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ABSTRACT

Spatially Resolved Transcriptomics (SRT) is a cutting-edge technique that cap-
tures the spatial context of cells within tissues, enabling the study of complex
biological networks. Recently, graph-based deep learning has been utilized in
identifying meaningful spatial domains by leveraging both gene expression and
spatial information. However, these approaches fall short in obtaining quali-
fied spot representations, particularly for those located around the boundary of
spatial domains, as they heavily emphasize spatially local spots that have min-
imal feature differences from an anchor node. To address this limitation, we
propose a novel framework, Spotscape, which introduces the Similarity Tele-
scope module designed to learn spot representations by capturing the global re-
lationships among multiple spots. Additionally, to address the challenges that
arise when integrating multiple slices from heterogeneous sources, we propose
a similarity scaling strategy that explicitly regulates the distances between intra-
and inter-slice spots to ensure they remain nearly the same. Extensive experi-
ments demonstrate the superiority of Spotscape in various downstream tasks,
including spatial domain identification, multi-slice integration, and alignment
tasks, compared to baseline methods. Our code is available at the following
link: https://anonymous.4open.science/r/Spotscape-E312/

1 INTRODUCTION

Recently, Spatially Resolved Transcriptomics (SRT) has gained significant attention for its ability
to capture the spatial context of cells within tissues. Specifically, advanced SRT technologies such
as 10x Visium (Maynard et al., 2021), 10x Xenium (Janesick et al., 2023), seqFISH (Lubeck et al.,
2014), and Stereo-seq (Chen et al., 2022a) provide spatially resolved gene expression data. These
datasets not only contain gene expression profiles, which quantify the activity levels of thousands
of genes within each spot of tissue, but also include spatial coordinates, which represent the exact
physical location of each spot within the tissue. Since much of SRT data analysis focuses on specific
spatial regions or their interactions, spatial domain identification (SDI) serves as a crucial initial
step for categorizing distinct, biologically meaningful tissue regions. For this reason, initial studies
typically employ unsupervised clustering methods (Blondel et al., 2008; Wolf et al., 2018b; Hao
et al., 2021) to group spots based on their original gene expression data. However, they fall short in
predicting accurate domain identification results due to the inherent noise in SRT data, which arises
from the limited resolution of the technology, and the high dimensionality of the data.

In response to these challenges, various deep representation learning methods have been proposed
to learn spot representations that capture biologically meaningful content by leveraging both spatial
and gene expression data. Specifically, graph-based methods such as SEDR (Xu et al., 2024) and
SpaGCN (Hu et al., 2021) construct graphs based on spatial coordinates to gather information from
nearby spots and generate representations using graph neural networks (GNNs). While this approach
effectively incorporates spatial information into latent representations, it has limitations, particularly
for spots located around the boundary of different spatial domains. These boundary spots may
receive information from nodes representing different types of spots (i.e., heterophilic nodes), which
can complicate accurate representation learning.

To address this limitation, STAGATE (Dong & Zhang, 2022) proposed leveraging graph attention
networks (GAT) (Veličković et al., 2017) to learn similarities between spots without solely depend-
ing on pre-defined edge weights, thereby enhancing the representations of spots at the boundaries of
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(2) Local view

(a) Feature similarity comparison (b) Clustering performance comparison

(1) Global view
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Figure 1: (a) Feature similarity comparison from global and local perspectives. In global view, the
similarity between the anchor (i.e., red dot) and other spots gradually changes with their spatial
coordinates. In contrast, in the local view, neighboring spots exhibit minimal feature discrepancy
compared to the anchor, irrespective of the true spatial domain. (b) Clustering performance compar-
ison in terms of clustering accuracy for all spots (Total CA) and particularly for spots located at the
boundary of clusters (Boundary CA) in the human dorsolateral prefrontal cortex (DLPFC) dataset.

spatial domains. Despite the effectiveness of STAGATE, we argue that learning attention weights in
the SRT data is particularly challenging due to the continuous nature of biological systems, where
gene expression values tend to vary smoothly along spatial coordinates (Cembrowski & Menon,
2018; Phillips et al., 2019; Adler et al., 2019; Harris et al., 2021). This inherent continuity can, in
some cases, complicate the distinction between different spatial domains (See Figure 1 (a)). More-
over, even if a model successfully assigns appropriate edge weights (e.g., high weights between
spots of the same type and low weights otherwise), an anchor spot cannot obtain useful information
from its neighboring spots due to the small feature discrepancies between the anchor and its neigh-
boring spots. To corroborate our argument, in Figure 1 (b), we compared clustering performance of
various graph autoencoder (GAE) architectures: (1) GAE on the original spatial nearest neighbor
(SNN) graph1, (2) GAE with a GAT encoder, (3) GAE with oracle edge weights2, and (4) GAE
that incorporates global similarity learning (our proposed method). We observe that while the atten-
tion mechanism is helpful for improving the general clustering performance (i.e., Total CA), it rather
degrades the clustering performance of boundary spots (i.e., Boundary CA). This highlights the diffi-
culty of learning spot representations near the boundary of spatial domains using attention. Another
interesting observation is that even with oracle edge weights, improvements in terms of boundary
CA is not significant compared with the GAE on the original SNN, supporting our argument that
solely relying on the local view provides limited information.

In addition to addressing the aforementioned challenges in the single-slice analysis, representation
learning models for the SRT dataset must account for batch effects Li et al. (2020b) to enable multi-
slice analysis in the SRT data. Note that the batch effect refers to the phenomenon where spot
representations from the same slice are unexpectedly clustered together regardless of their biolog-
ical relevance, when integrating multiple datasets from different slices. While integrating multiple
datasets offers significant advantages, addressing batch effects remains a key challenge.

To this end, we propose a novel framework, Spotscape, designed to address challenges in both the
single-slice and multi-slice tasks, including Spatial Domain Identification (SDI) (i.e., single-slice
task), SRT data integration and alignment (i.e., multi-slice task). To address our findings that ex-
ploring only spatially local neighbors yields limited performance gains, Spotscape introduces the
Similarity Telescope module, which reflects the relative similarity not only among spatially neigh-
boring nodes but also across global spots. More precisely, Spotscape generates two augmented
views from the SNN graph and minimizes the difference between similarities calculated based on
the two augmented views to preserve the meaningful similarities in the global context. This learning
scheme is particularly beneficial for SRT data, as optimizing similarity is closely related to the clus-
tering task, which is the most important downstream application. Moreover, Spotscape utilizes the
prototypical contrastive loss, which groups semantically similar representations together while dis-
tancing dissimilar ones, resulting in fine-grained representations. This characteristic is particularly
beneficial for addressing challenges that require more detailed representations, such as capturing

1The SNN graph is constructed by connecting spots that are either within a predefined radius r or among
the nearest top k neighbors based on spatial distance.

2Edges between spots of the same type were assigned a weight of 1, and 0 otherwise. That is, we remove
heterophilic edges.
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rare cell types. Furthermore, we extend Spotscape to multi-slice tasks by addressing batch ef-
fects through a similarity scale matching strategy that explicitly balances the similarity scales of
inter- and intra-relationships. This approach enables the effective mixing of representations across
different slices, enabling our model applied to both single and multi-slice SRT data.

In summary, our contributions are four-fold:

• We discover that learning similarity between spatially local neighbors is insufficient for learning
representations in the SRT data, especially near the boundary of spatial domains.

• To address this limitation, we propose a global similarity learning scheme called the Similarity
Telescope module to capture the relationships between spots in the global context and adopt
prototypical contrastive learning scheme, which helps the model to learn fine-grained represen-
tations in the SRT data.

• We propose a similarity scale matching strategy to address batch effects that arise when training
multiple slices simultaneously, enabling our model to be effectively applied to both single-slice
and multi-slice SRT data.

• We conduct extensive experiments in spatial domain identification, slice integration, and slice
alignment to validate the superiority of Spotscape.

2 RELATED WORK

2.1 SPATIAL DOMAIN IDENTIFICATION

Spatial domain identification (SDI) is crucial for categorizing biologically meaningful tissue re-
gions and advancing understanding of transcriptional structures, spatial heterogeneity, and cell
interactions, thereby aiding insights into tissue organization (Maynard et al., 2021), disease pro-
gression (Chen et al., 2022b), and targeted therapies (Maynard et al., 2021; Chen et al., 2022b;
Arora et al., 2023). To improve upon traditional clustering methods (Blondel et al., 2008; Wolf
et al., 2018b; Hao et al., 2021) used in single-cell RNA sequencing, Giotto (Dries et al., 2021) and
BayesSpace (Zhao et al., 2021) leverage hidden Markov random fields and Bayesian techniques, re-
spectively, to incorporate spatial data. Recently, graph-based deep learning methods have emerged
to jointly use spatial coordinates and gene expression. For instance, SEDR (Xu et al., 2024) employs
a graph autoencoder with masking to learn and denoise spatial gene expression, while SpaGCN (Hu
et al., 2021) uses graph neural networks (GNNs) and clustering loss (Xie et al., 2016) for integra-
tion of spatial information and gene expression. STAGATE (Dong & Zhang, 2022) applies graph
attention networks (GAT)(Veličković et al., 2017) to address boundary heterogeneity. Moreover,
self-supervised learning has become popular for capturing robust representations without labels;
SpaceFlow(Ren et al., 2022) uses Deep Graph Infomax (DGI)(Veličković et al., 2018) with spatial
regularization for spatial consistency, and SpaCAE(Hu et al., 2024) utilizes a graph autoencoder
with contrastive learning to handle sparse and noisy spatially resolved transcriptomics (SRT) data
effectively.

