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Figure 1: Given a set of images of a specific scene, Test3R improves the quality of reconstruction by
maximizing the consistency between the pointmaps generated from multiple image pairs.

Abstract

Dense matching methods like DUSt3R regress pairwise pointmaps for 3D recon-
struction. However, the reliance on pairwise prediction and the limited gener-
alization capability inherently restrict the global geometric consistency. In this
work, we introduce Test3R, a surprisingly simple test-time learning technique that
significantly boosts geometric accuracy. Using image triplets (I1, I2, I3), Test3R
generates reconstructions from pairs (I1, I2) and (I1, I3). The core idea is to op-
timize the network at test time via a self-supervised objective: maximizing the
geometric consistency between these two reconstructions relative to the common
image I1. This ensures the model produces cross-pair consistent outputs, regardless
of the inputs. Extensive experiments demonstrate that our technique significantly
outperforms previous state-of-the-art methods on the 3D reconstruction and multi-
view depth estimation tasks. Moreover, it is universally applicable and nearly
cost-free, making it easily applied to other models and implemented with min-
imal test-time training overhead and parameter footprint. Code is available at
https://github.com/nopQAQ/Test3R.
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Figure 2: Inconsistency Study. On the left are two image pairs sharing the same reference view I1
but with different source views I2 and I3. On the right are the corresponding point maps, with each
color indicating the respective image pair.

1 Introduction

3D reconstruction from multi-view images is a cornerstone task in computer vision. Traditionally,
this process has been achieved by assembling classical techniques such as keypoint detection [1–
3] and matching [4, 5], robust camera estimation [4, 6], Structure-from-Motion(SfM), Bundle
Adjustment(BA) [7–9], and dense Multi-View Stereo [10, 11]. Although effective, these multi-
stage methods require significant engineering effort to manage the entire process. This complexity
inherently constrains their scalability and efficiency.

Recently, dense matching methods, such as DUSt3R [12] and MAST3R [13], have emerged as
compelling alternatives. At its core, DUSt3R utilizes a deep neural network trained to predict dense
correspondences between image pairs in an end-to-end fashion. Specifically, DUSt3R takes in two
images and, for each, predicts a pointmap. Each pointmap represents the 3D coordinates of every
pixel, as projected into a common reference view’s coordinate system. Once pointmaps are generated
from multiple views, DUSt3R aligns them by optimizing the registration of these 3D points. This
process recovers the camera pose for each view and reconstructs the overall 3D geometry.

Despite its huge success, this pair-wise prediction paradigm is inherently problematic. Under such a
design, the model considers only two images at a time. Such a constraint leads to several issues.

To investigate this, we compare the pointmaps of image I1 but with different views I2 and I3
in Figure 2. It demonstrates that the predicted pointmaps are imprecise and inconsistent. Firstly,
the precision of geometric predictions can suffer because the model is restricted to inferring scene
geometry from just one image pair. This is especially true for short-baseline cases [14], where small
camera movement leads to poor triangulation and thus inaccurate geometry. Second, reconstructing an
entire scene requires pointmaps from multiple image pairs. Unfortunately, these individual pairwise
predictions may not be mutually consistent. For example, the pointmap predicted from (I1, I2,@@I3)
may not align with the prediction from (I1,@@I2, I3), as highlighted by the color difference in Figure 2.
This local inconsistency further leads to discrepancies in the overall reconstruction. What makes
things worse, the model, like many deep learning systems, struggles to generalize to new or diverse
scenes. Such limitations directly exacerbate the previously discussed problems of precision and
inter-pair consistency. Consequently, even with a final global refinement stage, inaccurate pointmaps
lead to persistent errors.

To address these problems, in this paper, we present Test3R, a novel yet strikingly simple solution
for 3D reconstruction, operating entirely at test time. Its core idea is straightforward: Maximizing
the consistency between the reconstructions generated from multiple image pairs. This principle is
realized through two basic steps:

1. Given image triplets (I1, I2, I3), Test3R first estimates two initial pointmaps with respect to
I1: X1 from pairs (I1, I2) and X2 from (I1, I3).

