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Abstract

We introduce Harmonic Robustness, a powerful and intuitive method to test the1

robustness of any machine-learning model either during training or in black-box2

real-time inference monitoring without ground-truth labels. It is based on functional3

deviation from the harmonic mean-value property, indicating instability and lack4

of explainability. We show implementation examples in low-dimensional trees and5

feedforward NNs, where the method reliably identifies overfitting, as well as in6

more complex high-dimensional models such as ResNet-50 and Vision Transformer7

where it efficiently measures adversarial vulnerability across image classes.8

1 Motivation and Introduction9

Modern application of Machine Learning (ML) across all industries faces numerous challenges in10

maintaining quality of predictions: from the training phase where one must choose the “best" model11

within a sea of architectures and hyperparameters to maximize performance without overfitting the12

training data, while balancing with explainability and fairness in the context of Responsible AI; to13

the inference phase where, in the face of production latency and throughput constraints, one must14

efficiently monitor for performance degradation due to data drift; ideally this latter triggers the model15

re-training phase, where one must revisit the model with freshly-labelled data, which, however, in16

many applications such as credit card fraud may not be available till after a significant time lapse,17

sometimes months later.18

To address these challenges, we propose a simple geometric technique which enjoys several mitigating19

properties:20

• It is model-agnostic (black-box) and unsupervised, i.e., requiring no knowledge of model21

inner workings, ground-truth labels or other auxiliary data.22

• Its computation is algorithmically simple, linear in the number of data points tested, and has23

good statistical sampling convergence.24

• It reliably measures relative overfitting between two models on the same training data.25

• It precisely measures model robustness across feature space and can immediately indicate26

data drift in online monitoring.27

• It is indicative of model explainability.28

The particular proposal is to measure the “harmoniticity" of the model, specifically the degree to29

which the model function f satisfies the harmonic property,30

∇2f = 0 (1)

Functions which satisfy (1), i.e, “harmonic functions”, occur frequently in physics as solutions to31

equilibrium problems involving minimization of energy, e.g. soap bubbles stretched on a boundary,32

electrostatic field configurations, and heat flow (see Fig 1). They form smooth, minimal interpolations33



between boundary values, and most importantly to our present discussion exhibit the “mean-value34

property",35

f(x) =
1

S

∫
B(x)

fdΩ (2)

which, in plain English, says that the value of the function at any point is the surface average of36

the function over a ball of any radius surrounding the point (incidentally, (1) and (2) are equivalent37

definitions)1. The metric we propose, “anharmoniticity" or γ for brevity, measures how well (2) is38

satisfied over feature space, computing the difference between the function and its ball-averaged39

value:40

γ(x) ≡ |f(x)− 1

Sr,n

∫
B(x,r)

fdΩr,n| (3)

where now we explicitly introduce the parameters r (ball radius) and n (feature dimension) as the41

implementation details will depend on these. As the behavior of f(x) may vary wildly over feature42

space, so will γ(x) depending on the degree to which f behaves in accordance with (2) for some43

reasonable fixed choice of r. By association this will indicate which regions of feature space are44

“more harmonic" for this model, and the average value of γ(x) over feature space provides a summary45

“anharmoniticity" metric.46

At this point, we can verify the above claimed mitigating properties of this metric:47

• Measuring γ as per (3) requires nothing more than black-box access to the model, as is48

expedient in an inference setting; this also allows testing of closed-source models without49

having to request access to model details, facilitating efficiency of testing and helping to50

keep the industry honest.51

• As γ only requires computing the average value of f at a number of data points52

approximating a ball, this is linear in the number of points and amenable to sampling.53

• γ is proportional to the complexity of the decision surface; in particular for a binary classifier54

it is proportional to the length of the decision boundary, which is positively correlated with55

overfitting (see Appendix).56

• If γ changes over time in online events, there must be data drift; this is great for online57

monitoring where it is paramount to raise alerts as soon as a performance issue arises. If58

production monitoring shows an increase in γ, one can pinpoint the data points responsible59

and investigate that region of feature space more fully for counterfactuals — this might60

trigger the need for re-training with more data or modeling in that region.61

• Harmonic functions are natively explainable since, by the mean-value property, the62