2.2 SLICE INTEGRATION AND ALIGNMENT

Numerous SRT studies collect data from neighboring tissue sections, but inconsistencies in how the
slices are dissected and positioned on the array result in misaligned spatial coordinates. As a result,
combining data across different slices is a complex yet essential task to extract diverse and valuable
insights. To address this, PASTE Zeira et al. (2022) uses an optimal transport approach to align
the spots and integrate them into a shared embedding space. Additionally, SRT data is sometimes
generated under varying conditions, such as different technology platforms, developmental stages,
or sample conditions. We refer to this as the heterogeneous case, which presents an additional chal-
lenge: batch effects, where spot representations from the same slice cluster together, irrespective of
their biological significance. To overcome this, STAligner Zhou et al. (2023) defines mutual near-
est neighbors as positive samples and utilizes the triplet loss to reduce the distance between anchor
and positive samples, facilitating the integration of embeddings across different slices. In addition,
GraphST (Long et al., 2023) leverages DGI (Veličković et al., 2018) to maximize mutual informa-
tion of spots from vertical or horizontal integration to correct batch effect. Moreover, SLAT (Xia
et al., 2023) employs a graph adversarial training scheme for robustly aligning spatial slices. Our
approach addresses both homogeneous and heterogeneous integration and alignment tasks using a
simple similarity scale matching strategy.
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Figure 2: Overall framework of Spotscape. (a) Given SRT data composed of spatial coordinates
and transcript counts, we construct a spatial nearest neighbor (SNN) graph. The model is then
trained with the SNN graph using (b) similarity telescope and PCL loss, while additionally utilizing
(c) similarity scaling loss in multi-slice SRT.

3 PROBLEM STATEMENT

Notations. Given the SRT data composed of spatial coordinates S ∈ RNs×2 and gene expression
profile X ∈ RNs×Ng , where Ns represents number of spots and Ng the number of genes, we
construct a spatial nearest neighbors (SNN) graph G = (X,A) based on distance calculated by
spatial coordinates. The adjacency matrix A ∈ RNs×Ns is defined such that Aij = 1 if there
is an edge connecting nodes i and j, and Aij = 0 otherwise. In multi-slice cases, the spatial
coordinates and gene expression profiles are denoted as S = (S(1), S(2), . . . , S(Nd)) and X =
(X(1), X(2), . . . , X(Nd)), respectively, where Nd represents the number of slices. SNN graphs G =
(G(1),G(2), . . . ,G(Nd)) are computed separately based on their corresponding spatial coordinates.

Task Description. Given the constructed SNN graph G, our goal is to train a graph neural net-
work (GNN) that generates spot representations without any label information, i.e., self-supervised
learning. The trained GNN is then utilized for various downstream tasks, including spatial domain
identification (SDI), multi-slice integration, and alignment.

4 METHODOLOGY

In this section, we introduce our method, Spotscape, which is a learning scheme for GNNs applied
to the SRT data. In a nutshell, Spotscape learns spot representations by capturing global similari-
ties between spots through the Similarity Telescope module (Sec 4.2), and refining them with cluster
assignments using the prototypical contrastive module (Sec 4.3). Furthermore, Spotscape intro-
duces the similarity scaling strategy (Sec 4.4) to balance intra- and inter-slice similarities, thereby
alleviating batch effects. The overall framework of Spotscape is depicted in Figure 2.

4.1 MODEL ARCHITECTURE

In this work, we propose novel self-supervised learning strategies specifically tailored for SRT data,
while adhering to a basic siamese network structure for our model architecture. In siamese network,
we generate two augmented views, G̃ = (X̃, Ã) and G̃′

= (X̃
′
, Ã

′
), by applying a stochastic graph

augmentation T to the original graph G, which consists of node feature masking and edge masking.
Then, Spotscape computes spot representations Z̃ = fθ(X̃, Ã) and Z̃

′
= fθ(X̃

′
, Ã

′
), fθ is a shared

GNN-based encoder, Z̃ ∈ RNs×D and Z̃
′ ∈ RNs×D represent spot representations derived from

augmented graph G̃ and G̃′
, respectively, and D denotes the dimension size of representations.
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4.2 SIMILARITY TELESCOPE WITH RELATION CONSISTENCY

Biological systems exhibit a continuous nature, where gene expression values vary smoothly along
spatial coordinates. This continuity leads to feature similarities between neighboring spots, influ-
enced both by their spatial proximity and functional characteristics. Therefore, relying solely on
spatially neighboring spots provides limited information, highlighting the importance of reflecting
the global context in this domain. While contrastive learning has become a standard for learning
representations in the global context, it encounters limitations when applied to SRT data. This is
primarily because the characteristics of individual cells cannot be fully defined individually, but
they are influenced by the properties of neighboring cells within the tissue context. To address this,
we propose a novel relation consistency loss for spot representation learning, which aims to cap-
ture the relationship between cells in the biological systems by reflecting the global context among
multiple spots.

Specifically, given spot representations Z̃ and Z̃
′
, we propose to learn the consistent relationship

that are invariant under augmentation as follows:

LSC(Z̃, Z̃
′
) = MSE(Z̃norm · (Z̃

′

norm)T , Z̃
′

norm · (Z̃norm)T ) (1)

where Z̃norm ∈ RNs×D denotes the L2-normalized version of Z̃, and MSE represents the Mean
Squared Error. That is, we aim to minimize the cosine similarity between the spot representations
that are obtained through differently augmented SNN graph. By doing so, the model learns consis-
tent relationships, which is represented as cosine similarity, between all paired spots under different
augmentations, capturing the continuous variations of spot representations across the entire slice.

Additionally, instead of relying on any predictor or stop gradient techniques (Thakoor et al., 2021)
to avoid degenerate solutions, Spotscape simplifies the training procedure by employing a recon-
struction loss as follows:

LRecon(X, X̂, X̂
′
) = MSE(X, X̂) + MSE(X, X̂

′
) (2)

where X̂ = gθ(Z̃) and X̂
′
= gθ(Z̃

′
) are reconstructed feature matrices predicted by a shared MLP

decoder gθ from each augmented view.

4.3 PROTOTYPICAL CONTRASTIVE LEARNING

While learning spot representations through the similarity telescope module, it is essential for these
representations to be more fine-grained to enable more challenging downstream analyses, such as
identifying rare cell types. To this end, Spotscape employs a prototypical contrastive learning
scheme (Li et al., 2020a; De Donno et al., 2023; Lee et al., 2023) that groups semantically similar
representations together while distancing dissimilar ones. Specifically, we obtain prototypes (i.e.,
centroids) by performing K-means clustering on spot representations Z̃

′
derived from an augmented

view G̃′
. Pairs of spots assigned to the same prototype are categorized as positive pairs, while pairs

belonging to different prototypes are treated as negative pairs. This clustering process is repeated T
times with varying values of K to identify semantically similar groups across different granularities.
It is formally represented as follows:

lPCL(Z̃i, Pset) =
1

T

T∑
t=1

log
e(sim(Z̃i,p

t
mapt(i)

)/τ)∑Kt

j=1 e
(sim(Z̃i,pt

j)/τ)
, (3)

where τ represents temperature, and Kt indicates the number of clusters at each level of granularity
during the t-th clustering iteration. Pset = (P 1, ..., P t, ..., PT ) represents the collection of prototype
sets, with each P t = (pt1, p

t
2, ..., p

t
kt
) containing the set of prototype representations for a specific

granularity t. Additionally, mapt(·) denotes the mapping function that assigns each spot to a corre-
sponding prototype based on the clustering assignments. By applying this to all spot representations,
the overall prototypical contrastive learning (PCL) loss is given as follows:

LPCL = − 1

Ns

Ns∑
i=1

lPCL(Z̃i, Pset). (4)

Combining all of these losses, the final training loss for single-slice representation learning is for-
mally defined as:

LSingle = λSC · LSC + λRecon · LRecon + λPCL · LPCL (5)

5
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Note to avoid the risk of obtaining inaccurate prototypes, the prototypical loss LPCL gets involved in
the training procedure after a warm-up period (500 epochs) of optimizing only the first two terms in
Equation 8.

