
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

S2R-HDR: A LARGE-SCALE RENDERED DATASET
FOR HDR FUSION

Anonymous authors
Paper under double-blind review

ABSTRACT

The generalization of learning-based high dynamic range (HDR) fusion is often
limited by the availability of training data, as collecting large-scale HDR im-
ages from dynamic scenes is both costly and technically challenging. To address
these challenges, we propose S2R-HDR, the first large-scale high-quality syn-
thetic dataset for HDR fusion, with 24,000 HDR samples. Using Unreal Engine 5,
we design a diverse set of realistic HDR scenes that encompass various dynamic
elements, motion types, high dynamic range scenes, and lighting. Additionally,
we develop an efficient rendering pipeline to generate realistic HDR images. To
further mitigate the domain gap between synthetic and real-world data, we intro-
duce S2R-Adapter, a domain adaptation designed to bridge this gap and enhance
the generalization ability of models. Experimental results on real-world datasets
demonstrate that our approach achieves state-of-the-art HDR fusion performance.

1 INTRODUCTION

High dynamic range (HDR) fusion plays a crucial role in various real-world applications, such as
computational photography, visual perception, and autonomous driving. Despite notable advance-
ments in HDR fusion techniques (Yan et al., 2019; Kalantari & Ramamoorthi, 2017; Liu et al., 2022;
Tel et al., 2023; Kong et al., 2024) in recent years, models trained on small-scale datasets (Kalantari
& Ramamoorthi, 2017; Chen et al., 2021; Kong et al., 2024; Tel et al., 2023) still face limitations
in generalizing to complex scenes. Additionally, due to limited data scale, the complexity and chal-
lenges of HDR fusion have yet to be fully explored, particularly in scenarios involving large motion
and direct sunlight, as illustrated in Figure 1.

In real-world scenarios, collecting comprehensive, high-quality large-scale HDR datasets for dy-
namic scenes is time-consuming, resource-intensive, and poses significant technical challenges. Un-
controllable elements such as lighting conditions, weather variations, and dynamic objects like ani-
mals and vehicles make it difficult to fully control the data acquisition process. Capturing extreme
high dynamic range scenarios—such as environments with direct sunlight—poses an even greater
challenge, like Figure 1. Consequently, existing HDR datasets (Kalantari & Ramamoorthi, 2017;
Tel et al., 2023; Kong et al., 2024; Chen et al., 2021; Shu et al., 2024) are generally limited to arti-
ficially controlled dynamic scenes and fail to capture the diversity of real-world environments. For
example, some datasets focus exclusively on human motion, overlooking other essential dynamic
elements, such as animals and vehicles. Moreover, existing HDR datasets with ground truth fusion
results are typically small. For instance, Kong et al. (2024) built the latest dataset with 123 samples.
Models trained on these small datasets are prone to overfitting, limiting their performance under
challenging scenarios. A larger synthetic dataset (Barua et al., 2025) has been proposed recently
for the single-image LDR to HDR conversion task, which is intrinsically limited by the absence of
complementary exposure information, resulting in unrecoverable details in saturated regions.

To address these limitations, we introduce S2R-HDR, the first large-scale HDR synthetic dataset
designed for HDR fusion. S2R-HDR features several distinctive characteristics: 1) High Quality:
Inspired by prior works (Li et al., 2023; Yang et al., 2023; Hu et al., 2023; Chen et al., 2023; Yin
et al., 2024), we render high-quality raw HDR data using Unreal Engine, with realistic lighting,
shadow, weather, and motion effects. 2) Large Scale: The dataset contains 24,000 HDR images,
around 166 times larger than typical datasets (Kalantari & Ramamoorthi, 2017; Tel et al., 2023;
Kong et al., 2024). 3) Diversity: The dataset encompasses different motion types and lighting. It
also covers different dynamic elements such as animals, humans, and vehicles across a variety of
indoor and outdoor settings. 4) Controllable Environment: Using tools developed based on xrfeito-
ria (Contributors, 2023), we can flexibly control environmental factors to create diverse data.

While rendering engines can generate a large volume of high-quality synthetic data, a domain
gap exists between synthetic and real data, particularly in texture distribution, as discussed in Ap-
pendix A.2. To address this, we propose S2R-Adapter, a plug-and-play simulation-to-real domain
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Figure 1: Comparing HDR fusion models (Kong et al., 2024) trained on our S2R-HDR dataset, with
the proposed domain adapter S2R-Adapter, with the same model trained on previous SCT (Tel et al.,
2023) and Challenge123 (Kong et al., 2024) datasets. Results show our dataset and training scheme
can reduce ghosting artifacts under large motion (left) and recover very high dynamic range scenes,
such as direct sunlight (right).

adaptation approach designed to bridge this gap. This approach can be applied to both labeled and
unlabeled data, meaning even if the target real HDR datasets do not have the ground truth fusion re-
sult, we can still adapt to it. To achieve this, inspired by previous works (Hu et al., 2021; Yang et al.,
2024; Liu et al., 2023a), our S2R-Adapter consists of two branches: 1) A share branch manages
knowledge sharing, which ensures the knowledge learned from synthetic data are not forgotten, and
2) a transfer branch facilitates knowledge transfer, which ensures the model can adapt to real input.

Additionally, our training strategy can be applied to different network structures, includ-
ing both CNN-based and transformer-based models. Integrating this strategy using re-
reparameterization (Ding et al., 2021) incurs no extra computational overhead during inference.

Experimental results on both labeled and unlabeled real datasets demonstrate that the proposed
dataset and method significantly enhance the performance of HDR fusion models trained on syn-
thetic data when applied to real scenes, achieving state-of-the-art results. Our study not only pro-
vides a new solution for HDR fusion but also presents a feasible path for generalization in fields
where data acquisition is challenging.

2 RELATED WORKS

Image HDR datasets. Datasets are essential for the development and evaluation of algorithms.
Before the deep learning era, Sen et al. (2012) and Tursun et al. (2016) provided real-world HDR
datasets containing 8 and 16 scenes, respectively, and Kalantari & Ramamoorthi (2017) further
introduced the first paired LDR-HDR dataset with 89 pairs. Prabhakar et al. (2019) later expanded
this to 582 LDR-HDR pairs and Tel et al. (2023) collected a dataset focusing on foreground objects
and larger motion variations, with 144 samples. Other datasets are also built for deghosting (Shu
et al., 2024), mobile imaging (Liu et al., 2023b) , or large motion (Kong et al., 2024).
Image HDR methods. Deep learning has been introduced into the field of HDR fusion due to its
remarkable performance in image processing. Early researchers designed an alignment and fusion
pipeline (Kalantari & Ramamoorthi, 2017; Wu et al., 2018). Subsequent works (Catley-Chandar
et al., 2022; Chung & Cho, 2023; Liu et al., 2021; Yan et al., 2023a) focused on improving the
alignment process by developing more advanced modules to handle motion artifacts across different
exposures. Kong et al. (2024) also proposed a novel efficient processing network.

Over time, several alternative pipelines for HDR fusion have been proposed, using attention mech-
anisms (Yan et al., 2019), non-local blocks (Yan et al., 2020), generative adversarial network (Niu
et al., 2021), or multi-step fusion (Ye et al., 2021). Recently, transformer models have shown promis-
ing results in HDR fusion (Song et al., 2022; Liu et al., 2022). Tel et al. (2023) also developed a
semantic-consistent, alignment-free transformer for HDR fusion. Recently, diffusion models are
also first introduced to HDR fusion by Yan et al. (2023b) and Hu et al. (2024) further accelerate
it using a low-frequency aware model. Self-supervised approaches have also been introduced to
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Figure 2: Illustration of our S2R-HDR dataset, covering both indoor and outdoor environments
under diverse lighting conditions, including daytime, dusk, and nighttime, as well as various motion
types such as humans, animals, and vehicles.