’explanation’ of any point is that it is the average of the points around it, which in turn are63

‘explained’ by their neighboring points, etc., all the way up to the feature boundaries which64

have values fixed by some standard. The premier example is the linear function, of course65

trivially harmonic by (1) and explainable by direct proportionality. Thus, the closer γ is66

to zero, the more explainable the model will be. Conversely, the more a model fails (2) at67

some point the more difficult it may be to explain, e.g., in the fraud domain if the average of68

several non-fraudulent events was predicted to be fraudulent.69

In short, γ is a proxy for the measure of model robustness in stability of prediction, resilience to data70

drift, and ease of explainability.71

Note, however, that the aim of this programme is certainly not to have a model be completely72

harmonic — indeed by (2) it is easy to check that pure harmonic functions can have no local minima73

or maxima, and that is too restrictive for real-world models.74

Yet, we believe a robust, explainable ML model should be at least locally close to harmonic in75

most of feature space2, especially for production applications where stability is business-critical.76

1An easy informal way to see this equivalence is to recognize (1) as the divergence of the gradient (∇2f =
▽ · ▽f ): the gradient expressing the change of f in all directions, if its divergence is zero then ’change in f’
neither flows into or out of any given point, hence the average change of f on any ball around that point is 0,
relative to its value at the point.

2This can be made precise by choosing a value of r that is ’small’ relative to typical distance between data
points. Though as we’ll see below, the exact choice is not critical.
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Figure 1: Examples of harmonic functions that appear in Nature: soap films[1], electrostatic
potentials[2], and heat flows[3].

Harmonic functions exhibit the minimal curvature necessary to interpolate between fixed data points77

(see Appendix), and hence satisfy a certain Occam’s Razor of machine learning. Most real-world78

models will of course deviate from pure harmoniticity, but γ gives us a way to track and quantify the79

deviation.80

Finally, as far as we know, this is the first instance in the literature of an overarching, limiting81

algebraic standard on a ML function for the purpose of quality and stability. Our choice of the82

harmonic property is not in any way sacrosanct, but it is intuitive and accessible for quick and direct83

testing via the mean-value property (2), giving correlation with stability and ease of interpretation. It84

may be that some other class of functional algebraic constraints also captures this and more, a topic85

we leave open to the community to explore.86

2 Related Work87

Techniques to measure goodness of a predictive model are of course as old as the field of Machine88

Learning itself, traditionally centered on time-tested metrics such as precision, recall, F-score, AUC,89

etc. where the ground-truth labels of a test set are known. On the other hand, we are chiefly concerned90

with the real-world problem of measuring model robustness without access to ground truth labels,91

as for example occurs in a purely online inference environment with only black-box access to the92

model in conjunction with a live data stream. For this is the real, minimal environment in which most93

practioners and end users of ML operate. Statistical techniques such as outlier or anomaly-detection94

[4] and distributional shift [5] enjoy usage here to give important hints of, but not true indications of,95

model robustness. Gradient-based methods such as PDP and ICE [6] where one looks for sudden96

changes in the decision function over feature space likewise may provide hints of robustness changes,97

though this differs from the current proposal as γ is measuring more than just the local feature98

sensitivity in the function, which may in fact be proper and desired behavior for, e.g., a steep linear99

response; rather, γ is measuring departure from explainable sensitivity as one sees in harmonic100

functions obeying the mean-value property (2).101

Existing work [7] as well as a recent survey [8] reviews 23 metrics which are useful in the online102

inference setting, e.g., Average Confidence of True Class (ACTC) and Noise Tolerance Estimation103

