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ABSTRACT

Independence testing involves determining whether two variables are independent
based on observed samples, which is a fundamental problem in statistics and ma-
chine learning. Existing testing methods, such as HSIC, can theoretically detect
broad forms of dependence, but may sacrifice statistical power when applied to
limited samples with background knowledge of the distribution. In this paper, we
focus on the linear non-Gaussian data, a widely supported model in scientific data
analysis and causal discovery, where variables are linked linearly with noise terms
that are non-Gaussian distributed. We provide a new theoretical characterization
of independence in this case, showing that constancy of the conditional mean and
variance is sufficient to guarantee independence under linear non-Gaussian mod-
els. Building on this result, we develop a kernel-based testing framework with
provable asymptotic guarantees. Extensive experiments on synthetic and real-
world datasets demonstrate that our method achieves higher power than existing
approaches and significantly improves downstream causal discovery performance.

1 INTRODUCTION

Testing for statistical independence, i.e., deciding whether two variables are independent from ob-
served samples, is fundamental in machine learning applications, such as in self-supervised repre-
sentation learning (Li et al., 2021), feature selection (Candes et al., 2018)), and in causal discov-
ery (Spirtes et al., 2000). Over the decades, a rich toolbox of independence tests has emerged
targeting different scenarios. Classical parametric methods include Pearson’s correlation, Spear-
man’s rank correlation, and Kendall’s tau, etc. Recent advance focuses on nonparametric methods
like HSIC (Gretton et al., |2005a)) and dCor (Székely et al., 2007).In this paper, we aim to test the
independence between linear mixtures of independent components. This test is rather important to
causal discovery methods with linear non-gaussian models with or without latent variables.

The assumption of a linear model is prevalent in causal discovery algorithms. Without structural as-
sumptions on the data generation process, the causal direction is not identifiable from observational
data (Spirtes et al., 2000; [Pearl, |2009). Following a linear non-Gaussian acyclic model (LINGAM),
the Direct-LINGAM algorithm (Shimizu et al., 2011) suggests an independence test scheme on
regressor and residual to determine causal directions under the no latent confounders assumption.
Moreover, the causal direction can also be detected by using independence testing even when la-
tent confounders are present. Specifically, the recently proposed generalized independence noise
(GIN) (Xie et al.,|2020) condition provides an elegant and efficient way to identify the existence of
latent variables and recover the causal orders of the latent variables in LINGAM model. Verifying
the GIN condition involves a significant number of independence tests, strengthening the need for a
reliable independence test in linear non-Gaussian settings.

Given the proven success of linear non-Gaussian models in solving real-world problems across
various domains (Dong et al., |[2023), surprisingly, to our knowledge there is no independence test
specifically designed for the linear, non-Gaussian regime. In practice, researchers often resort to
general-purpose non-parametric independence tests (e.g., HSIC). While these methods control Type
I error, their generality can be a liability in our specific context. They are designed for arbitrary
dependencies and may lack statistical power for the structured relationships generated by linear non-
Gaussian models. This creates a methodological mismatch: while we employ identifiable models
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that leverage non-Gaussianity, we rely on tests that do not exploit this structure—akin to using a
shotgun to shoot a butterfly, which is inefficient and potentially ineffective.

A natural and pressing question arises: How can we design an independence test that is tailored
to this well-established model class? By incorporating the model assumptions directly into the
testing procedure, we can develop a method that is not only statistically more efficient but also
conceptually simpler. This paper addresses this exact need. We propose a novel independence test
specifically designed for the linear non-Gaussian data. We begin by providing a new characteriza-
tion of independence in this setting. We show that, interestingly, for judging the independence of
linear non-Gaussian data, it is enough to check the constancy of the conditional mean and the condi-
tional variance. Based on this new characterization, we further designed a statistic that can test the
conditions simultaneously. With derived asymptotic distributions, our method leverages the model
constraints to achieve higher statistical power than generic alternatives, thereby providing a more
robust foundation for causal discovery algorithms, especially those dealing with latent confounders.

We summarize our contributions as follows.

* We propose a novel characterization of independence for linear mixtures of independent
non-Gaussian components using only the conditional mean and conditional variance.

* We propose a statistic and derive its corresponding asymptotic distributions to test indepen-
dence. We also prove the equivalence of the statistic and the independence characterization.

* We conduct extensive experiments on both synthetic and real-world data, which demon-
strate the efficacy of our method. In addition, we integrate our testing method into existing
causal discovery algorithms and it outperforms other testing methods.

2 BACKGROUND

Problem Definition. For random variables X and Y, we say X and Y are independent if Pxy =
PxPy, denoted by X L Y. Given a dataset D = {(x;,y;)}_;, where the pairs are independently
and identically sampled from the joint distribution Pxy, an independence test constructs a test
statistic 7" based on D to test for hypotheses:

Ho: X 1LY V.S. Hi: X LY.

The statistic T is then compared with a critical value to decide whether to reject the null hypothesis
‘Ho. The quality of an independence test is typically characterized by two quantities: the probability
of incorrectly rejecting Ho when it is true (Type I error), and the probability of failing to reject
Ho when it is false (Type II error). An ideal test maintains the Type I error at a user-specified
significance level «, while achieving high statistical power (1— Type II error rate).

A direct way to check for independence based on the definition. That is, estimate the probability
densities of the joint distribution Pxy and the marginal distribution Px, Py, and then evaluate if
Pxy = PxPy is satisfied almost surely. For example, mutual information measures the depen-
dence strength between two variables using the KL divergence between Pxy and Px Py . However,
estimating the probability densities from finite samples is difficult. Some distributions may even
have no densities, which may further deteriorate the testing performance. Instead, (Jacod & Protter,
2004) provides an alternative characterization of the independence of random variables.

Lemma 2.1. The random variables X andY are independent if and only if Cov(f(X),g(Y)) =0
for each pair (f, g) of bounded, continuous functions, i.e. f € Cy(X) and g € Cp(Y).

Lemma [2.T] provides a direct test criterion without the need for an intermediate density estimator.
However, the space of bounded, continuous functions is too rich, which will raise the consistency
issue. That is, the empirical estimate converges slowly to its expectation as the sample size increases.
Instead, To address this, one may restrict attention to a more manageable yet expressive function
class. In particular, kernel-based methods provide a principled way to address this by restricting to
an RKHS, which is both manageable and still rich enough to capture independence.

Reproducing Kernel Hilbert Space. A kernel function k(z, 2’) is defined as a symmetric, posi-
tive definite mapping k£ : X x & — R, which admits a representation in terms of an inner product,
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k(z,2') = (¢p(x), ¢(x')) %, where ¢(x) is a feature map in a Hilbert space H. Furthermore, we say
that H is a reproducing kernel Hilbert space (RKHS) if H is a Hilbert space of functions f : X — R
that satisfies the reproducing property (¢(x), f)u = f(x),Vf € H. A linear operator A : G — F,
where G, F are separable Hilbert spaces (i.e. the Hilbert space has a countable orthonormal basis), is

called a Hilbert-Schmidt operator if it has a finite Hilbert-Schmidt norm, || A||3,5 = > jer lAg; Hzf ,
where {g; }j < s denotes any orthonormal basis of G. In finite-dimensional Euclidean spaces with the
linear kernel, this reduces to the Frobenius norm of a matrix.

Definition 2.2 (Universal Kernel). A continuous kernel k(-, -) on a compact metric space (X, d) is
called universal if and only if the RKHS F induced by the kernel is dense in C'(X') with respect to
the topology induced by the infinity norm || f — g|oo-

Universal kernel provides a smaller space than C,(X) to consider the functions while keeping the
characterization property, as used in COCO (Gretton et al.,|2005b) and HSIC (Gretton et al., 2005a).
These methods connect independence with the zero-value of their statistics, when universal kernels
are used on the compact domains X and ) (or more generally, characteristic kernelsﬂ).

