicit features uk (Statement 2(a)). This result extends
the previous benign overfitting results, which characterize
the horizontal dimension in Figure 2. Furthermore, CNNs
also classify long-tailed data by seeking to detect features
learned from class-dependent noise so that the performance
benefits from high noise correlation ratios (Statement 2(b)).
This result at the first time characterizes the vertical dimen-
sion in Figure 2, showing that the model can also leverage
the noise patch to achieve benign overfitting. Conversely,
when both noise correlation ratios and signal-to-noise ra-
tios are small, the trained CNNs incur test loss at least a
constant (Statement 3). Notably, longer-tailed data (with
a larger L) benefits more from the class-dependent noise
patch.

Remark 3.5. By choosing AjA
⊤
j = I −∑K

k=1 uku
⊤
k / ∥uk∥22 for all j ∈ [K], our Statement

2(a) recovers the same convergence orders in the standard
benign overfitting results (Kou et al., 2023). However, our
results are more general as our results cover the whole
class of sub-Gaussian data noise, K > 2 number of
classes, and data imbalance, which is common in modern
image classification tasks.

The results of Theorem 3.4 theoretically explain the fol-
lowing two empirical observations in neural networks for
the first time.

Long-tailed (atypical) data is important for generaliza-
tion. In Statement 2(b) of Theorem 3.4, we show that the

classification accuracy of long-tailed data increases with
the noise correlation ratio. This result implies that incor-
porating more long-tailed data into the training dataset en-
hances test accuracy, providing a theoretical explanation
for the empirical observation in Feldman & Zhang (2020)
that including long-tailed data in the training dataset is nec-
essary for neural networks to achieve near-optimal gener-
alization performance.

Increasing majority hurts minority. Statement 2(b) of
Theorem 3.4 implies that as the dataset size of class j,
|Sj | increases, the upper bound on test loss of other classes
k ̸= j increases. This leads to a possibly surprising result:
The classification accuracy for long-tailed data of a spe-
cific class may decline when the sizes of other classes in-
crease. The reason is that during training, the memorization
of majority class-dependent noise (classes with more data)
dominates the memorization of minority class-dependent
noise. Our result theoretically explains a counter-intuitive
observation in neural networks that subsampling the major-
ity group empirically achieves low minority error (Sagawa
et al., 2020).

4. Proof Overview
In this section, we present a proof sketch of Statement 1
and Statement 2(b) in Theorem 3.4 (Statement 2(a) uses a
similar but simpler proof). Due to the space limit, we defer
the complete proofs to Appendices A, B, and C.

4.1. Proof Sketch of Statement 1 in Theorem 3.4

We analyze the training loss in two stages. In training Stage
1, the training loss of each example decreases exponentially
and stays at a constant order Θ(1). In Stage 2, the model
converges to an arbitrarily small constant.

Stage 1. By the nature of cross-entropy, the training loss
decreases exponentially, characterized by the following
lemma.

Lemma 4.1. Under Condition 3.1, there exists an iteration
number T0 = Õ(mn/η), so that for any (x, y) ∈ S and
t ≤ T0, the following holds:

L(W(t+1),x, y)

≤
(
1−Θ

( η

mn
|Sy| ∥uy∥22

))
L(W(t),x, y).

(5)

Stage 2. We show that the training loss converges to an
arbitrarily small constant ϵ at a rate of O(1/T ).

Lemma 4.2. Let W∗ be the network parameters with each
neuron w∗

j,r = 2.5 log (4(K − 1)/ϵ)uj/ ∥uj∥22. Under
Condition 3.1, for any t ∈ [T0, T ] and (x, y) ∈ S , the
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following result holds:

1

t− T0 + 1

t∑
s=T0

LS(W
(t)) ≤

∥∥W(T0) −W∗
∥∥2
F

η(t− T0 + 1)
+

ϵ

2
.

After T = Õ(η−1ϵ−1max{nmaxj∈[K]{Tr(A⊤
j Aj)},√

mdσ0,
√
mK}) iterations, the training loss converges to

ϵ. Our analysis extends that of Kou et al. (2023)4 by provid-
ing the convergence rate for Stage 1 and a comprehensive
convergence analysis for K-class classification problems
using cross-entropy loss.

4.2. Proof Sketch of Statement 2(b) in Theorem 3.4

By the definition of zero-one test loss, for any long-tailed
data (x, y) ∈ Ti, i ∈ [K], its test loss satisfies:

L0−1
Ti

(W(T )) ≤
∑
j ̸=i

P(x,y)∼Ti

[
m∑
r=1

σ(⟨w(T )
y,r, ξ⟩)≤

m∑
r=1

σ(⟨w(T )
j,r ,uy⟩)+σ(⟨w(T )

j,r , ξ⟩)

]
.

Roughly speaking, since the neurons for a class do not learn
explicit features of other classes, i.e.,

∑m
r=1σ(⟨w

(T )
j,r ,uy⟩)

is small for j ̸= y, the key to quantifying the test loss is
to compare the correlation coefficients

∑m
r=1 σ(⟨w

(T )
y,r , ξ⟩)

and
∑m

r=1 σ(⟨w
(T )
j,r , ξ⟩).

First, we need to quantify the number of neurons that can
be activated by the random noise patch ξ. We leverage
the properties of the rank and singular values of the neu-
rons corresponding to each class j ∈ [K], i.e., W(T )

j =

[w
(T )
j,1 , · · · ,w

(T )
j,m]⊤, in the following lemma.

Lemma 4.3. Under condition 3.1, the matrix W(T )
j for all

j ∈ [K] satisfies:
rank(W(T )

j Aj) ≥ 0.9m,

λ1(W
(T )
j Aj) ≤ O(

√
m log(T )),

λmin{m,d,rank(Aj)}−n(W
(T )
j Aj) ≥ 0.1

√
mσ0.

With Lemma 4.3, we can prove that the probability that
⟨w(T )

y,r , ξ⟩ remains in an orthant decreases exponentially
with the number of neurons m. Consequently, we derive
the following lemma for the number of activated neurons.

Lemma 4.4. Under condition 3.1, for any j ∈ [K] and any
(x, y) ∼ Dj , with probability at least 1−exp(−Ω(m)), the

4Kou et al. (2023) provided convergence analysis for train-
ing loss in two-layer CNNs with binary classification and logistic
loss.

trained model W(T ) satisfies:

m∑
r=1

I
(
⟨w(T )

j,r , ξ⟩
)
≥ 0.1m. (6)

Lemma 4.4 indicates that, with high probability, at least
a non-negligible amount of neurons are able to detect the
noise patch of the test data.

Next, we quantify the activation magnitude of the
correlation coefficients

∑m
r=1 σ(⟨w

(T )
y,r , ξ⟩) and∑m

r=1 σ(⟨w
(T )
j,r , ξ⟩). In the following lemma, we

prove that the neurons for class j ∈ [K] mainly learn the
data noise patch from class j.

Lemma 4.5. Under Condition 3.1, for any j ∈ [K], l ∈
[K]\{j}, (xq, yq) ∈ Sj , (xa, ya) ∈ Sl, existing a suffi-
ciently large constant C ′ > 0, we have:

m∑
r=1

σ(⟨w(T )
j,r , ξq⟩) ≥ C ′

m∑
r=1

σ(⟨w(T )
j,r , ξa⟩). (7)

As a result, the order of activation magnitudes is controlled
by the intra-class correlations and inter-class correlations,
quantified by ∥A⊤

y Ay∥F and ∥A⊤
y Aj∥F .

Lemma 4.6. Under Condition 3.1, for any (x, y) ∼ Ti and
i ∈ [K], j ∈ [K]\{y}, the following holds:

m∑
r=1

σ
(
⟨w(T )

y,r , ξ⟩
)
= Θ

(ηm
n

∥∥A⊤
y Ay

∥∥
F
Lb(Sy)

)
,

m∑
r=1

σ
(
⟨w(T )

j,r , ξ⟩
)
= O

(ηm
n

∥∥A⊤
y Aj

∥∥
F
b(Sj)|ζ1|

)
,

where b(·) is a function defined as:

b(A) =

√√√√√ ∑
(x,y)∈A

(
T−1∑
t′=0

(1− logity(W(t′),x))

)2

, (8)

and ζ1 is a sub-Gaussian variable with variance 1.

Finally, to compare b(Sy) and b(Sj), we prove that the loss
gradient coefficients are balanced.

Lemma 4.7. For all t ∈ [T ] and for any i, j ∈ [n], there
exists a positive constant κ such that:

1− logityi
(W(t),xi)

1− logityj
(W(t),xj)

≤ κ. (9)

Leveraging Hoeffding’s inequality, Lemma 4.6, and 4.7, we
derive Statement 2(b) in Theorem 3.4.
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(a) Test accuracy heatmap under Gaussian data noise. Each entry
of ζ follows N (0, 1).

(b) Test accuracy heatmap under uniform data noise. Each entry of
ζ follows U(−

√
3,
√
3).