+3EV 0EV -3EV +2EV 0EV -2EV

Figure 3: Visualization of our sequence data and synthesized multi-exposure LDR images. Since the
dataset consists of raw HDR sequences, it enables effortless data augmentation, such as brightness
enhancement and motion amplitude adjustment.

HDR fusion, with the SelfHDR method (Zhang et al., 2024) utilizing a color and structure-focused
network to effectively handle deghosting.
Sim-to-real domain adaptation. Domain adaptation has been widely used to transfer models
trained on synthetic data to real-world settings. To address the domain shifts, researchers use ei-
ther adversarial approaches (Ganin et al., 2016; Tzeng et al., 2017) or domain randomization (Tobin
et al., 2017). Recently, adapter-based domain adaptation (Hu et al., 2021; Chen et al., 2022; Sung
et al., 2022) has been proven to be more effective. Adapters (Hu et al., 2021; Chen et al., 2022) are a
form of parameter-efficient fine-tuning (PEFT) (Hu et al., 2021; Zaken et al., 2021; Gao et al., 2021;
Hu et al., 2022a), which require fewer parameters than full retraining and help mitigate catastrophic
forgetting (Chen et al., 2022; Liu et al., 2023a) in domain adaptation. Additionally, Test-Time Adap-
tation (TTA) (Kundu et al., 2020; Boudiaf et al., 2023; Wang et al., 2022; Liu et al., 2023a; Chen
et al., 2022) has been extensively explored, aiming to adapt a pre-trained model to unknown target
domains during test-time, without any labeled or source domain data.

3 S2R-HDR DATASET

Previously, to create an HDR dataset with ground truth, researchers often use a beam splitter and
two cameras to simultaneously capture images with two different exposures (Froehlich et al., 2014;
Wang et al., 2021). The beam splitter only has two different exposures, which limits the dynamic
range of the image. However, there are various high dynamic range scenarios in natural scenes, such
as environments with direct sunlight. Accurately extracting tens of thousands of data samples from
these scenes is a significant challenge. Previously, the largest commonly used dataset contained only
144 images (Tel et al., 2023), whereas ours includes 24,000 HDR images, representing a substantial
leap in scale and diversity.

Moreover, capturing the ground truth often requires capturing different exposure images frame-by-
frame (Kalantari & Ramamoorthi, 2017; Tel et al., 2023; Kong et al., 2024; Chen et al., 2021; Shu
et al., 2024) and manually controlling motion between frames, making capturing extremely time-
consuming. The captured motions are often limited and unrealistic, most of them are just basic
human movements. These limitations have made it difficult to scale HDR datasets both in terms of
size and motion variety. Below, we discuss how we solve all these challenges.

3.1 RENDERING DESIGN

Rendering high-quality HDR data presents several challenges. One challenge is that rendered images
have a different distribution compared to the actual raw sensor data captured by cameras. To mitigate
this difference, we made several improvements. First, by default, rendered images have a baked-in
tone mapping, an irreversible process that compresses dynamic range for standard displays, making
it hard to recover original HDR data. To overcome this, we design a custom UE5 (Unreal Engine 5)
rendering pipeline that modifies tone mapping and gamma correction, ensuring the output remains
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Table 1: Qualitative comparison and analysis of different HDR datasets. Besides the DR, all num-
bers are in percentage.

Extent of HDR Intra-frame Diversity Overall Style

Dataset FHLP ↑ EHL ↑ SI ↑ CF ↑ stdL ↑ ALL ↑ DR ↑ Size

Kalantari (Kalantari & Ramamoorthi, 2017) 15.07 3.07 18.4 4.74 10.02 6.19 2.71 89
SCT (Tel et al., 2023) 12.43 2.43 18.25 3.92 9.39 5.44 2.55 144

Challenge123 (Kong et al., 2024) 26.91 5.19 20.47 5.19 12.73 9.88 2.36 123
S2R-HDR 28.02 5.47 38.02 14.96 15.16 10.53 3.86 24000

in linear HDR space, and stores results in floating-point formats (EXR) to prevent data quantization.
This approach ensures greater accuracy and makes the rendered data more suitable for HDR-related
tasks. Second, we also simulate imperfections during handheld capturing. We incorporated camera
shake simulation into our camera pose control to replicate the vibrations and instabilities that occur
during real-world capture. This ensures that the rendered data closely mimics real-world shooting
conditions, yielding more realistic HDR data for image processing and model training.

Another challenge is to construct realistic and diversified HDR scenes, with varying motion, light-
ing, and environmental details. To tackle this, we design and curate a diverse range of dynamic scene
materials, including common moving objects such as animals, pedestrians, and vehicles, ensuring
that the scenes exhibit a high degree of dynamism and complexity, as shown in Figure 2. Addi-
tionally, we carefully build a variety of high dynamic range scenes, encompassing both indoor and
outdoor environments, various lighting conditions across different times of day, and extreme lighting
scenarios. This diversity ensures that the generated HDR data simulates a broad range of real-world
environments as much as possible. Additional examples of our motion materials and HDR scenes
can be found in Appendix B.1 and Appendix B.2.

In total, we rendered 1,000 sequences, each containing 24 frames, resulting in a dataset of 24,000
HDR images, all stored in EXR format at a resolution of 1920 × 1080. As demonstrated in Figure 2,
our rendered data encompasses a variety of environments and includes a broad range of motion
types, showcasing a high degree of variability. Furthermore, since the data is in linear HDR format,
it facilitates flexible data augmentation, enabling the easy generation of different LDR (low dynamic
range) images, as shown in Figure 3.

3.2 STATISTICS AND ANALYSIS

We further analyze diversity of S2R-HDR in comparison to previous datasets (Kalantari & Ra-
mamoorthi, 2017; Tel et al., 2023; Kong et al., 2024). Following the methodology of Shu et al.
(2024); Guo et al. (2023); Hu et al. (2022b), we use seven metrics to evaluate the diversity of dif-
ferent datasets across three dimensions: the extent of HDR, intra-frame diversity, and overall HDR
style. As shown in Table 1, the S2R-HDR dataset outperforms all prior datasets across these metrics.
The “Extent of HDR” metric demonstrates that our dataset covers a broader range of highlights, in-
dicating an extended highlight range. The “Intra-frame Diversity” metric suggests that our images
contain more detailed information and richer content. Finally, the “Overall Style” metric reveals
that S2R-HDR exhibits a significantly higher dynamic range, surpassing the performance of previ-
ous datasets. Details of seven metrics can be found in Appendix B.4.

Additionally, to visually illustrate the distribution between our dataset and existing real-world
datasets (Kalantari & Ramamoorthi, 2017; Tel et al., 2023; Kong et al., 2024), we extract seven-
dimensional feature vectors for each image and apply t-SNE (Van der Maaten & Hinton, 2008) for
dimensionality reduction. As shown in Figure 8 (detailed in Appendix A.2), our S2R-HDR dataset
spans a broader range in terms of data diversity. Additional data samples, along with optical flow,
depth, and normal maps, are provided in Appendix B.6 and Appendix B.7, where we also discuss
further application scenarios.

4 DOMAIN ADAPTION

With all the careful design proposed in the previous section, there is still a noticeable gap between the
synthetic S2R-HDR dataset and the real one, as shown in the t-SNE visualization in Appendix A.2.
Thus, it is crucial to adapt the model trained on a large-scale rendered dataset to a small-scale
real one. Still, direct fine-tuning on labeled real data can lead to overfitting and knowledge forget-
ting (Yosinski et al., 2014; Kirkpatrick et al., 2017).

To mitigate knowledge forgetting, we propose S2R-Adapter, visual adapters designed specifically
for the HDR Fusion task, which enhance knowledge control.
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Figure 4: Structure of S2R-Adapter and t-SNE visualization of feature representations.

