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Abstract

Vertical Federated Learning (VFL) enables collaborative
training of deep learning models while maintaining privacy
protection. However, the VFL procedure still has components
that are vulnerable to attacks by malicious parties. In our
work, we consider feature reconstruction attacks – a com-
mon risk targeting input data compromise. We theoretically
claim that feature reconstruction attacks cannot succeed with-
out knowledge of the prior distribution on data. Consequently,
we demonstrate that even simple model architecture transfor-
mations can significantly impact the protection of input data
during VFL. Confirming these findings with experimental re-
sults, we show that MLP-based models are resistant to SOTA
feature reconstruction attacks.

Code —
https://github.com/anon43534/simple-tranformations

1 Introduction
Federated Learning (FL) (Kairouz et al. 2021; McMahan
et al. 2023) introduces a revolutionary paradigm for collabo-
rative machine learning, in which multiple clients participate
in cross-device model training on decentralized private data.
The key idea is to train global model without sharing the
raw data among participants. Generally, FL can be divided
into two types (Yang et al. 2019): horizontal (HFL)(Konečný
et al. 2017; McMahan et al. 2023), when data is partitioned
among clients by samples, and vertical (VFL)(Khan, ten
Thij, and Wilbik 2023; Liu et al. 2024b; Wei et al. 2022;
Yang et al. 2023) when features of data samples are dis-
tributed across clients. Since clients in HFL hold the same
feature space, the global model is also the same for each par-
ticipant. Consequently, the FL orchestrator (often reffered to
as the server) can receive the parameter updates from each
client. In contrast, VFL implies that different models are
used for clients since their feature spaces differ. In this way,
the participants communicate by intermediate outputs called
activations.

The focus of this paper is on the privacy concepts of Ver-
tical Federated Learning(Rodrı́guez-Barroso et al. 2023; Yu
et al. 2024; Liu et al. 2024b), namely in Two Party Split
Learning (simply, SL) (Gupta and Raskar 2018; Thapa et al.
2022), where the parties split model in such a way that the

first several layers belongs to client, and the rest are pro-
cessed at the master server. In SL the client shares its last
layer (called Cut Layer) activations, instead of the raw data.
As a canonical use case (Sun et al. 2022) of SL, one can
think of advertising platform A and advertiser company B.
Both parties own different features for each visitor: party
A can record the viewing history, while B has the visitor’s
conversion rate. Since each participant has its own private
information and they do not exchange it directly, the process
of training a recommender system with data from A and B
can be considered as Split Learning. We deeply discuss SL
setting in Section 3.1.

With regard to practice, the types of attacks from an adver-
sary party are divided into: label inference (Li et al. 2022b;
Sun et al. 2022; Liu et al. 2024a; Erdoğan, Küpçü, and Çiçek
2022; Kariyappa and Qureshi 2022), feature reconstruction
(Luo et al. 2021; Qiu et al. 2024a; Jin et al. 2022; Geip-
ing et al. 2020; Gupta et al. 2022; Ye et al. 2022; Hu et al.
2022) and model reconstruction (Li et al. 2023; Gao and
Zhang 2023; Fredrikson, Jha, and Ristenpart 2015; Shokri
et al. 2017; Driouich et al. 2023; Ganju et al. 2018; Erdoğan,
Küpçü, and Çiçek 2022). In particular, among all feature re-
construction attacks in Split Learning, we are interested in
Model Inversion attacks(Erdoğan, Küpçü, and Çiçek 2022;
Fredrikson, Jha, and Ristenpart 2015; He, Zhang, and Lee
2019, 2021; Nguyen et al. 2023a,b): one that aims to infer
and reconstruct private data by abusing access to the model;
and Hijacking attacks(Pasquini, Ateniese, and Bernaschi
2021; Fu et al. 2023): when the malicious party with la-
bels holds an auxiliary dataset from the same domain of the
training data of the defending parties, thus, the adversary has
prior knowledge of the data distribution.