2. Test3R optimizes the network, so that the two pointmaps are cross-pair consistent, i.e.,
X1 ≈ X2. Critically, this optimization is performed at test time via prompt tuning [15].

Despite its simplicity, Test3R offers a robust solution to all challenges mentioned above. It ensures
consistency by aligning local two-view predictions, which resolves inconsistencies. This same
mechanism also improves geometric precision: if a pointmap from short-baseline images is imprecise,
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Test3R pushes it closer to an overall global prediction, which reduces errors. Finally, Test3R adapts
to new, unseen scenes, minimizing its errors on unfamiliar data.

We evaluated Test3R on the DUSt3R for 3D reconstruction and multi-view depth estimation. Test3R
performs exceptionally well across diverse datasets, improving upon vanilla DUSt3R to achieve
competitive or state-of-the-art results in both tasks. Surprisingly, for multi-view depth estimation,
Test3R even surpasses baselines requiring camera poses and intrinsics, as well as those trained on the
same domain. This further validates our model’s robustness and efficacy.

The best part is that Test3R is universally applicable and nearly cost-free for these pair-wise methods.
This means it can easily be applied to other models sharing a similar pipeline. We validated this by
incorporating our design into two categories of models, pairwise methods like MonST3R [16] and
MAST3R [13], and multi-view models like VGGT [17]. Experimental results confirmed substantial
performance improvements for both models.

The contributions of this work are as follows:

• We introduce Test3R, a novel yet simple solution to learn the reconstruction at test time. It
optimizes the model via visual prompts to maximize the cross-pair consistency. It provides a robust
solution to the challenges of the pairwise prediction paradigm and limited generalization capability.

• We conducted comprehensive experiments across several downstream tasks on the DUSt3R. Exper-
iment results demonstrate that Test3R not only improves the reconstruction performance compared
to vanilla DUSt3R but also outperforms a wide range of baselines.

• Our design is universally applicable and nearly cost-free. It can be easily applied to other models
and implemented with minimal test-time training overhead and parameter footprint.

2 Related Work

2.1 Multi-view Stereo

Multi-view Stereo(MVS) aims to densely reconstruct the geometry of a scene from multiple overlap-
ping images. Traditionally, all camera parameters are often estimated with SfM [18], as the given
input. Existing MVS approaches can generally be classified into three categories: traditional hand-
crafted [11, 19–21], global optimization [22–25], and learning-based methods [10, 26–29]. Recently,
DUSt3R [12] has attracted significant attention as a representative of learning-based methods. It
attempts to estimate dense pointmaps from a pair of views without any explicit knowledge of the
camera parameters. Subsequent tremendous works focus on improving its efficiency [17, 30, 31],
quality [13, 17, 32], and broadening its applicability to dynamic reconstruction [16, 33–35] and 3D
perception [36]. The majority employ the pairwise prediction strategy introduced by DUSt3R [12].
However, the pair-wise prediction paradigm is inherently problematic. It leads to low precision and
mutually inconsistent pointmaps. Furthermore, the limited generalization capability of the model
exacerbates these issues. This challenge continues even with the latest models [17, 37], which
can process multiple images in a single forward pass. While potentially more robust, these newer
approaches demand significantly larger resources for training and, importantly, still face challenges in
generalizing to unseen environments. To this end, we introduce a novel test-time training technique.
This simple design ensures the cross-pairs consistency by aligning local two-view predictions to push
the pointmaps closer to an overall global prediction, which addresses all challenges mentioned above.