Figure 3. Impacts of feature strength and noise correlation ratio on test accuracy.

(a) Test accuracy heatmap with feature strength and dataset size.
Each entry of ζ follows N (0, 1).

(b) Test accuracy heatmap with noise correlation ratio and dataset
size. Each entry of ζ follows N (0, 1).

Figure 4. Impacts of data size on test accuracy.

5. Experiments
In this section, we first validate our theory in Theorem 3.4
by constructing datasets and models following our problem
setup in Section 2. We further verify our conclusions with
real-world datasets MNIST (LeCun et al., 1998), CIFAR-
10, and CIFAR-100 (Krizhevsky et al., 2009).

5.1. Synthetic Datasets

Synthetic data generation. We generate a synthetic
dataset following the data distribution outlined in Section
2. The dataset comprises a total of K = 5 classes with a
dimensionality of d = 1000. We set the feature patches for
each k ∈ [K] as uk = U · ∥uk∥2 · zk, where zk keeps
the kth entry to be one and other entries zeros, and U is a
randomly generated unitary matrix. Without loss of gener-
ality, we consider Ak to be matrices with all but one non-
zero eigenvalue fixed as 0.5. Then, we tune the non-fixed
non-zero eigenvalue to change the noise correlation ratio

accordingly.

Setup. We train a two-layer neural network as defined in
Section 2 with m = 100 neurons. We use the default ini-
tialization method in PyTorch to initialize the neurons’ pa-
rameters. We train the neural networks using GD with a
learning rate η = 0.05 over 20 epochs. To explore the
effects of feature strength ∥ui∥2, noise correlation ratio
Γi,j , and dataset size |Si|, we simply fix ∥ui∥2 = ∥u∥2,
Γi,j = Γ, and |Si| = s, where ∥u∥2, Γ, and s are tunable
parameters for all class i, j ∈ [K] (j ̸= i).

Effects of noise correlation and feature strength. We
simulate with feature strength ∥u∥2 ranging from 0.001 to
3.8 and noise correlation ratio Γ ranging from 1 to 1400.
We fix the dataset size of each class as |Si| = 100, for all
i ∈ [K]. The resulting heatmap of test accuracy in rela-
tion to data feature size and noise correlation is presented
in Figure 3. As illustrated, the test loss decreases not only
with increasing feature strength but also with higher noise

7
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Figure 5. Visualization of images with different influence scores.

correlation ratios. Notably, with high noise correlation ra-
tios, neural networks can achieve near-optimal test accu-
racy even when feature strength approaches nearly zero.

Effect of dataset size. We verify the impact of the dataset
sizes in the two types of benign overfitting in Statements
2(a) and 2(b) of Theorem 3.4. We fix the noise correlation
ratio as Γ = 1.2 with ζ following Gaussian distribution
and vary the feature size ranging from 0.01 to 4 and dataset
size ranging from 10 to 200 to explore the effect of dataset
size versus feature strength on test accuracy (Figure 4a).
We fix the feature strength as ∥u∥2 = 1e − 6 and tune
noise correlation ratio Γ (with ζ following Gaussian dis-
tribution) ranging from 1 to 800 and dataset size ranging
from 10 to 200 to explore the effect of dataset size versus
noise correlation ratio (Figure 4b). These results verify our
theory. Specifically, for classification utilizing explicit fea-
tures (Figure 4a), the test accuracy increases with increas-
ing dataset size, matching our Statement 2(a) in Theorem
3.4. In contrast, for classification utilizing implicit features
(Figure 4b), the test accuracy remains in a constant order
with the dataset size, matching Statement 2(b) in Theorem
3.4.

5.2. Real-World Datasets

We verify the effects of noise correlation on MNIST (Le-
Cun et al., 1998), CIFAR-10, and CIFAR-100 (Krizhevsky
et al., 2009).

Noise correlation ratio verifications. To verify our re-
sults in Theorem 3.4, we compute the squared Frobenius
norm, i.e., ∥A⊤

i Aj∥2F , among different classes of MNIST.
We provide the computation details in Appendix E. As
shown in Figure 6, real datasets such as MNIST indeed

Figure 6. Visualization of the squared Frobenius norm among
classes in MNIST.

have large noise correlation ratios, satisfying the conditions
for long-tailed data benign overfitting predicted in our the-
ory (Statement 2(b) of Theorem 3.4).

Data influence score. We quantify the impact of a single
data sample (x, y) by measuring its impact on

∥∥A⊤
y Ay

∥∥2
F

(A determining factor of the long-tailed data loss as
in Statement 2(b) of Theorem 3.4). We observe that
∥A⊤

y Ay∥F is, in fact, the same as the Frobenius norm of
the covariance matrix of class y’s distribution and hence we
consider an influence score of an image (x, y) ∈ S as:

infl(x) =
∥∥∥Σ̂(Sy)

∥∥∥2
F
−
∥∥∥Σ̂(Sy\{x})

∥∥∥2
F
, (10)

8
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Figure 7. Effect on the test accuracy of removing a fraction of ex-
amples with high and low influence scores.

where Σ̂(Sy) denotes the estimated covariance of the un-
derlying data distribution within the dataset Sy .5

What influence scores indicate. We visualize the data
with high and low influence scores in Figure 5. The data
with high influence scores are atypical data, which can be
interpreted by scrawly written digits and hard-to-classify
objects in the experimental datasets.

Inspiration from influence scores. We sort the data from
MNIST, CIFAR-10, and CIFAR-100 based on the influence
score defined in Eq. (10). In Figure 7, we remove a por-
tion of data with high and low influence scores and train
the remaining data on LeNet (LeCun et al., 1998), ResNet-
18, and ResNet-101 (He et al., 2016) to assess their impact
on model accuracy. We observe that the accuracy drop of
removing data with high influence scores is significantly
larger than that of removing data with low influence scores.
This observation verifies our theory (Statement 2(b) in The-
orem 3.4) that reducing the squared Frobenius norm sig-
nificantly hurts the model’s test performance as it reduces
accuracy on long-tailed data.

6. Conclusions
In this paper, we re-examine the overfitting phenomenon
in overparameterized neural networks. Specifically, we
enhance the widely used feature-noise data model by in-
corporating heterogeneous noise across classes. Our find-
ings reveal that neural networks can learn implicit fea-
tures from class-dependent noise and leverage these fea-
tures to enhance classification accuracy in long-tailed data
distributions. These findings align with the practical ob-
servations that memorization can enhance generalization
performance. Furthermore, our analysis provides a sim-

5We estimate the covariance matrix using the sample covari-
ance matrix.

ple training-free metric for evaluating data influence on
test performance. Experiments on both synthetic and real-
world datasets further validate our theory.

Impact Statement
Benign overfitting is one of the most fundamental phe-
nomena for neural networks. Our work discovers a new
mechanism of benign overfitting, providing new insights
not only on theoretical studies but also on improving train-
ing pipelines, such as designing data collections to achieve
desired properties. Additionally, we proposed a training-
free metric to evaluate the influence of data on test perfor-
mance.
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A. Additional Related Work
Implicit bias in neural networks. A line of studies found that training algorithms of neural networks prefer solutions
with certain properties, such as flatness (Damian et al., 2021), sparsity (HaoChen et al., 2021), max margin (Soudry et al.,
2018), and bounded ℓ∞ norm (Xie & Li, 2024), leading to better generalization. In contrast, this paper focuses on studying
the training dynamics, which detailedly characterizes how neural networks learn features to boost generalization.

B. Key lemmas
In this section, we present some important lemmas that illustrate the key properties of the data and neural networks.

Lemma B.1. Let Z ∈ Rm×n(m > n) be a matrix whose entries are independent and identically distributed Gaussian
variables, i.e., Zi,j ∼ N (0, 1) for all i ∈ [m], j ∈ [n]. With probability at least 1− δ, all singular values of Z, λi(Z), for
all i ∈ [n] satisfies

λi(Z) ≥
√
m− 2

√
8 log(

2

δ
) + 8 log(9)n. (11)

Lemma B.1 follows from the concentration inequality of Gaussian random matrices (Vershynin, 2018).

Lemma B.2. For n random σp sub-Gaussian variable x1, · · · , xn, with probability 1− δ, we have

P[|x| ≥ t] ≤ 2 exp

(
− t2

2σ2
p

)
. (12)

Proof. Based on the definition of sub-Gaussian distribution, with probability of 1− δ/n, we have

|xi| ≥
√

2σ2
p log(

2n

δ
). (13)

By Union bound, we finishes the proof.