After revisiting all the attacks, we highlight that SOTA
MI and Hijacking attacks (without the White-Box assump-
tion) (Erdoğan, Küpçü, and Çiçek 2022; Pasquini, Ateniese,
and Bernaschi 2021) acquire a knowledge of prior on data
distribution (Section 2). Additionally, these attacks are vali-
dated only on CNN-based models, bypassing MLPs, which
are also show promise in the same domains. This leads to
further questions:
1. Is it that simple to attack features, or does the data prior’s
knowledge give a lot?
2. Does the architectural design plays a crucial role in effec-
tiveness of the latter attacks?



3. Can we develop a theoretical intuition that MLPs might be
more privacy-preserving?

In this work, we answer these question affirmatively. Fol-
lowing our theoretical justification from Section 3.3, by ex-
perimentally validating the proposed Hypothesis 1, we re-
veal that MI (Erdoğan, Küpçü, and Çiçek 2022) and Hi-
jacking (Pasquini, Ateniese, and Bernaschi 2021) attacks fail
on MLP-based client-side model. Thus, we neither consider
a specific defense framework nor propose a novel method.
In contrast, we demonstrate the failure of feature recon-
struction attakcs when the architecture is MLP. We sum-
marize our contributions as follows:

(Contribution 1) We prove that without additional infor-
mation about the prior distribution on the data, the feature
reconstruction attack in Split Learning cannot be performed
even on a one-layer (dense) client-side model. For MLPs
we state the server’s inability to reconstruct the activations
in the hidden-space. Furthermore, we provably guarantee
that (semi)orthogonal transformations in the client data and
weights initialization do not change the transmitted activa-
tions during training under the GD-like algorithms (see Sec-
tion 3.3 and Appendix A.4), and also do not affect conver-
gence for Adam-like algorithms.

(Contribution 2) We show that Hijacking and Model In-
version attacks fail on MLP models without any additional
assumptions. We show the effectiveness of our approach
against the UnSplit (Erdoğan, Küpçü, and Çiçek 2022) and
Feature-space Hijacking (Pasquini, Ateniese, and Bernaschi
2021) attacks on popular community datasets (Krizhevsky
2009; Lecun et al. 1998; Xiao, Rasul, and Vollgraf 2017) and
argue that feature reconstruction attacks can be prevented
without resorting to any of the defenses, while preserving
the model accuracy on the main task. Also, our findings can
be combined with any of the defense frameworks covered
in Section B.

(Contribution 3) We reconsider the perception of de-
fense quality from a human-side perspective and evaluate
the resistance against an attacker using the Fréchet incep-
tion distance (FID) (Heusel et al. 2017) between the true
data and the reconstructed ones. And report the comparison
with commonly used MSE in Sections 4 and 5.

2 Background and Related Work
Recent feature reconstruction attacks show promising re-
sults. Meanwhile, these attacks sometimes require strong as-
sumptions about the capabilities of the attacking side. For
example, methods from (Qiu et al. 2024a; Jin et al. 2022)
assume access not only to the architecture, but also to the
client-side model parameters during each step of optimiza-
tion process (White-Box). The above assumptions rarely oc-
cur in real-world applications, as such knowledge is not nat-
urally aligned with the SL paradigm. Nevertheless, an adap-
tive obfuscation framework from (Gu et al. 2023) success-
fully mitigates the (Jin et al. 2022) attack. Moreover, the at-
tacker’s setup from these works is more valid for the HFL
case (see (Geiping et al. 2020)), where the model is shared
among clients and can be trained with (McMahan et al.
2023; Li et al. 2020) algorithms, rather than for VFL. There-

fore, such a strong settings are not considered in our work.

2.1 Model Inversion attacks
Model Inversion attack (MI)(Fredrikson, Jha, and Ristenpart
2015; He, Zhang, and Lee 2021, 2019; Zhao, Mopuri, and
Bilen 2020; Zhu, Liu, and Han 2019; Wu et al. 2016) is a
common approach in machine learning, where an adversary
party (server in our case) trains a clone of the client-side
model to reconstruct raw data given the client activations.
Recent works (Erdoğan, Küpçü, and Çiçek 2022; Li et al.
2022a; Fredrikson, Jha, and Ristenpart 2015) demonstrate
that Split Learning is also vulnerable to MI attacks. Mean-
while, the most popular defense frameworks (Li et al. 2022a;
Sun et al. 2021), aiming to protect data from MI attack,
are effective against the adversary with White-Box access,
which does not hold in real-world, and require imitation of
the attacker (called attacker-aware training) using client-side
inversion models, which leads to a 27% floating point opera-
tions (FLOPs) computational overhead(see Li et al. (2022a)
Table 6).