2.2 Test-time Training

The idea of training on unlabeled test data dates back to the 1990s [38], called transductive learning.
As Vladimir Vapnik [39] famously stated, “Try to get the answer that you really need but not a more
general one”, this principle has been widely applied to SVMs [40, 41] and recently in large language
models [42]. Another early line of work is local learning [43, 44]: for each test input, a “local” model
is trained on the nearest neighbors before a prediction is made. Recently, Test-time training(TTT) [45]
proposes a general framework for test-time training with self-supervised learning, which produces a
different model for every single test input through the self-supervision task. This strategy allows the
model trained on the large-scale datasets to adapt to the target domain at test time. Many other works
have followed this framework since then [46–49]. Inspired by these studies, we introduce Test3R,
a novel yet simple technique that extends the test-time training paradigm to the 3D reconstruction
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domain. Our model exploits the cross-pairs consistency as a strong self-supervised objective to
optimize the model parameters at test time, thereby improving the final quality of reconstruction.

2.3 Prompt tuning

Prompt tuning was first proposed as a technique that appends learnable textual prompts to the input
sequence, allowing pre-trained language models to adapt to downstream tasks without modifying the
backbone parameters [50]. In follow-up research, a portion of studies [51, 52] explored strategies for
crafting more effective prompt texts, whereas others [53–55] proposed treating prompts as learnable,
task-specific continuous embeddings, which are optimized via gradient descent during fine-tuning
referred to as Prompt Tuning. In recent years, prompt tuning has also received considerable attention
in the 2D vision domain. Among these, Visual Prompt Tuning (VPT) [15] has gained significant
attention as an efficient approach specifically tailored for vision tasks. It introduces a set of learnable
prompt tokens into the pretrained model and optimizes them using the downstream task’s supervision
while keeping the backbone frozen. This strategy enables the model to transfer effectively to
downstream tasks. In our study, we leverage the efficient fine-tuning capability of VPT to optimize
the model to ensure the pointmaps are cross-view consistent. This design makes our model nearly
cost-free, requiring minimal test-time training overhead and a small parameter footprint.

3 Preliminary of DUSt3R

Given a set of images {Ik} of a specific scene, DUSt3R [12] achieves high precision 3D reconstruction
by predicting pairwise pointmaps of all views and global alignment.

Pairwise prediction. Briefly, DUSt3R takes a pair of images, I1, I2 ∈ RW×H×3 as input and
outputs the corresponding pointmaps X1,1, X2,1 ∈ RW×H×3 which are expressed in the same
coordinate frame of I1. In our paper, we refer to the viewpoint of I1 as the reference view, while the
other is the source view. Therefore, the pointmaps X1,1, X2,1 can be denoted as Xref,ref , Xsrc,ref ,
respectively.

In more detail, these two input images Iref , Isrc are first encoded by the same weight-sharing
ViT-based model [56] with Ne layers to yield two token representations F ref and F src:

F ref = Encoder(Iref ), F src = Encoder(Isrc) (1)

After encoding, the network reasons over both of them jointly in the decoder. Each decoder block
also attends to tokens from the other branch:

Gref
i = DecoderBlockrefi (Gref

i−1, G
src
i−1) (2)

Gsrc
i = DecoderBlocksrci (Gsrc

i−1, G
ref
i−1) (3)

where i = 1, · · · , Nd for a decoder with Nd decoder layers and initialized with encoder tokens
Gref

0 = F ref and Gsrc
0 = F src. Finally, in each branch, a separate regression head takes the set of

decoder tokens and outputs a pointmap and an associated confidence map:

Xref,ref , Cref,ref = Headref (Gref
0 , . . . , Gref

Nd
), (4)

Xsrc,ref , Csrc,ref = Headsrc(Gsrc
0 , . . . , Gsrc

Nd
). (5)

Global alignment. After predicting all the pairwise pointmaps, DUSt3R introduces a global align-
ment to handle pointmaps predicted from multiple images. For the given image set {Iit}