4.4 SIMILARITY SCALING STRATEGY

Beyond the single-slice SRT, multi-slice SRT allows for the analysis of gene expression patterns
across multiple tissue sections. This provides a more comprehensive understanding of the spatial
distribution and continuity of gene expression in entire tissues or organs, which could not have been
achieved by the single-slice SRT. However, another challenge of learning representations from these
multiple slices is the batch effect, where spot representations from the same slice are unexpectedly
clustered together regardless of their biological significance, hindering researchers from obtaining
useful representations related to biological functions. To alleviate this issue, given the SNN graph
G(c) and G(j) of the current slice c and another slice j, respectively, we explicitly regulate the scale
of these similarities to maintain consistency across spots, as described below:

lSS(Hi,G(j)) = Mean
s∈S

(c)
top (Hi[s])

− Mean
s∈S

(j)
top (Hi[s])

, for i ∈ G(c)

where S
(c)
top = Top-kl∈G(c)(Hi[l]) = (a1, a2, . . . , ak),

S
(j)
top = Top-kl∈G(j)(Hi[l]) = (b1, b2, . . . , bk)

(6)

Here, H = Z̃norm(Z̃
′

norm)T ∈ RNs×Ns represents the similarity matrix that we optimize in the
Similarity Telescope module, and Hi[s] refers to the element in the i-th row and s-th column of this
matrix. The set S(c)

top includes the top-k most similar spots within the same slice as spot i, and the

set S(j)
top includes the top-k most similar spots in slice j. By doing this, Spotscape ensures that the

distances between the top-k spots remain nearly the same, regardless of the slice they belong to,
effectively mixing all spots from different slices within the latent space. By extending it to all spots
and slices, the final similarity scaling loss is given as follows:

LSS =
1

Ns(Nd − 1)

Ns∑
i=1

Nd∑
j=1

1(i /∈ G(j)) · lSS(Hi,G(j)) (7)

where 1(i /∈ G(j)) is the indicator function that equals 1 if i is not included in G(j) and 0 otherwise.
Finally, the overall loss for multi-slice SRT data is formally represented as:

LMulti = λSC · LSC + λRecon · LRecon + λPCL · LPCL + λSS · LSS (8)

where λSS is additional balancing parameters of similarity scaling loss.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We conduct a comprehensive evaluation of Spotscape across five datasets derived from
different technologies. For single-slice experiments, we use the dorsolateral prefrontal cortex
(DLPFC) dataset, which includes 3 patients, each with 4 slices (12 slices in total). Additionally,
we assess the middle temporal gyrus (MTG) dataset, comprising slices from a control group and
an Alzheimer’s disease (AD) group, as well as the Mouse embryo dataset. Lastly, we utilize Non-
small cell lung cancer (NSCLC) data. In multi-slice experiments, we integrate the four slices from
the same patient in the DLPFC dataset for the homogeneous integration task, while analyzing the
differences between the control and AD groups in the MTG dataset for heterogeneous integration.
Lastly, we evaluate heterogeneous alignment using the Mouse embryo dataset, where slices from
different developmental stages require alignment to track developmental progression, and the Breast
Cancer dataset, which includes spots corresponding to cancer cell types. Further details about data
statistics can be found in Table 8 of Appendix A.

Compared methods. To ensure a fair comparison, we carefully select baseline methods based
on their relevance to specific tasks. For the single-slice SDI task, we compare Spotscape with
five state-of-the arts methods, i.e., SEDR (Xu et al., 2024), STAGATE (Dong & Zhang, 2022),

6
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Table 1: Single-slice spatial domain identification performance on DLPFC data.

DLPFC (Patient 1)
Slice 151673 Slice 151674 Slice 151675 Slice 151676

Silhouette ARI NMI CA Silhouette ARI NMI CA Silhouette ARI NMI CA Silhouette ARI NMI CA
SEDR 0.24 (0.03) 0.36 (0.08) 0.49 (0.08) 0.55 (0.06) 0.21 (0.04) 0.37 (0.08) 0.48 (0.07) 0.51 (0.07) 0.19 (0.04) 0.33 (0.06) 0.45 (0.05) 0.51 (0.03) 0.21 (0.03) 0.29 (0.03) 0.41 (0.04) 0.47 (0.02)

STAGATE 0.18 (0.02) 0.37 (0.04) 0.55 (0.03) 0.52 (0.04) 0.17 (0.01) 0.34 (0.03) 0.50 (0.02) 0.51 (0.03) 0.18 (0.06) 0.33 (0.03) 0.5 (0.03) 0.48 (0.03) 0.16 (0.00) 0.33 (0.00) 0.47 (0.01) 0.52 (0.01)

SpaCAE 0.35 (0.05) 0.21 (0.01) 0.37 (0.01) 0.43 (0.01) 0.27 (0.02) 0.25 (0.03) 0.38 (0.01) 0.44 (0.03) 0.22 (0.02) 0.23 (0.03) 0.41 (0.03) 0.42 (0.04) 0.27 (0.02) 0.23 (0.02) 0.34 (0.02) 0.43 (0.03)

SpaceFlow 0.43 (0.01) 0.42 (0.06) 0.57 (0.05) 0.57 (0.03) 0.39 (0.03) 0.37 (0.04) 0.51 (0.03) 0.53 (0.03) 0.41 (0.03) 0.38 (0.07) 0.55 (0.06) 0.53 (0.05) 0.41 (0.02) 0.38 (0.05) 0.51 (0.05) 0.53 (0.04)

GraphST 0.29 (0.01) 0.20 (0.02) 0.34 (0.03) 0.41 (0.02) 0.25 (0.01) 0.27 (0.02) 0.41 (0.01) 0.46 (0.01) 0.31 (0.01) 0.22 (0.02) 0.34 (0.01) 0.40 (0.02) 0.26 (0.01) 0.26 (0.05) 0.40 (0.05) 0.45 (0.04)

Spotscape 0.46(0.02) 0.47(0.03) 0.62(0.02) 0.62(0.03) 0.50(0.02) 0.45(0.03) 0.58(0.02) 0.60(0.01) 0.50(0.03) 0.46(0.04) 0.61(0.02) 0.60(0.01) 0.49(0.01) 0.41(0.04) 0.57(0.03) 0.55(0.03)

DLPFC (Patient 2)
Slice 151507 Slice 151508 Slice 151509 Slice 151510

Silhouette ARI NMI CA Silhouette ARI NMI CA Silhouette ARI NMI CA Silhouette ARI NMI CA
SEDR 0.10 (0.02) 0.29 (0.06) 0.39 (0.07) 0.45 (0.06) 0.07 (0.02) 0.21 (0.02) 0.31 (0.02) 0.39 (0.02) 0.10 (0.02) 0.37 (0.04) 0.47 (0.04) 0.51 (0.05) 0.08 (0.02) 0.31 (0.05) 0.44 (0.04) 0.47 (0.04)

STAGATE 0.13 (0.00) 0.41 (0.01) 0.53 (0.01) 0.59 (0.00) 0.14 (0.00) 0.32 (0.01) 0.49 (0.00) 0.54 (0.01) 0.15 (0.01) 0.41 (0.02) 0.57 (0.02) 0.61 (0.04) 0.13 (0.01) 0.32 (0.03) 0.50 (0.02) 0.50 (0.02)

SpaCAE 0.27 (0.04) 0.28 (0.06) 0.41 (0.06) 0.46 (0.06) 0.29 (0.03) 0.20 (0.04) 0.31 (0.05) 0.40 (0.04) 0.32 (0.01) 0.31 (0.01) 0.44 (0.02) 0.50 (0.04) 0.28 (0.02) 0.27 (0.02) 0.42 (0.03) 0.45 (0.02)

SpaceFlow 0.39 (0.02) 0.55 (0.03) 0.68 (0.02) 0.71 (0.05) 0.36 (0.03) 0.44 (0.04) 0.57 (0.03) 0.58 (0.04) 0.38 (0.03) 0.53 (0.05) 0.66 (0.02) 0.65 (0.04) 0.37 (0.02) 0.5 (0.03) 0.64 (0.01) 0.61 (0.02)

GraphST 0.24 (0.01) 0.31 (0.01) 0.45 (0.01) 0.50 (0.01) 0.29 (0.01) 0.34 (0.01) 0.45 (0.02) 0.53 (0.02) 0.26 (0.01) 0.35 (0.01) 0.51 (0.01) 0.55 (0.02) 0.26 (0.01) 0.3 (0.02) 0.47 (0.01) 0.49 (0.03)