(NTE). Within the black-box setting the metrics are essentially measuring how readily the predicted104

class label changes across feature space either due to targeted gradient-based search or random105

perturbation. These fit in the realm of Adversarial Machine Learning [9] which has blossomed into106

its own subfield, quite rightly dedicated to understanding the vulnerability of popular ML models107

to attacks [10][11] based on perturbing input data points. Recent work has found that adversarial108

weakness becomes more prevalent with increasing number of feature dimensions [12][13], and109

sensitive data domain dependence arises; unsurprisingly this is most apparent in image classification110

tasks [14], the premier testing-ground of adversarial ML, as each data point can easily contain111

thousands to millions of features (pixels); it is important to note, however, that many other domains,112

e.g., financial modeling, can contain thousands or more features and likewise be highly vulnerable113

to attacks [15]. Adversarial analyses also typically focus on class label changes, differing from our114

metric which is more precisely measuring the numerical stability of the prediction (logit) according115
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to the standard of harmonic geometry, and not merely the crossing of such predictions over discrete116

thresholds leading to class label changes.117

There have for a number of years been works focusing on the relationship between stability and118

geometry of the classifier [16][17][18]: what these works find is that there is a correlation between119

adversarial weakness and curvature of the decision surface. This has even fueled investigation into a120

new way of classification using the average or majority-vote in a hypercube neighborhood of each121

point [19]. This is corroborated by the present study as well, for harmonic functions describe minimal122

surfaces with constant mean curvature [20], hence should have minimal adversarial weakness.123

3 Method124

Computing γ(x) for a model as per its mathematical definition (3) is an extremely simple and125

straightforward procedure, which we detail below in pseudocode:126

Algorithm 1 Computation of γ at a point x in feature space

1: procedure γ(x)
2: ballPoints← Ball(x, r)
3: N← size(ballPoints)
4: ballValue← 0
5: for each point in ballPoints do
6: ballValue + = f(point)
7: end for
8: ballAvg← ballValue/N
9: return |f(x)− ballAvg|

10: end procedure

One can then average γ(x) over a region of feature space to get γ for that region, for example the127

convex hull of a training set or all feature points seen in some inference production window.128

In the above algorithm, the primary consideration is how to get the ball of radius r around the point x,129

i.e., Ball(x, r), remembering that in general x is a vector in some possibly high number of dimensions.130

For any digital computation we will of course have to approximate a continuous ball with a discrete131

number of points. The easiest-to-code solution is to construct a large number N of random vectors132

around x, each normalized to some small magnitude r, hoping for isotropy and centrality (zero overall133

vector sum). The random-walk behavior of N random vectors will however doom one to a
√
N bias134

in one direction or another (see Appendix).135

A better solution from a theoretical perspective is to form the "n-simplex" around each point. In two136

dimensions, for example, the 2-simplex is an equilateral triangle; in three dimensions a tetrahedron,137

etc. (see Appendix). In any arbitrary number of dimensions, the n-simplex centered about a point138

will be maximally symmetric, hence ideally space-covering. One can further add balanced rotations139

of the basic n-simplex, the more of which you add the closer the discrete approximation converges to140

the continuous ball.141

With a bit of linear algebra to compute the n-simplices (see Appendix), numerical trials indeed show142

that n-simplices symmetrically cover space much more effectively than random vectors and, when143

used to approximate the ball in our algorithm, accurately identify pure harmonic versus non-harmonic144

functions, the details of which the interested reader may refer to in the Appendix. What we would145

like to focus on in the remainder of this paper is actual ML models, as readers will find this most146

applicable to their work.147

4 Application to low-dimension models148

For clarity in demonstrating the method let us first focus on basic models targeting a small, well-149

understood dataset in the ML community: the Wine dataset [21], describing 13 features of three150

different wines grown in the same region of Italy. We further restrict this analysis to just two of those151

dimensions, “flavanoids" and “OD280/OD315 of diluted wines", in order to show a model taking a152

two-dimensional input vector to a scalar output (the wine class label). What we seek to show is how153
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computing γ on models trained with these features on this data indicate the property of being well-fit154

or overfit, hence vulnerable to adversarial attacks or under-performance in production, purely from155

inference on out-of-training points without referencing any ground-truth labels.156