Nt
i=1, DUSt3R

first constructs a connectivity graph G(V, E) for selecting pairwise images, where the vertices V
represent Nt images and each edge e ∈ E is an image pair. Then, it estimates the depth maps
D := {Dk} and camera pose π := {πk} by

argmin
D,π,σ

∑
e∈E

∑
v∈e

Ce
v ∥Dv − σePe(πv,X

e
v)∥

2
2 , (6)

where σ = {σe} are the scale factors defined on the edges, Pe(πv,Xe
v) means projecting the predicted

pointmap Xe
v to view v using poses πv to get a depth map. The objective function in eq. (6) explicitly

constrains the geometry alignment between frame pairs, aiming to preserve cross-view consistency in
the depth maps.
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4 Methods

Test3R is a test-time training technique that adapts DUSt3R [12] to challenging test scenes. It
improves reconstruction by maximizing cross-pair consistency. We begin by analyzing the root cause
of inconsistency in Sec. 4.1. In Sec. 4.2, we establish the core problem and define the test-time
training objective. Finally, we employ prompt tuning for efficient test-time adaptation in Sec. 4.3.

4.1 Cross-pair Inconsistency

DUSt3R [12] aims to achieve consistency through global alignment; however, the inaccurate and
inconsistent pointmaps lead to persistent errors, significantly compromising the effectiveness of
global alignment.
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Figure 3: Overview of Test3R. The primary goal of Test3R is to adapt a pretrained reconstruction
model fs to the specific distribution of test scenes ft. It achieves this goal by optimizing a set of
visual prompts at test time through a self-supervised training objective that maximizes cross-pair
consistency between Xref,ref

1 and Xref,ref
2 .

Therefore, we show a qualitative analysis of the quality of pointmaps on the DTU [57] and
ETH3D [58] datasets. Specifically, we compare the pointmap for the same reference view but
paired with two different source views, and align these two pointmaps to the same coordinate system
using Iterative Closest Point (ICP). The result is shown in Figure 2. On the left are two image pairs
sharing the same reference view but with different source views. On the right are the corresponding
pointmaps, with each color indicating the respective image pair.

Observations. These two predicted pointmaps of the reference view exhibit inconsistencies, as
highlighted by the presence of large regions with inconsistent colors in 3D space. Ideally, if these
pointmaps are consistent, they should be accurate enough to align perfectly in 3D space, resulting in
a single, unified color (either blue or red). This result indicates that DUSt3R may produce different
pointmaps for the same reference view when paired with different source views.

In our view, this phenomenon stems from the problematic pair-wise prediction paradigm. First,
since only two views are provided as input at each prediction step, the scene geometry is estimated
solely based on visual correspondences between a single image pair. Therefore, the model produces
inaccurate pointmaps. Second, all predicted pointmaps are mutually inconsistent individual pairs.
For different image pairs, their visual correspondences are also different. As a result, DUSt3R may
produce inconsistent pointmaps for the same reference view when paired with different source views
due to the different correspondences. This issue significantly hinders the effectiveness of subsequent
global alignment and further leads to discrepancies in the overall reconstruction. What’s worse, the
limited generalization capability of DUSt3R further exacerbates the above issues of low precision
and cross-pair inconsistency.
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4.2 Triplet Objective Made Consistent

The inconsistencies observed above highlight a core limitation of the pairwise prediction paradigm.
Specifically, DUSt3R may produce different pointmaps for the same reference view when paired with
different source views. This motivates a simple but effective idea: enforce triplet consistency across
these pointmaps directly at test time, as shown in Figure 3.

Definition. We first describe the definition of test-time training on the 3D reconstruction task, where
only images {Iit}

Nt
i=1 from the test scene are available. During training time training phase, Ns labeled

samples {Iis, X̄i
s}

Ns
i=1 collected from various scenes are given, where Iis ∈ Is and X̄i

s ∈ X̄s are images
and the corresponding pointmaps derived from the ground-truth depth D̄s ∈ D̄s. Furthermore, we
denote DUSt3R [12], parameterized by θ, as the model trained to learn the reconstruction function
fs : Is → X̄s. Subsequently, during test time training phase, only unlabeled images {Iit}

Nt
i=1 from

test scene are available, where Iit ∈ It. Our goal is to optimize the model fs to the specific scene
ft : It → X̄t at test time. This is achieved by minimizing the self-supervised training objective ℓ.