Definition 2.3. (Gretton et al.,|2007) The Hilbert-Schmidt Independence Criterion between X and
Y, denoted as HSIC(X,Y"), is the HS norm of the covariance operator

IZxv s = [Bexy [(x — 1x) ® (dy — pv)]ll3s-
where px 2 Ep, [¢(X)], py 2 Ep,, [¢(Y)], and ® is the tensor product.

When using characteristic kernels, X 1l Y if and only if HSIC(X,Y") = 0.

Case (I) Nonlinear . Case (Il) Nonlinear Case (lll) Linear Case (IV) Linear
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Figure 1: Illustration of the motivation. The first row shows the scatter plots between X and Y, and
the second row gives plots the conditional densities, P(Y | X), for each bin (continuous) or value
(discrete) of X . For clear comparison, the conditional mean E(Y" | X) and the conditional variance
Var(Y | X) are drawn in red and black dashed lines respectively. Data generation process: (I) X =
UY =U?-V? where U,V ~U(—1,1); AI) X ~U({1, ...,6}), with each value of X Y follows
N (0, 1), Laplace(0, %),U(f\/é, V3),Exp(1) — 1,#,—3,and 0.5 - N'(—2,0.25) + 0.5 - N'(2,0.25)
respectively, and Y is normalized so that Var(Y | X) = 1; () Y = 3- X +eand X, € ~ Beta(2,5)
independently; (IV) X ~ Beta(2,5) and Y ~ Laplace(0, 1). Note that for both Case (II) and (IV)
we have E(Y | X) and Var(Y | X) are controlled as constants.

3 MOTIVATION

Recall that classical independence tests designed for Gaussian data, such as Fisher’s z test, rely

only on the first two moments of the variables. With the assumption of a simple linear model,

Y = X + «, the independence can be decided through testing whether 8 = %)(()’(})/) equals zero,

"We give the formal definition of characteristic kernels in the appendix.
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which again only depends on the first- and second-order moments. These are possible because for
Gaussian distributions, dependence is fully characterized by the mean and covariance structure, and
the usage of the constraints of the model class. Motivated by this, a natural question arises in the
context of linear mixtures of non-Gaussian sources: can independence between X and Y also be
determined from low-order moment information, e.g. the first and second conditional moments?

Figure [I] presents a preliminary exploration and illustration. Case (I) and Case (II) are nonlinear
relationships while Case (III) and Case (IV) contain linear relations only. We constrain the condi-
tional mean E(Y | X)) and conditional variance Var(Y | X) to be constant in Case (I) and (IV),
and leave them free in Case (I) and (IIT). For nonlinear data, there exist situations in which X and Y’
are still dependent after enforcing the constancy of the conditional mean and variance. For example,
in Case (II) we can clearly see the skewness and kurtosis of P(Y | X) change across different values
of X, manifesting the dependence between X and Y given the conditions. However, if X and Y
are linear mixtures of independent non-Gaussian variables, as shown in Case (IV), it is hard, or even
not possible to keep X and Y dependent while keeping E(Y | X) and Var(Y | X) constants.

Imposing a tighter model class typically affords higher power. In the linear non-Gaussian setting,
the observed constancy of the first two conditional moments provides a precise handle for testing.
Building on this, we develop an independence test specialized to linear mixtures of independent
non-Gaussian components that outperforms generic nonparametric tests when the assumptions hold,
leading to more accurate estimation of linear non-Gaussian causal graphs.

4 METHOD

Based on the surprising observation in Section [3] we now formally formulate an independence test
that utilizes the information in the model class. Specifically, we first give a new characterization
of independence for linear mixtures of independent non-Gaussian components, as shown in The-
orem [£.2] Moreover, we build the connection between the conditions in the new characterization
and the uncorrelatedness of the first and second order information of Y, which is shown in Theo-
rem[.3] and give the corresponding statistic. Finally, we also derive the asymptotic distributions of
the statistic and the estimation of the testing threshold under 7, in Theorem 4.5] 4.6 and[.7]

4.1 CHARACTERIZATION OF INDEPENDENCE FOR LINEAR MIXTURES

We provide what appears to be the first explicit characterization of independence for linear mixtures
of independent non-Gaussian components. We first introduce a lemma which would be useful later:

Lemma 4.1. The following two statements for the random vector (X,Y) are equivalent:
(7) E(Y | X)=a+pX, Var(Y|X)=0*= constant,

Op(t1, . dé(t1,0
i) 7‘1’(5;;2) W iag (t1,0) + 5‘%?1 : 0
2 o .
9 ¢$%,tz> = (02 + 0?) ¢ (t1,0) + 2iaBLGr0 4 24 qiz(ttgl’o)

Here ¢(t1,t5) = E[e!1X+%2Y)] g the joint characteristic function (c.f.) of (X,Y’). The proof of
it is in appendix. This lemma connects the regression conditional with simple analytic identities of
the joint characteristic function. This technical tool allows us to derive the following main theorem:
Theoremd4.2. Leteq, ..., ., be independent, non-Gaussian random variables with finite variances,
and let Y = Z;”Zl aje;, X = Z;":l bje; be two linear mixtures of €1, . .., ey With coefficients
{a;}iey and {b;}7,, respectively. ¥j € [m], a3 + b3 > 0. Then Y 1L X if and only if there exist

constants ¢ € R and 0(2) > 0 such that
(i) (Constancy of regression) E(Y | X) =¢
(ii) (Homoscedasticity) Var(Y | X) = o3.

Proof sketch. The necessity is immediate. For sufficiency, assume (i)—(ii). First decompose

Y:L+A, L:Za7€“A:ZCL7€Z, X:M+B, M:szé'z,B:Zb,é‘“
i€S ¢S €S ¢S
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where S = {i : a;b; # 0} are the index of the common components shared by X and Y, and
A and B are linear mixtures of the components specific to Y and X. Suppose S # (). Since the
¢; are mutually independent, A, B are independent and also independent of L, M, according to
[Darmois-Skitovich Theorem| Given (i)—(ii) and A 1L X we obtain constants c, o2 such that

E(L|X)=EL|M)=«a, Var(L|X)=Var(L|M) =0
Let f; denote the c.f. of ¢; and ; = log f; near the origin. Let ¢(t;,t) = E[e!t1M+12L)] pe

the joint c.f. of (M, L). Applying Lemma with 8 = 0 and evaluating at to = 0 yields, for all
te R, Y cga;0(bjt) =ia, Y cgaib;(bjt) = —o>. Integrating the second identity twice and

2
using 0;(0) = 0 and ¢’(0) = iE[e;] gives > s Z—ﬂ 0;(bjt) = iut — Lo*t* for some constant p.