Spotscape 0.46(0.01) 0.58(0.05) 0.70(0.03) 0.73(0.06) 0.43(0.02) 0.48(0.04) 0.63(0.02) 0.63(0.03) 0.44(0.04) 0.55(0.05) 0.68(0.03) 0.65(0.04) 0.43(0.02) 0.51(0.03) 0.67(0.01) 0.61(0.03)

DLPFC (Patient 3)
Slice 151669 Slice 151670 Slice 151671 Slice 151672

Silhouette ARI NMI CA Silhouette ARI NMI CA Silhouette ARI NMI CA Silhouette ARI NMI CA
SEDR 0.16 (0.05) 0.24 (0.07) 0.40 (0.07) 0.48 (0.06) 0.14 (0.02) 0.24 (0.06) 0.39 (0.05) 0.48 (0.05) 0.22 (0.04) 0.37 (0.10) 0.50 (0.09) 0.59 (0.07) 0.21 (0.04) 0.49 (0.09) 0.58 (0.06) 0.66 (0.07)

STAGATE 0.19 (0.05) 0.29 (0.05) 0.45 (0.07) 0.52 (0.04) 0.14 (0.00) 0.20 (0.01) 0.38 (0.01) 0.44 (0.01) 0.17 (0.02) 0.40 (0.07) 0.49 (0.03) 0.63 (0.06) 0.18 (0.05) 0.38 (0.02) 0.51 (0.04) 0.54 (0.01)

SpaCAE 0.30 (0.02) 0.21 (0.02) 0.28 (0.03) 0.43 (0.02) 0.27 (0.07) 0.21 (0.03) 0.28 (0.02) 0.43 (0.04) 0.38 (0.16) 0.38 (0.16) 0.29 (0.01) 0.49 (0.05) 0.32 (0.07) 0.25 (0.04) 0.35 (0.05) 0.50 (0.01)

SpaceFlow 0.44 (0.03) 0.30 (0.07) 0.48 (0.03) 0.51 (0.05) 0.42 (0.03) 0.34 (0.05) 0.50 (0.03) 0.56 (0.05) 0.43 (0.04) 0.54 (0.04) 0.67 (0.02) 0.67 (0.04) 0.46 (0.01) 0.60 (0.06) 0.70 (0.02) 0.73 (0.06)

GraphST 0.25 (0.01) 0.17 (0.04) 0.26 (0.04) 0.43 (0.02) 0.38 (0.01) 0.14 (0.01) 0.23 (0.00) 0.37 (0.01) 0.28 (0.01) 0.30 (0.05) 0.38 (0.03) 0.54 (0.03) 0.31 (0.02) 0.23 (0.01) 0.32 (0.02) 0.49 (0.01)

Spotscape 0.54(0.02) 0.45(0.02) 0.57(0.01) 0.65(0.02) 0.48(0.01) 0.45(0.03) 0.55(0.01) 0.66(0.02) 0.52(0.06) 0.59(0.12) 0.69(0.05) 0.72(0.11) 0.56(0.04) 0.72(0.05) 0.72(0.02) 0.82(0.04)

Table 2: Single-slice spatial domain identifica-
tion performance on MTG data.

MTG - Control Group MTG - AD Group
Silhouette ARI NMI CA Silhouette ARI NMI CA

SEDR 0.46 (0.03) 0.41 (0.02) 0.59 (0.02) 0.52 (0.02) 0.32 (0.06) 0.43 (0.08) 0.59 (0.07) 0.57 (0.07)

STAGATE 0.35 (0.01) 0.54 (0.00) 0.65 (0.00) 0.59 (0.00) 0.27 (0.01) 0.51 (0.01) 0.61 (0.01) 0.59 (0.01)

SpaCAE 0.53 (0.01) 0.37 (0.03) 0.52 (0.00) 0.44 (0.03) 0.35 (0.06) 0.22 (0.01) 0.4 (0.01) 0.40 (0.01)

SpaceFlow 0.46 (0.03) 0.66 (0.03) 0.74 (0.01) 0.70 (0.03) 0.40 (0.02) 0.54 (0.01) 0.71 (0.00) 0.65 (0.01)

GraphST 0.49 (0.01) 0.38 (0.00) 0.51 (0.00) 0.48 (0.00) 0.34 (0.02) 0.43 (0.06) 0.55 (0.05) 0.55 (0.04)

Spotscape 0.53 (0.00) 0.73 (0.02) 0.78 (0.01) 0.75 (0.02) 0.48 (0.01) 0.68 (0.02) 0.75 (0.01) 0.77 (0.03)

Table 3: Single-slice
SDI performance on
Mouse Embryo data.

Mouse Embryo
Silhouette ARI NMI CA

SEDR 0.21 (0.00) 0.32 (0.02) 0.56 (0.01) 0.42 (0.02)

STAGATE 0.21 (0.00) 0.36 (0.01) 0.60 (0.01) 0.47 (0.01)

SpaCAE 0.23 (0.00) 0.34 (0.01) 0.60 (0.01) 0.48 (0.02)

SpaceFlow 0.29 (0.01) 0.42 (0.03) 0.60 (0.02) 0.49 (0.03)

GraphST 0.24 (0.01) 0.34 (0.01) 0.59 (0.02) 0.45 (0.01)

Spotscape 0.31(0.01) 0.45(0.01) 0.64(0.01) 0.54(0.01)

Table 4: Single-slice
SDI performance on
NSCLC data.

NSCLC
Silhouette ARI NMI CA

SEDR 0.40 (0.02) 0.44 (0.08) 0.46 (0.06) 0.70 (0.08)

STAGATE 0.23 (0.04) 0.35 (0.05) 0.41 (0.04) 0.64 (0.02)

SpaCAE 0.13 (0.01) 0.32 (0.05) 0.38 (0.03) 0.62 (0.02)

SpaceFlow 0.37 (0.02) 0.53 (0.03) 0.52 (0.02) 0.75 (0.02)

GraphST 0.16 (0.00) 0.30 (0.00) 0.38 (0.00) 0.65 (0.00)

Spotscape 0.38 (0.01) 0.58 (0.02) 0.57 (0.01) 0.74 (0.01)

SpaCAE (Hu et al., 2024), SpaceFlow (Ren et al., 2022), and GraphST (Long et al., 2023). For ho-
mogeneous integration, we add two more methods, PASTE (Zeira et al., 2022) and STAligner (Zhou
et al., 2023), making a total of seven methods. For heterogeneous tasks, we compare with GraphST
and STAligner(Zhou et al., 2023), while for heterogeneous alignment, we compare with STAl-
igner and SLAT (Xia et al., 2023), both specialized for alignment tasks. Further details about each
method’s adoptable application can be found in table 9 of Appendix B.

Evaluation Protocol. Since Spotscape and all other baseline methods focus on learning represen-
tations for each spot, we first obtain the representations from each method and then apply the same
evaluation tools for the subsequent downstream tasks. For single-slice spatial domain identification,
we use K-means clustering on all the obtained representations and evaluate the results using Sil-
houette score, Adjusted Rand Index (ARI), Normalized Mutual Information (NMI), and Clustering
Accuracy (CA). For multi-slice integration, we report the same clustering performance metrics as
in the single-slice experiments and additionally include batch correction evaluation metrics such as
Silhouette Batch, iLISI, kBET, and Graph Connectivity to assess the effectiveness of batch effect
correction. For alignment, we make the alignment using the ‘spatial matching’ function provided by
SLAT (Xia et al., 2023) and evaluate the Label Transfer ARI (LTARI), which measures the agree-
ment between the true labels and the labels assigned through the alignment process, providing an
evaluation of the alignment quality. To ensure a fair comparison, we conducted a hyperparameter
search for all baseline methods and Spotscape. Since the optimal hyperparameters for each base-
line method may vary across datasets, we identified the best-performing hyperparameters based on
the NMI using the first seed. Details of the selected parameters and the corresponding search space
are provided in Supplementary Section E All experimental results are averaged over 10 runs with
different seeds, and the means and standard deviations are reported for each experiment.