Next, we come to Unsplit, proposed in Erdoğan, Küpçü,
and Çiçek (2022), the main MI attack aiming to reconstruct
input image data by exploiting an extended variant of coor-
dinate descent (Wright 2015). Given the client model fc, its
clone f̃c (i.e., the randomly initialized model with the same
architecture), the adversary server attempts to solve the two-
step optimization problem:

X̃
⇤ = argmin

X̃

LMSE

⇣
f̃c(W̃c, X̃), fc(Wc, X)

⌘
+ �TV(X̃),

W̃c
⇤
= argmin

W̃c

LMSE

⇣
f̃c(W̃c, X̃), fc(Wc, X)

⌘
.

In this context, X , Wc represent the client model’s private
inputs and parameters; TV denotes the total variation dis-
tance (Rudin, Osher, and Fatemi 1992) for image pixels (this
term allows the attacker to use prior on data distribution);
and X̃

⇤, W̃c
⇤

are the desired variables for the attacker’s re-
constructed output and parameters, respectively. Whereas, �
is the coefficient to modify the impact of the total variation,
e.g., minimizing TV(X̃) results in smoother images. At the
beginning of the Unsplit attack , ”mock” features X̃ initial-
izes as a constant matrix.

It should be noted that this optimization process can be
applied both before and after training fc. The latter corre-
sponds to feature reconstruction during the inference stage.
The authors assume that the server is only aware of the archi-
tecture of the client model fc. See Section 3 for the theoret-
ical results and Section 4 for the experimental justification.

2.2 Hijacking attacks
The Feature-space Hijacking Attack (FSHA) was initially
proposed in Pasquini, Ateniese, and Bernaschi (2021), for
simplicity, we call attacks of this type as ”Hijacking” and
the attack from this work we will also call FSHA. The au-
thors mention that the server’s ability to control the learning
process is the most pervasive vulnerability of SL. Which is
not used in UnSplit setting. Indeed, since the server is able
to guide the client model fc towards the required functional



states, it has the capacity to reconstruct the private features
X . In hijacking attacks (Fu et al. 2023; Pasquini, Ateniese,
and Bernaschi 2021; Yu et al. 2023), the malicious server ex-
ploits an access to a public dataset Xpub of the same domain
as X to subdue the training protocol.

Specifically, in FSHA, the server initializes three addi-
tional models: encoder  E, decoder  D and discriminator
D. While the client-side model fc : X ! Z is initialized
as a mapping between the data distribution X and a hidden-
space Z , the encoder network  E : X ! Z̃ dynamically
defines a function to certain subset Z̃ ⇢ Z . Since the goal
is to recover X 2 X , to ensure the invertibility of  E, the
server trains the decoder model  D : Z ! X . To guide
fc towards learning Z̃ , server uses a discriminator network
trained to assign high probability to the  E(Xpub) and low
to the fc(X).

The general scheme of the attack is the following:

 
⇤
E,  

⇤
D = argmin

E,D
LMSE ( D( E(Xpub)), Xpub) ,

D
⇤ = argmin

D
[log(1�D( E(Xpub))) + log(D(fc(X)))] ,

f
⇤
c = argmin

fc

[log (1�D(fc(X)))] .

And, finally, server recovers features with:

X̃ =  D (fc(X)) .

This paper has led to the creation of other works that study
FSHA. Erdogan, Küpçü, and Cicek (2022) propose a de-
fense method SplitGuard in which the client sends fake
batches with mixed labels with a certain probability. Then,
the client analyzes the gradients corresponding to the real
and fake labels and computes SplitGuard score to assess
whether the server is conducting a Hijacking Attack and
potentially halt the training. In response to the SplitGuard
defense, Fu et al. (2023) proposed SplitSpy: where it is ob-
served that samples from the batch with the lowest predic-
tion score are likely to correspond to the fake labels and
should be removed during this round of FSHA. Therefore,
SplitSpy computes gradients from discriminator D only for
survived samples. We would like to outline that this attack
uniformly weaker compared to the original FSHA (Pasquini,
Ateniese, and Bernaschi 2021) in the absence of the Split-
Guard defense. Thus, we will only consider this attack later.