This is inspired by recent studies (Liu et al., 2023a; Chen et al., 2022; Sung et al., 2022), which
suggest that adapters (Hu et al., 2021; Rebuffi et al., 2017; Chen et al., 2022) can mitigate forgetting
in high-level vision tasks. Our adapter consists of two branches: a share branch to preserve shared
knowledge from the rendered dataset, and a transfer branch to learn domain-specific knowledge
from the real dataset, as shown in Figure 4(a). We chose this design because we want to utilize both
the shared knowledge from S2R-HDR to address large motion and dynamic range fusion, and the
domain-specific knowledge from the real dataset, like more realistic textures.

More specifically, the proposed S2R-Adapter uses a plug-and-play structure, which can be attached
to any pre-trained layers performing matrix multiplication (e.g., Linear Layer, Convolution Layer).
Following Liu et al. (2023a), we use a low-rank adapter as the share branch, which can better
address knowledge forgetting, and use a high-rank adapter as the transfer branch, which can better
extract domain-specific knowledge. Below we introduce details of each branch.

Shared branch. Considering a linear layer. Let the pre-trained weight matrix be W0 ∈ Rhout×hin ,
with input feature x. The original output of this layer is W0x. The shared branch uses a low-rank
adapter, projecting the feature with a down-projection matrix Vs ∈ Rhin×rs , followed by an up-
projection matrix Us ∈ Rrs×hout , where the rank rs ≪ min(hin, hout). The output of the shared
branch is fs = UsVsx.

Transfer branch. The transfer branch employs a high-rank adapter structure, starting with an
up-projection matrix Vt ∈ Rhin×rt , followed by a down-projection matrix Ut ∈ Rrt×hout , where
the rank rt ≥ max(hin, hout). Thus, the output of the transfer branch is ft = UtVtx.

The output features of the two branches are scaled by two separate factors αs, αt, then added to the
pre-trained weight output:

f = W0x+ αs × fs + αt × ft. (1)
The scale factors αs and αt control the trade-off between the shared knowledge and the transfer to
the real domain distribution.

Verification using t-SNE. To verify the effectiveness of the proposed share branch and transfer
branch adapters, we visualize the distributions of the rendered and real images using t-SNE (Van der
Maaten & Hinton, 2008) in Figure 4 (b). From the share branch adapter, the feature distributions
are consistent between the real and rendered domain, indicating that the share branch can ignore
the domain difference between the real and the rendered domain, preserving the shared knowledge
from forgetting. On the other hand, the transfer branch better separates the real distribution from
the rendered distribution, showing its capability to model the real data distribution better and extract
domain-specific knowledge in the real domain.
Training with labeled data. In this study, we consider two domain adaptation tasks. One is
adapting to real domains with ground-truth labels. The other is generalizing to any real domains
without ground-truth labels during inference. When the labeled real domain data is available, we
inject our S2R-Adapter into the pre-trained model and fine-tune the system on the labeled data. We
also learn the scale factors αs and αt to ensure the optimal trade-off between shared knowledge and
transferred knowledge on the real domain distribution.
Test-time adaptation with unlabeled data. During test-time adaptation, no labeled real domain
data is available, and each sample is seen only once. Therefore, αs and αt cannot be learned across
the real domain. Moreover, each test sample’s varying distance to the rendered domain requires
adaptive scaling of transfer and shared branches. Therefore, inspired by Liu et al. (2023a); Ovadia
et al. (2019), we dynamically adjust the scale factors using domain shift. For larger shifts, we
increase the transfer branch’s scale factor, encouraging more knowledge from the real domain. For
smaller shifts, we allocate more from the shared branch, preserving rendered domain knowledge.
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Figure 5: S2R-Adapter Framework on test-time adaptation without ground-truth data.

Table 2: Experimental results on SCT (Tel et al., 2023) and Challenge123 (Kong et al., 2024) dataset
with ground-truth. We first trained the two baseline networks on the S2R-HDR dataset, followed
by simulation-to-real domain adaptation on the SCT and Challenge123 training sets using the S2R-
Adapter. In contrast, the other methods were directly trained on the SCT and Challenge123 training
sets. The results marked with * are those recalculated using images provided by Tel et al. (2023).

Methods Train/Adaptation/Test on SCT (Tel et al., 2023) Train/Adaptation/Test on Challenge123 (Kong et al., 2024)

PSNR-µ PSNR-ℓ SSIM-µ SSIM-ℓ HDR-VDP2∗ PSNR-µ PSNR-ℓ SSIM-µ SSIM-ℓ HDR-VDP2

NHDRRNet (Yan et al., 2020) 36.68 39.61 0.9590 0.9853 63.72 37.82 26.75 0.9769 0.9632 53.38
DHDRNet (Kalantari & Ramamoorthi, 2017) 40.05 43.37 0.9794 0.9924 65.50 37.83 29.62 0.9707 0.9705 51.32

AHDRNet (Yan et al., 2019) 42.08 45.30 0.9837 0.9943 67.30 40.44 28.13 0.9877 0.9703 54.58
DiffHDR (Yan et al., 2023b) 42.77 47.11 0.9854 0.9957 69.43 38.78 26.85 0.9890 0.9745 53.38

HDR-Transformer (Liu et al., 2022) 42.39 46.35 0.9844 0.9948 67.73 40.70 28.72 0.9881 0.9731 54.63

SCTNet (Tel et al., 2023) 42.55 47.51 0.9850 0.9952 69.22 40.65 28.73 0.9882 0.9721 54.35
SCTNet w S2R (Ours) 43.24 48.32 0.9872 0.9962 69.33 42.58 30.68 0.9915 0.9805 55.35

SAFNet (Kong et al., 2024) 42.66 48.38 0.9831 0.9955 68.78 41.88 29.73 0.9897 0.9784 55.07
SAFNet w S2R (Ours) 43.33 48.90 0.9864 0.9959 70.00 43.43 31.84 0.9915 0.9824 56.51

Domain shift is measured by uncertainty, following Wang et al. (2022); Liu et al. (2023a); Roy et al.
(2022); Ovadia et al. (2019). In our HDR Fusion task, we augment input samples N times and
calculate variance across N outputs as the uncertainty value U(x). Augmentations include adjusting
exposure, white balance, noise levels, and random flips. With the uncertainty value, we adaptively
adjust scale factors: αs = 1− U(x); αt = 1 + U(x). (2)
Following previous works on test-time adaptation (Yang et al., 2024; Wang et al., 2022), we utilize
the mean-teacher framework. As shown in Figure 5, we inject S2R-Adapters to both the teacher
model T and the student model S. We initialized both models with pre-trained weights on the
rendered domain. Following Liu et al. (2023a), the teacher model generates uncertainty values and
pseudo-labels ỹ for updating the S2R-Adapters. The student model is optimized by the loss between
the student output ŷ and the pseudo-label ỹ. The teacher model updates via the exponential moving
average (EMA) of the student model:

T t = λT t−1 + (1− λ)St, (3)
where t is the test step, λ is set to 0.999, following Tarvainen & Valpola (2017).

5 EXPERIMENTS
Datasets. In line with the latest research (Tel et al., 2023; Kong et al., 2024), we train and evaluate
our models on recent HDR datasets: the SCT Dataset(Tel et al., 2023), which contains 108 training
samples and 36 test samples featuring dynamic scenes with significant foreground or camera motion;
and the Challenge123 Dataset(Kong et al., 2024), a complex multi-exposure HDR dataset collected
using a vivo X90 Pro+, comprising 96 training samples and 27 test samples.
Experiment details. We select the three latest methods (Liu et al., 2022; Tel et al., 2023; Kong
et al., 2024) as our baselines: HDR-Transformer (Liu et al., 2022) and SCTNet (Tel et al., 2023) are
transformer-based approaches, while SAFNet (Kong et al., 2024) is a CNN-based approach. When
training these methods on our S2R-HDR dataset, we first generate three different exposure LDR
images from the original HDR images. Then, we apply the same data augmentation and training
strategy.
Evaluation metrics. We employ commonly used metrics, including PSNR and SSIM, along with
HDR-VDP2 (Mantiuk et al., 2011), a metric designed for HDR evaluation. PSNR and SSIM are
computed in both linear and µ-law tone-mapped domains, denoted as −ℓ and −µ, respectively.