Specifically, our core training objective is to maximize the geometric consistency by aligning the
pointmaps of the reference view when paired with different source views. For a set of images {Iit}

Nt
i=1

from the specific scene, we consider a triplet consisting of one reference view and two different
source views, denoted as (Iref , Isrc1, Isrc2). Subsequently, Test3R forms two reference–source view
pairs (Iref , Isrc1) and (Iref , Isrc2) from this triplets. These reference–source view pairs are then
fed into the Test3R independently to predict pointmaps of reference views under different source
view conditions in the same coordinate frame of Iref , denoted as Xref,ref

1 and Xref,ref
2 . Finally, we

construct the training objective by aligning these two inconsistent pointmaps, formulated as:

ℓ =
∥∥∥Xref,ref

1 −Xref,ref
2

∥∥∥
1
. (7)

With this objective, we can collectively compose triplets from a large number of views of an unseen 3D
scene at test time. It guides the model to successfully resolve the limitations mentioned in Section 4.1.
For inconsistencies, it ensures consistency by aligning the local two-view predictions. Meanwhile, it
also pushes the predicted pointmap closer to an overall global prediction to mitigate the inaccuracy.
Moreover, by optimizing for the specific scene at test time, it enables the model to adapt to the
distribution of that scene.

4.3 Visual Prompt Tuning for Test Time Training

After the self-supervised training objective is defined, effectively modulating the model during test-
time training for specific scenes remains a non-trivial challenge. During the test-time training phase,
it only relies on unsupervised training objectives. However, these objectives are often noisy and
unreliable, which makes the model prone to overfitting and may lead to training collapse, especially
when only a limited number of images are available for the current scene. Fortunately, similar issues
has been partially explored in the 2D vision community. In these works, visual prompt tuning [15] has
demonstrated strong effectiveness in domain adaptation in 2D classification tasks [59]. It utilizes a
set of learnable continuous parameters to learn the specific knowledge while retaining the knowledge
learned from large-scale pretraining. Motivated by this, we explore the use of visual prompts as a
carrier to learn the geometric consistency for specific scenes.

Specifically, we incorporate a set of learnable prompts into the encoder of DUSt3R [12]. Consider an
encoder of DUSt3R with Ne standard Vision Transformer(ViT) [56] layers, an input image is first
divided into fixed-sized patches and then embedded into d-dimensional tokens E0 = {ek0 ∈ RD|k ∈
N, 1 ≤ k ≤ Nt}, where Nt is the length of image patch tokens. Subsequently, to optimize the model,
we introduce a set of learnable prompt tokens {Pi−1}Ne

i=1 into each Transformer layer. For i− th
transformer layer, the prompt tokens are denoted as Pi−1 = {pk

i−1 ∈ RD|k ∈ N, 1 ≤ k ≤ Np},
where Np is the length of prompt tokens. Therefore, the encoder layer augmented by visual prompts
is formulated as:

[_,Ei] = Li([Pi−1,Ei−1]) (8)

where Pi−1 and Ei−1 are learnable prompt tokens and image patch tokens at i− 1-th Transformer
layer.
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Figure 4: Qualitative Comparison on 3D Reconstruction.

Test-time training. We only fine-tune the parameters of the prompts, while all other parameters are
fixed. This strategy enables our model to maximize geometric consistency by optimizing the prompts
at test time while retaining the reconstruction knowledge acquired from large-scale datasets training
within the unchanged backbone.

5 Experiment

We evaluate our method across a range of 3D tasks, including 3D Reconstruction( Section 5.1) and
Multi-view Depth( Section 5.2). Moreover, we discuss the generalization of Test3R and the prompt
design( Section 5.3). Additional experiments and detailed information are provided in the appendix.