2 2
Exponentiating both sides, Hjes [fj (bjt)} /b _ exp (iut - %aztz) , whose right-hand side is a

Gaussian c.f. with the Hermitian property. By the|a-decomposition Theorem| each f; (j € S) must
itself be a Gaussian c.f., hence the corresponding ; are Gaussian. This contradicts the non-Gaussian
assumption unless S = @. Consequently X and Y share no common source, so X 1l Y. O

This theorem guaranties that, in the linear non-Gaussian setting, ,U,V~Uniform(-1,1), n.=2000
independence can be decided by examining only the first two con- "
ditional moments, E(Y | X) and Var(Y | X), even though out-
side this setting higher-order information is often needed since only
Gaussian distributions have all cumulant of order > 3 equals to I
zero. Recall the comparison in Figure[I] these two conditions alone -

do not exclude more complex forms of dependence in general non- g4 Lo

linear non-Gaussian models, showing the importance of linearity. B e e e
X=U+V

We also want to emphasize that under the linear non-Gaussian

model our criterion is jointly necessary and sufficient. Although Figure 2: An example that
X and Y are linear mixtures, checking only the first conditional the constancy of regression
moment is insufficient, which might be counterintuitive. Neither holds while homoscedasticity
E(Y | X) being constant nor Var(Y | X) being constant alone im- does not. The conditional
plies independence. Figure[2shows an example. We can easily con- mean E(Y | X) and variance
struct two dependent variables (X,Y). X =U+V,Y =U -V, Var(Y | X) are the black and
where U and V' are two independent non-Gaussian variables with red lines in the figure, respec-
zero mean (here U,V ~ U(—1,1)). E(Y | X) is a constant, while tively. Clearly X U Y.
Var(Y | X) varies. This also explains why a single linear regres-

sion of Y on X cannot serve as a valid independence test for linear

non-Gaussian data. Ho : 8 = 0 only considers the conditional mean and only along linear alterna-
tives. Dependence can manifest either in the conditional variance or in nonlinear mean effects.

4.2 DERIVATION OF THE STATISTICS

Based on this characterization, we reduce the problem of testing independence to testing whether the
conditional mean and conditional variance are constant. One may view E(Y | X) and Var(Y | X)
as functions of X, and there exist nonparametric procedures for testing whether such functions are
constant, e.g., (Bierens, [1990; |[Fan & Jiang| 2007). However, these methods are computationally
demanding and, moreover, require separate tests for both Y and Y2 to verify the two conditions in
Theorem [4.2] Interestingly, we show that the two conditions can in fact be tested simultaneously
with a single statistic, which notably has a similar structure to the modified HSIC statistic. To this
end, we introduce an intermediate representation of independence for linear mixtures of independent
non-Gaussian components. The proof of this theorem is deferred to Appendix [C.4]

Theorem 4.3. Let ey, . .., &, be independent, non-Gaussian random variables with E[e?] < oo for
all i. DefineY = >." | ae; and X = > bie;. Then X 1LY if and only if for any bounded,
continuous function f, Cov(f(X),Y) = 0and Cov(f(X),Y?) = 0.

Remark 4.4. The implication of the sufficiency relies on the linear non-Gaussian structure above;
without it, constant conditional mean and variance do not imply independence in general.

*Cumulants are defined as r,(X) := & c?T:' log ¢x (t)] ,—o Whenever the derivative exists. They are poly-

nomial combinations of moments (e.g. k1 = E[X], k2 = Var(X)). k, = 0 forall r > 3 iff X is Gaussian.
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Based on Theorem it suffices to check that, for every bounded continuous function f,
Cov(f(X),Y) = 0 and Cov(f(X),Y?) = 0. For implementation, we adopt a kernel criterion.
Let k be a universal kernel on X (e.g. Gaussian), and let [ be the degree-2 polynomial kernel on Y’
with RKHS #; involving the functions y ++ y and y + y2. ¢, are their feature maps. We define
the first variant of Linear Non-Gaussian Independence Criterion (LiINGICy) as

LINGIC1 (X, Y) = |Cov(¢(X), (1)) [3s = [ELS(X) = #h) ® (V) = 15 )]|[5s

where pk £ E[¢(X)], p4 = E[(Y)], and ® is the tensor product. Note this construction co-
incides with HSIC equiped with gaussian and polynomial kernels, though polynomial kernels are
not characteristic thus seldom used in the literature. In our case, degree-2 polynomial kernel on
one side suffices and LINGIC(X,Y) = 0 if and only if Vf € Cy(X), Cov(f(X),Y) = 0 and
Cov(f(X),Y?) = 0, which is equivalent to X 1L Y for linear non-Gaussian data by Theorem-

Given a dataset D = {(xl, yi)}™,, a biased estimator of LINGIC; (X,Y) 15{3]

LiNGIC (D ZszY +— Z EXIY — 27 Z kX1Y = = Tr(KxHLy H),

17 "] 17 °qr ] "q
5,47 05,4
X ._ AN s : - o B X
where k7 =3, k(z, ;vj), lij =22 ; Uyi,y;), Kx is the n X n matrix with entries k;; and Ly

with entries ZZY», H=1- %11T, and 1 is an x 1 vector of ones. This empirical statistic can be
derived directly using plug-in estimation method and is a sum of three V-statistics (Serfling), |1980).

However, this criterion is asymmetric w.r.t. (X,Y"). Since polynomial kernels are unbounded on
non-compact domains, in practice this can lead to numerical instability when Y takes extreme val-
ues, especially under heavy-tailed distributions. See Appendix [E| for empirical observation. To
symmetrize our statistic, we further design the following feature maps. If we write the feature map

in matrix form ¢ (+), we define the extended feature map ! and its kernel matrix K as

1.y_ |¢(x) O Sl _ 1 137 _ | Kx O

H@ =2 | K@@= D
where we use ¢ = [71,..2,]7 and y = [y1,...yn]T to represent vectors of samples. >
and K? are defined similarly with an exchange of place of ¢ and ¢. It can be easily veri-

2 2 2

fied that [[Cov(p (X), p*(V)|2s = |Cov(@(X),(Y))||%ys + [ Cov(t(X), 6(Y)) |- That
is, using these feature maps is equivalent to combining two directions, LINGIC;(X,Y") and
LiNGIC, (Y, X), directly together. Lastly, we use LINGIC(X,Y) £ ||Cov(¢!(X), ¢? (Y))His

as our final criterion, which is symmetric to (X,Y"). And now the biased estimation of the statistic
becomes LINGICy, (D) = - Tr(Kx HLyH) + 25 Tr(Ky HLx H).

4.3  ASYMPTOTIC DISTRIBUTION AND ITS APPROXIMATION

We now describe the null distributions of the test statistic. Suppose D ={w; 1y = {(@s, v:) 1.
We first define a symmetric function that satisfies LINGIC, (D) = n4 Zz, i hijqr as

(i,9,q,r)
1
hijgr = 5 > kil + Kl = 2R3 + KD+ RLLL, < 2KLG0 @)
(t,u,v,w)

where k) = k(yi, y;), I;; = l(x;,2;), the sum represents all ordered quadruples (¢, u, v, w) drawn
without replacement from (4, , ¢, 7), and assume E(h?) < oco.

Theorem 4.5 (Null distribution). Under Ho, we have E;h;jq = 0. In this case, LINGICy (D)
converges in distribution to a weighted sum of X? variables, i.e.,

nLiNGIC, (D) % Z)\lxu, A satisfies Ny (w;) = / Rijqribr (w;)dF; g . 3)
=1

3We use a biased estimator instead of an unbiased for the purpose of computation efficiency. The unbiased
version of the statistic can be easily obtained by replacing the V-statistics with U-statistics. As mentioned
by (Gretton et al.,|2005b), the biased version converges to the unbiased version at the rate (’)(n_l).
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Here X%l are i.i.d. chi-square variables with freedom one. Denote w; = (x;,v;), \; are the solutions

to the eigenvalue problem integrating over the distribution of variables w;, wg, and w;..