5.1 RESULTS

Results on test datasets with ground truth. To validate the effectiveness of our method (S2R-HDR
dataset and S2R Adapter), we conducted a comparative study on the latest SCT (Tel et al., 2023)
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Figure 6: Visual results on the SCT (Tel et al., 2023) datasets (left) and Challenge123 (Kong et al.,
2024) datasets (right) with ground-truth training data. Our method effectively eliminates artifacts
caused by motion occlusions, delivering superior visual quality.

Table 3: Experimental result on SCT (Tel et al., 2023) and Challenge123 (Kong et al., 2024) without
ground-truth (test-time adaptation). We report the testing results of baselines pre-trained on real-
world datasets generalizing to the SCT and Challenge123 test datasets, followed by the S2R-Adapter
test-time adaptation results of SCTNet and SAFNet pre-trained on S2R-HDR.

Methods Test on SCT (Tel et al., 2023) Test on Challenge123 (Kong et al., 2024)

Train PSNR-µ PSNR-ℓ SSIM-µ SSIM-ℓ HDR-VDP2 Train PSNR-µ PSNR-ℓ SSIM-µ SSIM-ℓ DHR-VDP2

DiffHDR (Yan et al., 2023b)

Challenge123

32.33 35.35 0.9497 0.9582 64.16

SCT

34.59 25.33 0.9748 0.9603 52.83
HDR-Transformer (Liu et al., 2022) 31.94 34.23 0.9518 0.9503 62.70 34.48 24.60 0.9744 0.9573 52.69

SCTNet (Tel et al., 2023) 32.60 35.93 0.9535 0.9639 63.50 34.57 25.07 0.9753 0.9599 52.09
SAFNet (Kong et al., 2024) 35.14 38.77 0.9619 0.9868 64.03 34.26 25.50 0.9718 0.9590 52.69

SCTNet S2R-HDR 34.83 42.32 0.9526 0.9933 66.69 S2R-HDR 41.49 30.37 0.9862 0.9796 55.75
SCTNet w S2R-Adapter (Ours) 35.35 43.33 0.9563 0.9936 67.84 41.71 30.39 0.9876 0.9797 55.84

SAFNet S2R-HDR 34.89 43.85 0.9500 0.9939 68.12 S2R-HDR 42.75 32.11 0.9872 0.9822 57.52
SAFNet w S2R-Adapter (Ours) 36.28 47.23 0.9586 0.9949 68.40 43.01 32.29 0.9884 0.9831 57.38

and Challenge123 (Kong et al., 2024) datasets against seven widely adopted HDR approaches, in-
cluding both CNN-based (Kalantari & Ramamoorthi, 2017; Yan et al., 2020; 2019; Tel et al., 2023),
Transformer-based (Liu et al., 2022; Tel et al., 2023) and diffusion-based (Yan et al., 2023b) models.
We selected the latest SCTNet and SAFNet as our baseline networks, where SCTNet represents the
Transformer-based method and SAFNet represents the CNN-based method. Specifically, we first
trained the two baseline networks on the S2R-HDR dataset, followed by synthetic-to-real domain
adaptation on the SCT and Challenge123 training sets using the S2R Adapter. In contrast, the other
methods were directly trained on the SCT and Challenge123 training sets.
As shown in Table 2, our method achieved the best results on both datasets. In terms of the PSNR-µ
metric, our approach demonstrated at least a 0.6dB improvement over both baseline networks on
PSNR-µ, and notably achieved a significant 2dB gain on the Challenge123 dataset across both base-
lines. Additionally, we provide a comparative analysis of visual effects, as illustrated in Figure 6.
Our method effectively reduces artifacts caused by motion occlusions, delivering superior visual
quality. We further visualize the difference maps of model output on the SCT dataset before and af-
ter applying the S2R-Adapter in Appendix A.2. The results show that our S2R-Adapter effectively
reduces the domain gap, especially in texture-rich areas.
Results on test datasets without ground truth. We conduct the following experiment to validate
the effectiveness of S2R-Adapter when generalizing to unseen test datasets where ground truth la-
bels are not available for the adapted models. The pre-trained models are adapted to unseen target
datasets SCT (Tel et al., 2023) and Challenge123 (Kong et al., 2024), without accessing the ground
truth of the target domain during adaptation. Models will see each test sample only once. As shown
in Table 3, compared with SCTNet and SAFNet trained on existing real-world datasets, models
trained on our S2R-HDR dataset coupled with our S2R-Adapter can more effectively generalize to
the unseen target domain. For instance, using SAFNet on the SCT dataset, our approach achieved a
1.1dB improvement in PSNR-µ and an 8.46dB improvement in PSNR-ℓ compared to the best base-
lines. The S2R-Adapter alone provides 1.39dB and 3.38dB improvements in PSNR-µ and PSNR-ℓ,
respectively.
With our test-time adaptation framework, models pre-trained on our dataset can effectively gener-
alize to unseen images. A qualitative comparison using real-captured data without ground truth is
illustrated in Figure 7. Our method effectively alleviates artifacts in highlight areas during night-
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SAFNet-S2R(Ours) tone-mapped HDR imageLDRs

HDR
Transformer SCTNet SAFNet SAFNet-S2R (Ours)

SAFNet-S2R(Ours) tone-mapped HDR imageLDRs

HDR
Transformer SCTNet SAFNet SAFNet-S2R (Ours)

Figure 7: Visual results on real-captured scenes show our solution reduces ghosting in backlit scenes
(left) and recovers highlights (right).
Table 4: Experimental results on the effectiveness of the S2R-HDR dataset. We test the cross-dataset
generalization of models trained on different datasets. Models trained on our S2R-HDR dataset
achieve superior generalization and require only minimal fine-tuning on SCT or Challenge123 to
reach state-of-the-art performance. The best results are in bold.

Methods Training Testing on SCT (Tel et al., 2023) Testing on Challenge123 (Kong et al., 2024)

PSNR-µ PSNR-ℓ SSIM-µ SSIM-ℓ PSNR-µ PSNR-ℓ SSIM-µ SSIM-ℓ

HDR-Transformer (Liu et al., 2022)

SCT (Tel et al., 2023) 42.39 46.35 0.9844 0.9948 34.48 24.60 0.9744 0.9573
Challenge123 (Kong et al., 2024) 31.94 34.23 0.9518 0.9503 40.70 28.72 0.9881 0.9731

SCT & Challenge123 42.09 44.64 0.9864 0.9947 39.52 28.23 0.9892 0.9744
S2R-HDR 34.89 41.67 0.9575 0.9926 41.51 30.06 0.9870 0.9787

S2R-HDR Fine-tune on SCT or Challenge123 43.25 47.36 0.9877 0.9957 42.40 30.48 0.9912 0.9797

SCTNet (Tel et al., 2023)

SCT (Tel et al., 2023) 42.55 47.51 0.9850 0.9952 34.57 25.07 0.9753 0.9599
Challenge123 (Kong et al., 2024) 32.60 35.93 0.9535 0.9639 40.65 28.73 0.9882 0.9721

SCT & Challenge123 40.00 42.79 0.9800 0.9935 40.04 28.21 0.9898 0.9750
S2R-HDR 34.83 42.32 0.9526 0.9933 41.49 30.37 0.9862 0.9796

S2R-HDR Fine-tune on SCT or Challenge123 43.22 47.28 0.9872 0.9961 42.10 30.18 0.9914 0.9798

SAFNet (Kong et al., 2024)

SCT (Tel et al., 2023) 42.66 48.38 0.9831 0.9955 34.26 25.50 0.9718 0.9590
Challenge123 (Kong et al., 2024) 35.14 38.77 0.9619 0.9868 41.88 29.73 0.9897 0.9784

SCT & Challenge123 42.12 45.14 0.9853 0.9941 41.61 29.72 0.9901 0.9788
S2R-HDR 34.89 43.85 0.9500 0.9939 42.75 32.11 0.9872 0.9822

S2R-HDR Fine-tune on SCT or Challenge123 43.03 48.79 0.9831 0.9958 43.30 31.59 0.9914 0.9819

time and reduces ghosting caused by large motions. More visual comparisons are available in Ap-
pendix A.4.