Lemma B.3. Suppose two zero-mean random vectors x,y ∈ Rd are generated as x = Aζ1,y = Aζ2, where ζi’s each
coordinate is independent, symmetric, and σp sub-Gaussian with E[ζ2i,j ] = 1, for any i ∈ [2], j ∈ [d]. Then, x and y satisfy

P [|⟨x,y⟩| ≥ t] ≤ 2 exp

(
−Ω

(
min

{
t2

∥A⊤A∥2F σ4
p

,
t

∥A⊤A∥op σ
2
p

}))
. (14)

Proof. We have

⟨x,y⟩ = ⟨Aζ1,Aζ2⟩ = ζ⊤
1 A

⊤Aζ2 = ζ⊤
1 U

⊤ΛUζ2 = ζ̃
⊤
1 Λζ̃2 = Tr

(
Λζ̃2ζ̃

⊤
1

)
. (15)

As ζ̃1 and ζ̃2 are isotropic, by Bernstein’s inequality, we have

P
[
Tr
(
Λζ̃2ζ̃

⊤
1

)
≥ t
]
≤2 exp

(
−Ω

(
min

{
t2

∥A⊤A∥2F σ4
p

,
t

∥A⊤A∥op σ
2
p

}))
. (16)

Lemma B.4. Suppose a zero-mean random vector x ∈ Rd is generated as x = Aζ, where ζ’s each coordinate is
independent, symmetric, and σp sub-Gaussian with E

[
ζ2j
]
= 1, for any j ∈ [d]. Then, x satisfies

P
[
∥x∥22 − Tr

(
A⊤A

)
≥ t
]
≤2 exp

(
−Ω

(
min

{
t2

∥A⊤A∥2F σ4
p

,
t

∥A⊤A∥op σ
2
p

}))
. (17)

11



Rethinking Benign Overfitting in Two-Layer Neural Networks

Proof. We have
∥x∥22 = ⟨Aζ1,Aζ1⟩ = ζ⊤

1 A
⊤Aζ1 = Tr

(
A⊤Aζ1ζ

⊤
1

)
. (18)

Then, expectation of ∥x∥2 satisfies

E
[
∥x∥22

]
= Tr

(
A⊤A

)
. (19)

By Bernstein’s inequality, we have

P
[
∥x∥22 − Tr

(
A⊤A

)
≥ t
]
≤2 exp

(
−Ω

(
min

{
t2

∥A⊤A∥2F σ4
p

,
t

∥A⊤A∥op σ
2
p

}))
. (20)

Lemma B.5. Suppose two zero-mean random vectors x1,x2 ∈ Rd are generated as x1 = Aζ1,x2 = Bζ2, where ζi’s
each coordinate is independent, symmetric, and σp sub-Gaussian with E[ζ2i,j ] = 1, for any i ∈ [2], j ∈ [d]. Then, x1 and
x2 satisfy

P [| ⟨x1,x2⟩ | ≥ t] ≤2 exp

(
−Ω

(
min

{
t2

∥A⊤B∥2F
,

t

∥A⊤B∥op

}))
. (21)

Proof. We have
⟨x,y⟩ = ⟨Aζ1,Bζ2⟩ = ζ⊤

1 A
⊤Bζ2 = Tr

(
A⊤Bζ2ζ

⊤
1

)
. (22)

Then, by Bernstein’s inequality, we have

P [| ⟨x1,x2⟩ | ≥ t] =P
[
Tr
(
A⊤Bζ2ζ

⊤
1

)
≥ t
]

≤2 exp

(
−Ω

(
min

{
t2

∥A⊤B∥2F σ4
p

,
t

∥A⊤B∥op σ
2
p

}))
.

(23)

Lemma B.6. Let x1, · · · , xm be m independent zero-mean Gaussian variables. Denote zi as indicators for signs of xi,
i.e., for all i ∈ [m],

zi =

{
1, xi > 0,

0, xi ≤ 0.
(24)

Then, we have

Pr

[
m∑
i=1

zi ≥ 0.4m

]
≥ 1− exp

(
− 8

25
m

)
. (25)

Proof. Because zi, i ∈ [m] are bounded in [0, 1], zi, i ∈ [m] are sub-Gaussian variables. By Hoeffding’s inequality, we
have

Pr

[
m

(
1

m

m∑
i=1

zi

)
≤ m

(
1

2
− ϵ

)]
≤ exp

(
− 2m2ϵ2

m(1/16)

)
. (26)

Let ϵ = 0.1, we have

Pr

[
m∑
i=1

zi ≤ 0.4m

]
≤ exp

(
− 8

25
m

)
. (27)
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Therefore, we have

Pr

[
m∑
i=1

zi ≥ 0.4m

]
≥ 1− exp

(
− 8

25
m

)
. (28)

This completes the proof.

Lemma B.7. For any constant t ∈ (0, 1] and x ∈ [−a, b], a, b > 0, we have

log(1 + t(exp(x)− 1)) ≤ Γ(x)x, (29)

where Γ(x) = I(x ≥ 0) + [log(1 + t(exp(−a)− 1))/− a] I(x < 0).

Proof. First, considering x ≥ 0, we have

∂ log(1 + t(exp(x)− 1))

∂t
=

exp(x)− 1

1 + t(exp(x)− 1)
≥ 0. (30)

Thus, log (1 + t(exp(x)− 1)) ≤ x, ∀x > 0. Second, considering x < 0, we have

∂2 log(1 + t(exp(x)− 1))

∂x2
=

(1− t)t exp(x)

[1 + t(exp(x)− 1)]2
≥ 0. (31)

So log(1 + t(exp(x)− 1)) is a convex function of x. We can conclude that

log(1 + t(exp(x)− 1)) ≤ log(1 + t(exp(−a)− 1))

−a
x, ∀x < 0. (32)

This completes the proof.

Lemma B.8. With input x ∈ RK , the function f(x) = − log(exp(xi)/
∑

j∈[K] exp(xj)) with any i ∈ [K] is convex.

Proof. For any x1,x2 ∈ RK and α ∈ [0, 1], we have

αf(x1) + (1− α)f(x2) =− α log

(
exp(x1,i)∑

j∈[K] exp(x1,j)

)
− (1− α) log

(
exp(x2,i)∑

j∈[K] exp(x2,j)

)

=− log

( exp(x1,i)∑
j∈[K] exp(x1,j)

)α(
exp(x2,i)∑

j∈[K] exp(x2,j)

)1−α


=− log

(
exp(αx1,i)

(
∑

j∈[K] exp(x1,j))α
exp((1− α)x2,i)

(
∑

j∈[K] exp(x2,j))1−α

)

=− log

(
exp(αx1,i + (1− α)x2,i)

(
∑

j∈[K] exp(x1,j))α(
∑

j∈[K] exp(x2,j))1−α

)

≥− log

(
exp(αx1,i + (1− α)x2,i)∑

j∈[K] exp(αx1,j + (1− α)x2,j)

)
=f(αx1 + (1− α)x2).

(33)

This finishes the proof.

Lemma B.9. A vector z uniformly sampled from Sd−1 satisfies

P

[∣∣∣∣∣1d
d∑

i=1

I(zi)−
1

2

∣∣∣∣∣ ≥ t

]
≤ exp

(
−2dt2

)
. (34)
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This lemma directly follows from Hoeffding’s inequality.

Lemma B.10. For a constant 0 < t < 1, a σp sub-Gaussian variable x with variance 1 satisfies

P [|x| > t] ≥ Ω((1− t2)2). (35)

Proof. Since x is a sub-Gaussian variable with variance 1, we have E[x] = 1. Applying Paley–Zygmund inequality to x2,
we have

P[x2 ≥ t] ≥ (1− t)2
1

E[x4]
. (36)

As the fourth moment of sub-Gaussian variable E[x4] is bounded by O(σ4
p) (Vershynin, 2018), we have

P[x2 ≥ t] ≥ C4

σ4
p

(1− t)2, (37)

where C4 is a constant. This completes the proof.

Lemma B.11. Let A ∈ Rm×n be a matrix with rank M . Suppose δ > 0 and m ≥
Ω(log(n/δ)(λ+

max(A))2/((λ+
min(A))2)). With probability 1 − δ, for any orthant T ∈ Rm and vector x ∈ Rn is

a random sub-Gaussian vector with each coordinate follows Dξ, we have

P [Ax ∈ T ] ≤(0.6)M . (38)

Proof. Using singular value decomposition for A, for any orthant T ∈ Rm, we have

P [Ax ∈ T ] =P [UΣx ∈ T ] . (39)

Without loss of generality, we assume the orthant T is that with all positive entries. Then, we have

P [Ax ∈ T ] ≤P
[
ŨΣ̃x ∈ T

]
, (40)

where

Ũ =
[
1 · 1/

√
m Ũ2 · · · Ũm

]
, (41)

and

Σ̃ =


λ+
max(A) 0 · · · 0

0 λ+
min(A) · · · 0

...
...