5.2 SINGLE-SLICE EXPERIMENTAL RESULTS

Experimental results on three different datasets are reported in Table 1, Table 2 and 3, which show
the SDI performance on the DLPFC, MTG, and Mouse Embryo datasets, respectively. From these
results, we have the following observations: 1) Spotscape consistently outperforms in all 15 slices
across three datasets in terms of Silhouette score, ARI, NMI, CA. We argue that this is because
Spotscape not only explores information from spatially local neighbors, which provides limited
insights due to the continuous nature of SRT data, but also leverages information within a global
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(a) Spatial domain distribution (b) Head, Medium, Tail clustering performance comparison
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Figure 3: (a) Spatial Domain distribution of Mouse Embryo data and (b) comparison of clustering
accuracy across head, medium, and tail types.

context. 2) Although previous methods like SpaceFlow, SpaCAE, and GraphST learn spot represen-
tations by incorporating the global context through Deep Infomax or contrastive learning and show
generally better results than SEDR and STAGATE both of which only focus on the local view, opti-
mizing similarities proves more beneficial for spatial domain identification, as it is closely related to
the relative distance in the latent space. To further clarify this argument, we also conduct additional
performance comparison with general self-supervised learning methods in Appendix B. 3) Further-
more, to examine whether Spotscape effectively captures fine-grained information of rare cell
types, we conduct a deeper analysis of the Mouse Embryo data, which displays imbalanced spatial
domain distributions, as shown in Figure 3 (a). To achieve this, we initially categorize the cells into
head, medium, and tail classes based on their distribution. The bottom 3 spatial domains, comprising
less than 2%, were classified as the tail, while the top 5 domains showing significant changes in dis-
tribution were classified as the head, and the remaining domains were defined as medium, and then
assess the performance for each class. As shown in Figure 3 (b), Spotscape outperforms the base-
lines across head, medium, and tail cell classes, highlighting its capability to capture fine-grained
information of cells within rare spatial domains. Furthermore, we observe that model performance
declines across all classes when the prototypical contrastive loss (Spotscape w/o PCL) is removed.
This indicates that the prototypical contrastive loss enhances the model’s ability to achieve fine-
grained cell representation through a multi-granularity clustering approach, thereby contributing to
clustering rare cell types.

5.3 MULTI-SLICE EXPERIMENTAL RESULTS

Homogeneous Integration Results. Among the multi-slice experiments, we first start with homo-
geneous integration tasks, which aim to integrate multiple slices from the homogeneous sample. To
do so, we conduct experiments on the DLPFC data used for single-slice experiments, which consists
of multiple slices obtained from vertical cuts of a single patient. Since these slices are from a sin-
gle patient, they do not exhibit significant batch effects, enabling us to incorporate both multi-slice
integration methods as well as single-slice SDI methods as baselines. As shown in Table 5, we ob-
serve Spotscape consistently outperforms all baseline methods, demonstrating its effectiveness in
integrating information from the multiple slices from homogeneous sample.

Heterogeneous Integration Results. For the heterogeneous integration experiments, we assess the
model’s ability in integrating two distinct types of samples—the control group and the AD group
in the MTG data—to analyze the differences between them. In this experiment, we also report
batch effect correction metrics, such as Silhouette Batch, iLISI, kBET, and Graph Connectivity, to
evaluate the effectiveness of correcting batch effects, along with clustering metrics. In Table 6,
Spotscape demonstrates its effectiveness in integrating multi-slice data in terms of both clustering
and batch effect correction, showing significantly better performance than the baselines. Moreover,
in Figure 4, we observe that Spotscape’s spot representations from different slices are well in-
tegrated while preserving their biological meaning. We also observe that the model performance
significantly degrades without similarity scaling module (i.e., Spotscape w/o SS), while this effect
is not as pronounced in homogeneous slices (Table 5), where batch effects are negligible. These
results indicate the effectiveness of the similarity scaling module in mitigating batch effects when
handling multiple slices.

8
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Table 5: Homogeneous integration performance on DLPFC data.

Patient 1 Patient 2 Patient 3
Silhouette ARI NMI CA Silhouette ARI NMI CA Silhouette ARI NMI CA

SEDR 0.30 (0.02) 0.38 (0.06) 0.49 (0.06) 0.56 (0.06) 0.22 (0.03) 0.32 (0.05) 0.44 (0.07) 0.48 (0.07) 0.31 (0.02) 0.43 (0.02) 0.51 (0.01) 0.56 (0.03)

STAGATE 0.16 (0.03) 0.31 (0.03) 0.46 (0.03) 0.49 (0.03) 0.10 (0.01) 0.30 (0.02) 0.46 (0.01) 0.48 (0.02) 0.14 (0.03) 0.31 (0.09) 0.43 (0.06) 0.54 (0.08)

SpaCAE 0.21 (0.01) 0.21 (0.03) 0.36 (0.02) 0.40 (0.02) 0.13 (0.03) 0.12 (0.06) 0.19 (0.07) 0.32 (0.05) 0.20 (0.05) 0.13 (0.05) 0.14 (0.05) 0.43 (0.06)

SpaceFlow 0.31 (0.01) 0.48 (0.03) 0.60 (0.02) 0.60 (0.02) 0.27 (0.02) 0.44 (0.05) 0.59 (0.02) 0.58 (0.04) 0.30 (0.03) 0.51 (0.02) 0.60 (0.01) 0.69 (0.05)

GraphST 0.30 (0.02) 0.18 (0.01) 0.32 (0.01) 0.38 (0.02) 0.30 (0.01) 0.25 (0.01) 0.39 (0.01) 0.42 (0.02) 0.30 (0.01) 0.25 (0.04) 0.30 (0.04) 0.50 (0.01)

PASTE 0.15 (0.00) 0.34 (0.00) 0.45 (0.00) 0.54 (0.00) 0.11 (0.00) 0.17 (0.00) 0.28 (0.00) 0.40 (0.00) 0.11 (0.00) 0.29 (0.00) 0.43 (0.00) 0.54 (0.00)

STAligner 0.34 (0.04) 0.38 (0.04) 0.52 (0.04) 0.55 (0.04) 0.20 (0.04) 0.29 (0.02) 0.45 (0.02) 0.48 (0.03) 0.24 (0.04) 0.37 (0.06) 0.47 (0.05) 0.59 (0.06)

Spotscape (w/o SS) 0.41 (0.01) 0.56 (0.01) 0.69 (0.01) 0.67 (0.02) 0.39 (0.01) 0.53 (0.02) 0.67 (0.01) 0.69 (0.03) 0.39 (0.02) 0.58 (0.06) 0.67 (0.02) 0.75 (0.06)

Spotscape 0.42 (0.01) 0.56 (0.02) 0.69 (0.01) 0.68 (0.02) 0.40 (0.02) 0.53 (0.02) 0.68 (0.01) 0.69 (0.02) 0.40 (0.02) 0.60 (0.04) 0.67 (0.01) 0.76 (0.04)

Table 6: Heterogeneous integration performance on MTG data.

Clustering Metric Batch Effect Correction Metric
Silhouette ARI NMI CA Silhouette Batch iLISI kBET Graph Connectivity

GraphST 0.43 (0.01) 0.23 (0.02) 0.42 (0.00) 0.39 (0.01) 0.56 (0.00) 0.00 (0.00) 0.02 (0.00) 0.65 (0.02)

STAligner 0.38 (0.03) 0.38 (0.03) 0.54 (0.03) 0.49 (0.02) 0.62 (0.04) 0.16 (0.23) 0.11 (0.08) 0.85 (0.04)

Spotscape (w/o SS) 0.59 (0.04) 0.40 (0.07) 0.56 (0.03) 0.52 (0.05) 0.25 (0.02) 0.00 (0.00) 0.00 (0.00) 0.64 (0.01)

Spotscape 0.52 (0.03) 0.68 (0.08) 0.75 (0.02) 0.76 (0.08) 0.69 (0.01) 0.08 (0.04) 0.17 (0.05) 0.88 (0.02)
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Figure 4: UMAP of Raw, GraphST, STAligner, Spotscape (w/o SS),
Spotscape by slice, ground truth, and K-means clustering results

Table 7: Alignment
performance of
Mouse embryo
datasets.

LTARI
STAligner 0.46 (0.02)
scSLAT 0.52 (0.01)

Spotscape 0.56 (0.01)

Figure 5: Alignment
results of Mouse
embryo datasets.

To check whether our results yield biologically meaningful results, we investigate differentially ex-
pressed genes (DEGs) and their biological functions between the control and Alzheimer’s disease
(AD) group through Gene Ontology (GO) enrichment analysis for each cluster, representing a corti-
cal layer in a brain. Since Spotscape provides spatially organized and reliably distributed clusters
as actual cortical layers in a brain, all clusters are assigned to the cortical layers. As pathological
influence of AD on different cortical layers is diverse, it is highly worthwhile to identify differences
between the control and AD in each region (Romito-DiGiacomo et al., 2007). As depicted in Fig-
ure 24, in layer 2, which is regarded as a superficial layer, the terms in ‘humoral immune response
mediated by circulating immunoglobulin (GO:0002455)’, ‘synapse pruning (GO:0098883)’, and
‘regulation Of histone deacetylase activity (GO:1901725)’ are enriched. On the other hand, layer
5, a deeper layer, enrich terms as ‘synapse pruning (GO:0098883)’, ‘positive regulation of cytokine
production (GO:0001819)’, ‘microglial cell activation (GO:0001774)’, and ‘Positive regulation of
neuron death (GO:1901216)’, as shown in Figure 25. All of these enriched biological processes are
reported to be considerably relevant with AD (Mruthinti et al., 2004; Brucato & Benjamin, 2020;
Lu et al., 2015; Wu et al., 2021; Goel et al., 2022). Moreover, the top enriched molecular function
in Layer 5 is ‘amyloid-beta binding (GO:0001540)’, supporting reliability of results. Interestingly,
synapse pruning and terms related to immune response are remarkably enriched in common, while
angiogenesis, known to be associated with amyloid-beta pathway in AD (WA et al., 2013), is only
enriched in Layer 2. These observations provide biological insights, namely shared characteristics
and difference of AD in distinct cortical layers.