5.2 ABLATION STUDY

Effectiveness of S2R-HDR dataset. To evaluate the effectiveness of the S2R-HDR dataset, we
select the three latest methods (Liu et al., 2022; Tel et al., 2023; Kong et al., 2024) as baselines, which
include both transformer-based and CNN-based approaches. Additionally, we chose the two most
recent datasets, SCT (Tel et al., 2023) and Challenge123 (Kong et al., 2024), as comparative datasets.
We train the three baseline methods on the SCT dataset, the Challenge123 dataset, a merged dataset
combining SCT and Challenge123, and our S2R-HDR dataset, then evaluate their generalization
by testing on both SCT and Challenge123. Furthermore, given the domain gap between synthetic
datasets (such as S2R-HDR) and real-world datasets (SCT and Challenge123), we also fine-tune
the models trained on the synthetic S2R-HDR dataset on the real datasets, following the approach
in Niklaus et al. (2021).

As shown in Table 4, the model trained on our dataset surprisingly outperforms the one trained di-
rectly on Challenge123 when evaluated on the same dataset. Moreover, models trained on either the
SCT or Challenge123 datasets suffer significant performance degradation during cross-validation,
indicating their limited generalization capability. In contrast, models trained solely on our S2R-
HDR dataset—without any exposure to SCT or Challenge123—demonstrate superior cross-dataset
generalization, highlighting the high quality and robustness of our dataset. Additionally, models
trained on S2R-HDR require only minimal fine-tuning on SCT or Challenge123 to achieve state-
of-the-art performance. Across all three tested methods, models trained on S2R-HDR outperformed
those trained directly on SCT or Challenge123, achieving at least a 0.4 dB improvement in PSNR-µ.
These results confirm the effectiveness of our S2R-HDR dataset in enhancing model robustness and
generalization for HDR fusion tasks. We further show the visualization results of our S2R-HDR
dataset comparison experiments in Appendix A.5. We also compare our S2R-HDR dataset with
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Table 5: Ablation study of the S2R-Adapter us-
ing the SAFNet model (Kong et al., 2024) pre-
trained on the S2R-HDR dataset. The exper-
iments are conducted on the SCT dataset (Tel
et al., 2023). When both branches work together
with learned scale factors αs and αt, optimal
performance is achieved. In the case of non-
learnable αs and αt, their values are set to 1.
Baseline Fine-tune Share Transfer Learned PSNR-µ PSNR-ℓ SSIM-µ SSIM-ℓ

✓ 34.89 43.85 0.9500 0.9939
✓ 43.03 48.79 0.9831 0.9958

✓ 43.32 48.76 0.9860 0.9958
✓ 43.20 47.61 0.9855 0.9957

✓ ✓ 43.28 48.68 0.9863 0.9959
✓ ✓ ✓ 43.33 48.90 0.9864 0.9959

Table 6: Ablation study of the S2R-Adapter
Framework under test-time adaptation without
GT data. The baseline is the SAFNet (Kong
et al., 2024) pre-trained on S2R-HDR Dataset.
The test data is the SCT Dataset. TS stands
for the teacher-student framework, Adapter for
shared and target branch adapters, and Unc for
scale factor adjustment with uncertainty.
Baseline TS Adapter Unc PSNR-µ PSNR-ℓ SSIM-µ SSIM-ℓ

✓ 34.89 43.85 0.9500 0.9939
✓ 34.93 44.71 0.9477 0.9944
✓ ✓ 36.05 46.79 0.9469 0.9948
✓ ✓ ✓ 36.28 47.23 0.9586 0.9949

Table 7: Experiment results on knowledge control using SAFNet (Kong et al., 2024) on the SCT (Tel
et al., 2023) and S2R-HDR datasets. The result shows that our S2R-Adapter better alleviates knowl-
edge forgetting.

SAFNet (Kong et al., 2024) Test on SCT (Tel et al., 2023) Test on S2R-HDR
PSNR-µ PSNR-ℓ PSNR-µ PSNR-ℓ

Fine-tune on SCT (Tel et al., 2023) 43.03 48.79 35.52 29.40
S2R-Adapter on SCT (Tel et al., 2023) 43.33 48.90 35.95 29.80

the Kalantari (Kalantari & Ramamoorthi, 2017) and Real-HDRV(Deghosting) (Shu et al., 2024)
datasets in Appendix A.6.

Effectiveness of S2R-Adapter’s two branches. To validate the effectiveness of the knowledge-
sharing branch and knowledge-transfer branch designed in our Adapter method, we conducted ab-
lation experiments on the SCT dataset using SAFNet as the baseline to evaluate the impact of each
branch on the experimental results. As shown in Table 5, we tested the effect of using each branch
individually. Results indicate that using only the knowledge-sharing branch outperforms simple
fine-tuning, suggesting that this branch effectively learns shared knowledge, thereby reducing the
forgetting of pre-trained knowledge. Meanwhile, using only the knowledge-transfer branch leads
to a more substantial improvement, further confirming the significant differences between synthetic
and real data. When both branches work together with learned scale factors αs and αt, optimal
performance is achieved.

Effectiveness of knowledge control. We conduct experiments to show that our method better fa-
cilitates knowledge control than simple fine-tuning, effectively alleviating knowledge forgetting.
Specifically, we first train the SAFNet (Kong et al., 2024) on the S2R-HDR as a pre-trained model.
Then, we apply simple fine-tuning and our adapter-based fine-tuning for domain adaptation on the
SCT (Tel et al., 2023) dataset and subsequently test the models on the original S2R-HDR training set
to measure knowledge forgetting. As shown in Table 7, S2R-Adapter effectively adapts to the SCT
dataset while minimizing knowledge forgetting, demonstrating better preservation of pre-trained
knowledge.
Effectiveness of S2R-Adapter framework under test-time adaptation. We validate the S2R-
Adapter Framework’s effectiveness during test-time adaptation through ablation studies on the SCT
dataset, using SAFNet as the baseline, pre-trained on our S2R-HDR dataset. As shown in Table 6,
the teacher-student framework enhances results by making the test-time adaptation process more
robust. Most improvements are from our shared and transfer branch adapters. Additionally, dynam-
ically adjusting the scale factor between the adapter branches based on uncertainty measurement
allows for better control of shared and transferred knowledge across varying domain shifts, further
enhancing performance.

6 CONCLUSION

This paper introduces the S2R-HDR dataset, a large-scale, high-quality resource for HDR fusion
in dynamic scenes. By providing diverse, controllable, and high-fidelity synthetic data, the dataset
addresses the limitations of existing HDR datasets. Additionally, we propose the S2R-Adapter, a
novel domain adaptation method that effectively bridges the gap between synthetic and real data,
enabling efficient knowledge transfer. Experimental results on both labeled and unlabeled datasets
demonstrate that our S2R-HDR dataset and S2R-Adapter significantly enhance the performance of
HDR fusion models in real-world scenarios. This provides a viable solution for the HDR field,
where data acquisition is often limited. Future work will focus on expanding the S2R-HDR dataset
to support a wider range of application scenarios.
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7 REPRODUCIBILITY STATEMENT

We have added further details in Section 5 and Appendix A.1. The source code can be found in the
supplementary materials.
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A ADDITIONAL EXPERIMENTS

A.1 EXPERIMENTS DETAILS

When training these methods on our S2R-HDR dataset, we first generate three different exposure
({-2, 0, +2)}, {-3, 0, +3}) LDR images from the original HDR images. Following this, we apply
the same data augmentation techniques, and training schedules across all models. Additionally,
we introduce random Gaussian noise with σ ∈ [0.0001, 0.001] to the lowest exposure image and
σ ∈ [0.00001, 0.0001] to the middle exposure image.