2.3 Quality of the defense
In (Sun et al. 2023), authors study the faithfulness of differ-
ent privacy leakage metrics to human perception. Crowd-
sourcing revealed that hand-crafted metrics (Sara, Akter,
and Uddin 2019; Pedersen and Hardeberg 2012; Zhang
et al. 2018; Wang and Bovik 2002) have a weak correla-
tion and contradict with human awareness and similar meth-
ods(Zhang et al. 2018; Huynh-Thu and Ghanbari 2008).
From this point of view, we reconsider the usage of the
MSE metric for the evaluation of the defense against fea-
ture reconstruction attacks, i.e., the quality of reconstruction.
Given that the main datasets contain images, we suggest
to rely on Frechet Inception Distance (FID) (Heusel et al.
2017). Besides the fact that MSE metric is implied into the

attacker algorithms (Sections 2.1 and 2.2 ), most of works
on evaluation of the images quality rely on FID. From the
privacy perspective, the goal of the successful defense eval-
uation is to compare privacy risks of a classification model
under the reconstruction attack. This process can be formal-
ized for Split Learning in the following way: let the attack
mechanism M aiming to reconstruct client model fc data
X given the Cut Layer outputs H , depending on the setup,
M can access the client model architecture (in other settings
this assumption may differ), then the privacy leakage is rep-
resented as

PrivacyLeak = InfoLeak (X,M(H, fc)) ,

where InfoLeak stands for the amount of information leak-
age in reconstructed images Xrec = M(H, fc). Note that,
M receives the Cut Layer outputs H at every iteration; then,
the PrivacyLeak can also be measured during every iter-
ation of the attack. Generally, information leakage can be
represented through the hand-crafted metric ⇢: InfoLeak =
⇢(X,Xrec).

3 Problem Statement and Theoretical
Motivation

In this section we will:
1. Outline the (Two Party) Split Learning setting. (Section
3.1)
2. Demonstrate that (semi)orthogonally transformed data
and weights result in an identical training process from the
server’s perspective. (Lemma 1)
3. Prove that in this scenario, even a malicious server can-
not reconstruct features without prior knowledge of the data
distribution. (Lemma 2)
4. Show that similar reasoning applies to the distribution of
activations before the Cut Layer. (Lemma 3)
5. Propose Hypothesis 1 explaining why SOTA feature re-
construction attacks achieve significant success and suggest
potential remedies.

3.1 Problem Statement
Notation. We denote the client’s model in SL as fc, with
the weights W . Under the Xc, we consider a design matrix
of shape Rn⇥dc . We denote activations that client transmits
to the server as H 2 Rn⇥d, while Z and X are the hidden-
space and the data distribution, respectively. n corresponds
to the number of samples in the dataset Xc, while dc stands
for the features belonging to the client and d is a hidden-
size of the model. f denotes the loss function of the entire
model (both server and client). Next, we provide a detailed
description of our setup.

Setup. From the perspective of one client, it cannot rely on
any information about the other parties during VFL. Then,
to simplify the analysis, we consider the Two Party Split
Learning process. The server s (label-party) holds a vector
of labels, while the other data is located at the client-side
c matrix Xc. Server and client have their own neural net-
works. Server’s part of the model produces the final predic-
tions. In each iteration, the non-label party computes activa-
tions H = fc(Xc,W ) and sends it to the server. Then, the



remaining forward computation is performed only by server,
which leads to predictions and, consequently, to the loss of
f . In the backward phase, client receives @f

@H
, and computes

the gradient with respect to their parameters @f

@W
= @f

@H

@H

@W
.