... · · ·
0 0 · · · λ+

min(A)
· · · 0

 , (42)

Here, Σ̃ is generated by replacing the non-zero singular values other than the largest one with λ+
min(A). 1 is a vector with

all one entries. In the following, we abbreviate λ+
max(A) and λ+

min(A) as λ+
max and λ+

min for convenience. Then, we have

ŨΣ̃x = λ+
max ·

1√
m

· 1 · x1 + λ+
min

M∑
i=2

xiŨi. (43)

Here, as each coordinate of x is generate from Dξ, by Lemma B.2, we have

|xi| ≤
√

2σ2
p log(

2n

δ
), (44)
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with probability 1− δ. Then, we have

P
[
ŨΣ̃x ∈ T

]
=P

[
(λ+

max − λ+
min) ·

1√
m

· 1 · x1 + λ+
min

M∑
i=1

xiŨi ∈ T

]

≤P

[
λ+
max ·

1√
m

· 1 ·
√
2σ2

p log(
2n

δ
) + λ+

min

M∑
i=1

xiŨi ∈ T

]

=P

1 ·

√
2σ2

p log(2n/δ)λ
+
max

√
m

+ λ+
minx ∈ T

 .

(45)

As the entries of x are independent, we can bound each entry independently. Then, when m ≥
Ω(log(n/δ)(λ+

max)
2/((λ+

min)
2)), we have

P

λ+
minxi +

√
2σ2

p log(2n/δ)λ
+
max

√
m

< 0

 ≥ 0.4, (46)

by the property of Dξ, resulting in

P
[
ŨΣ̃x ∈ T

]
≤(0.6)M . (47)

This completes the proof.

Lemma B.12. Let A ∈ Rm×n be a matrix with rank M . Suppose m ≥ Ω(log(n/δ)(λ+
max(A))2/((λ+

min(A))2)). With
probability 1− δ, we have

P

[
m∑
i=1

I((Ax)i ≤ 0) ≥ 0.9m

]
≤ exp(−0.07m). (48)

Proof. By Lemma B.9, the number No of orthants that have more than 0.9m negative entries satisfies

No ≤ 2m · exp(−0.32m) = exp((log 2− 0.32)m). (49)

Then, by Lemma B.11, we have

P

[
m∑
i=1

I((Ax)i ≤ 0) ≥ 0.9m

]
≤0.6M · exp((log 2− 0.32)m)

= exp(log(0.6)M + (log 2− 0.32)m)

≤ exp(−0.51M + 0.38m).

(50)

As long as M ≥ 0.9m, we have

P

[
m∑
i=1

I((Ax)i ≤ 0) ≥ 0.9m

]
≤ exp (−0.07m) . (51)

This completes the proof.

Lemma B.13. Suppose that δ > 0 and Tr(A⊤
i Ai) = Ω

(
max

{(∥∥A⊤
i Aj

∥∥2
F
σ4
p log(6n/δ)

)1/2
,
∥∥A⊤

i Aj

∥∥
op σ

2
p log(6n/δ)

})
.

For all i, j ∈ [K], with probability 1− δ, we have

1

2
Tr(A⊤

yi
Ayi) ≤∥ξi∥

2
2 ≤ 3

2
Tr(A⊤

yi
Ayi), (52)

|⟨ξi, ξj⟩| ≤O

(
max

{(∥∥A⊤
yi
Ayj

∥∥2
F
log(

6n2

δ
)

)1/2

,
∥∥A⊤

yi
Ayj

∥∥
op
log(

6n2

δ
)

})
. (53)
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Proof. By Lemma B.4, with probability at least 1− δ/3n, there exists a constant C1 > 0 such that

∥ξi∥
2
2 ≤ Tr(A⊤

yi
Ayi

) + max

{(∥∥A⊤
yi
Ayi

∥∥2
F
σ4
p

1

C1
log(

6n

δ
)

)1/2

,
∥∥A⊤

yi
Ayi

∥∥
op
σ2
p

1

C1
log(

6n

δ
)

}
,

and

∥∥ξyi

∥∥2
2
≥ Tr(A⊤

yi
Ayi

)−max

{(∥∥A⊤
yi
Ayi

∥∥2
F
σ4
p

1

C1
log(

6n

δ
)

)1/2

,
∥∥A⊤

yi
Ayi

∥∥
op
σ2
p

1

C1
log(

6n

δ
)

}
.

In addition, by Lemmas B.5 and B.3, with probability at least 1− δ/3n2, there exists a constant C2 > 0 such that

|⟨ξyi
, ξyj

⟩| ≤ max

{(∥∥A⊤
yi
Ayj

∥∥2
F
σ4
p

1

C2
log(

6n2

δ
)

)1/2

,
∥∥A⊤

yi
Ayj

∥∥
op
σ2
p

1

C2
log(

6n2

δ
)

}
.

Applying σp = Θ(1) finishes the proof.

Lemma B.14. Suppose that d = Ω(log(mn/δ)) and m = Ω(log(1/δ)). With probability at least 1−δ, for all r ∈ [m], j ∈
[2], i ∈ [n],

|⟨w(0)
j,r ,uk⟩| ≤

√
2 log

(
4Km

δ

)
∥uk∥2 σ0, (54)

|⟨w(0)
j,r , ξi⟩| ≤ O

(
log

(
Km

δ

)
∥Ayi

∥F σ0

)
. (55)

Proof. We prove the first bound (54) with Hoeffding’s inequality. For all j ∈ [K], r ∈ [m], i ∈ [n], with probability
1− δ/(2Km),

|⟨w(0)
j,r ,uk⟩| ≤

√
2 log

(
4Km

δ

)
∥uk∥2 σ0. (56)

Then, we prove the second bound (55) leveraging Lemma B.5. For all j ∈ [K], r ∈ [m], i ∈ [n], with probability
1− δ/(2Km),

|⟨w(0)
j,r , ξi⟩| ≤O

(
max

{√
log

(
Km

δ

)
∥Ayi∥F , log

(
Km

δ

)
∥Ayi∥op

}
σ0

)

≤O
(
log

(
Km

δ

)
∥Ayi

∥F σ0

)
.

(57)

Lemma B.15. Suppose δ > 0 and m ≥ Ω(log(n/δ)). With probability at least 1− δ, we have

|S(0)
i | ≥ 0.4m. (58)

Lemma B.15 follows from Lemma B.6 and union bound.

Lemma B.16. Suppose δ > 0 and n ≥ Ω(log(m/δ)). For any neuron w
(0)
j,r , j ∈ [2], r ∈ [m], with probability at least

1− δ, we have

n∑
i=1

I(⟨w(0)
j,r , ξi⟩) ≥ 0.4n. (59)

Lemma B.16 follows from Lemma B.6 and union bound.
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C. Two-Stage Training Loss Analysis
In this section, we analyze the training loss. These results are based on the high probability conclusions in Appendix B. We
divide the convergence of neural networks trained on each data into two stages. The training dynamics is at stage 1 at first
and then enters stage 2 afterward. In Stage 1, we consider that the training data (x, y) ∈ S satisfies 1 − logity(W,x) =
Θ(1).

C.1. Network Gradient

The full-batch gradient on the neuron wk,r at iteration t is

∇
w

(t)
k,r

L(W(t),x, y) =− 1

mn

∑
(x,y)∈S

I (y = k) (1− logitk(W
(t),x))

2∑
j=1

σ′
(
⟨w(t)

k,r,x
(j)⟩
)
x(j)


+

1

mn

∑
(x,y)∈S

I (y ̸= k) logitk(W
(t),x)

2∑
j=1

σ′
(
⟨w(t)

k,r,x
(j)⟩
)
x(j)

 .

(60)

C.2. Training Loss Bounds at Stage 1

First, we consider the training loss dynamics of stage 1 : For any data (x, y) ∈ S , we have L(W(t′),x, y) = Θ(1). First,
we characterize the training loss.

L(W(t+1),x, y)− L(W(t),x, y)

=− log
(

proby
(
W(t+1),x

))
+ log

(
proby

(
W(t),x

))
= log

(
proby

(
W(t),x

)
proby

(
W(t+1),x

))

= log

 exp
(
F

(t)
y (x)

)
/
(
exp

(
F

(t)
y (x)

)
+
∑

j ̸=y exp
(
F

(t)
j (x)

))
exp

(
F

(t+1)
y (x)

)
/
(
exp

(
F

(t+1)
y (x)

)
+
∑

j ̸=y exp
(
F

(t+1)
j (x)

))


= log

1 +
∑

j ̸=y exp
(
F

(t)
j (x)− F

(t)
y (x)

)
exp

(
∆

(t)
j (x)−∆

(t)
y (x)

)
1 +

∑
j ̸=y exp

(
F

(t)
j (x)− F

(t)
y (x)

)


= log

1 +

∑
j ̸=y exp

(
F

(t)
j (x)− F

(t)
y (x)

)(
exp

(
∆

(t)
j (x)−∆

(t)
y (x)

)
− 1
)

1 +
∑

j ̸=y exp
(
F

(t)
j (x)− F

(t)
y (x)

)


≤ log

(
1 +

(
1− proby

(
W(t),x

))
max
j ̸=y

(
exp

(
∆

(t)
j (x)−∆(t)

y (x)
)
− 1
))

,

(61)

where ∆
(t)
y (x) = F

(t+1)
y (x)− F

(t)
y (x) ,∆

(t)
j (x) = F

(t+1)
j (x)− F

(t)
j (x).