Next, we give a theorem about the asymptotic distribution when LiINGIC, (D) > 0, ie., X U Y.
This distribution would be useful in analyzing consistenc

Theorem 4.6. When LINGIC(X,Y) > 0, LINGICy (D) converges in distribution to a Gaussian:
Vn (LINGIC, (D) — LINGIC(X, Y)) % N(0, 02). 4)
The variance o* = 16(E;(E; ¢+ hijqr)? — LINGIC(X,Y)?), where Ej g » £ By, o, -

To use LINGIC as a level-a hypothesis test, we need the (1 — «) critical value of its null distri-
bution. The asymptotic null law in Equation (3) is an infinite weighted sum of x? variables and is
not tractable to evaluate exactly. One may want to use the permutation test (Ernst, [2004), which
permutes the ordering of the Y sample and keeps X fixed to ensure the independence between X
and Y thus estimating the quantile. However, this can be computationally intensive for large n. As a
faster alternative, one can approximate the null by a Gamma distribution (Kankainen, [1995)), fitting
shape and scale via moment matching as in (Gretton et al., 2005a; |[Zhang et al., [2012):

B

1

Here A £ E[n - LINGIC,(D)] and B £ Var(n - LINGIC,(D)). We estimate them as follow.
Theorem 4.7. Under Ho, the estimation of mean with bias of O(n=1) to A can be given by

2
n LINGICy (D) ~ Gamma(y, 3), where vy = %7 8=

e TR iR
A= gl + B |™ = sk |7 = sy ]
—— TS s
S e 1774 7L e 7L 7L |77

I A k 4 kA l A k A
where Ky = E¢($)7 /J“y - E¢(y)’ Haz = Ek(it,.’b), Hpz = El($7$), Myy - Ek(ya y)’ and
u;y £ Ei(y,y). Also, the estimation of variance with bias of O(n™1) to B can be given by
3

ST 17 (M; - diag(M;))1,
=1

2(n —4)(n —5)

B = ) -2 3)

where M; are (® denotes the entry-wise matrix product and M ? the entry-wise matrix power)

M, =((HKxH)® (HLyH))? My, = ((HKyH)® (HLxH))?,
M; =2(HKxH)® (HLxH)® (HKyH)® (HLy H).

5 RELATED WORKS

Independence testing has long been an active research direction in statitics. Early approaches in-
clude the F'-test (Tiku, 1967) and the Chi-squared test (Greenwood & Nikulin, |1996) for discrete or
categorical variables. For continuous variables, the Pearson correlation coefficient (Benesty et al.,
2009) is widely used, and in the linear Gaussian setting it fully characterizes independence. Non-
parametric rank-based methods, such as Spearman’s rank correlation and Kendall’s tau, relax the
linearity assumption but remain limited to monotonic dependencies. Mutual information provides
a fully general characterization of independence, yet its practical use is constrained by the diffi-
culty of accurate density estimation. To overcome these limitations, kernel-based independence
tests (Bach & Jordan, 2002; (Gretton et al., 2005bj 2003} |2005a) have been developed. A kernel
function implicitly defines an inner product in a reproducing kernel Hilbert space (RKHS) (Berlinet
& Thomas-Agnan, [2011]), which induces a similarity measure between data points. A widely used
example is HSIC (Gretton et al.l 2005a), which quantifies dependence via the squared Hilbert-
Schmidt norm of cross-covariance operators in RKHS. Variants such as random Fourier feature
approximations (Zhang et al.,|2018) improve computational efficiency, while sometimes at the cost
of statistical power. Recent advances focus on improving previous methods (Ren et al.,[2024), find

*Whether the Type II error will converge to 0 as n — co.
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tests that suit for high-dimension data (Zhang & Zhul [2024; [Zhang et al.| [2023)), or for time series
data (Liu et al., 2023). Besides, the random dependence coefficient (RDC) (Lopez-Paz et al., [2013))
achieves marginal invariance through copula transformations and measures dependence by maxi-
mizing correlations under under random projections, offering a computationally efficient solution.
However, none of these existing methods are designed for the linear non-Gaussian setting.

6 EXPERIMENT

We test the proposed method on both synthetic and real data to compare its performance with other
baselines. We also include the experiments that applying our method to causal discovery methods.

Baselines. All baselines follow their default settings unless otherwise stated. HSIC (Gretton et al.}
2007): the original HSIC test using gamma approximation. dCor (Székely et al., 2007): A nor-
malized covariance between the centered pairwise Euclidean distance matrices. HSIC-RFF (Zhang
et al., [2018): HSIC using finite-dimensional random Fourier feature mappings to approximate ker-
nels. LFHSIC (Ren et al.|[2024): HSIC test with adaptively learned bandwidth.

For all the methods used in our paper that require a characteristic kernel, except for LFHSIC, we
use a Gaussian kernel with the bandwidth decided heuristically based on the sample sizes. Due to
space limit, details about the experiment settings, experiments on more data generation processes,
comparisons with more baseline methods, and real-world data experiments, please see Appendix [E]

6.1 SYNTHETIC DATA

Data Generation. We generate n pairs of two linear mixtures, ¥ = " a; and
X = Z:’;l b;e;, where ¢;,4 = 1,...,m are independent and identically distributed non-
Gaussian components. We restrict them as the same distribution, which is chosen from
{Laplace(0, 1), t,—3, U(—10,10), TruncNorm(0, 1; —2,2)}. For power rate, the weights are ran-
domly generated a;, b; ~ U(—1,1). We also ensure that the dependence between X and Y does not
vanish due to randomness by constraining a;b; > 0.1, Vi. Finally, we whitened the data to ensure
zero correlation. For type I error, we make sure X and Y do not share any common components by

Y =" aig;and X = 3207 m+1 bi€i, where 5,1 = 1,...,2m have the same distribution.
Laplace(0,1) Student_t freedom=3 Uniform(-10,10) TruncNorm(0,1;-2,2)
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Figure 3: The experiment results when we change the number of the independent components of
the linear mixtures with 500 samples. The number of components d € {2, 3,4,5,6}. Each column
shows the results with €; ~ a different distribution. The first row demonstrates Test Power and the
second row shows the Type I error. The significance level 0.05 is annotated as the black line.

Results. In Figure[3] we demonstrate that our method consistently controls Type I errors and that
its power outperforms other baselines in different distributions. More independent and identically
distributed components make the standardized linear mixture behaves more like Gaussialﬂ and the
dependence relation between X and Y becomes more complex and hard to detect. Note that our

>With assumption that these components have finite variance.
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Laplace(0,1) Student_t freedom=3 Uniform(-10,10) TruncNorm(0,1;-2,2)
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Figure 4: The experiment results when we change the sample sizes of the linear mixtures of 3 inde-
pendent components from different distributions. The sample sizes n € {300, 500, 700,900, 1100}.

method does not suffer from this complexity as much as other baselines do for Laplace(0, 1) and
t,—3. Figure[]shows the performance when the number of samples varies. All methods benefit from
a power gain when more data samples are available. Our method again consistently performs better
in testing power, which confirms the need for a specific testing method for linear non-Gaussian data.

6.2 APPLICATION IN CAUSAL DISCOVERY METHODS

We then apply our method to classical causal discovery method with linear non-Gaussian assump-
tion. Here we use the ground truth causal structure of the flow cytometry dataset, SACHS (Sachs
et al.,|2005)), and test the algorithm on both original real data and synthetic data generated according
to the structure. More details about the dataset SACHS and results of the real data see Appendix [E-3]

Direct-LINGAM. This is a causal discovery algorithm for LINGAM without latent confounders.
It finds the causal order by repeatedly identifying exogenous variables via independence tests with
regression residuals. We replace the original HSIC test with other baselines and our method, and
run the algorithm on the synthetic data we generated according to the structure of SACHS. We fix
the sample size as n = 500 and change the distribution of the exogenous variables. We can find the
consistent better performance of our LINGIC in all setting as shown in Table/T]

Table 1: SHD and F1 Score of Direct-LiNGAM algorithm using different testing methods.