3.2 Motivation: Orthogonal transformation of
data and weights stops the attack

In this section we consider client fc as one-layer lin-
ear model fc = XcW with W 2 Rdc⇥d. Note that
(semi)orthogonal transformations Xc ! XcU , W0 !
U

>
W0 preserve the outputs of fc at the initialization. The

following lemma states, that it also holds for subsequent it-
eration of (Stochastic) Gradient Descent:
Lemma 1. For a one-layer linear model trained using GD
or SGD, there exist continually many pairs of client data and
weights initialization that produce the same Split Learning
protocol.

The complete proof of this lemma is presented in
appendix A.1. These pair has the form {X̃, W̃0} =
{XU,U

>
W0}, where U - arbitrary orthogonal matrix. With

such orthogonal transformations, the client produces the
same activations at each step, as if we had left Xc and W0

unchanged. The server cannot distinguish between the dif-
ferent data distributions that produce identical activations;
therefore, the true data also cannot be obtained. This results
in:
Remark 1. Under the conditions of Lemma 1, if the server
has no prior information about the distribution of Xc, the
label party cannot reconstruct initial data Xc (only up to an
arbitrary orthogonal transformation).

Recent work (Ye et al. 2022) states similar considerations,
but their remark about Adam (Kingma and Ba 2017) and
RMSprop (Graves 2014) not changing the Split Learning
protocol is false. In fact, Lemma 1 holds only for algorithms
whose update step is linear with respect to the gradient his-
tory (see Appendix A for details). However, while Adam and
RMSProp do not preserve the SL protocol in terms of full
matching of transmitted activations, we can relax the condi-
tions and consider the properties of these algorithms from
the perspective of ”protocol preservation” in the sense of
maintaining convergence to the same value. To begin with,
let us note the following:
Remark 2. The model’s optimal value f⇤ after Split Learn-
ing is the same for any orthogonal data transformation. In-
deed, 8X̃c = XcU 9W̃ ⇤ = U

>
W

⇤ : f(X̃c, W̃
⇤) = f

⇤ =
f(Xc,W

⇤). Thus, f⇤ remains the same if we correspond-
ingly rotate the optimal weights.

In the case of a convex or strongly-convex function (en-
tire model) f(Xc,W ), the optimal value f

⇤ is unique, and
therefore any algorithm is guaranteed to converge to f

⇤

for any data transformation. Meanwhile, for general non-
convex functions, convergence behavior becomes more nu-
anced: in fact, in the Example 1, we present a function
on which the Adam algorithm converges before data and
weight transformation and diverges after the transformation.
However, the situation changes when we turn to functions

satisfying the Polyak-Łojasiewicz-condition (PL), which is
used as a canonical description of the neural network1.
We, then, provably claim that SL protocol is preserved for
PL functions with orthogonal transformations of data and
weights. We show that Adam’s preconditioning matrices can
be bounded regardless of the W initialization, and derive a
Descent Lemma 5 with the modification of bounded gradi-
ent Assumption 3 similar to prior works (Sadiev et al. 2024;
Défossez et al. 2022). The converges guarantees are covered
in Lemma 6 and the theoretical evidence can be found in
Appendix A.4.

Compared to Lemma 1, even knowledge of weights does
not help the attacker:
Corollary 1. Under the conditions of Lemma 1, assume that
server knows the first layer W0 of fc, and let this layer be an
invertible matrix. Then, the label party cannot reconstruct
initial data Xc (only up to an arbitrary orthogonal transfor-
mation).

Indeed, the activations send to the server in the first step:
H1 = XcW0, but if the client performs an orthogonal trans-
formation leading to X̃c, then server can recover only the
H̃1W

�1
0 , where H̃1 = X̃cW0. Meanwhile, the difference

between Xc and X̃c affects only the initialization of weights,
and thus should not change the final model performance
much.

Next, we conclude that even a malicious server cannot
reconstruct the client’s data without the additional prior on
Xc.
Lemma 2. Under the conditions of Lemma 1, assume train-
ing with the malicious server sending arbitrary vectors in-
stead of real gradients G = @f/@H . In addition, the server
knows the initialization of the weight matrix W0. Then, if the
client applies a non-trainable orthogonal matrix before W0,
the malicious server cannot reconstruct initial data Xc (only
up to an arbitrary orthogonal transformation).
Remark 3. With the same reasons as for the Lemma 1, if
even the malicious server from Lemma 2 has no prior infor-
mation about the distribution of Xc, it is impossible for the
label party to reconstruct initial data Xc.