Multi-slice Alignment Results. Finally, we conduct experiments on multi-slice alignments of the
Mouse Embryo data, which require alignment results to track the development stages of the embryo.
To this end, we match E11.5 and E12.5 and report the Label Transfer ARI (LTARI) in Table 7,
which measures the agreement between true labels and the labels assigned through the alignment
process, and visualize our results in Figure 5. These results show that Spotscape achieves better
alignment than SLAT, which is specifically designed for alignment tasks, demonstrating the general
applicability of Spotscape.
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Xenium

Visium

Figure 6: Alignment results of triple
positive cells.

Furthermore, we conduct cross-technology alignment be-
tween data obtained from Xenium and Visium. Since
Xenium offers higher resolution than Visium, while Vi-
sium provides a more comprehensive transcriptome view,
aligning Xenium with Visium creates a complementary
approach that combines the strengths of both: high reso-
lution and broader coverage. To this end, we align triple-
positive cells in Xenium—those positively enriched for
the ERBB2, PGR, and ESR1 marker genes associated
with breast tumors—with corresponding Visium spots.
Figure 6 shows that Spotscape successfully outputs seven aligned points and identifies five triple-
positive cells in the Visium data. This demonstrates the superiority of Spotscape, as it can success-
fully align extremely rare cell types (e.g., cancer cells).

5.4 MODEL ANALYSIS

Ablation studies. We also conduct ablation studies on the components of Spotscape to clarify
the necessity of each module, as shown in Figure 7. Across all three tasks, our proposed Similarity
Telescope (i.e., LSC) demonstrates its importance by showing a significant performance drop with-
out this module. Additionally, prototypical contrastive learning (i.e., LPCL) further confirms its role
in enhancing representations by consistently showing performance gains. In contrast, the recon-
struction loss (i.e., LRecon) does not demonstrate significant performance gains excluding alignment
tasks, since it is only needed for stabilizing the training procedures.

Figure 7: Ablation studies.
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Figure 8: Similarity comparison based on anchor node 489 in Layer 5.

Similarity analysis. As a deeper analysis of Spotscape, we examine whether it successfully learns
the relative similarities between spots, which is a key motivation behind our approach. In Figure 8,
we randomly select an anchor spot from the DLPFC data and visualize the similarity between the
selected anchor and other remaining spots. While other baselines fail to capture appropriate similari-
ties, Spotscape accurately reflects the dynamics of the SRT data with respect to the spatial distance
and exhibits varying levels of similarity corresponding to true spatial domain types.

6 CONCLUSION

In this work, we propose Spotscape, a novel framework for representation learning on the SRT
data that is generally adaptable for both single and multi-slice tasks. The main idea of Spotscape is
that while the spatial locality information is important in the SRT data, it often provides limited
insights due to the continuous nature of this data. Therefore, Spotscape reflects the global similar-
ities between spot representations by preserving a global similarity map invariant to augmentations
during the training process. Moreover, Spotscape enhances spot representations by introducing the
prototypical contrastive learning scheme into the SRT data to learn more fine-grained spot represen-
tations. Furthermore, we introduce a simple batch effect reduction strategy called similarity scaling,
which explicitly regulates the scale of similarities to maintain consistency across spots located in
different samples for extending applications of Spotscape to multi-slice tasks. Extensive exper-
iments demonstrate that Spotscape outperforms existing baselines across SRT data from various
platforms and diverse downstream tasks. Furthermore, we show that results from Spotscape can
assist biologically meaningful findings, highlighting its future potential for practical SRT analysis.
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A DATASETS

Table 8: Statistics for datasets used for experiments.

Data Species Tissue Technology Resolution Cells/Spots Genes # of Spatial Domains Reference
DLPFC Human Brain (dorsolateral prefrontal cortex; DLPFC) 10x Visium 50 µm 3460 ˜ 4789 33538 5 ˜ 7 (Maynard et al., 2021)
MTG Human Brain (middle temporal gyrus; MTG) 10x Visium 50 µm 3445 ˜ 4832 36601 6 ˜ 7 (Chen et al., 2022b)
Mouse Embryo Mouse Whole embryo Stereo-seq 0.2 µm 30756 ˜ 55295 25485 ˜ 27330 18˜19 (Chen et al., 2022a)
NSCLC Human Non-small cell lung cancer (NSCLC) CosMX Subcellular 960 11756 4 (Bhuva et al., 2024)
Breast Cancer Human Breast Cancer 10x Visium 50 µm 4992 18085 11 (Janesick et al., 2023)
Breast Cancer Human Breast Cancer 10x Xenium Subcellular 167780 313 20 (Janesick et al., 2023)

In this section, we compare Spotscape with baseline methods on various datasets. The data statis-
tics are in Table 8.

Human Dorsolateral Prefrontal Cortex (DLPFC). It comprises 12 tissue slices from 3 adult sam-
ples, with 4 consecutive slices per sample, derived from the dorsolateral prefrontal cortex. These
slices were profiled using the 10x Visium platform. The original study manually annotated 6 neo-
cortical layers (layers 1 to 6) as well as the white matter (see Figure 9).

Middle Temporal Gyrus (MTG). The MTG (middle temporal gyrus) dataset includes samples from
both control and Alzheimer’s disease (AD) groups. The MTG is a brain region particularly vulnera-
ble to early AD pathology. In the original study, spatial transcriptomics profiles were characterized
for both AD and control MTG samples by the 6 neocortical layers (layer 1 to 6) and white matter,
utilizing the 10x Visium platform for detailed tissue profiling. The spot distribution is denoted in
Figure 10.

Mouse Embryo. It is mouse whole embryo datasets by development stages. It was profiled by
Stereo-seq technology, which allows spatial transcriptomics at the cellular level by integrating DNA
nanoball-patterned arrays with in situ RNA capture. It offers a detailed spatiotemporal transcrip-
tomic atlas (MOSTA) of mouse embryonic development (see Figure 12).

Non-small cell lung cancer (NSCLC). The dataset comprises high-resolution, subcellular-level
spatial transcriptomics data from human lung tissue, encompassing four distinct spatial domains
(see Figure 11), including a tumor region. This data was generated using the NanoString CosMX
platform.

Human Breast Cancer. It comprises spatial transcriptomics of human breast cancer tissues using
10x Visium for whole-transcriptome spatial data and 10x Xenium for high-resolution gene expres-
sion at the subcellular level. This combined approach offers detailed mapping of tumor microen-
vironments (see Figure 6), highlighting molecular differences and cell-type composition to better
understand cancer heterogeneity and invasion.

Slice 151673 Slice 151673 Slice 151673 Slice 151673

Slice 151507 Slice 151508 Slice 151509 Slice 151510

Slice 151669 Slice 151670 Slice 151671 Slice 151672

Figure 9: Spatial coordinates of DLPFC dataset.
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Control AD

Figure 10: Spatial coordinates of MTG dataset. Figure 11: Spatial coordinates of NSCLC dataset.

E11.5 E12.5

Figure 12: Spatial coordinates of Mouse Development dataset.

B BASELINE METHODS

In Table 9, we indicate which baseline methods are applicable to specific tasks, categorizing them
based on whether their respective papers address those problems. Furthermore, we compare the
performance of Spotscape with general self-supervised representation learning schemes. Graph
Contrastive Learning (Chen et al., 2020; Zhu et al., 2020) is a instance-wise contrastive learning
method that learns representations by pushing negative pairs apart and pulling positive pairs together.
BGRL (Thakoor et al., 2021; Grill et al., 2020) is a consistency regularization method that learns
representations by enforcing consistency between two differently augmented views. SwAV (Caron
et al., 2020b) learns representations by minimizing the difference between two cluster assignments
that are obtained through optimal transport. Barlow twins (Caron et al., 2020a) learns representations
by minimizing redundancy between two augmented view. Although these methods demonstrate
strong performance across various domains, our results in Figure 13 indicate that Spotscape is the
most suitable model for SRT data, emphasizing its effectiveness in this context.