We split the original data 80/20 to a Train/Test set, foregoing the usual split to a Validation set not157

just due to data sparsity (there only being around 100 data points in this set), but to show how the158

present technique can by itself indicate overfitting. We train four models: two Gradient Boosted159

Decision Trees (GBDT), “GBDT-1", with hyperparameters optimized on a grid search with 10-fold160

cross-validation, and the second, “GBDT-2", chosen with more extreme hyperparameter values; and161

two feedforward neural nets (multi-layer perceptron), a 1-hidden-layer model “MLP-1" and a much162

more parameterized 3-layer model “MLP-2" likely to overfit. Hyperparameters for all models are163

shown in Tables 1 and 2.164

Intuition should tell us that the over-parameterized and under-regularized models GBDT-2 and MLP-2165

will perform better than GBDT-1 and MLP-1 on the Train set but not so on the Test set, and this is166

indeed the case as shown in the tables below. What we will show is this could also have been gleaned167

from the shapes of the decision boundaries for these classifiers, shown in the top row of Fig. 2: note168

how the shape of the overfit models’ decision boundaries is more complicated than that of the well-fit169

models. Computing γ(x) with r = 0.05 on a grid3 in a region safely enclosing all data points, we170

get the bottom row of plots. Notice that γ is non-zero only around the decision boundary, which for171

the overfit functions is always longer — these latter will thus have higher average γ, as we confirm172

in the tables. Computing γ thus identifies potential overfitting without need for checking a labeled173

validation or test set.174

What’s also interesting is that both wellfit models (GBDT-1 and MLP-1) have the same Test175

performance of 83%, but GBDT-1 has a slightly better γ (0.014) versus that of MLP-1 (0.016).176

One can easily see this difference from the lengths of the decision boundaries: the GBDT boundary177

consists of nearly straight lines while the MLP boundary is more curved. This illustrates how a model178

trainer with these test results might, from the perspective of robustness, prefer the GBDT model for179

use in inference.180

Table 1: GBDT models
GBDT-1 GBDT-2

max_depth 1 100
n_estimators 5 200
min_samples_split 2 2
learning_rate 0.1 1
Train accuracy 85% 100%
Test accuracy 83% 80%
γ (r=0.05) 0.014(2) 0.051(2)

Table 2: MLP models
MLP-1 MLP-2

max_iter 200 1000
layer dims (2,100,1) (2,100,500,1000,1)
initial learning_rate 0.001 0.01
alpha 1 · 10−4 0
Train accuracy 82% 86%
Test accuracy 83% 79%
γ (r=0.05) 0.016(1) 0.027(1)

It should be clear from the above, then, that the Harmonic Robustness metric clearly works on simple181

ML functions in low numbers of dimensions, where we can visually confirm areas of feature space182

which are more robust and compare robustness of different models over the same space.183

5 Application to high-dimension models184

In this section we will consider the more complex case of higher-dimensional models to illustrate185

how the technique adapts.186

The challenge of models over a larger number of dimensions (into the thousands or even millions) is187

three-fold:188

1. High-dimensional simplices are more expensive in compute and storage.189

2. High-dimensional models are typically more complex and take longer to run.190

3. γ itself might be high-dimensional and interpretation is not straightforward.191

3Dependence on r or grid-size was very mild; see Appendix.
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Figure 2: Decision regions (top row) and gamma contours (bottom row) of the two classifiers: GBDT
(left), and MLP (right). Gamma contours for radius=0.05 closely follow decision boundaries. Boxed
region shown corresponds to [[0,5],[1,4]] in the x (“flavanoids") and y (“OD280/OD315") plane.