Baselines. Our primary baseline is DUSt3R [12], which serves as the backbone of our technique in
the experiment. Subsequently, we select different baselines for the specific tasks to comprehensively
evaluate the performance of our proposed method. For the 3D reconstruction task, which is the
primary focus of the majority of 3R-series models, we compared our method with current mainstream
approaches to evaluate its effectiveness. It includes MAST3R [13], MonST3R [16], CUT3R [35] and
Spann3R [31]. All of these models are follow-up works building on the foundation established by
DUSt3R [12]. Furthermore, for the multi-view depth estimation task, we not only compare our model
with baselines [60, 61] that do not require camera parameters but also evaluate our model against
methods [9, 11, 28, 60–63, 63, 64] that rely on camera parameters or trained on datasets from the
same distribution to demonstrate the effectiveness of our technique.

5.1 3D Reconstruction

We utilize two scene-level datasets, 7Scenes [65] and NRGBD [66] datasets. We follow the exper-
iment setting on the CUT3R [35], and employ several commonly used metrics: Accuracy (Acc),
Completion (Comp), and Normal Consistency (NC) metrics. Each scene has only 3 to 5 views
available for the 7Scenes [65] dataset and 2 to 4 views for NRGBD [66] dataset. This is a highly
challenging experimental setup, as the overlap between images in each scene is minimal, demanding
a strong scene reconstruction capability.

Quantitative Results. The quantitative evaluation is shown in Table 1. Compared to vanilla
DUSt3R [12], our model demonstrates superior performance, outperforming DUSt3R on the majority
of evaluation metrics, particularly in terms of mean accuracy and completion. Moreover, our approach
achieves comparable or even superior results compared to mainstream methods. Only CUT3R [35]
and MAST3R [13] outperform our approach on several metrics. This demonstrates the effectiveness
of our test-time training strategy.
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Qualitative Results. The qualitative results are shown in Figure 4. We compare our method
with CUT3R [35] and DUSt3R [12] on the Office and Kitchen scenes from the 7Scenes [65] and
NRGBD [66] datasets, respectively. We observe that DUSt3R incorrectly regresses the positions
of scene views, leading to errors in the final scene reconstruction. In contrast, our model achieves
more reliable scene reconstructions. This improvement is particularly evident in the statue in the
Office scene and the wall in the Kitchen scene. For these two objects, the reconstruction results from
DUSt3R are drastically different from the ground truth. Compared to CUT3R [35], the current state-
of-the-art in 3D reconstruction, we achieve better reconstruction results. Specifically, we effectively
avoid the generation of outliers, resulting in more accurate pointmaps. Details can be seen in the red
bounding boxes as shown in Figure 4.

Table 1: 3D reconstruction comparison on 7Scenes and NRGBD datasets.
7Scenes NRGBD

Acc↓ Comp↓ NC↑ Acc↓ Comp↓ NC↑
Method Mean Med. Mean Med. Mean Med. Mean Med. Mean Med. Mean Med.

MAST3R [13] 0.189 0.109 0.211 0.110 0.687 0.766 0.085 0.033 0.063 0.028 0.794 0.928
MonST3R [16] 0.240 0.180 0.268 0.167 0.672 0.758 0.272 0.114 0.287 0.110 0.758 0.843
Spann3R [31] 0.298 0.226 0.205 0.112 0.650 0.730 0.416 0.323 0.417 0.285 0.684 0.789
CUT3R [35] 0.126 0.047 0.154 0.031 0.727 0.834 0.099 0.031 0.076 0.026 0.837 0.971
DUSt3R [12] 0.146 0.078 0.181 0.067 0.736 0.839 0.144 0.019 0.154 0.018 0.871 0.982
Test3R(Ours) 0.105 0.051 0.136 0.035 0.746 0.855 0.083 0.021 0.079 0.019 0.870 0.983

Table 2: Multi-view depth evaluation. (Parentheses) denote training on data from the same domain.