3.3 Motivation: You cannot attack the activations
before ”Cut Layer”

Up until now, we considered the client-side model with one
linear layer W and proved that orthogonal transformation
of data Xc and weights W lead to the same training proto-
col. The intuition behind Lemma 1 and 2 suggests that in the
client model, one should look for layers whose inputs cannot
be given the prior distribution. This brings us to the consid-
eration of Cut Layer, since this is a ”bridge” between the
client and server. The closer Cut Layer to the first layer of
the client’s model fc, the easier it is to steal data (Erdoğan,
Küpçü, and Çiçek 2022; Li et al. 2022a); the complexity of
attack increase with the ”distance” between Cut Layer and
data. We pose a question: ”Does our intuition from Section

1Note that PL-condition does not imply convexity, see footnote
1 from (Li et al. 2021).



3.2 apply for the activations before Cut Layer?” and we an-
swer in the affirmative:
Lemma 3. [Cut Layer Lemma] There exist continually
many distributions of the activations before the linear Cut
Layer that produce the same Split Learning protocol.

The results of Lemma 3 lead to a promising remark. While
server might have prior on original data distribution, acquir-
ing a prior on the distribution of the activations before Cut
Layer is, generally, much more challenging. The absence
of knowledge regarding the prior distribution of activations,
combined with the assertion in Lemma 3, yields a result for
activations analogous to Remark 1. Specifically, even with
knowledge of a certain prior on the data, the server can, at
best, reconstruct activations only up to an orthogonal trans-
formation2.

3.4 Should we use dense layers against feature
reconstruction attacks?

The findings from Section 3.3 indicate that the reconstruc-
tion of activations poses significant challenges for the server.
However, many feature reconstruction attacks achieve con-
siderable success. This raises the question: ”Does the
server’s inability to reconstruct activations before the Cut
Layer not impede its capacity to reconstruct data features?”
Alternatively, ”Could it be that the conditions of Lemma 3
do not hold in practical scenarios?”

To investigate this matter more thoroughly, we exam-
ined outlined in Sections 2.1 and 2.2 feature reconstruc-
tion attacks. Specifically, we focused on UnSplit (Erdoğan,
Küpçü, and Çiçek 2022) and FSHA (Pasquini, Ateniese, and
Bernaschi 2021), which are SOTA representatives (to the
best of our knowledge) of the Model Inversion and Fea-
ture Space Hijacking attack categories, respectively. UnSplit
requires knowledge of the client-side model architecture,
while FSHA should know the dataset Xpub of the same dis-
tribution as the original X . Assumptions are quite strong
in the general case, but, we, in turn, argue that their at-
tacks can be mitigated without any additional modifica-
tions in UnSplit (Erdoğan, Küpçü, and Çiçek 2022) and
FSHA (Pasquini, Ateniese, and Bernaschi 2021) assump-
tions (see Section 4).

Both of these attacks are validated exclusively on im-
age datasets, utilizing CNN architectures. Consequently,
the client-side model architectures lack fully connected
(dense) layers before Cut Layer and the conditions of
Lemma 3 do not hold.

While a convolutional layer is inherently a linear op-
eration and can be represented as matrix multiplication
— where the inputs and weights can be flattened into
2D tensors — the resulting matrix typically has a very
specific structure. In particular, all elements except for
(kernel size) · (kernel size) entries in each row are zero.
Therefore, an inverse transform does not exist in a general
sense — meaning not every matrix multiplication can be ex-
pressed as a convolution, as the resultant matrix generally

2Excluding degenerate cases, such as when the server knows
that the client’s network performs an identity transformation.

contains significantly more non-zero elements. As a result,
”merging” an orthogonal matrix into a convolutional layer
by multiplying the convolution weights with an orthogonal
matrix is impossible, since this would result in a matrix with
an excess of non-zero elements.