Noise Type \ SHD ({) F1 Score (1)

\ HSIC HSIC-RFF dCor Ours \ HSIC HSIC-RFF dCor Ours
Uniform 4.55 6.95 3.65 2.6 0.81 0.69 0.85 0.88
Laplace 16.5 16.15 16.1 16.2 | 0.05 0.09 0.09 0.09

7 CONCLUSION AND DISCUSSION

We studied the problem of testing independence between linear mixtures of independent non-
Gaussian components, a critical but underexplored task in machine learning and causal discovery.
We established a new theoretical characterization showing that independence is fully determined
by the constancy of the conditional mean and variance under this setting. Building on this insight,
we proposed a kernel-based testing procedure with provable asymptotic guarantees. Experiments
demonstrate clear power gains by leveraging the model constraints. Overall, our findings provide
both theoretical and practical advances for causal discovery methods with linear non-Gaussian as-
sumption and highlight the importance of exploiting structural assumptions in data.
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APPENDIX

Organization of Appendices

* Section [A} Table of Symbols and Notations.
 Section[Bl Use of the LLM.
 Section[Cl The Proof of the Main Results.

Section[Dt The Derivation of Statistics.

* Section [E} Supplementary Experimental Details and Results.

* Section[F Discussions.

A NOTATIONS

Table 2: Notation Table

Symbol Description

XY Random variables (or sets of variables)

X,y Domains for random variables

Fx,Fy Reproducing kernel Hilbert spaces (RKHS)
X,y Sample vectors (or matrices)

Tiy Uiy Zi Specific values of sample vectors (or matrices)
kx(z,2'),ky(y,y’) Kernel functions on the input spaces X, )
U(), d(") Feature maps for X,Y

Kx, Ky Kernel matrice on samples x, y

Yxvy Cross-Covariance operator

Iz Norm in a RKHS

E[X] Expectation of X

Var[X] Variance of X

Cov|[X] Covariance of X and Y

R20 The set of positive real numbers (including 0)
B(R) Borel o-algebra on R

Pxvy Joint distribution of X and Y

Pxy|z Joint distribution of X and Y conditioned on Z
Tr[-] or trace(-) The trace of a matrix

® Tensor product

@) Big O notion

n Number of samples

X1Y X is independent of Y

(i) The set of all r-tuples drawn without replacement
(n)k Number of permutations

N(0,1) Normal distribution with zero mean and standard deviation 1
Uo,1) Uniform distribution in (0, 1)

B THE USE OF LARGE LANGUAGE MODELS

During the preparation of this manuscript, we used ChatGPT to assist with writing by providing the
prompt: ‘“Please check whether this part is suitable for a paper for submission to an international
conference.” We applied its suggestions paragraph by paragraph, and all outputs were edited by us

to ensure correctness.
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C PROOF OF THE MAIN RESULTS

C.1 PRELIMINARIES AND USEFUL LEMMAS

Theorem C.1 (Cram “er Decomposition Theorem (Cramér, (1970)). Let a random variable € be
normally distributed and admit a decomposition as a sum € = €1 + €5 of two independent random
variables. Then the summands €1 and €5 are normally distributed as well.

Theorem C.2 (Darmois-Skitovich Theorem (DST)). We consider independent scalar random vari-
ables X1, ..., X, (not necessarily identically distributed) and two linear statistics

Li=) aiXi, Ly=) BiXi

where the o, B; are constant coefficients. Let L and Lo be independent. Then the random variables
X for which o 85 # 0 are all normal.

As mentioned in (Shimizu et al.l [2011) In other words, this theorem means that if there exists a
non-Gaussian X; for which a;3; # 0, L; and L are dependent.
The following lemmas and corresponding proofs are attributed to (Kagan et al., [1973).

Lemma C.3. Let X and Y be random variables and EY exist. Y has constant regression on X if
and only if the relation ‘ ‘

E(Ye"™ ) = EY - Be¥,
holds for all real t.

Lemma C4. Let (X,Y) be a two-dimensional random vector with EX = EY = 0. A necessary
and sufficient condition for the linearity of the regression of Y on X is the existence of a constant 3

such that, for all real t,
09 (t1,t2) dg (t1,0)

ot =0
where ¢ (t1,t2) is the c.f. of (X,Y).

to=0

Proof. In view of Lemma 1.1.1, a necessary and sufficient condition for E(Y — X | X) = 0 for
some constant /3 is that _
E(Y — 3X)e'™X =0 for all real t,
which is easily seen to reduce to the results here. O
Lemma C.5. In order for the two-dimensional random vector (X,Y) to satisfy the conditions
EY | X)=a+pX,
Var(Y | X) = 0? = constant,

it is necessary and sufficient that

Ap(t1, . d¢(t1,0
P0ta)| | —iag (11,0) + B0 s
o2 , . ad , d? ,
Pats)| == (0% +02) 6 (12.0) + 2iaf U + g0
Proof. The conditions here are equivalent to
EY -BX|X)=q,
EY?—(a+BX)* | X] =0"
which, in view of Lemma|C.3| are easily seen to be equivalent to the results in the Lemma. [

Lemma C.6 (a-decomposition theorem). Let the function ¢(z) of the complex variable z be regular

and nonvanishing on the disc |z| < R and possess the Hermitian property: ¢(—z) = ¢(Z). If
@1, ..,0s be cfs, and oy, . .., a5 be positive numbers such that for some sequence {t,} of real
numbers tending to zero the relation

[61(5)]" -+ [0 ()] = 8(2) (6)
is satisfied, then the functions ¢; are regular and nonvanishing in |z| < R, and relation (@) is valid
throughout the disc. If in (@) ¢ is a function of the form exp Q(t), where Q(t) is a polynomial with
the Hermitian property, then every ¢; is a normal c.f.

13
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C.2 A PRELIMINARY RESULTS AND THE CORRECTION OF ITS PROOF
Theorem C.7 (THEOREM 5.7.1. in (Kagan et all |[1973)). Let X,..., X, be independent rv.’s

with finite variance. The linear functions L = Y a;X; and M = Y b;X; with a;b; # 0 for
7 =1,..., nsatisfy the relations

(i) E(L| M)=a+ BM, and
(ii) Var(L | M) = 02 = constant
if and only if the following conditions are satisfied:
(a) the X; for which a; # Bb; are normal, and
(b) B=(3"abjo?) /(X" bi0F), of =" (a;— Bb;)* o2
where 0]2 = Var X;, and S denotes that the summation is taken over all j for which a; 7 Bb;.

We claim that the original proof has minor problem with an exchanged a and b. Here we give another
proof that corrects this problem.

Proof. The sufficiency of the conditions is easily established.

log & (t1,t2) = log B [ /(1M +121)| — log [! i Gitiesta)s ]

= log H [ (bjt1 +ajta) | = 293' (t1,t2).
=1

j=1
o =00
¢(t17t2) = 66 = { ¢// _ 9//¢+¢/9/ = (9// +92)

We first prove the necessity. Let f; be the c.f. of X;, and 6; = log f; (in a neighborhood of the
origin where none of the f; vanishes).

Za] % (bjt) —za—i—BZb 05 (b;t) (7
> a30] (bit) = —op + 52> b30) (b;t) ®)

Differentiating (5.7.1) with respect to ¢, we obtain
> abi6] (bit) = B 307 (bit)

From (5.7.2) and (5.7.3), we derive

*

> (a; = B)* 07 (bit) = (a; — Bb;)* 07 (bjt) =

Integrating (5.7.4), we obtain

*

[1155 b)) = exp [ipt — (1/2)05t?]

where v; = (a; — Bb; )®. Assertion (a) now follows on noting that in Lemma if the above holds
with ¢(t) = exp [iut — (1/2)0?t?], then every ¢; is a normal c.f. The other results are obtained by
setting ¢ = 0 in (7) and (7).