Method GT
Pose

GT
Range

GT
Intrinsics Align DTU ETH3D AVG

rel ↓ τ ↑ rel ↓ τ↑ rel ↓ τ↑

COLMAP [9, 11] ✓ ✕ ✓ ✕ 0.7 96.5 16.4 55.1 8.6 75.8
COLMAP Dense [9, 11] ✓ ✕ ✓ ✕ 20.8 69.3 89.8 23.2 55.3 46.3

MVSNet [28] ✓ ✓ ✓ ✕ (1.8) (86.0) 35.4 31.4 18.6 58.7
Vis-MVSSNet [63] ✓ ✓ ✓ ✕ (1.8) (87.4) 10.8 43.3 6.3 65.4

MVS2D ScanNet [64] ✓ ✓ ✓ ✕ 17.2 9.8 27.4 4.8 22.3 7.3
MVS2D DTU [64] ✓ ✓ ✓ ✕ (3.6) (64.2) 99.0 11.6 51.3 37.9

DeMoN [60] ✓ ✕ ✓ ✕ 23.7 11.5 19.0 16.2 21.4 13.9
DeepV2D KITTI [61] ✓ ✕ ✓ ✕ 24.6 8.2 30.1 9.4 27.4 8.8

DeepV2D ScanNet [61] ✓ ✕ ✓ ✕ 9.2 27.4 18.7 28.7 14.0 28.1
MVS2D ScanNet [64] ✓ ✕ ✓ ✕ 5.0 57.9 30.7 14.4 17.9 36.2

Robust MVD Baseline [62] ✓ ✕ ✓ ✕ 2.7 82.0 9.0 42.6 5.9 62.3

DeMoN [60] ✕ ✕ ✓ ||t|| 21.8 16.6 17.4 15.4 19.6 16.0
DeepV2D KITTI [61] ✕ ✕ ✓ med 24.8 8.1 27.1 10.1 26.0 9.1

DeepV2D ScanNet [61] ✕ ✕ ✓ med 7.7 33.0 11.8 29.3 9.8 62.3
DUSt3R [1] ✕ ✕ ✕ med 3.3 69.9 3.3 73.0 3.3 71.5

Test3R(Ours) ✕ ✕ ✕ med 2.0 84.1 3.2 74.0 2.6 79.1

5.2 Multi-view Depth

Following RobustMVD [62], performances are measured on the object-centric dataset DTU [57] and
scene-centric dataset ETH3D [58]. To evaluate the depth map, we report the Absolute Relative Error
(rel) and the Inlier Ratio (τ ) at a threshold of 3% on each test set and the averages across all test sets.

Quantitative Results. The quantitative evaluation is shown in Table 2. On the DTU dataset, our
model significantly improves upon the performance of vanilla DUSt3R, reducing the Absolute
Relative Error by 1.3 and increasing the Inlier Ratio by 14.2. Similarly, on the ETH3D dataset, our
model also demonstrates comparable improvements, achieving state-of-the-art performance on this
challenging benchmark as well. Notably, our model surpasses the majority of methods that rely on
camera poses and intrinsic parameters, and the models trained on the dataset from the same domain.
This indicates that our approach effectively captures scene-specific global information and enables
the adaptation of the distribution of test scenes, thereby significantly improving the quality of the
depth maps.

Qualitative Results. The qualitative result is shown in Figure 5. We present the depth map on the
key view, following RobustMVD [62]. We observe that Test3R effectively improves the accuracy of
depth estimation compared to DUSt3R and RobustMVD [62] with camera parameters. Specifically,
Test3R captures more fine-grained details, including the computer chassis and table. Additionally,
on the white-background DTU dataset, Test3R effectively understands scene context, allowing it to
accurately estimate the depth of background regions.
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Figure 5: Qualitative Comparison on Multi-view Depth.