Based on this observation we propose:
Hypothesis 1. Could it be that the attacks are successful

due to the lack of dense layers in the client architecture? Will
usage of MLP-based architectures for fc, instead of CNNs,
be more privacy preserving against Model Inversion attack
and FSHA?

We intend to experimentally test this conjecture in the fol-
lowing section.

4 Experiments
This section is dedicated to the experimental validation of
the concepts introduced earlier. To test our Hypothesis 1, we
evaluate the effectiveness of UnSplit and FSHA on MNIST
(Lecun et al. 1998) and F-MNIST (Xiao, Rasul, and Vollgraf
2017) in setting where at least one dense layer is present on
the client side.

Figure 1: Results of UnSplit attack on MNIST. (Top): Orig-
inal images. (Middle): CNN-based client model. (Bottom):
MLP-based client model.

Figure 2: Results of UnSplit attack on F-MNIST. (Top):
Original images. (Middle): CNN-based client model.
(Bottom): MLP-based client model.

It is important to note that although MLP-based architec-
ture may not be conventional in the field of Computer Vi-
sion (where CNN usage is more prevalent), dense layers are
the backbone of popular model architectures in many other
Deep Learning domains, such as Natural Language Process-
ing, Reinforcement Learning, Tabular Deep Learning, etc. In



these domains, dense layers are commonly found at the very
start of the architecture, and thus, when the network is split
for VFL training, these layers would be contained in fc. Fur-
thermore, even within the Computer Vision field, there is a
growing popularity of architectures like Vision Transform-
ers (ViT) (Dosovitskiy et al. 2021) and MLP-Mixer (Tol-
stikhin et al. 2021), which also incorporate dense layers at
the early stages of data processing. Therefore, we contend
that with careful architectural selection, integrating dense
layers on the client side should not lead to a significant de-
terioration in the model’s utility score.

4.1 UnSplit
Before delving into the primary experiments of our study, we
must note that unfortunately we were unable to fully repro-
duce the results of UnSplit using the code from their repos-
itory. Specifically, the images reconstructed through the at-
tack were significantly degraded when deeper Cut Layers
were used (see column ”Without Noise” in Table 4). How-
ever, for the case where cut layer = 1 (i.e., when there is
only one layer on the client side), the images were recon-
structed quite well. Therefore, we used this setup for our
comparisons.

Table 1: UnSplit attack on MNIST.

Model MSE
X

MSE Z FID Acc%

MLP-based 0.27 3 ·10�8 394 98.42

CNN-based 0.05 2 ·10�2 261 98.68

Table 2: UnSplit attack on F-MNIST.

Model MSE
X

MSE Z FID Acc%

MLP-based 0.19 4 ·10�5 361 88.31

CNN-based 0.37 4 ·10�2 169 89.21

Table 3: UnSplit attack on CIFAR-10.

Model MSE
X

MSE Z FID Acc%

MLP-based 1.398 6 ·10�6 423 89.29

CNN-based 0.056 4 ·10�3 455 73.61

As previously mentioned, to test Hypothesis 1, we uti-
lized an MLP model with single or multiple dense layers on
the client side. For CIFAR-10, we use MLP-Mixer, which
maintains the performance of a CNN-based model while in-
corporating dense layers into the design. The results of the
attack are shown in Figures 1 and 2. Despite our efforts to
significantly increase the � parameter in the TV up to 100 –
thereby incorporating a stronger prior about the data into the

attacker’s model – the attack failed to recover the images,
thus supporting the assertion of Lemma 1.

Additionally, Tables 1 and 2 presents the reconstruction
loss values between normalized images. Here MSE X and
FID shows the difference between the original and recon-
structed images, and MSE Z refers to the loss between the
activations H = fc(Wc, X) and H̃ = f̃c(W̃c, X̃). Acc% de-
notes final accuracy of the trained models, as we can see, the
results of MLP-based model are very close to its CNN-based
counterpart.

In the image space X , FID appears to be a superior met-
ric compared to MSE for accurately capturing the conse-
quences of the attack. Furthermore, the tables show the MSE
between activations before the Cut Layer for both the orig-
inal and reconstructed images. These results indicate that
in the case of the dense layer, the activations almost com-
pletely match, with significantly lower MSE than those even
for well-reconstructed images. This implies that while the
attack can perfectly fit H = XW , it fails to accurately re-
cover X .