By Lemma B.7, we have

L
(
W(t+1),x, y

)
− L

(
W(t),x, y

)
≤ Θ(1) ·max

j ̸=y

(
∆

(t)
j (x)−∆(t)

y (x)
)
. (62)

To measure how training loss changes over iterations, we need to characterize the change of ∆(t)
j (x)−∆

(t)
y (x).
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C.2.1. UPPER BOUND OF ∆
(t)
j (x)−∆

(t)
y (x)

We first rearrange ∆
(t)
j (x)−∆

(t)
y (x) as follows.

∆
(t)
j (x)−∆(t)

y (x)

=
1

m

m∑
r=1

2∑
i=1

[
σ
(〈

w
(t+1)
j,r ,x(i)

〉)
− σ

(〈
w

(t)
j,r,x

(j)
〉)]

− 1

m

m∑
r=1

2∑
i=1

[
σ
(〈

w(t+1)
y,r ,x(i)

〉)
− σ

(〈
w(t)

y,r,x
(i)
〉)]

=
1

m

m∑
r=1

[
σ
(〈

w
(t+1)
j,r ,uy

〉)
− σ

(〈
w

(t)
j,r,uy

〉)]
︸ ︷︷ ︸

A

+
1

m

m∑
r=1

[
σ
(〈

w
(t+1)
j,r , ξ

〉)
− σ

(〈
w

(t)
j,r, ξ

〉)]
︸ ︷︷ ︸

B

− 1

m

m∑
r=1

[
σ
(〈

w(t+1)
y,r ,uy

〉)
−σ

(〈
w(t)

y,r,uy

〉)]
︸ ︷︷ ︸

C

− 1

m

m∑
r=1

[
σ
(〈

w(t+1)
y,r , ξ

〉)
−σ

(〈
w(t)

y,r, ξ
〉)]

︸ ︷︷ ︸
D

,

(63)

We then bound A,B,C,D in Stage 1.

Bound of A

A =
1

m

m∑
r=1

σ
⟨w(t)

j,r−
η

mn

∑
(xi,yi)∈Sy

σ′(⟨w(t)
j,r,uy⟩)logitj(W

(t),xi)uy,uy⟩


− 1

m

m∑
r=1

[
σ
(
⟨w(t)

j,r,uy⟩
)]

≤0,

(64)

where the inequality is by the fact that ⟨uy,uy⟩ ≥ 0.

Bound of B

B =
1

m

m∑
r=1

σ
〈w(t)

j,r −
η

mn

∑
(xi,yi)∈S\Sj

σ′
(
⟨w(t)

j,r, ξi⟩
)

logitj(W
(t),xi)ξi

+
η

mn

∑
(xi,yi)∈Sj

σ′
(
⟨w(t)

j,r, ξi⟩
)(

1− logitj(W
(t),xi)

)
ξi, ξ

〉− 1

m

m∑
r=1

[
σ
(
⟨w(t)

j,r, ξ⟩
)]

≤ 1

m

m∑
r=1

σ
〈w(t)

j,r, ξ
〉
− η

mn

∑
(xi,yi)∈S\Sj

σ′
(
⟨w(t)

j,r, ξi⟩
)

logitj(W
(t),xi)ξi

+
η

mn

∑
(xi,yi)∈Sj

σ′
(
⟨w(t)

j,r, ξi⟩
)(

1− logitj(W
(t),xi)

)
ξi, ξ

〉− 1

m

m∑
r=1

[
σ
(
⟨w(t)

j,r, ξ⟩
)]

≤ η

mn

∑
(xi,yi)∈S\Sj

σ′
(
⟨w(t)

j,r, ξi⟩
)

logitj(W
(t),xi)|⟨ξi, ξ⟩|

+
η

mn

∑
(xi,yi)∈Sj\(x,y)

σ′
(
⟨w(t)

j,r, ξi⟩
)(

1− logitj(W
(t),xi)

)
|⟨ξi, ξ⟩|,

(65)

where the inequality is by the 1-Lipschitz property of the ReLU function.
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Bound of C

C =
1

m

m∑
r=1

σ
〈w(t)

y,r +
η

mn

∑
(xi,yi)∈Sy

σ′(⟨w(t)
y,r,uy⟩)

(
1− logity(W

(t),xi)
)
uy,uy

〉
− 1

m

m∑
r=1

[
σ
(
⟨w(t)

y,r,uy⟩
)]

≥ 2η

5mn

∑
(x,y)∈Sy

(
1− logity(W

(t),xi)
)
∥uy∥22 ,

(66)

where the inequality is by the fact that ∥uy∥22 ≥ 0.

Bound of D

D =
1

m

m∑
r=1

σ
〈w(t)

y,r −
η

mn

∑
(xi,yi)∈S\Sy

σ′(⟨w(t)
y,r, ξi⟩)logity(W

(t),xi)ξi

+
η

mn

∑
(xi,yi)∈Sy

σ′
(
⟨w(t)

y,r, ξi⟩
)(

1− logity(W
(t),xi)

)
ξi, ξ

〉
− 1

m

m∑
r=1

[
σ
(
⟨w(t)

y,r, ξ⟩
)]

≥ 1

m

m∑
r=1

σ
〈w(t)

y,r, ξ
〉
− η

mn

∑
(xi,yi)∈S\Sy

σ′(⟨w(t)
y,r, ξi⟩)logity(W

(t),xi)| ⟨ξi, ξ⟩ |

+
η

mn
σ′
(
⟨w(t)

y,r, ξ⟩
)(

1− logity(W
(t),x)

)
∥ξ∥22

− η

mn

∑
(xi,yi)∈Sy\(x,y)

σ′
(
⟨w(t)

y,r, ξi⟩
)(

1− logity(W
(t),xi)

)
| ⟨ξi, ξ⟩ |


− 1

m

m∑
r=1

[
σ
(
⟨w(t)

y,r, ξj⟩
)]

≥− η

mn

∑
(xi,yi)∈S\Sy

logity(W
(t),xi)| ⟨ξi, ξ⟩ |+

2η

5mn

(
1− logity(W

(t),x)
)
∥ξ∥22

− η

mn

∑
(xi,yi)∈Sy\(x,y)

(
1− logity(W

(t),xi)
)
| ⟨ξi, ξ⟩ |

≥0,

(67)

where the last inequality is by that fact that the incremental term is larger than zero if a neuron is activated, by Lemmas
4.7, B.15, at least 0.4m neurons are activated, and σ′(·) ≤ 1.
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Substituting (64), (65), (66), (67) into (63), by Lemma B.13 and Condition 3.1, we have

∆
(t)
j (x)−∆(t)

y (x)

≤− 2η

5mn

∑
(x,y)∈Sy

(
1− logity(W

(t),xi)
)
∥uy∥22

+
2η

mn

∑
(xi,yi)∈S\Sy

logity(W
(t),xi)| ⟨ξi, ξ⟩ | −

2η

5mn

(
1− logity(W

(t),x)
)
∥ξ∥22

+
2η

mn

∑
(xi,yi)∈Sy\(x,y)

(
1− logity(W

(t),xi)
)
| ⟨ξi, ξ⟩ |

≤ − 2η

5mn

∑
(x,y)∈Sy

(
1− logity(W

(t),xi)
)
∥uy∥22 .

(68)

Combining (68) and (62), for any (x, y) ∈ S we have

L(W(t+1),x, y) ≤L(W(t),x, y)− 2η

5mn

∑
(xi,yi)∈Sy

(
1− logity(W

(t),xi)
)
∥uy∥22

(a)
=
(
1−Θ

( η

mn
|Sy| ∥uy∥22

))
L(W(t),x, y),

(69)

where (a) is obtained from Lemma 4.7. This finishes the training loss analysis in Stage 1.

C.2.2. ANALYSIS OF STAGE 2

In stage 2, the loss of certain data is no longer Θ(1).