For the SCTNet (Tel et al., 2023) architecture, which is based on the Transformer framework, we
employ a linear layer as the projection layer of the S2R-Adapter (as illustrated in the left part
of Figure 4) and integrate it into SCTNet’s WindowAttention Linear Layer. In contrast, for the
SAFNet (Kong et al., 2024) architecture, which is based on CNNs, we utilize a 1×1 convolu-
tional layer as the S2R-Adapter’s projection layer and inject it into the network at layers indexed
by [3:25:2] and [42:58:4]. For both CNN and Transformer architecture, we set the rank of the
shared branch adapter rs to be 1, and the rank of the transfer branch rt to be 64, following Liu et al.
(2023a).

In our test-time adaptation experiments, each test sample is processed only once. To assess sample
uncertainty as a measure of domain shift, we employ test-time augmentation techniques. Specif-
ically, we augment test samples using a variety of exposure levels: [−0.1,−0.5, 0, 0.5, 1]. Addi-
tionally, we apply random transformations, including flips, white balance adjustments, and random
Gaussian noise. For augmentations involving exposure and white balance, we apply the parameters
to the input images following inverse tone mapping. Correspondingly, the inverse transformations
are directly applied to the model outputs. This results in N augmented outputs per sample, from
which we compute the variance across these outputs to quantify uncertainty U(x).
We used the Photomatix software to perform tone mapping on HDR images.

A.2 ANALYSIS OF DOMAIN GAP AND ADAPTER

S2R-HDR
Real Datasets

Figure 8: The distribution of our S2R-HDR dataset and real captured HDR datasets (Kalantari &
Ramamoorthi, 2017; Tel et al., 2023; Kong et al., 2024). Following the approach outlined in Shu
et al. (2024); Guo et al. (2023); Hu et al. (2022b), for each HDR image, we first extract 7-dimensional
features listed in Table 17 that capture key aspects of HDR, including the extent of dynamic range,
intra-frame diversity, and the overall style of the HDR images. These features are then projected into
a 2D space using t-SNE (Van der Maaten & Hinton, 2008) for visualization. Regarding the concern
about real-dataset sample size, we analyzed all real images (Kalantari & Ramamoorthi, 2017; Tel
et al., 2023; Kong et al., 2024) without sampling bias.

Distribution of our S2R-HDR dataset vs. real datasets. To better understand the distribution of
our S2R-HDR dataset compared to existing real-world HDR datasets (Kalantari & Ramamoorthi,
2017; Tel et al., 2023; Kong et al., 2024), we extract seven-dimensional features representing key
HDR characteristics, including dynamic range, intra-frame diversity, and overall image style. These
features are visualized using t-SNE (Van der Maaten & Hinton, 2008), as illustrated in Figure 8. The
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results demonstrate that our S2R-HDR dataset spans a significantly broader range of HDR scenarios,
reflecting richer variations in lighting conditions, scene dynamics, and environmental styles.

Why we need an adapter. Despite the broader coverage of S2R-HDR, there remains a noticeable
domain gap between our synthetic data and real HDR datasets, as highlighted in Figure 8. This
gap primarily stems from differences in texture representation, environmental details, and natural
lighting conditions. To address this, we introduce an S2R-Adapter to bridge the disparity, enabling
models trained on synthetic data to generalize effectively to real-world scenes.

What the adapter learns. To gain deeper insights into the domain gap between real and rendered
data and to better understand what domain adaptation learns, we compute difference maps for mod-
els trained on the rendered dataset (S2R-HDR) before and after domain adaptation (S2R-Adapter)
to the SCT dataset. As shown in Figure 9, the differences are primarily concentrated in regions con-
taining trees, grass, and people, while ground, sky, and buildings remain largely unchanged. This
suggests that the key discrepancies between real and rendered data mainly arise in texture-rich areas
such as human figures and vegetation. The results further confirm that domain adaptation effectively
mitigates the domain gap.

Difference MapS2R-HDR S2R-Adapter

Figure 9: Difference maps of models trained on the rendered dataset (S2R-HDR) before and after
domain adaptation (S2R-Adapter) to the SCT dataset. The differences are primarily concentrated in
texture-rich regions such as trees, grass, and people, while ground, sky, and buildings remain largely
unchanged. This highlights that the key domain discrepancies lie in fine textures and demonstrates
the effectiveness of domain adaptation in bridging the domain gap.

A.3 DOMAIN ADAPTATION METHOD COMPARISON (FINE-TUNE VS S2R-ADAPTER)

As emphasized, the key challenge lies in addressing the domain gap. We summarize the domain
adaptation experiments using fine-tuning and the S2R-Adapter. As shown in Table 8, regardless
of the method employed, mitigating the domain gap consistently leads to notable performance im-
provements.

As shown in Table 8, the performance of SCTNet and SAFNet was evaluated on the SCT and Chal-
lenge123 datasets after being trained on different datasets. Since SCTNet is specifically designed
for the SCT dataset, it already performs well on this dataset. Consequently, using the S2R-Adapter
results in only a modest improvement compared to fine-tuning SCTNet on the SCT dataset. How-
ever, on the Challenge123 dataset, the use of the S2R-Adapter leads to a more substantial improve-
ment over fine-tuning SCTNet alone, with PSNR-µ increasing from 42.1 dB to 42.58 dB. Similarly,
SAFNet, which is designed for the Challenge123 dataset, shows a more significant performance
improvement on the SCT dataset, with PSNR-µ increasing from 43.03 dB to 43.33 dB. The key
challenge remains addressing the domain gap, and mitigating this gap consistently results in signifi-
cant performance gains.

Moreover, as shown in Table 7 in the main text, our S2R-Adapter not only improves performance but
also offers better knowledge control, with reduced knowledge forgetting compared to fine-tuning. In
addition to fine-tuning on labeled real data, our S2R-Adapter demonstrates superior performance in
test-time adaptation, allowing flexible adaptation to unseen data without the need for ground-truth
labels. This is particularly beneficial for HDR fusion tasks, where large-scale, accurately labeled
real-world datasets are often unavailable. By pretraining on large synthetic datasets and adapting
to any unlabeled target distribution during test time, our approach exhibits greater flexibility and
generalization.
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Table 8: Experimental results on the effectiveness of the S2R-HDR dataset. We test the cross-dataset
generalization of models trained on different datasets. Models trained on our S2R-HDR dataset
achieve superior generalization and require only minimal fine-tuning on SCT or Challenge123 to
reach state-of-the-art performance. The best results are in bold.

Methods Training Testing on SCT (Tel et al., 2023) Testing on Challenge123 (Kong et al., 2024)

PSNR-µ PSNR-ℓ SSIM-µ SSIM-ℓ PSNR-µ PSNR-ℓ SSIM-µ SSIM-ℓ

SCTNet (Tel et al., 2023)

SCT (Tel et al., 2023) 42.55 47.51 0.9850 0.9952 34.57 25.07 0.9753 0.9599
Challenge123 (Kong et al., 2024) 32.60 35.93 0.9535 0.9639 40.65 28.73 0.9882 0.9721

SCT & Challenge123 40.00 42.79 0.9800 0.9935 40.04 28.21 0.9898 0.9750
S2R-HDR 34.83 42.32 0.9526 0.9933 41.49 30.37 0.9862 0.9796

S2R-HDR Fine-tune on SCT and Challenge123 41.40 46.37 0.9820 0.9960 41.93 30.33 0.9907 0.9796
S2R-HDR Fine-tune on SCT or Challenge123 43.22 47.28 0.9872 0.9961 42.10 30.18 0.9914 0.9798

S2R-HDR w S2R-Adapter 43.24 48.32 0.9872 0.9962 42.58 30.68 0.9915 0.9805

SAFNet (Kong et al., 2024)