4.2 FSHA
Similarly to the previous subsections, we replaced the
client’s model in the FSHA attack (Pasquini, Ateniese, and
Bernaschi 2021) with an MLP consisting of one or multi-
ple layers. The attacker’s models also varied, ranging from
ResNet (He et al. 2015) architectures (following the original
paper) to MLPs, ensuring that the attacker’s capabilities are
not constrained by the limitations of any architectural de-
sign. The results, illustrated in Figures 3 and 4, consistently
demonstrate that the malicious party fully reconstructs the
original data in the case of the ResNet architecture and com-
pletely fails in the case of the Dense layer.

Figure 3: Results of FSHA attack on MNIST. (Top): Origi-
nal images. (Middle): CNN-based client model. (Bottom):
MLP-based client model.

In addition to the reconstructed data shown in Figure
6, we computed the Reconstruction error and Encoder-
Decoder error for a client using a ResBlock architecture (as
in the original paper) and a client employing an MLP archi-
tecture. These plots reveal that the Encoder-Decoder pair for
both architectures is equally effective at reconstructing data
from the public dataset on the attacker’s side. However, a
challenge arises on the attacker’s side with the training of
GAN (Goodfellow et al. 2014). It is evident that in the pres-
ence of a Dense layer on the client side, the GAN fails to
properly align the client’s model representation within the



Figure 4: Results of FSHA attack on F-MNIST. (Top): Orig-
inal images. (Middle): CNN-based client model. (Bottom):
MLP-based client model.

Figure 5: Results of UnSplit attack on CIFAR-10. (Top):
Original images. (Middle): CNN-based client model.
(Bottom): MLP-Mixer client model.

required subset of the feature space. Instead, it converges
to mapping models of all classes into one or several modes
within the activation space, corresponding to only a few
original classes. This phenomenon is particularly well illus-
trated for the F-MNIST dataset in Figure 4.

4.3 Evaluation with FID
Inspired by prior works on GANs (Goodfellow et al. 2014),
we apply FID to the InfoLeak scheme for the next reasons:
(1) FID measures the information leakage as the distribution
difference between between original and reconstruction im-
ages, thus InfoLeak(X,Xrec) / FID(X,Xrec). (2) Usage
of FID is a more common approach when dealing with im-
ages. (3) The widespread metric in reconstruction evaluation
is MSE, that lacks an interpretation for complex images (Sun
et al. 2023), at least from the CIFAR-10(Krizhevsky 2009)
dataset. However, we notice that the privacy evaluation of
feature reconstruction attacks requires refined.

The values of FID and MSE in Tables 1 and 2 suggest that
FID is a more accurate reflection of the attack’s outcomes
than MSE in the image space X . For instance, on the F-
MNIST dataset, the MSE is higher for a CNN architecture
despite the better quality of the reconstructed images. This
discrepancy appears to stem from differences in background
pixel values compared to the original images.

5 Discussions
With our work, we contribute to a better understanding of the
meaningfulness of feature reconstruction attacks. We show

Figure 6: Encoder-decoder error and Reconstruction error
for FSHA attack

that the architectural design of client-side model reflects
the attack’s performance. Particularly, even the most pow-
erful Black-Box feature reconstruction attacks fail when at-
tempting to compromise client’s data when its architecture is
MLP. We observe our findings experimentally, and provide a
rigorous mathematical explanation of this phenomenon. Our
study contributes to recent advances in privacy of VFL (SL)
and suggest that novel Black-Box attacks should be revis-
ited to address the challenges which occurs with MLP-based
models.

We note that our approach may not be impactful on NLP
tasks, since the language models require a discrete input in-
stead of the continuous which we actively exploit during the
theoretical justifications and experiments with MLP-based
models. However, we note that Unsplit attack also cannot
be efficiently performed against the transformer-based archi-
tectures due to the huge amount of computational resources
for training multi-head attention and FFN layers with the co-
ordinate descent.
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Koushanfar, F.; Koyejo, S.; Lepoint, T.; Liu, Y.; Mittal, P.;
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