The sufficiency of the conditions is easily established. O
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C.3 PROOF OF THEOREM[4.2]

Theorem [d.2) Let ¢4, . . ., &, be independent non-Gaussian r.v.’s with finite variance. Suppose that
Y =) ajejand X =) bje; be two linear mixtures of ¢;. Then' Y 1L X if and only if:

(i) E(Y | X) = ¢ =constant a.s., and

(ii) Var(Y | X) = 02 = constant a.s.

Proof. =: Suppose that we know X 1l Y, then we directly have (i) and (ii).

<«: Proof by contradiction. Suppose that we have conditions (i) and (ii). We can rewrite X and Y in
Y=L+A L= ae, A=) aie;, X=M+B M=) be,B=Y b,
= i€Se = eS¢

where S = {i | a;b; # 0} and S°US = {1, ..., n}. Since ¢;, Vi are mutually independent, the linear

mixtures of disjoint sets of ¢;s are independent, i.e., A Il B, L Il A B,and M 1l A, B. Then we
have

EY | X]=E[L+A|X]|=E[L|X]+E[A|X]=c=E[L|X]=a2c—E[4], ()

Var(Y | X) =Var(L + A | X) =Var(L | X) + Var(A) (10)

=Var(L|X)=0%%2 00 Var(A). (11)

We assign L = ZJ 1 gl)sj = Z]es aje;, where a = 0,Vj € &° Let f; be the characteristic

function (c.f.) of €, and §; = log f; (ina nelghborhood of the origin where none of the f; vanishes).
The c.f. of (X, L) is ¢>(t1, ty) = E[e?(ttM+12L)] Then through Lemmawe know (3 = 0,

S0ty =3 a605(bt) = ia, (12)
j=1 JjES

Z 201 (bt) =3~ 207 (bjt) = —0>. (13)
JjES

So we only need to consider j € S = {i | a;b; # 0}. Also we know that for j € S, we have
b; # 0. We now want to integrate . Suppose F(t) = 3 ;csa a? 0’ (b;t) since b; # 0 for

amn
j € 8. Then F'(t) = 3,5 a307(bjt) = —o>. Therefore F(t) = —0215 + C4. Suppose again
G(t) = des Jb29 (bjt). Then G'(t) = 3¢ ?bl 0 (bjt) = F(t) = —o*t 4 C1, which gives
us G(t) = 2t2 + C1t 4+ Cp. Then determine the constants using the initial values.
0;(bit)l,— = log f;(0) = log B[] =0, (14)
fi(bst)] Elig; - %]
0(bt)|,_, = =0 = =L = Elie;]. 15
J( J )|t:0 f] (0) E[@ZEJ'O] [7’5]] ( )
These give us the following points
1
=D a0t 0) =0, (16)
JES J
G'(0 Za 79/ b, - 0) Za Elic;] £ ip. 7)
jeS jES

Therefore, the integrated function is G(t) = 3, ¢ a w 50,(bjt) = —102t? + iut. We take expo-

nential on both sides,
. a2 /5
exp(iut — 502t2) = Ies [f5(b1)] il

Since 1ut — 1 o%t? has the Hermitian property, through Lemma 6} all f;s are normal c.f. and €;s
are normal Varlables which contradicts to the linear non- Gaussmn model SoS =40.

Sonow wehave Y = A = 3. a;g;and X = B = 3, _zbie;. Since AN B = () and ;s are
mutually independent, we have X 1l Y. [
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C.4 PROOF OF THEOREM [4.3]

Theorem C.8. Let (2, F,P) be a probability space, X : 8 — X a random element taking values
in a metric space X, and let h : X — R be Borel measurable with E|h(X)| < co. Assume that

E[f(X)MX)] =0  forall f € Cy(X).

Then h(X) = 0 almost surely. Moreover, if h is continuous and the law of X has full support on X
(i.e, P(X € U) > 0 for every nonempty open set U), then h(x) = 0 for all x € X.

Proof. Let u =P o X! be the law of X.

Approximation of indicators by continuous functions. By regularity of Borel probability measures
on metric spaces and Urysohn’s lemma, for every Borel set A C X there exists (f,,) C Cp(X) with
0<f,<1land f, — 14 p-ae.

Extension to bounded measurable functions. For a simple function ¢ = Zgl c; 14,, define

Gn = Do ¢ A= Cy(X) using the above approximations. Then g,(X) — ¢(X) as. and

lgn, (X)h(Xﬁ\ < (3, leil) [h(X)| with E|h(X)| < co. By the dominated convergence theorem,
Elg(X)h(X)] = lim E[g, (X)h(X)] = 0.

n—oo

By approximation of bounded measurable functions by simple functions, the identity
E[g(X)h(X)] = 0 holds for every bounded Borel measurable g. Taking g = 14 yields [, hdp =0
for every Borel A.

Conclusion. If P(h(X) > €) > 0 for some ¢ > 0, then 0 = f{h>€} hdu > eu({h >€}) > 0,a
contradiction. Similarly for {h < —e}. Hence h(X) = 0 a.s.

If, in addition, h is continuous and the law of X has full support, then h(zg) # 0 would imply
|h| > ¢ > 0 on an open ball around z, which has positive probability. This contradicts h(X) = 0
a.s., and therefore h = 0 everywhere.

Theorem[.3|(Independence for Linear Non-Gaussian Data). The linear mixtures of the independent
non-Gaussian variables €1, ...,€,, Y = Z?:l aic; and X = Z:-L:l b;e;, are independent if and
only if Cov(f(X),Y) = 0 and Cov(f(X),Y?) = 0, where f can be any bounded, continuous
function.

Proof. = If X 1L Y, then from Theorem 2.1} we know Cov(f(X), g(Y")) = 0 for each pair (f, g)
of bounded, continuous functions. Clearly the condition is satisfied.

< We first consider Cov(f(X),Y’) = 0. For any bounded and continuous function f,

Cov(f(X),Y) = E[f(X)Y] - E[f(X)|E[Y] = E[f(X)(Y - E[Y])]
= E[f(X)E[(Y — E[Y])|X]] = 0.

If we define h(X) £ E[(Y —EY)|X] =E(Y | X) — E[Y], then
E[f(X)h(X)] =0, VfeCCo(X).

Use the results in Theorem [C.8] we get that h(X) = 0 a.s. Therefore we have the condition E(Y" |
X) = E[Y] a.s., which is a constant.

With a similar discussion, since Cov(f(X),Y?) = 0 gives us E[Y2|X] = E[Y?] as. and it is a
constant, we can derive that

Var(Y | X) = E[Y? - E[Y]? | X] = E[Y?X] — E[Y]* £ ¢, = constant.

Combine the results and use Theorem 4.2} we know that X 1l Y. O
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D DETAILS ABOUT THE UNCONDITIONAL INDEPENDENCE STATISTIC

We first give some preliminaries for later proof and derivation.

Definition D.1 (U-statistics). The statistic U,, defined as follows is called a U-statistic with sym-
metric function h of order m:

-1
n
U, = h(Xiy,..., Xi ), 18
<m> Z (X, ) (18)
where 3 denotes the summation over the () combinations of m distinct elements {i1, ..., %n}
from {1,...,n}.
For every U-statistic U,, as an estimator of ¥ = E[h(X1,...,X,,)], there is a closely related

V -statistic defined by
1 n n
Vo= — S > (X X))
i1=1 im=1
Proposition D.2. Let V,, be defined by the above function and we have n i.i.d. samples {x;}"

drawn from Px.