Table 9: Baseline methods and their application across various tasks

Method Single-slice SDI Homogeneous integration Homogeneous alignment Heterogeneous integration Heterogeneous alignment
SEDR ✓

STAGATE ✓
SpaCAE ✓

SpaceFlow ✓
GraphST ✓ ✓
PASTE ✓ ✓

STAligner ✓ ✓ ✓ ✓
SLAT ✓ ✓

Spotscape ✓ ✓ ✓ ✓ ✓

AR
I

Figure 13: Comparison with
self-supervised learning
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C PSEUDO CODE

In this section, we provide pseudocode of Spotscape in Algorithm 1.

Algorithm 1 Overall framework of Spotscape
Require: Spatial nearest neighbor graph G = (X,A), feature matrix X , adjacency matrix A, graph aug-

mentation T , GCN encoder fθ , decoder gθ , number of slices Nd, number of spots Ns, number of latent
dimensions D, loss balancing parameters (λRecon, λSC , λPCL, λSS), temperature τ , learning rate η

Ensure: Node embeddings Z, reconstructed feature matrix X̂

1: for epoch in epochs:
2: G̃, G̃

′
= T (G) /* two randomly augmented version of G */

3: Step 1: Graph Autoencoder
4: Z̃ = fθ(G), Z̃

′
= fθ(G̃

′
) /* compute spot embedding using GNN encoder */

5: X̂ = gθ(Z̃), X̂
′
= gθ(Z̃

′
) /* reconstruct the feature matrix using decoder */

6: Step 2: Similarity Telescope with Relation Consistency (Section 4.2)
7: LRecon = Reconstruction Loss(X, X̂, X̂

′
) (Eqn. 2)

8: LSC , H = Similarity Telescope with Relation Consistency Loss(Z̃, Z̃
′
)

9: Step 3: Prototypical Contrastive Learning (Section 4.3)
10: if epoch ≥ warm-up epoch then
11: LPCL = PCL Loss(Z̃, Z̃

′
)

12: else
13: LPCL = 0
14: end if

15: Step 4: Similarity Scaling Strategy (Section 4.4)
16: if Nd ≥ 2 then
17: LSS = Similarity Scaling Loss(H,G) (Eqn. 7)
18: else
19: LSS = 0
20: end if

21: Step 5: Compute Loss
22: L = λReconLRecon + λSCLSC + λPCLLPCL + λSSLSS

23: Step 6: Backpropagation and Parameter Update
24: Update parameters θ using Adam optimizer: θepoch ← Adam(θepoch−1, η)

25: Return: Node embeddings Z, reconstructed feature matrix X̂

/* Utility Functions */
26: Function Similarity Telescope with Relation Consistency Loss(Z̃, Z̃

′
):

27: Z̃norm = L2-norm(Z̃), Z̃
′
norm = L2-norm(Z̃

′
) /* L2-normalization */

28: H = Z̃norm · (Z̃
′
norm)T , H

′
= Z̃

′
norm · (Z̃norm)T /* compute cosine similarity */

29: LSC = MSE(H, H
′
) (Eqn. 1)

30: Return: LSC , H

31: Function PCL Loss(Z̃, Z̃
′
):

32: # Pset: the collection of prototype sets from K-means clustering
33: Pset ← Assign Prototype(Z̃

′
)

34: Calculate the prototypical contrastive loss LPCL using Z̃ and Pset (Eqn. 4)
35: Return: LPCL

36: Function Assign Prototype(Z):
37: Pset ← [ ]
38: for K in [K1,K2, . . . ,KT ]:
39: Cluster each cell into K clusters based on Z
40: Compute a prototype matrix P ∈ RK×D by averaging of the spot embeddings per cluster
41: Append P to Pset

42: Return: Pset
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D SENSITIVITY ANALYSIS

We conduct a sensitivity analysis on all four balancing parameters λRecon, λSC , λPCL, and λSS

in Figure 14, 15, 16, and 17, respectively. In the case of the reconstruction loss (λRecon), when its
weight is too high, performance tends to degrade, indicating that it serves primarily as an auxiliary
loss to prevent degenerate solutions. On the other hand, the relation consistency loss (λSC) shows a
degradation in performance when its weight is too small, emphasizing the importance of reflecting
global similarities through this loss in Spotscape. Prototypical contrastive learning (λPCL) is
robust within a reasonable search space and does not dominate the overall training process. However,
it leads to significant performance drops when its weight is too high. Finally, similarity scaling
(λSS) shows robust performance across a wide range of values, with slightly improved performance
at higher weights. Furthermore, we conduct a sensitivity analysis for the manually tuned parameters,
namely τ and the learning rate, as shown in Figures 18, and 19. We observe that τ shows generally
robust performance, while the learning rate fluctuates significantly without a clear trend. These
results provide insight that, except for the learning rate, other hyperparameters exhibit robustness
within a reasonable search space, suggesting that Spotscape requires some learning rate search
strategies.

Figure 14: Sensitivity analysis for reconstruction loss balancing parameter (λRecon) of single
DLPFC.

Figure 15: Sensitivity analysis for similarity telescope loss balancing parameter (λSC) of single
DLPFC.
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Figure 16: Sensitivity analysis for balancing parameter of PCL (λPCL) of single DLPFC.

Figure 17: Sensitivity analysis for balancing parameter of similarity scaling (λSS) of MTG.

Figure 18: Sensitivity analysis for tau (τ ) of single DLPFC.
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Figure 19: Sensitivity analysis for learning rate of single DLPFC.

Figure 20: Sensitivity analysis for number of cluster (K) of single DLPFC.
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E HYPERPARAMETER SELECTION AND IMPLEMENTATION DETAILS

E.1 HYPERPARAMTER SEARCH FOR MODEL PERFORMANCE COMPARISON

To ensure a fair comparison, we conducted a hyperparameter search for both Spotscape and the
baseline methods. The best-performing hyperparameters were selected by evaluating the NMI with
the first seed. Specifically, for Spotscape, the hyperparameter search spaces were defined as fol-
lows: for λPCL, the values considered were {0.0005, 0.001, 0.005, 0.01}; for λSS , the range in-
cluded {0.1, 1.0, 10.0}. The temperature (τ ) in PCL was explored over {0.1, 0.25, 0.5, 0.75, 1.0},
and the learning rate search space consisted of {0.00001, 0.00005, 0.0001, 0.0005, 0.001}. The re-
maining hyperparameters were fixed, and the ones used to report the experimental results are listed
in Table 10.

Table 10: Hyperparameter settings of Spotscape

Fixed DLPFC Single MTG Single Mouse Embryo DLPFC Multi Integration MTG Multi Integration Mouse Embryo Alignment Visium - Xenium Alignment
λRecon ✔ 0.1 0.1 0.1 0.1 0.1 0.1 0.1
λSC ✔ 1.0 1.0 1.0 1.0 1.0 1.0 1.0
λPCL 0.005 0.0005 0.0005 0.005 0.01 0.01 0.01
λSS N/A N/A N/A 0.1 10.0 1.0 1.0

GCN encoder dimensions ✔ [256, 64] [256, 64] [256, 64] [256, 64] [256, 64] [256, 64] [256, 64]
τ 0.75 1.0 0.1 0.5 0.5 0.5 0.5
Top-k ✔ 5 5 5 5 5 5 5

Training epochs ✔ 1000 1000 1000 1000 1000 1000 1000
Warm-up epochs ✔ 500 500 500 500 500 500 500
Learning rate 0.00005 0.0001 0.00001 0.0005 0.001 0.00001 0.00001

Feature masking rate (Tf,1) ✔ 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Feature masking rate (Tf,2) ✔ 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Edge masking rate (Te,1) ✔ 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Edge masking rate (Te,2) ✔ 0.2 0.2 0.2 0.2 0.2 0.2 0.2

Additionally, we conducted a grid search primarily targeting the learning rate and loss balancing
parameters for the baseline models. The learning rates for all baselines were explored within the
search space {0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05}. Similarly, the loss bal-
ancing parameters were tuned across the range {0.1, 1.0, 10.0} including their default parameter.
More precisely, for SEDR, it searched learning rate and balance parameters regarding reconstruc-
tion loss, VGAE loss, and self-supervised loss. For STAGATE, the search focused solely on the
learning rate. In the case of SpaCAE, both the learning rate and the spatial expression augmentation
parameter (α) were tuned within {0.5, 1.0}. SpaceFlow was optimized by adjusting the learning
rate and the spatial consistency loss balancing parameter. For GraphST, we explored the learning
rate and the balancing parameters for feature reconstruction loss and self-supervised contrastive
loss. Regarding STAligner, we searched for the optimal learning rates for both the pretrained model
(i.e., STAGATE) and the fine-tuning process. Finally, for scSLAT, we applied the default parame-
ters since the experiments were conducted under identical settings and with the same dataset. This
systematic parameter-tuning process facilitated the effective optimization of each baseline model’s
performance.