SCT (Tel et al., 2023) 42.66 48.38 0.9831 0.9955 34.26 25.50 0.9718 0.9590
Challenge123 (Kong et al., 2024) 35.14 38.77 0.9619 0.9868 41.88 29.73 0.9897 0.9784

SCT & Challenge123 42.12 45.14 0.9853 0.9941 41.61 29.72 0.9901 0.9788
S2R-HDR 34.89 43.85 0.9500 0.9939 42.75 32.11 0.9872 0.9822

S2R-HDR Fine-tune on SCT and Challenge123 42.97 47.84 0.9861 0.9960 42.91 31.05 0.9906 0.9805
S2R-HDR Fine-tune on SCT or Challenge123 43.03 48.79 0.9831 0.9958 43.30 31.59 0.9914 0.9819

S2R-HDR w S2R-Adapter 43.33 48.90 0.9864 0.9959 43.43 31.84 0.9915 0.9824

A.4 ADDITIONAL RESULTS ON REAL-CAPTURE IMAGES

Main - GT

SAFNet-S2R(Ours) tone-mapped HDR imageLDRs

HDR Transformer SCTNet

SAFNet SAFNet-S2R (Ours)

Main - GT

SAFNet-S2R(Ours) tone-mapped HDR imageLDRs

HDR
Transformer SCTNet SAFNet SAFNet-S2R (Ours)

Main - GT

SAFNet-S2R(Ours) tone-mapped HDR imageLDRs

HDR
Transformer SCTNet SAFNet SAFNet-S2R (Ours)

Figure 10: Visualization results on real-captured data without ground truth. Our approach effectively
reduces artifacts in highlight areas and alleviates ghosting in nighttime scenarios.

We further provide a visual comparison using real-captured data without ground truth in Figure 10.
Our approach effectively reduces artifacts in challenging scenarios.
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Figure 11: Visualization results of our S2R-HDR dataset comparison experiments. Models trained
on our S2R-HDR dataset exhibit significantly fewer artifacts compared to those trained on the SCT
dataset (Tel et al., 2023) or Challenge123 dataset (Kong et al., 2024).

A.5 VISUALIZATION OF EFFECTIVENESS OF S2R-HDR

We further show the visualization results of our S2R-HDR dataset comparison experiments in Fig-
ure 11, models trained on our S2R-HDR dataset achieve optimal visual quality compared to those
trained on other datasets. Additionally, as depicted in the left image of Figure 11, our dataset effec-
tively mitigates motion occlusion challenges. Similarly, as shown in the right image of Figure 11,
our dataset effectively addresses challenges related to high light fusion.

A.6 ADDITIONAL DATA EFFECTIVENESS COMPARISON EXPERIMENTS

To validate the effectiveness of our S2R-HDR dataset, we used SCTNet (Tel et al., 2023) as the base-
line model and conducted experiments on the Real-HDRV (Deghosting) (Shu et al., 2024) dataset,
which, although the largest, is less commonly used. The results, as shown in Table 9, with simple
fine-tuning, our dataset consistently delivers the best results.

Table 9: Experimental results of data effectiveness comparison with the Real-HDRV (Deghost-
ing) (Shu et al., 2024) Datasets.

SCTNet SCT Challenge123

PSNR-µ PSNR-ℓ SSIM-µ SSIM-ℓ PSNR-µ PSNR-ℓ SSIM-µ SSIM-ℓ

Train on Real-HDRV (Deghosting) 35.37 46.13 0.9651 0.9949 36.41 26.42 0.9711 0.9674
Fine-tune on SCT/Challenge123 42.98 47.27 0.9880 0.9956 40.84 28.91 0.9905 0.9765

Train on S2R-HDR 34.83 42.32 0.9526 0.9933 41.49 30.37 0.9862 0.9796
Fine-tune on SCT/Challenge123 43.22 47.28 0.9872 0.9961 42.10 30.18 0.9914 0.9798

We also use SCTNet (Tel et al., 2023) as a baseline model and conduct experiments on the earliest
Kalantari (Kalantari & Ramamoorthi, 2017) dataset. SCTNet is retrained on the entire dataset, and
the results, as shown in Table 10, demonstrate that with simple fine-tuning, our dataset consistently
yields the best performance.

Table 10: Experimental results of data effectiveness comparison on the earliest Kalantari (Kalantari
& Ramamoorthi, 2017) Datasets.

Methods Training PSNR-µ PSNR-ℓ SSIM-µ SSIM-ℓ

SCTNet
Kalantari 44.13 42.32 0.9916 0.9890
S2R-HDR 41.41 36.68 0.9859 0.9787

S2R-HDR Fine-tune on Kalantari 44.32 43.16 0.9923 0.9911

A.7 ADDITIONAL EXPERIMENTS ON THE EFFECTIVENESS OF S2R-ADAPTER

We conducted additional experiments on more datasets to further evaluate the effectiveness of S2R-
Adapter. These experiments include test-time adaptation without ground truth on Kalantari’s (Kalan-
tari & Ramamoorthi, 2017), Sen’s (Sen et al., 2012), and Tursun’s (Tursun et al., 2016) datasets.
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We first performed test-time adaptation without ground-truth labels on Kalantari’s dataset using the
SAFNet. Table 11 presents the results.

Table 11: Test-time adaptation results on Kalantari (Kalantari & Ramamoorthi, 2017) dataset.

Methods PSNR-µ PSNR-ℓ SSIM-µ SSIM-ℓ

SAFNet trained on SCT 34.75 39.41 0.9806 0.9821
SAFNet trained on Challenge123 40.31 37.19 0.9843 0.9772
SAFNet trained on S2R-HDR 43.06 40.63 0.9887 0.9878
SAFNet trained on S2R-HDR with S2R-Adapter 43.29 41.488 0.9889 0.9890

We also conducted test-time adaptation on Sen’s (Sen et al., 2012) and Tursun’s (Tursun et al., 2016)
datasets. We report the non-reference IQA metric MUSIQ (Ke et al., 2021) scores in Table 12.

Table 12: Test-time adaptation results (MUSIQ scores) on Sen’s (Sen et al., 2012) and Tursun’s (Tur-
sun et al., 2016) datasets.

Methods MUSIQ on Tursun’s MUSIQ on Sen’s

SAFNet trained on SCT 63.94 65.71
SAFNet trained on Challenge123 63.42 65.65
SAFNet trained on S2R-HDR 63.32 65.97
SAFNet trained on S2R-HDR with S2R-Adapter 65.30 67.45

A.8 ADDITIONAL RESULTS ON HDR VIDEO RECONSTRUCTION TASK

We also conduct experiments on HDR video reconstruction task to validate the effectiveness of
our S2R-HDR dataset. We use recent open-sourced methods, HDRFlow (Xu et al., 2024), as our
baseline model, and conduct training experiments on Vimeo-90K (Xue et al., 2019), Sintel (Butler
et al., 2012), and Real-HDRV (Shu et al., 2024) datasets, testing on DeepHDRVideo (Chen et al.,
2021) dataset. The results, as shown in Table 13, with simple fine-tuning, our dataset consistently
delivers the best results.

Table 13: Experimental results of data effectiveness comparison on the HDR video reconstruction
task. The HDRFlow method is trained on different datasets and tested on the DeepHDRVideo (Chen
et al., 2021) dataset.

Methods Training PSNR-µ PSNR-ℓ SSIM-µ SSIM-ℓ

HDRFlow (Xu et al., 2024)

Vimeo+Sintel 43.25 53.05 0.9520 0.9956
Real-HDRV 43.37 53.05 0.9540 0.9958
S2R-HDR 43.13 52.50 0.9508 0.9953

S2R-HDR Fine-tune on Real-HDRV 43.51 53.52 0.9546 0.9960

Additionally, in Table 14, we tested temporal consistency using the TOG HDR dynamic
dataset (Kalantari et al., 2013) with method (Lai et al., 2018), this metric is calculated using Equa-
tion 4, which measures the temporal consistency of a video by quantifying the flow warping error
between adjacent frames. In this equation, Vt represents the original frame, V̂t+1 represents the
warped frame using optical flow and M is a non-occlusion mask indicating non-occluded regions.
The results show that our dataset achieves the best performance in temporal consistency.