(i) Assume that E[|h(X;,,...,X;,)
V.. satisfies

| <ooforalll <iy <--- < iy < m. Then the bias of
an (Px) = O (nfl) .

(ii) Assume that E [h(Xil,...,Xim)Z} <ooforalll < iy < -+ < iy < m. Then the

variance of V,, satisfies
Var(V,,) = Var(U,) + O(n™2).

We also define some more statistics for later derivation. For k = 1,...,m, let

hk(ﬂfl,...,xk) :]E[h(Xl,,Xm) |X1 :Il,...,Xk :Ik]
:]E[h(xl,...,l‘k,Xk_,_l,...,Xm)].

Note that h,,, = h. Further define ¢ £ Var (hy(X1,. .., Xz)).

Theorem D.3 ((Shao, [2008), Theorem 3.16). Let V,, be a V-statistics with E [h(Xil yeos X )2] <
foralll <43 <. <4y, <.

(i) If ¢ = Var(hy(X1)) > 0, then
Vi (Vi —9) % N(0,m2¢).

(ii) If 1 = 0 but (3 = Var(ha(X1, X3)) > 0, then

a m(m—1) & 9
n(V, —9) — — Z)\lej,

j=1
where x%j s are i.i.d. random variables having the chi-square distribution x3 and \; ’s
are some constants (which may depend on Px ) satisfying Zjoil )\f = (o.
D.1 CHARACTERIZATION OF UNCONDITIONAL INDEPENDENCE

For (X,Y) € X x ), the cross-covariance operator X xy : Fy — Fx is defined by (Fukumizu
et al.l [2004):

Vi€ Fx,9€Fy, ([ Xxvg)r, =Exy[f(X)g(Y)] - Ex[f(X)[Ey[g(Y)].  (19)
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and the covariance operator itself can be written as

Sxy = Exy [(W(X) — px) @ (6(Y) — py)], px £Exyp(X), uy £ Eyo(Y), (20)

where ® is the tensor product. This operator is a generalization of the cross-covariance matrix be-
tween random vectors. HSIC is the squared Hilbert-Schmidt norm (the sum of the squared singular
values) of this operator, as mentioned in Def. [2.3]

HSIC(X,Y) = Exxryy [kx (X, X"y (V,Y")] + Exx [kx (X, X)|Eyy/[ky (Y, Y")] (21)
—2Exy [Ex[kx (X, X')Ey [ky (Y, Y")]].
Assuming the expectations exist, where X’ denotes an independent copy of X. An unbiased es-

timator of HSIC in sample D = {(z;,y;)}}_, drawn from distribution Pxy is the sum of three
U -statistics: (Gretton et al., 2007)

1 o 1 iy 1 o
HSIC,(D) = — kYK + —— ELRY —2— kLkE, (22)
@) (n)2 Zn Xy (n)s Z X (n)s . Zn X
(i,4)€iy (i,4,q,m) €Y (i,4,9) €l
where k;ﬁ = kx(x;,z;), k? = ky Wi, y;), (N)m = ﬁ, and the index set i* denotes the
set all r-tuples drawn without replacement from the set {1,...,n}. A biased estimator is the one
replacing U-statistics with V -statistics, as in

HSIC, (D) = — Z KLk + — Z kYR — —~ Z KK = — Tr(Kx HKy H), (23)
,0,¢;T 1,5,4
where the summatlon indices now denote all r-tuples drawn with replacement from {1,...,n} and
H=1I-1:11".

D.2 APPROXIMATE THE ASYMPTOTIC NULL DISTRIBUTION
D.2.1 MEAN OF LiNGICy(D) UNDER Hq

An unbiased estimate of LiNGIC(X ,Y), denoted by LINGIC,, (D), is a sum of three U-statistics

LiNGIC,, (D) := ( > kil + ()4 S kil —2—— Y kijlig,

(171)612 (4,5,q,m) €1} (w q)€iy
which has E [LiINGICy,,(D)] = E[LINGIC(X,Y)] = 0 under H,.

The complete proof is given in (Gretton et al., 2007). We show only some of the key steps here. The
biased estimate of LINGIC(X,Y"), denote as LINGIC; (D), is a sum of three V-statistics

LiNGICy, (%) = — Zk”l” —~ Z Kijlgr — 2% > kijliq

43,457 3,9
We can show the difference n (LINGIC(Z) — LiNGIC,,(Z)) similar to (Ren et al., 2024):

Zkgfzg Y R ) o S (R RN
(m')Eiz (i.5,q) €y

o X Rt Y R X

4. .
(1,1)612 (%]7‘1)61n ) (4,5,q,m) €1}
1
n3

1 2
+;zkm—ﬁ SN R o S )

(i,9)€iz (i,5,q)€iy

3 10 6
_@ Z k};lfg (n)s Z kﬁ};lfg m Z k};léﬁ—i—(’)( )

(1,5)€iy (4,4,q) €l (i,5,q,m) €1}

/\
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when we assume the kernel is bounded with compact X and ). Secondly, we take the expectation
of the last equation. To simplify, we use the notation E,,,/kl = E,,, k(z, z)l (y,y") (and so on for
the rest), then n (E [LINGIC,(Z)] — E [LINGIC,(Z)]) =
=Eykl — 2 (Eyga kl + Eyyr o kl) + Eyargr kL 4+ Eyyr g kl
— 3By war Kl 4+ 10E g0 Kl — 6y kB0
A Epykl — 2 (Epyy bl + Egarykl) + Egyryr kl + Eggry kl
— 3Euuryy bl + 10E 01y kl — 6E 40 Kyl + O (1)

Under Ho,z is independent with y, thus we can draw the conclusions that E.,/kl =

Epy gkl Eparykl = Egpryrkl and Eppryy kbl = Egpryyr kbl = Epp kB, 1. Similarly, Eyyqr kl =
W/muk:l Eyyakl = Eyyorkl and Eyyrpw bl = Eyyraprkl = EyykE.; . Combining with
E [LiNGIC ,(Z)] = 0, we obtain that

1
E(LNGICH(2)) = & (Bt + [ b~ Eak )~ Bt []7)
1
o L @kt 5 L~ Bk ]~ Bt []°) + 0 (n72)

where 1f = E,¢, (), [Lx =E gi)p( x), and for pf, ué are similar. Also note that the estimators of

—

E,k can be Wr1tten/z§ E.k=E k;(a: x) = um = L3 kiy, which is the same for Ify\k =puk, =
IS kY Eol=pl, =15 0% IE l=p, = 1%, 1¥. An empirical estimate can be obtained

i Vi) 7110
by replacing the term above with

— 1 /\
I = o Sl = o 3l = g R

(i,5)€iy (i,5)€iy (m)EZ

[\

—
™ = ( >
(1 Jj)€iy

The obtained estimate

/\/\

E [ LINGIC)(2)] = iy, + 15 P [t | = s | — sy 151

/\/\/—\/—\

gttt PP = i N1 = |1

results in a (generally negligible) bias of O (n’l) and can be calculated within the time cost O (n2) .

