

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 HEAR: HIGH-FREQUENCY ENHANCED AUTOREGRESSIVE MODELING FOR IDENTITY-PRESERVING IMAGE GENERATION

006 **Anonymous authors**

007 Paper under double-blind review

030 **Figure 1: Showcases of the exceptional ability of HEAR to preserve individual identity while**
031 **maintaining high visual fidelity. Our method consistently retains identity-specific features across**
032 **diverse conditions, including varying artistic styles, age groups, and skin tones.**

ABSTRACT

035 Recent autoregressive models such as LlamaGen, VAR, and Infinity have demon-
036 strated remarkable advancements in image generation, even surpassing popular
037 diffusion models in several aspects. However, diffusion models still dominate
038 in controllable image generation, particularly in identity-preserving (IP) text-to-
039 image generation, where autoregressive approaches remain underexplored. To
040 bridge this gap, we propose **HEAR**, a high-frequency enhanced autoregressive
041 identity-preserving text-to-image framework based on a coarse-to-fine next-scale
042 prediction paradigm, which leverages the key property of VAR we discovered for
043 separating high- and low-frequency features in image generation. Innovations of
044 our method include: (1) A comprehensive identity data curation pipeline that inte-
045 grates powerful open-source vision-language models (VLMs) for image filtering and
046 recaptioning, along with diffusion models for generating high-quality syn-
047 synthetic training data; (2) A high-frequency identity feature tokenizer, fine-tuned
048 with compound losses and face-specific masking, to enhance high-frequency fea-
049 tures essential for identity preservation; (3) A dual-control strategy in the au-
050 toregressive backbone, incorporating global information into the cross-attention
051 blocks and introducing a decoupled adapter operating in parallel to maintain
052 high-frequency details. Extensive experiments demonstrate that HEAR surpasses
053 mostly existing diffusion-based methods in identity-preserving image generation.
This work presents a general and scalable autoregressive framework for control-
lable image generation.

054
055

1 INTRODUCTION

056 The rapid advancement of autoregressive (AR) models (Lee et al., 2022; Zheng et al., 2022; Huang
 057 et al., 2023; Yu et al., 2024c; Tian et al., 2024) has recently driven significant progress in text-to-
 058 image generation (Sun et al., 2024; Han et al., 2024). However, research on controllable generation,
 059 particularly identity-preserving (IP) image generation in autoregressive frameworks remains signifi-
 060 cantly underexplored compared to the remarkable success of diffusion models (Ye et al., 2023; Wang
 061 et al., 2024b; Li et al., 2024d). While diffusion-based paradigms (Sohl-Dickstein et al., 2015; Song
 062 et al., 2020; Dhariwal & Nichol, 2021; Betker et al., 2023; Esser et al., 2024) have dominated the
 063 field of controllable image generation (Zhang et al., 2023; Mou et al., 2024), their sequential denois-
 064 ing process and architectural heterogeneity fundamentally conflict with the requirements for unified
 065 multimodal modeling (Xie et al., 2024b; Yang et al., 2025). These limitations motivate our investi-
 066 gation into controllable image generation within autoregressive frameworks (Li et al., 2024c;e; Xiao
 067 et al., 2024), with a particular emphasis on identity-preserving image synthesis, which remains an
 068 open challenge in autoregressive-based methods.

069 Traditional autoregressive frameworks for image generation preliminary rely on next-token predic-
 070 tion for sequential modeling (Sun et al., 2024; Tang et al., 2024; Fan et al., 2024). However, this
 071 token-level sequential modeling paradigm poses significant challenges for image generation, as it
 072 lacks the flexibility to revise previously generated tokens based on subsequent tokens' information,
 073 creating critical limitations in achieving global coherence (Pang et al., 2024; Tian et al., 2024). Re-
 074 cent advances have introduced novel approaches to address these limitations in visual autoregressive
 075 modeling. VAR (Tian et al., 2024) proposes a novel next-scale prediction mechanism, redefining
 076 image generation as a hierarchical coarse-to-fine process. Its scale-wise image generation process
 077 shares structural similarities with the denoising process in diffusion models, as both employ pro-
 078 gressive refinement from global structures to fine details, but it requires fewer steps. Building on
 079 this, Infinity (Han et al., 2024) extends VAR for scalable text-to-image generation. Next-scale pre-
 080 diction explicitly separates low-frequency macroscopic structures from high-frequency microscopic
 081 details during image generation. This leads us to posit that the paradigm is especially well-suited
 082 for identity-preserving image generation tasks, which demand precise control over high-frequency
 083 details.