Ewarp (Vt, Vt+1) =
1∑N

i=1 M
(i)
t

∑N
i=1 M

(i)
t

∥∥∥V (i)
t − V̂

(i)
t+1

∥∥∥2
2

Ewarp (V ) = 1
T−1

∑T−1
t=1 Ewarp (Vt, Vt+1)

(4)

A.9 DETAILED DATASET SCALE COMPARISON

We include a comparison of dataset scales between our S2R-HDR dataset and the datasets from
SCT (Tel et al., 2023), Challenge123 (Kong et al., 2024), Kalantari (Kalantari & Ramamoorthi,
2017), and Real-HDRV(Deghosting) (Shu et al., 2024), as presented in Table 15.
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Table 14: Experimental results of temporal consistency comparison on the HDR video reconstruc-
tion task.

Training Datasets Sintel+Vimeo HDRV S2R-HDR

Temporal Stability Score↓ 0.2201 0.2183 0.1773

Table 15: Comparison of dataset scale. We compare our S2R-HDR dataset with SCT (Tel et al.,
2023), Challenge123 (Kong et al., 2024), Kalantari (Kalantari & Ramamoorthi, 2017), and Real-
HDRV(Deghosting) (Shu et al., 2024).

SCT (Tel et al., 2023) Challenge123 (Kong et al., 2024) Kalantari (Kalantari & Ramamoorthi, 2017) Real-HDRV(Deghosting) (Shu et al., 2024) S2R-HDR

Dataset size 144 (108/36) 123 (96/27) 89 (74/15) 500 (450/50) 24,000

A.10 TEST-TIME ADAPTATION RUNTIME

Like most test-time adaptation (TTA) methods (Kundu et al., 2020; Liu et al., 2023a; Wang et al.,
2022; Sun et al., 2020; Wang et al., 2020), our approach incurs additional computational cost due
to model weight updates during inference to adapt to the target domain without ground-truth labels.
However, this cost is modest and justified by the performance gains.

To quantify the overhead, we evaluated test-time adaptation runtime on SCT test images (resolution
1500×1000) using SAFNet as the base model. Experiments were conducted on a server with an
AMD EPYC 7402 (48C) @ 2.8 GHz CPU, 8×NVIDIA RTX 4090 GPUs, 512 GB RAM, running
CentOS 7.9. The results are as follows:

Table 16: Test-time Adaptation Runtime

Standard Testing Test-Time Adaptation

Runtime (seconds) 0.3813 0.6128
PSNR-tested on SCT dataset 43.85 47.23

The TTA process introduces an additional 0.23 seconds per image, with a performance improvement
of +3.38 PSNR. This trade-off is typical for TTA methods and demonstrates effective adaptation to
unseen data. The overhead arises from the model updating its weights to better align with the target
domain distribution, without requiring ground-truth labels. This extra computation is common in
test-time adaptation methods (Kundu et al., 2020; Liu et al., 2023a; Wang et al., 2022; Sun et al.,
2020; Wang et al., 2020), as they rely on on-the-fly optimization to adapt to distribution shifts during
inference.

B DATA EXAMPLES OF S2R-HDR

B.1 MOTION MATERIALS

As demonstrated in Figure 12, the S2R-HDR dataset comprises three principal categories of motion
materials: (a) human subjects with a comprehensive coverage of appearance variations, including
garment diversity and gender attributes; (b) vehicular objects incorporating distinct transportation
modalities with differential motion patterns; and (c) zoological specimens exhibiting biologically
plausible locomotion characteristics. These motion materials are sourced from two origins: (1)
manually created motion sequences by authors, and (2) pre-defined motion patterns from the Unreal
Engine 5 materials we purchased, both of which are designed for integration into environmental
contexts to facilitate dynamic motion synthesis.

B.2 HIGH DYNAMIC RANGE ENVIRONMENTS

As illustrated in Figure 13, the S2R-HDR dataset presents a collection of high dynamic range envi-
ronments encompassing both indoor and outdoor configurations. Through systematic utilization of
Unreal Engine 5’s Lumen global illumination system, we achieve precise control over environmen-
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Table 17: Metrics to assess the diversity of different HDR datasets.

FHLP Fraction of HighLight Pixel (Guo et al., 2023)

EHL Extent of HighLight (Guo et al., 2023)

SI Spatial Information (Series, 2012)

CF ColorFulness (Hasler & Suesstrunk, 2003)

stdL standard deviation of Luminance (Guo et al., 2023)

ALL Average Luminance Level (Guo et al., 2023)

DR Dynamic Range: the log10 differences between
the highest 2% luminance and the lowest 2% luminance. (Hu et al., 2022b)

Table 18: Statistical analysis of data scenarios, time of day, and indoor/outdoor distribution.

Motion Type Environment Time

Daylight Twilight Night

Local Motion Indoor 2016 1152 432
Outdoor 2160 1440 1104

Full Motion Indoor 3360 1920 720
Outdoor 4272 3024 2400

(a) Human (b) Vehicle

(c) Animal

(d) Motions (human, vehicle, animal)

Figure 12: Illustration of motion materials.

tal lighting parameters. This technical capability enables physics-based synthesis of illumination
scenarios spanning three critical lighting regimes: daylight, twilight, and night.

B.3 SYNTHESIS OF CAMERA SHAKE

To enhance the realism of our dataset and simulate inevitable device vibrations encountered in prac-
tical imaging scenarios, we introduce controlled camera motion perturbations in selected sequences.
Specifically, 30% of the sequences incorporate Perlin noise-based jittering, applied simultaneously
to both positional coordinates and rotational axes of the camera. The noise frequency and amplitude
are adjusted to ensure perceptually plausible motion. This augmentation significantly improves the
authenticity of the dataset while expanding its kinematic diversity, better approximating real-world
camera operation.
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(a) Daylight

(b) Twilight

(c) Night

Figure 13: Illustration of high dynamic range environments.

(a) Daylight (b) Twilight (c) Night

Figure 14: Illustration of image examples of our S2R-HDR.

B.4 HDR DATASET EVALUATION METRICS

To quantitatively assess the superiority of our dataset compared to real-world datasets, we employ
seven evaluation metrics whose detailed definitions are provided in Table 17. Specifically, FHLP
and EHL measure the extent of HDR. SI, CF and stdL quantify intra-frame diversity. ALL and DR
evaluate overall style.

B.5 SCENE AND MOTION DISTRIBUTIONS

Our dataset comprehensively encompasses diverse motion patterns, varied environments, and het-
erogeneous environmental illumination conditions. The distribution of different categories across
the total collection of 24,000 images is detailed in Table 18.

B.6 S2R-HDR IMAGE EXAMPLES

As shown in Figure 14, we present additional image examples of S2R-HDR.
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Original Image Optical Flow Depth Map Diffuse Information Surface Normal

Figure 15: Different image types provided in S2R-HDR.

B.7 FURTHER APPLICATION OF S2R-HDR

Leveraging the advanced rendering capabilities of Unreal Engine 5, we have augmented our cus-
tomized rendering pipeline with the capability to render multiple specialized image data types. Be-
yond producing standard output images, the system simultaneously generates four distinct auxiliary
data modalities: optical flow fields, depth maps, diffuse reflectance information, and surface normal
vectors. In other words, as shown in Figure 15, each frame has its corresponding four additional
auxiliary information.

Currently, our dataset is still limited to the HDR fusion task. The provision of such comprehensive
supplementary data aims to broaden the utility of S2R-HDR, facilitating its extension to diverse
application domains beyond HDR imaging.

C THE USE OF LARGE LANGUAGE MODELS

We only utilize LLMs to polish writing and correct grammar.
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