First, let W∗ be

w∗
j,r = 2.5 log

(
4(K − 1)

ϵ

)
uj

∥uj∥22
, (70)

where ϵ > 0 is a small constant. We have∥∥∥W(t) −W∗
∥∥∥2
F
−
∥∥∥W(t+1) −W∗

∥∥∥2
F
= 2η

〈
∇LS(W

(t)),W(t) −W∗
〉

︸ ︷︷ ︸
A

− η2
∥∥∥∇LS(W

(t))
∥∥∥2
F︸ ︷︷ ︸

B

.
(71)

For the first term A, we have

A =2η
〈
∇LS(W

(t)),W(t) −W∗
〉

=
2η

n

∑
(x,y)∈S

〈
∇L(W(t),x, y),W(t) −W∗

〉
=
2η

n

∑
(x,y)∈S

∑
k∈[K]

〈
∂L(W(t),x, y)

∂Fk
∇Fk(W

(t),x, y),W(t) −W∗
〉

=
2η

n

∑
(x,y)∈S

∑
k∈[K]

∂L(W(t),x, y)

∂Fk

〈
∇Fk(W

(t),x, y),W(t)
〉

− 2η

n

∑
(x,y)∈S

∑
k∈[K]

∂L(W(t),x, y)

∂Fk

〈
∇Fk(W

(t),x, y),W∗
〉

=
2η

n

∑
(x,y)∈S

∑
k∈[K]

∂L(W(t),x, y)

∂Fk

Fk(W
(t),x, y)−

〈
∇Fk(W

(t),x, y),W∗
〉

︸ ︷︷ ︸
C

 ,

(72)
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where the last equality is based on the homogeneity of Fk(·) for any k ∈ [K]. Then, we need to bound C. First, for any
i, k ∈ [K], we have

∇
w

(t)
k,r

Fi(W
(t),x, y) =

1

m

(
σ′
(〈

w
(t)
k,r, ξ

〉)
ξ + σ′

(〈
w

(t)
k,r,uy

〉)
uy

)
I(k = i). (73)

By the definition of W∗ in (70), we can get the components of C as

〈
∇Fi(W

(t),x, y),W∗
〉
=

{
2.5 log(4(K−1)/ϵ)

m

∑m
r=1 σ

′
(〈

w
(t)
i,r ,uy

〉)
∥uy∥22 if i = y,

0 if i ̸= y.
(74)

Next, we bound B.

B =η2
∥∥∥∇LS(W

(t))
∥∥∥2
F
≤ η2

 1

n

n∑
i=1

∥∥∥∥∥∥
∑

k∈[K]

∂L(W(t),x, y)

∂Fk
∇Fk(W

(t),x, y)

∥∥∥∥∥∥
F

2

≤η2

 1

n

n∑
i=1

∑
k∈[K]

∣∣∣∣∂L(W(t),x, y)

∂Fk

∣∣∣∣ ∥∥∥∇Fk(W
(t),x, y)

∥∥∥
F

2

,

(75)

where the first and the second inequalities are all based on triangle inequality. For any k ∈ [K] and (x, y) ∈ S, we have∥∥∥∇Fk(W
(t),x, y)

∥∥∥
F
=
∥∥∥σ′

(〈
w

(t)
k,r,uy

〉)
uy + σ′

(〈
w

(t)
k,r, ξ

〉)
ξ
∥∥∥
2

≤∥uy∥2 + ∥ξ∥2

≤∥uy∥2 +
√

3

2
Tr
(
A⊤

y Ay

)
,

(76)

where the first inequality is by triangle inequality and the fact that σ′
(〈

w
(t)
k,r,uy

〉)
, σ′
(〈

w
(t)
k,r, ξ

〉)
≤ 1 and the second

inequality is obtained from Lemma B.13.

Then, we can bound B as

B ≤η2

 1

n

n∑
i=1

∑
k∈[K]

∣∣∣∣∂L(W(t),x, y)

∂Fk

∣∣∣∣ ∥∥∥∇Fk(W
(t),x, y)

∥∥∥
F

2

≤η2

(
max
k∈[K]

(
∥uk∥2 +

√
3

2
Tr
(
A⊤

k Ak

)))2

· 4

[
1

n

n∑
i=1

(
1− logity

(
W(t),x

))]2

≤4η2

(
max
k∈[K]

(
∥uk∥2 +

√
3

2
Tr
(
A⊤

k Ak

)))2

· LS(W
(t)),

(77)

where the first inequality is by (75), the second inequality is by (76) and the third inequality is by Jensen’s inequality.

Combining them together, we have

A =
2η

n

∑
(x,y)∈S

∑
k∈[K]

∂L(W(t),x, y)

∂Fi

(
Fi(W

(t),x, y)−
〈
∇Fi(W

(t),x, y),W∗
〉)

≥2η

n

∑
(x,y)∈S

(
L(W(t),x, y)− ϵ

4

)
=2η

(
LS(W

(t))− ϵ

4

)
,

(78)
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where the first inequality is based on the convex property (Lemma B.8) of the cross-entropy function and (74). Hence, we
have ∥∥∥W(t) −W∗

∥∥∥2
F
−
∥∥∥W(t+1) −W∗

∥∥∥2
F

≥2η
(
LS(W

(t))− ϵ

4

)
− 4η2

(
max
k∈[K]

(
∥uk∥2 +

√
3

2
Tr
(
A⊤

k Ak

)))2

· LS(W
(t))

≥ηLS(W
(t))− ηϵ

2
,

(79)

where the first inequality is by the bounds of A and B and the second inequality is obtained by the condition that η ≤(
4
(
maxk∈[K]

(
∥uk∥2 +

√
1.5Tr

(
A⊤

k Ak

)))2)−1

.

Taking summation over all the iterations yields

T∑
t=T0

ηLS(W
(t)) ≤

∥∥∥W(T0) −W∗
∥∥∥2
F
+

(T − T0 + 1)ηϵ

2

1

T − T0 + 1

T∑
t=T0

LS(W
(t)) ≤

∥∥W(T0) −W∗
∥∥2
F

η(T − T0 + 1)
+

ϵ

2
.

(80)

By the definition of W∗, we have∥∥∥W(T1) −W∗
∥∥∥
F
≤
∥∥∥W(T1) −W(0)

∥∥∥
F
+
∥∥∥0−W(0)

∥∥∥
F
+ ∥0−W∗∥F . (81)

For
∥∥W(T1) −W(0)

∥∥
F

, we have∥∥∥W(T1) −W(0)
∥∥∥
F
≤ O

(
T1

η

m
max

i,j∈[K]
{∥ui∥2 +Tr(A⊤

j Aj)}
)

= Õ
(
n max

j∈[K]
{Tr(A⊤

j Aj)}
)
. (82)

Therefore, we have∥∥∥W(T1) −W∗
∥∥∥
F
≤Õ

(
n max

j∈[K]
{Tr(A⊤

j Aj)}
)
+O(

√
mdσ0) +O

(√
mK log

(
4(K − 1)

ϵ

))
=Õ

(
max{n max

j∈[K]
{Tr(A⊤

j Aj)},
√
mdσ0,

√
mK}

)
.

(83)

This finishes the training loss analysis in Stage 2.

D. Test Loss Analysis
In this section, we analyze the test loss. Similar to the proof in Appendix C, the results are based on the high probability
conclusions in Appendix B. In order to characterize the test loss, we first prove the following key lemmas.

D.1. Key Lemmas for Test Loss Analysis

Lemma D.1. Define

S(t)
i = {r ∈ [m] : ⟨w(t)

yi,r, ξi⟩ > 0}, (84)

for all (xi, yi) ∈ S. For any (xi, yi), (xj , yj) ∈ S, t ∈ [T ], we have

1− logityi
(W(t),xi)

1− logityj
(W(t),xj)

≤ κ, (85)

for a constant κ > 1 and

S(t)
i ⊆ S(t+1)

i . (86)
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Proof. We prove the first statement by induction. First, we show the conclusions hold at iteration 0. At iteration 0, with
probability at least 1− δ, for all (x, y) ∈ S, by Condition 3.1 and Lemma B.14, we have

0 ≤ Fk(W
(0),x) ≤ C, (87)

where C > 0 is a constant. Therefore, there exists a constant κ > 0 such that

1− logityi
(W(0),xi)

1− logityj
(W(0),xj)

≤ κ. (88)

Suppose there exists t̄ such that the conditions hold for any 0 ≤ t ≤ t̄. We aim to prove that the conclusions also hold for
t = t̄+ 1. We consider the following two cases.

Case 1:
1−logityi(W

(t),xi)
1−logityj (W

(t),xj)
< 0.9κ. First, we have

1− logityi

(
W(t+1),xi

)
1− logityi

(W(t),xi)
=

∑
k ̸=yi

exp(F
(t)
k (xi)) exp(∆

(t)
k (xi))∑

k ̸=yi
exp(F

(t)
k (xi))

∑
k∈[K] exp

(
F

(t)
k (xi)

)
∑

k∈[K] exp
(
F

(t)
k (xi)

)
exp

(
∆

(t)
k (xi)

) , (89)

indicating that

1− logityi

(
W(t+1),xi

)
1− logityi

(W(t),xi)
≤

maxk∈[K] exp
(
∆

(t)
k (xi)

)
mink∈[K] exp

(
∆

(t)
k (xi)

) . (90)

Moreover, we have

|∆(t)
k (xi)| ≤ η max

k∈[K]

{
∥uk∥22 + ∥ξ∥22

}
≤ η max

k∈[K]

{
∥uk∥22 +

3

2
Tr
(
A⊤

k Ak

)}
≤ 0.02, (91)

where the inequalities are by Lemma B.13 and Condition 3.1. Then, we have

1− logityi

(
W(t+1),xi

)
1− logityj

(W(t+1),xj)

=
1− logityi

(
W(t+1),xi

)
1− logityi

(W(t),xi)

1− logityj

(
W(t),xj

)
1− logityj

(W(t+1),xj)

1− logityi

(
W(t),xi

)
1− logityj

(W(t),xj)

≤
1− logityi

(
W(t),xi

)
1− logityj

(W(t),xj)
· exp(0.09)

≤κ.