E.2 UNSUPERVISED HYPERPARAMETER SEARCH STRATEGY

To apply Spotscape to new data, an appropriate hyperparameter search strategy is essential. For-
tunately, Spotscape is largely robust to hyperparameters, with the exception of the learning rate,
which is inherently sensitive in gradient-based optimization models. For this reason, we fix all
parameters except the learning rate and search for the learning rate that maximizes the silhouette
score, which can be achieved without any supervised information. Specifically, λPCL, λSS , and
τ are set to 0.0005, 10, and 0.75, respectively, while the learning rate is selected from the set
{0.00001, 0.00005, 0.0001, 0.0005, 0.001}. Using this hyperparameter optimization strategy, we
obtained the hyperparameters listed in Table 11 and reported the computed silhouette scores during
the search process for DLPFC in Figure 21. We then compared the performance of the hyperparam-
eters optimized without supervision with that of the hyperparameters optimized with supervision,
which were used solely for performance comparison with the baseline methods in Figure 22. In
this comparison, the performances of both sets of hyperparameters are competitive, with the unsu-
pervised optimization showing even better performance in some cases, thereby demonstrating the
effectiveness of our search strategy and confirming the robustness of hyperparameter sensitivity.
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Table 11: Optimized hyperparameter settings for Spotscape

Type Dataset λPCL λSS τ Learning Rate
Single DLPFC Patient 1 0.0005 - 0.75 0.00005
Single DLPFC Patient 2 0.0005 - 0.75 0.0001
Single DLPFC Patient 3 0.0005 - 0.75 0.0001
Single MTG Control 0.0005 - 0.75 0.0005
Single MTG AD 0.0005 - 0.75 0.0001
Single Mouse Embryo 0.0005 - 0.75 0.0001
Single NSCLC 0.0005 - 0.75 0.0001

Multi Integration DLPFC 0.0005 10 0.75 0.0005
Multi Integration MTG 0.0005 10 0.75 0.001
Multi Alignment Mouse Embryo 0.0005 10 0.75 0.0005
Multi Alignment Breast Cancer 0.0005 10 0.75 0.0005

Figure 21: Unsupervised hyperparameter searching strategy using silhouette scores.

Figure 22: Performance comparison between optimized and reported hyperparameters.

E.3 IMPLEMENTATION DETAILS

Model architecture and training. The model employs a 2-layer GCN (Kipf & Welling, 2016) as
the GNN-based encoder and a 2-layer MLP as the decoder, both utilizing batch normalization and
ReLU activation functions. The encoder’s hidden dimensions are set to [Ng, 256, 64], while the
decoder’s dimensions are configured as [64, 256, Ng]. The clustering process in PCL is performed
T = 3 times, with the K-means granularity set to [K, 1.5K, 2K] to get a fine-grained representa-
tion. Optimization is carried out using the Adam optimizer with a learning rate determined through
hyperparameter searching (see Appendix E.1) and a weight decay of 0.0001. All experiments are
repeated 10 times, and we report the mean and standard deviation for each performance metric.

Preprocessing. We follow the preprocessing methodology described in prior work (Dong & Zhang,
2022). Initially, 5000 highly variable genes are selected using Seurat v3 (Stuart et al., 2019). The
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data is then normalized to a CPM target of 10, 000 and log-transformed using the SCANPY package
(Wolf et al., 2018a). For datasets with multiple slices, we concatenate the slices to enable integration
or alignment.

Computational Resources. All the experiments are conducted on Intel Xeon Gold 6326 CPU and
NVIDIA GeForce A6000 (48GB).

Software Configuration. Spotscape is implemented in Python 3 (version 3.9.7) using Py-
Torch 2.1.1 (https://pytorch.org/) with Pytorch Geometric (https://github.com/
pyg-team/pytorch_geometric) packages.

F SCALABILITY OF SPOTSCAPE

Due to recent advancements in high-throughput sequencing machines, the scalability of models has
become a critical factor in validating their performance. To this end, we generate a synthesized
dataset by downsampling or oversampling the Mouse Embryo dataset to create data with 1,000 to
100,000 spots, and report the running time in Figure 23. We observed that Spotscape requires
relatively more training time than baseline methods due to the prototypical contrastive learning
objective. However, the training time of Spotscape scales linearly with the number of spots, rather
than quadratically or exponentially. This linear scalability ensures that SpotScape remains practical
for high-throughput datasets (e.g., 100,000 spots) within a reasonable timeframe. Moreover, we
would like to emphasize that Spotscape without the prototypical learning scheme exhibits faster
running times. Thus, if fast inference is required, this option can be used, albeit with a trade-off in
performance.

(a) Single slice (b) Multi-slice

Figure 23: The running time of Spotscape and baseline methods over the various number of spots
on (a) the single and (b) multi-slice dataset.
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G DIFFERENTIALLY EXPRESSED GENE ANALYSIS

Genes with log2(fold) > 0.25 and adjusted p-value from DESeq2, implemented in FindMarkers
from Seurat V4 (Hao et al., 2023) < 0.05 are determined as DEGs.
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Figure 24: Differential gene analysis and gene ontology enrichment analysis for biological process
between AD and PSP in cluster 6 (layer 2).
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Figure 25: Differential gene analysis and gene ontology enrichment analysis for biological process
between AD and PSP in cluster 4 (layer 5).
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H TRAJECTORY ANALYSIS

We perform trajectory inference tasks to evaluate whether the representation learned by
Spotscape effectively captures underlying trajectories in spatial transcriptomic data. For quan-
titative validation, we assign numerical values to layers as follows: WM = 0, layer 6 = 1, layer 5 = 2,
layer 4 = 3, layer 3 = 4, layer 2 = 5, and layer 1 = 6. We then calculate pseudo-Spatiotemporal Map
(pSM) values following the approach described in SpaceFlow Ren et al. (2022) using the represen-
tation from each model. Finally, we compute the correlation between these assigned values and the
calculated pSM values and report the results in Figure 26. In these results, Spotscape demonstrates
effectiveness in the trajectory inference task, further validating its broad applicability. Additionally,
it is worth noting that while Spotscape employs a prototypical contrastive learning scheme that
could make the latent space discrete, potentially negatively affecting the trajectory inference task,
Spotscape is not dominated by this module and still demonstrates strong performance as long as
the balance coefficient (LPro) is not set too high. We also present these results visually in Figure 27.

(a) DLPFC Patient 1

(b) DLPFC Patient 2

(c) DLPFC Patient 3

Figure 26: Correlation Coefficient between pseudo-Spatiotemporal Map and Layers in DLPFC.
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(a) Spotscape (w/ Large 𝜆!"#: 1.0)

(b) Spotscape (𝜆!"#: 0.005)

Figure 27: Trajectory inference results of Spotscape.

I IMPUTATION

To demonstrate the additional benefits of incorporating a decoder layer and reconstruction loss, we
performed imputation tasks to highlight the effectiveness of our reconstructed output in imputing
missing values and denoising noise present in the raw data. In the experiment shown in Figure 28,
we masked certain non-zero values in the data and evaluated whether the model successfully recov-
ers these values, following the settings from previous works Lee et al. (2024). From these results,
Spotscape outperforms in terms of both RMSE and median L1-distance, demonstrating its superi-
ority in imputation tasks. Moreover, we also examine whether the imputed outputs can help identify
marker genes that were not differently expressed in the raw data, illustrated in Figure 29. We con-
duct these experiments for the known marker genes in the brain cortex layer. Specifically, RORB
serves as a canonical marker for layer 4 neurons (Clark et al., 2020); ETV1 is associated with layer
5 neurons (Goralski et al., 2024); NTNG2 and NR4A2 are well-recognized markers for layer 6 neu-
rons (Maynard et al., 2021; Darbandi et al., 2018); and OLIG2 is indicative of white matter regions
(Wegener et al., 2015). The results show that after imputation using Spotscape, marker genes are
more distinctly expressed, demonstrating the practical applicability of Spotscape.

Figure 28: Imputation error comparison across various drop rates in the DLPFC.
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Figure 29: Spatial expression of raw and Spotscape imputed data for marker genes in the DLPFC.

J FUTURE WORKS

In this work, we discover that reflecting the global relationships between spots provides significant
information on SRT data; however, we currently leverage this relationship only implicitly through
the loss function. We recognize that the model could benefit from incorporating more complex inter-
actions by constructing edges between spots, thereby implementing graph structure learning. Future
work could explore this avenue to enhance the representation of spatial relationships, allowing the
model to leverage valuable information from the global context more effectively.

Furthermore, SRT data frequently includes histology images that offer critical contextual informa-
tion about tissue architecture and cellular organization. However, in this study, we concentrate on
a more general case that limits our analysis to spatial coordinates and gene expression profiles, po-
tentially overlooking the rich insights that histological features could provide. We anticipate that
integrating this information with Spotscape could represent a promising direction for future re-
search.
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