D.2.2 VARIANCE OF LiNGIC,,(Z) UNDER Hg

The complete proof is given in (Gretton et al., 2007). We show only some of the key steps here.
According to (Serfling, 2009, Section 5.2.1), the variance of the U-statistic with the kernel can be
calculated by

Var [LINGIC, (D))] = (Z) - i (i) (Z B )CC = 4(&5)4) G+ 6%4) G+0 (7)),

c=1

where we only need to consider the dominant term

G2 = Eij [(Eq,rhijqr))” — [ELINGIC, (D))
—_—
0 under Ho

using degeneracy ((; = O) under Hy. Under H, using x, y are independent, we have
Eqrhijgr = (kX + Bowrk — Boki — Bokj) (1 + Eyyl — Eyli — Byl;)

(K + Eyyk — Eyk; — Byk;) (1 + Baorl — Eoli — Bolj) .

Cb\»—‘@
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(6Eq,rhijgr)® =

— (k¥ + Epurk — Bk, — )2 (15 + Byl — Byl — Byl;)°

+2 (ks + Eoork — Egki — Bokj) (15 4 Bawl — Bols — Eglj)

: (13; + Eyy’l - ]Eylz - Eyl]) (l{% + Eyy’k - Eyki - Eykj)
+ (kY + Eyyk — Byky — Eyky)” (15 + Bourl — Eoly — Eulj)”.
. 2 2 2 . 2 . 2 2
= [[Ce N NCg ™ + 2 e ey [+ ICh, ) 105"
where
Crl=E[(on(X) = pb) @ (vi(X) — b)), plh = B (X), ptl, = By (X).
And
Eij (k% + Epurk —Egk; — Eokj)? = Eij (6 (25) — 15, ¢ () — k)’
=Eij (¢ (x:) — pf) @ (¢ (i) — k) (¢ (25) — ) @ (8 (2)) — 1) ) s = ||CF

which, following a similar derivation, we have Eq; (1)} + Ey,l — Eyl; ~E,l)% = Hcéy
2
Eij (k/’z}; +Eyy b —Eyki — Eykj) = |Cz]/€y

We also have
Eij (k¥ + Epark — Eoky — Boky) (15 + Bourl — Euly — Eoly) = ||CY|°
Eij (15 + Eyyl — Eyl; — Eyly) (k) + Byyk — Ejk; — E, j) = Hq’j;H .

i

2, and ]Eq,j (lf; + ]E:L’:c’l - Ewl’b - Efl’lj)z = HcimHz

Then the variance of the statistic is obtained by

2(n —4)(n

. —5) 2 2
Var [LiNGIC, (D)] = T ). (HC;CEHHS HC?ZJ?JHHS +2 Hok lHHS Hck lHHS

2 2 _
HICk s Gt 1) +© (272

where || - || is the Hilbert-Schmidt norm. An empirical estimate of the product of Hilbert-Schmidt

and HC”C

yyHHs H 51?30”12{S is given by

norms HCL“IH?{S chl/yH?{S

17(B; — diag(B;))1

1) VithBi = (HK.H) © (HLyH))?, By = (HKyH) © (HL.H))®,

respectlvely, where © is the entrywise matrix product and ()2 is the entrywise matrix power. For
||Ck l||HS HC’k l”HS we first give the unbiased estimators (where K=HKHandL=HLH ):

—

2 1 N - - -

k,l X7X _ T X X : X X

s = § :K LY = 1T (KX © LX) - diag(KX © L)1
’ C HS ’I’L . 1 ij Hig (Tl _ 1) (( © ) 1ag( © ))
H ’”HQ =L SRRy = — L (R 0 £Y) - diag(RY © L)1

YWikas — n(n—1) U n(n—1)

i#]
. . 2 . .
Therefore the empirical estimate of ||CE! || || CF; l||HS is given by the formula above with

B; = (HKxH) © (HLxH) ® (HKyH) ® (HLy H).

The estimate in has a bias of O (n*‘?’) and can be calculated within time cost O (nz) Since the
additional terms of the bias vanish faster than the terms in front of it, the result is identical to the
case of unbiased.
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E SUPPLEMENTARY EXPERIMENTAL DETAILS AND RESULTS

E.1 IMPLEMENTATION DETAILS

Here we provide the implementation details of the methods. In all experiments, we use Gaussian
kernels in all kernel-based methods. The significance level is set to 0.05. The results are obtained
after averaging the values in the 100 tests.

Details about the Baselines. All the baselines follow their default settings unless stated other-
wise. HSIC (Gretton et al} 2007): the original HSIC test using gamma approximation for p-

value. Code from python library causal-learn (Zheng et al., 2024); LFHSIC (Ren et al., 2024):
HSIC test with adaptively learned bandwidth. Code from |https://github.com/reny1xin666/HSIC-|

LK} RDC (Lopez-Paz et all 2013): use canonical correlation between a finite set of random
Fourier features. We permute the samples 500 times to compute the empirical p-value. Code from

[https:/7github.com/garydoranjr/rdc} FHSIC (Zhang et al.} 2018)): HSIC using finite-dimensional ran-
dom Fourier feature mappings to approximate kernels. Code from fhttps://github.com/oxcsml/kerpy|

E.2 MORE RESULTS ON SYNTHETIC DATA

Laplace Student_t Triangular Truncnorm
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Figure 5: The experiment results when we change the number of the independent components of
the linear mixtures with 500 samples. The number of components d € {2, 3,4,5,6}. Each column
shows the results with ¢; ~ a different distribution. The first row demonstrates Test Power and the
second row shows the Type I error. The significance level 0.05 is annotated as the black line.
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Figure 6: The experiment results when we change the sample sizes of the linear mixtures of 3 inde-
pendent components from different distributions. The sample sizes n € {300, 500, 700, 900, 1100}.
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E.3 SACHS DATASET AND RESULTS OF THE REAL DATA

Sachs Dataset. The the flow-cytometry data published by (Sachs et al.,[2005) is a popular real-world
data set for causal discovery methods, which gives expression levels of 11 proteins under various
experimental conditions. We take the popular learned causal structures as the ground-truth causal
graph for this dataset, as shown in Fig.

Figure 7: Figure 5 in (Mooij & Heskes||[2013). Left: Consensus network, according to (Sachs et al.,
2005); Middle: Reconstruction of the signaling network by (Sachs et al.,2005), in comparison with
the consensus network; Right: The best acyclic reconstruction found by (Mooij & Heskes| [2013).
Black edges: expected. Blue edges: unexpected, novel findings. Red dashed edges: missing.

E.4 REAL DATA EXPERIMENT RESULTS

Sachs MI HSIC RDC FHSIC dCor LiNGIC

FI(1) 018 0.0 018 010 027  0.19
SHD(]) 15 16 15 16 14 15

E.5 MORE RESULTS ON DIRECT-LINGAM

Table 3: SHD and F1 Score of Direct-LiINGAM algorithm using different testing methods.

Noise Type \ SHD (|) \ F1 Score (1)

\ HSIC HSIC-RFF dCor Ours \ HSIC HSIC-RFF dCor Ours
Uniform 4.55 6.95 3.65 2.6 0.81 0.69 0.85 0.88
Laplace 16.5 16.15 16.1 16.2 0.05 0.09 0.09 0.09
Student t 17.1 17.1 17.05 17.05 0.0 0.0 0.0 0.0
TruncNorm 17 17 17 17 0.0 0.0 0.0 0.0

F DISCUSSIONS

F.1 THE PREVALANCE OF NON-GAUSSIAN DISTRIBTUTIONS

In fact, even we do not care about the non-Gaussianity requirement in causal discovery, non-
Gaussian data are far more prevalent than Gaussian ones in the real world, as mentioned in (Spirtes
& Zhang| 2016). According to the Cramér’s decomposition theorem (Cramér, [1970), if any of the
variables with non-zero coefficient in the linear composition is non-Gaussian, then the composition
must be non-Gaussian. This implies the rareness of the Gaussian distribution in linear data since it
is easily “polluted” by non-Gaussian ones.
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