(92)
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Case 2:
1−logityi(W

(t),xi)
1−logityj (W

(t),xj)
> 0.9κ > 1. We have

1− logityi

(
W(t+1),xi

)
1− logityj

(W(t+1),xj)

≤

∑
k ̸=yj

exp(F
(t)
k (xj)) + exp

(
F

(t)
yj (xj)

)
exp

(
∆

(t)
yj (xj)−mink ̸=yj

∆
(t)
k (xj)

)
∑

k ̸=yi
exp(F

(t)
k (xi)) + exp

(
F

(t)
yi (xi)

)
exp

(
∆

(t)
yi (xi)−maxk ̸=yi ∆

(t)
k (xi)

)
∑

k ̸=yi
exp(F

(t)
k (xi))∑

k ̸=yj
exp(F

(t)
k (xj))

=

1 +

(
1

1−logityj (W
(t),xj)

− 1

)
exp

(
∆

(t)
yj (xj)−mink ̸=yj

∆
(t)
k (xj)

)
1 +

(
1

1−logityi (W
(t),xi)

− 1
)
exp

(
∆

(t)
yi (xi)−maxk ̸=yi

∆
(t)
k (xi)

)
≤max{1, κ exp(∆(t)

yj
(xj)− min

k ̸=yj

∆
(t)
k (xj)−∆(t)

yi
(xi) + max

k ̸=yi

∆
(t)
k (xi))}

(93)

Denote l1 = argmink ̸=yj
∆

(t)
k (xj) and l2 = argmaxk ̸=yi

∆
(t)
k (xi). We have

∆
(t)
l2
(xi)−∆(t)

yi
(xi)−∆

(t)
l1
(xj) + ∆(t)

yj
(xj)

≤ η

n

∑
k ̸=i

(1− logityk
(W(t),xk))|⟨ξi, ξk⟩| −

2η

5n
(1− logityi

(W(t),xi)) ∥ξi∥
2
2

+
η

n

∑
k ̸=j

(1− logityk
(W(t),xk))|⟨ξj , ξk⟩|+

η

n
(1− logityj

(W(t),xj))
∥∥ξj∥∥22

− 2η

5n
(1− logityi

(W(t),xi)) ∥ui∥22 +
η

n
(1− logityj

(W(t),xj)) ∥uj∥22
≤0,

(94)

by letting κ > Θ(max{Tr(A⊤
yj
Ayj

)/Tr(A⊤
yi
Ayi

), ∥uj∥22 / ∥ui∥22}). Then the last inequality is by
1−logityi(W

(t),xi)
1−logityj (W

(t),xj)
>

0.9κ and Lemma B.13. Therefore, we have

1− logityi

(
W(t+1),xi

)
1− logityj

(W(t+1),xj)
≤ κ. (95)

This completes the proof of the induction.

Next, we prove the second statement. For a data sample (xi, yi) ∈ S and a neuron in S(t)
i , we have

⟨w(t+1)
yi,r , ξi⟩ =⟨w(t)

yi,r, ξi⟩+
η

mn
(1− logityi

(xi))σ
′(⟨w(t)

yi,r, ξi⟩) ∥ξi∥
2
2

− η

mn

∑
i′ ̸=i

logityi
(xi)σ

′(⟨w(t)
yi,r, ξi′⟩)⟨ξi′ , ξi⟩

≥⟨w(t)
yi,r, ξi⟩,

(96)

where the inequality is by Lemma B.13, Condition 3.1 and (88). Thus, we have S(t)
i ⊆ S(t+1)

i . This completes the
proof.
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Lemma D.2. Under Condition 3.1, for any j ∈ [K], l ∈ [K]\{j}, (xq, yq) ∈ Sj , (xa, ya) ∈ Sl, and r ∈ S(0)
q ,

t−1∑
t′=0

(1− logityq
(W(t′),xq))σ

′(⟨w(t′)
j,r , ξq⟩)

=Ω

 1

n

t−1∑
t′=0

(logitj(W
(t′),xa))σ

′(⟨w(t′)
j,r , ξa⟩)

Tr(A⊤
l Al)

maxll,l2∈[K]

∥∥A⊤
l1
Al2

∥∥1/2
F

log(3n2/δ)1/2

 .

(97)

Proof. By the update rule of gradient descent, we have

⟨w(t+1)
j,r −w

(t)
j,r, ξa⟩ ≤

η

mn

∑
(xi,yi)∈S\(xa,ya)

(
1− logitj(W

(t), ξi)
)
σ′(⟨w(t)

j,r, ξi⟩)| ⟨ξi, ξa⟩ |

+
η

mn
(−logity(W

(t),x))σ′(⟨w(t)
j,r, ξa⟩) ∥ξa∥

2
2 .

(98)

By Lemma B.13, we have

⟨w(t+1)
j,r −w

(0)
j,r , ξa⟩+

η

mn

t−1∑
t′=0

(logitj(W
(t′),xa))σ

′(⟨w(t′)
j,r , ξa⟩) ∥ξa∥

2
2

≤ η

mn

∑
(x,y)∈S\(xa,ya)

t∑
t′=0

(1− logity(W
(t′),x)) max

l,y∈[K]

∥∥A⊤
l Ay

∥∥1/2
F

log(
3n2

δ
)1/2︸ ︷︷ ︸

E1

.
(99)

Additionally, by the nature of ReLU activation function, the magnitude of ⟨w(t+1)
j,r −w

(0)
j,r , ξa⟩ satisfies

⟨w(t+1)
j,r −w

(0)
j,r , ξa⟩ ≥ − η

mn

∑
(x,y)∈S\(xa,ya)

t∑
t′=0

(1− logity(W
(t′),x))E1 −

η

mn
∥ξa∥22. (100)

As the learnign rate η is small (by Condition 3.1), combining (99) and (100), for any (x, y) ∼ D, we have

η

mn

t−1∑
t′=0

(logitj(W
(t′),xa))σ

′(⟨w(t′)
j,r , ξa⟩) ∥ξa∥

2
2

=O

 η

mn

∑
(x,y)∈S\(xa,ya)

t∑
t′=0

(1− logity(W
(t′),x))E1

 ,

(101)

By Lemma D.1, for r ∈ S(0)
q , we have

t−1∑
t′=0

(1− logityq
(W(t′),xq))σ

′(⟨w(t′)
j,r , ξq⟩)

=Ω

(
1

n

t−1∑
t′=0

(logitj(W
(t′),xa))σ

′(⟨w(t′)
j,r , ξa⟩)

∥ξa∥
2
2

E1

)
.

(102)

By Lemma B.13, we have

∥ξa∥
2
2

E1
= Ω

 Tr(A⊤
l Al)

maxll,l2∈[K]

∥∥A⊤
l1
Al2

∥∥1/2
F

log(3n2/δ)1/2

 . (103)

Combining (102) and (103) yields the conclusion. This completes the proof.
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Lemma D.3. Under Condition 3.1, for any j ∈ [K], we have∥∥∥∥(W(T )
j

)⊤
Aj

∥∥∥∥
2

≤ O(
√
m log(T )). (104)

Proof. We bound it with two phases. The first phase t ∈ [0, T̃1] is before the loss of data (x, y) ∈ S satisfying

logity(x) ≤ c5, (105)

where c5 is a constant. Then, the loss satisfies

(1− c5) exp
(
σ
(〈

w(T̃1)
y,r , ξ

〉))
≤(1− c5) exp

(
σ
(〈

w(T̃1)
y,r ,uy

〉)
+ σ

(〈
w(T̃1)

y,r , ξ
〉))

≤c5
∑
j ̸=y

exp
(
σ
(〈

w
(T̃1)
j,r ,uj

〉)
+ σ

(〈
w

(T̃1)
j,r , ξ

〉))

≤c5K exp

(√
2 log

(
4Km

δ

)
∥uk∥2 σ0 +O

(
log

(
Km

δ

)
∥Ay∥F σ0

)
+

η

mn
∥ξ∥22

)

≤1.1c5K exp

(
3η

2mn
Tr
(
A⊤

y Ay

))
,

(106)

where the first inequality is by the fact that σ
(〈

w
(T̃1)
y,r ,uy

〉)
≥ 0, the second inequality is by the definition of softmax

function and (105), the third inequality is by Lemma B.14 and the fourth inequality is by Lemma B.13 and Condition 3.1.