For the first challenge, Mathematics is actually kind to us, where it turns out that for large n the192

n-simplex is approximately the same as the vertices of the n-dimensional hypercube (see Appendix),193

and that is trivial to compute. For the second challenge, we will have to limit the number of points194

on the ball in order to be able to compute γ in a reasonable amount of time. Thus we may take a195

random sampling of the hypercube as a necessary approximation. Finally, if the output is not just196

a scalar, but rather multidimensional, one must decide whether some additional transformation is197

needed for interpretation. To take a weather example, if the model output is a 3-dimensional wind198

velocity, then −→γ represents the instability in velocity, and one might want to take its magnitude or199

angle with respect to north to interpret as speed instability or directional bias, respectively.200

For the purpose of demonstration, we choose here to focus on high-dimensional image-classification201

models, due to popular practicality and ease of interpretation. The inputs (pixels) and outputs (class202

logits) are typically both high-dimensional, and would thus serve to illustrate the behavior of any203

other high-dimensional model as well. In particular, we consider ResNet-50 [22] and the Vision204

Transformer [23].205

5.1 ResNet-50 and ViT206

ResNet-50 and Vision Transformer (ViT) are image classifiers trained on 1000 distinct classes. To207

keep things manageable in this short work, we employ several restrictions: (1) Data is restricted to208

grayscale images: the value of every pixel is thus an integer from 0 to 255; (2) Images are rescaled to209

100x100 resolution: each image will thus be a 10000-dimensional vector; (3) Approximate simplices:210

10000-simplices are well-approximated as 1-hot vectors on the 10000-dim unit-hypercube as noted211

above; we scale each vector to magnitude 100 which amounts to a significant tone change at the212

position of the corresponding pixel. To increase ball coverage, we will use the simplices together213

with their reflections (anti-simplices); (4) Random sampling from simplices: rather than compute at214

all 20000 ball points (10000 simplex + 10000 anti-simplex) for each image, we take a random 0.1%215

sampling of such; (5) We compute γ only in the logit occupying the dimension of its predicted class216

label.217

We apply these models to an animals test set [24] consisting of over 20k color images of animals in218

various resolutions from a pre-determined set of 10 classes (dog, horse, elephant, butterfly, chicken,219

cat, cow, pig, spider, squirrel). Then, as described above, we rescale each image to 100x100 pixels220

and convert to grayscale before computing γ in its predicted class logit dimension. We evaluate 100221

images per class, which will be sufficient to see the trends in robustness and justify the use of our222

approximations above.223

For each image, we also execute an adversarial search process wherein we follow the gradient of γ224

for 25 iterations, recording the final image and its predicted class (see Algorithm 2 below). Each225

such image being only 25 pixels disparate from its original form, a change in class label is interpreted226

as "instability" in the original image, reminiscent of earlier gradient-based adversarial work [25].227
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Figure 3: Demonstration of adversarial search procedure: following the stochastically increasing
gradient of anharmoniticity brings out classification instability. The image at step N differs from the
original image by N pixels.

Note this procedure is actually stochastic gradient ascent as our γ-computation is based on random228

sampling of the hypercube.229

Algorithm 2 γ-Stochastic Adversarial Search at a point x in feature space

1: procedure ADVERSARIALSEARCH(x,r,N )
2: currPoint← x
3: numSteps← N
4: for each step in numSteps do
5: currGammas← {}
6: ballPoints← Ball(currPoint, r)
7: for each point in ballPoints do
8: currGammas[point]← γ(point, r)
9: end for

10: currPoint← argmax(currGammas)
11: end for
12: return currPoint
13: end procedure