5.3 Ablation Study and Analysis

5.3.1 Framework Generalization.

To demonstrate the generalization ability of our proposed technique, we applied Test3R to
MAST3R [13] and MonST3R [16], and evaluated the performances on the 7Scenes [65] dataset.
As shown in Table 3, Test3R effectively improves the performance of MAST3R and MonST3R on
3D reconstruction task. This demonstrates the generalization ability of our technique, which can be
applied to other models sharing a similar pipeline.

5.3.2 Ablation on Visual Prompt.

We introduce a model variant, Test3R-S, and conduct an ablation study to evaluate the impact of visual
prompts. For Test3R-S, the prompts are only inserted into the first Transformer layer, accompany the
image tokens through the encoding process, and are then discarded.

Table 3: Generalization Study.
7Scenes

Acc↓ Comp↓ NC↑
Method Mean Med. Mean Med. Mean Med.

MAST3R [13] 0.189 0.109 0.211 0.110 0.687 0.766
MAST3R(w. Test3R) 0.179 0.108 0.177 0.059 0.702 0.788

MonST3R [16] 0.240 0.180 0.268 0.167 0.672 0.758
MonST3R(w. Test3R) 0.218 0.167 0.251 0.160 0.687 0.775

Table 4: Ablation study on Visual Prompt.

Varients

Prompts Length

8 16 32 64

Acc↓ Comp↓ Acc Comp↓ Acc↓ Comp↓ Acc↓ Comp↓

Test3R-S 0.133 0.142 0.125 0.159 0.120 0.158 0.119 0.163

Test3R 0.118 0.131 0.122 0.155 0.105 0.136 0.149 0.170

The result is shown in Table 4. Both Test3R-S and Test3R effectively improve model performance,
compared to vanilla DUSt3R. For prompt length, we observe that when the number of prompts is
small, increasing the prompt length can enhance the ability of Test3R to improve reconstruction
quality. However, as the prompt length increases, the number of trainable parameters also grows,
making it more challenging to converge within the same number of iterations, thereby reducing
their overall effectiveness. For prompt insertion depth, we observe that Test3R, which uses distinct
prompts at each layer, demonstrates superior performance. This is because the feature distributions
vary across each layer of the encoder of DUSt3R, making layer-specific prompts more effective
for fine-tuning. However, as the number of prompt parameters increases, Test3R becomes more
susceptible to optimization challenges compared to Test3R-S, leading to a faster performance decline.
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6 Conclusion

In this paper, we present Test3R, a novel yet strikingly simple solution that learns to reconstruct at
test time. It maximizes the cross-pair consistency via optimizing a set of visual prompts at test time.
This design successfully mitigates the reconstruction quality degradation caused by the pairwise
predictions paradigm and limited generalization capability. Extensive experiments show that our
simple design not only effectively improves model performance but also achieves state-of-the-art
performance across various tasks. Moreover, our technique is universally applicable and nearly
cost-free, which can be widely applied to different models and implemented with minimal test-time
training overhead and parameter footprint.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Test3R significantly improves the performance of DUSt3R and can achieve
performance comparable to current baselines, as demonstrated in Table 1 and Table 2.
Moreover, it can also be applied to other models Table 3.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations. Please see in appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: This paper does not involve theoretical result.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper shows the results needed and ablation study in Section 5. All of the
results are reproducible.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The code will be open-sourced upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The detailed experiment settings are listed in Section 5, and appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The experiment metrics are calculated on several large-scale datasets. We
follow the widely adopted benchmarks and list the essential detailed quantitative results
in Section 5. None of them report error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides sufficient information on the computer resources in ap-
pendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses potential positive societal impacts and negative societal
impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not pose such a risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Proper credit is given to the creators or original owners of assets used in the
paper, and the license and terms of use are explicitly mentioned and respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing and nor research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not related.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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