Letting c5 be T/(1.1K + T ) yields

⟨w(T̃1)
y,r , ξ⟩ ≤ log

(
c5

1− c5
K

)
+

3η

2mn
Tr
(
A⊤

y Ay

)
≤ O (log(T )) . (107)

Moreover, for T > T̃1, we have

⟨w(T )
y,r , ξ⟩ =⟨w(T̃1)

y,r , ξ⟩+ ⟨w(T )
y,r −w(T̃1)

y,r , ξ⟩

≤O (log(T )) + 2

T∑
t=T̃1+1

η

mn
(1− logity(W

(t),x)) ∥ξ∥22

≤O (log(T )) +
3ηT

mn

1

T
Tr
(
A⊤

y Ay

)
≤O(log(T )),

(108)

where the first inequality is by (107), the second inequality is by Lemma B.13 and condition of the second phase that
logity(x) > c5. With probability of 1− δ, for n randomly sampled data (x′, y) ∼ Dy , we have

⟨W(T )
y,r , ξ

′⟩ ≤O

(
η

mm

∑
i∈S

T−1∑
t=0

(1− logit(W(t),x)|⟨ξi, ξ
′⟩|

)

≤O

(
η

mn

T−1∑
t=0

(1− logit(W(t),x))||ξ||22

)
= Θ(⟨w(T )

y,r , ξ⟩) =
(
w(T )

y,r

)⊤
Ayζ,

(109)

With probability 1 − δ, at least one sample (x′, y) satisfies ⟨w(T )
y,r , ξ

′⟩ = Θ

(∥∥∥∥(w(T )
y,r

)⊤
Ay

∥∥∥∥
2

)
by the property of Dζ .

Therefore, we have

⟨w(T )
y,r , ξ⟩ = Ω

(∥∥∥∥(w(T )
y,r

)⊤
Ay

∥∥∥∥
2

)
. (110)

Combining (108) and (110) completes the proof.
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Lemma D.4. Under condition 3.1, for a random vector ξ generated from Ajζ, ζ ∼ Dζ for any j ∈ [K], with probability
at least 1− δ, we have

m∑
r=1

I
(
⟨w(T )

j,r , ξ⟩
)
≥ 0.1m. (111)

Proof. First, we can concatenate the neuron weights for class j ∈ [K] as

W
(T )
j Aj =


(
w

(T )
j,1

)⊤
...(

w
(T )
j,m

)⊤
Aj =


(
w

(0)
j,1

)⊤
...(

w
(0)
j,m

)⊤


︸ ︷︷ ︸
D1

Aj +

βj,1,1 · · · βj,1,n

...
...

...
βj,m,1 · · · βj,m,n


ξ

⊤
1
...
ξ⊤n


︸ ︷︷ ︸

D2

Aj , (112)

where βj,r,i :=
∑T−1

t′=0 σ
′(⟨w(t′)

j,r , ξi⟩)logit(W(t′),xi). The rank of matrix D2Aj satisfies

rank(D2Aj) ≤ min{m,n, d, rank(Aj)} = n. (113)

In addition, as the matrix D1 is a Gaussian random matrix, it has full rank almost surely. We have

rank(D1Aj) = min{m, d, rank(Aj)}, (114)

almost surely. Then by Condition 3.1, the rank of W(T )
j Aj satisfies

rank(W(T )
j Aj) ≥ min{m, d, rank(Aj)} − n ≥ 0.9m. (115)

In addition, by Lemma B.1 and Condition 3.1, the singular value of W(T )
j Aj satisfies

λmin{m,d,rank(Aj)}−n(W
(T )
j Aj) ≥ 0.1

√
mσ0. (116)

Moreover, by Lemma D.3, we have

λ1(W
(T )
j Aj) ≤

∥∥∥W(T )
j Aj

∥∥∥
F
≤ O(

√
m log(T )). (117)

Therefore, according to Condition 3.1, we have

m ≥ Ω

(
log(n/δ) log(T )2

nσ2
0

)
. (118)

By Lemma B.12 and Condition 3.1, with probability at least 1− δ, we have
m∑
r=1

I
(
⟨w(T )

j,r , ξ⟩
)
≥ 0.1m. (119)

This completes the proof.

D.1.1. PROOF OF STATEMENT 2(A) IN THEOREM 3.4

In this part, we prove Statement 2(a) in Theorem 3.4. For data samples following (x, y) ∼ D, the test loss satisfies

LD(W
(t)) =P

[
argmax

k
Fk(W

(T ),x, y) ̸= y

]
≤
∑
j ̸=y

P
[
Fy(W

(T ),x, y) ≤ Fj(W
(T ),x, y)

]

=
∑
j ̸=y

P

[
m∑
r=1

σ(⟨w(T )
y,r ,uy⟩) + σ(⟨w(T )

y,r , ξ⟩) ≤
m∑
r=1

σ(⟨w(T )
j,r ,uy⟩) + σ(⟨w(T )

j,r , ξ⟩)

]
.

(120)
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For the features, we bound the loss for any (x, y) ∼ D through
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Then, we can bound the model outputs as
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and
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where ζ ′ is a sub-Gaussian variable. Suppose that δ > 0 and
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where the inequality is by Lemma D.2 and Condition 3.1, (a) is based on Lemma D.2, and (b) is based on the concentration
of random vectors (Theorem 6.2.6 in (Vershynin, 2018)). Substituting (122) and (123) into (121), for any (x, y) ∼ D we
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have
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(125)

where c, c1 > 0 are some constants and the last inequality is obtained from Hoeffding’s inequality.

D.1.2. PROOF OF STATEMENT 2(B) IN THEOREM 3.4

Furthermore, for long-tailed data distribution, by Lemma D.2 and union bound, we have
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Suppose δ > 0, by Condition 3.1, w have
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where (a) is obtained by the condition
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)
for all j, y ∈ [K] and j ̸= y, K = Θ(1), and (85).

Similarly, we also have
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we have
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Similar to the proof of (124), we also have
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with probability at least 1− δ. Moreover, we have
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Denote S̄j(ξ) = {r ∈ [m] : ⟨w(T )
j,r , ξ⟩ > 0}. We have
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because Lemma 4.4 holds.

We have
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(132)

where c′ > 0 is a constant, the first inequality is by the condition for long-tailed data that |⟨w(T )
y,r , ξ⟩| ≥ c5
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,

the third inequality is by Hoeffding’s inequality and the last inequality is by (128) and (129).
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D.1.3. TEST LOSS LOWER BOUND (STATEMENT 3 IN THEOREM 3.4)

For any (x, y) ∼ D, we have

L0−1(W(T ),x, y) ≥max
j ̸=y

P

[
m∑
r=1

σ(⟨w(T )
y,r ,uy⟩) + σ(⟨w(T )

y,r , ξ⟩) ≤
m∑
r=1

σ(⟨w(T )
j,r ,uy⟩) + σ(⟨w(T )

j,r , ξ⟩)

]

=max
j ̸=y

P

[
m∑
r=1

σ(⟨w(T )
y,r ,uy⟩) + σ(⟨w(T )

y,r , ξ⟩) ≤
m∑
r=1

σ(⟨w(T )
j,r ,uy⟩) + σ(⟨w(T )

j,r , ξ⟩)

]
(a)

≥ max
j ̸=y

P

2ηm
5n

T−1∑
t′=0

∑
(x,y)∈Sy

(1− logity(W
(t′),x)) ∥uy∥22

+Θ

ηm

n

∥∥A⊤
y Ay

∥∥
F
·

√√√√√ ∑
(x,y)∈Sy

(
T−1∑
t′=0

(1− logity(W(t′),x))

)2


︸ ︷︷ ︸
B1

|ζ ′|

≤ Θ

ηm

n

∥∥A⊤
y Aj

∥∥
F
·

√√√√√ ∑
(x,y)∈Sj

(
T−1∑
t′=0

(1− logitj(W(t′),x))

)2


︸ ︷︷ ︸
B2

|ζ ′′|

 ,

(133)

where (a) is based on (127) and (124). ζ ′ and ζ ′′ are sub-Gaussain variables with variance 1. For any (x, y) ∼ D, when
there exists j ∈ [K] and a constant C3 satisfying n ∥uk∥22 ≤ C3
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Choosing a constant c5 = Θ(σp), we have |ζ ′| ≤ c5 with probability at least 1− exp(Ω(c25/σ
2
p)), resulting in
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E. Computation of Squared Frobenius Norm for Real-World Datasets
To estimate the quantity Ai for real-world datasets, we decompose the intra-class data covariance matrix. Recall that in
our data model, the covariance matrix of a data sample (x, y) within class i is

Σi = AiA
⊤
i . (136)

To estimate the Ai for real-world datasets, we first compute the sample covariance matrix:

Σ̃i =
1

|Si| − 1

∑
(x,y)∈Si

(x− x̄)(x− x̄)⊤, (137)

where |Si| is the size of class i in the training dataset and x̄ is the sample mean.

Next, we perform an eigendecomposition of the sample covariance matrices Σ̃i = QiΛiQ
⊤
i , where Qi contains the

eigenvectors and Λi is the diagonal matrix of eigenvalues.

We then estimate Ai as Ãi = QiΛ
1/2
i . Using the estimated Ãi for each class, we can estimate
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.
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