We chose 25 as the number of steps to execute as preliminary experiments showed this is generally230

the number of pixels one needs to change for the data and models under review before adversarial231

examples appear. Figure 3 shows one of such experiments where we execute the adversarial search232

for 100 steps, the original class label changing ever more frequently along that path of (stochastically)233

increasing γ. This procedure is actually very effective for quickly and reliably finding adversarial234

attacks on any input image, e.g., see Figure 4 where we show examples from each class where the235

predicted class radically changes after changing just 25 scattered pixels according to our adversarial236

scheme. Presumably these models behave more stably on larger color images, but it is useful to see237

how they behave on out-of-domain data, and γ gives you a way to measure that.238

The reader may consult the Appendix for results on the full 1000 images, which we summarize239

here as supporting the conclusion that the generally more accurate ViT is also more robust(stable)240

than ResNet-50, except for the Cow and Squirrel class, and that γ, or rather γ in combination with241

the predicted class probability itself, accurately predicts this pattern as follows: the class softmax242

probability PC , controlled by the class logit (LC) and average logit (L),243

Prob(softmax)C ≡ PC ≡
eLC

Σi=1..Nclasses
eLi
≈ eLC

eLC + (Nclasses − 1) · eL
(4)
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Figure 4: Examples of adversarial examples in ResNet-50 from following gradient of γ for 25 steps.
Each image was originally correctly classified, but changed classes with modification of 25 scattered
pixels as shown.

(a) (b)

Figure 5: (a) Plotting predicted class probability P and γ for 1000+1000 images classified with
ResNet and ViT shows the unstable images tend to dominate high-γ/low-P regions. (b) Density
version of the previous plot serves as a practical "Gamma Map".

after a certain number N of gradient steps, is reduced by virtue of the class logit decreasing, on244

average, from LC to LC −Nγ, so the adjusted probability becomes245

P ′
C ≈

eLC−Nγ

eLC−Nγ + (Nclasses − 1) · eL
≈ PCe

−Nγ (5)

This metric, PCe
−Nγ , gives a sort of “N-step adversarial robustness" which one can immediately246

measure at inference time and correlates well with actual image stability. We obtain visual247

confirmation of this metric by plotting the measured values of Class Probability P and γ for each248

image, as well as whether it is stable or not after N=25 iterations, obtaining a “Gamma Map"249

(Figure 5). As a practical tool, this type of plot allows one to immediately gauge whether a predicted250

classification is likely to be stable just from measuring P and γ, i.e., without having to do a full251

adversarial search.252

6 Discussion and Conclusion253

The foregoing demonstrated computation and interpretation of anharmoniticity (γ) as a254

robustness(stability) metric for both a low-dimensional training setting, where γ can act as a regulator255

and rank models by degree-of-overfitting, as well as a rather different high-dimensional inference256
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setting where γ can feed into real-time performance feedback — from this the reader can interpolate257

and extend to other scenarios.258

Algorithmic implementation of γ is quite simple, straightforward, and applicable to any model259

function as a measure of robustness. Monitoring systems and testing procedures can easily integrate260

computations of γ as an alerting and regression test mechanism, respectively; for as we saw above for261

ViT and ResNet, accuracy does not imply robustness. We see no reason why model builders should262

hold back from computing γ alongside usual validation loss and other metrics to control overfitting.263

As a proxy for explainability, this may lead into incorporating other metrics for Responsible AI into264

the model life-cycle. As a metric to publish with a model’s quality card, one can envision reporting γ265

for different data sets, indicating where a model is expected to more perform robustly. As a standard266

for ML model quality, functional standards are translatable, shareable, and optimizable across the267

industry; they may even point to certain mathematical truths pertaining to optimal ML systems.268

We close with emphasizing a possibly trailblazing facet of our work: that one may apply a functional269

mathematical standard, i.e., conformity to the properties of harmonic functions, to a ML system as270

a way of assessing its quality and propriety for public usage. The harmonic standard may not be271

necessarily ideal, most real-world ML functions being far from harmonic, but we posit that it is better272

to reference a mathematically sound standard than having no such standard at all, giving AI systems273

free reign in their inner complexity while relying on conventional external metrics like precision and274

recall for quality control. For, assuming the white- or gray-box environment is not always going to be275

available to us, if we do not devise multiple ways to check models’ inner complexity in a black-box276

environment, we will be giving up too much control over what these systems may surprise us with.277
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