084 We conducted experiments to validate our arguments by sampling 2,000 diverse text prompts and
 085 measuring both pixel-level and token-level reconstruction losses using Infinity (Han et al., 2024).
 086 At each scale, we sum the tokens predicted from all previous scales and reconstruct the intermediate
 087 image via detokenization. As shown in Fig. 2 (a), fundamental low-frequency features such as
 088 layout and color are largely established in the early scales, while later scales focus on refining
 089 details and reconstructing high-frequency components. Fig. 2 (b) further illustrates this high-low
 090 frequency separation through metric trends: in the later stages of image generation, pixel-level MSE
 091 exhibits smaller changes, indicating that these later scales primarily concentrate on fine-grained
 092 detail reconstruction. This empirical observation supports the effectiveness of the hierarchical VAR
 093 modeling paradigm, which performs coarse-to-fine feature decomposition with explicit separation
 094 of high- and low-frequency components, making it particularly well-suited for identity-preserving
 095 tasks that demand precise control over high-frequency information.

096 The separation of fine and coarse features in the hierarchical prediction framework renders it highly
 097 effective in identity-preserving text-to-image synthesis. To this end, we introduce HEAR, a high-
 098 frequency enhanced autoregressive identity-preserving text-to-image framework based on coarse-to-
 099 fine next-scale prediction paradigm for high-quality identity-preserving image generation. We first
 100 leverage the powerful open-sourced Vision-Language Models (VLMs) to perform precise face data
 101 filtering and recaption, while employing advanced generative models, including FLUX-dev(Labs,
 102 2024) and SD3.5-large(Rombach et al., 2022) for high-quality synthetic data generation. Then we
 103 proposed a high-frequency identity encoder to specifically extract high-frequency face features. The
 104 training process employed multiple heterogeneous loss functions (including structural similarity loss
 105 and detail reconstruction loss) combined with a novel face-specific loss mask, which strategically
 106 weights facial regions through adaptive attention mechanisms during backpropagation. Finally, we
 107 implement a dual-controllable strategy for the backbone architecture by first injecting global in-
 108 formation into the original cross-attention block and then incorporating a decoupled adapter that
 109 operates in parallel to preserve high-frequency features. Extensive qualitative and quantitative ex-
 110 periments demonstrate the effectiveness of our method and its significant improvement in identity-
 111 preserving image generation.

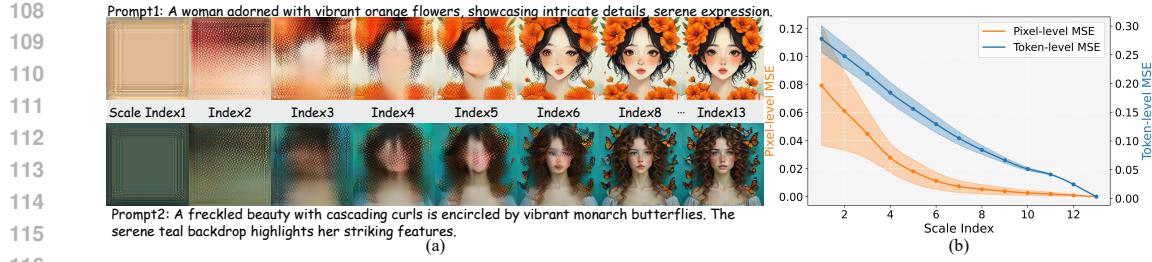


Figure 2: **Motivation of HEAR.** (a) In the early stages, smaller scales primarily determine low-frequency features such as shape, position, and color, while larger determine high-frequency features, including facial details. (b) This hypothesis is further validated through empirical experiments.

Our contributions are summarized as follows:

- An insightful discovery regarding the coarse-to-fine feature decomposition with explicit separation of high- and low-frequency in the next scale prediction paradigm.
- We propose HEAR, a new high-frequency enhanced visual autoregressive framework for identity-preserving image generation, and provide a new perspective for controllable autoregressive image generation.
- We introduce a novel identity data curation pipeline and train a high-frequency face encoder for the better construction of face details.
- Extensive qualitative and quantitative comparisons with previous powerful methods demonstrate the effectiveness and superiority of our method.

2 RELATED WORK

Autoregressive Image Generation Autoregressive image generation models leveraged the GPT-style (Radford et al., 2018) paradigm to model the distribution of pixels or latent codes in a sequential manner (Esser et al., 2021; Razavi et al., 2019; Yang et al., 2025). Earlier autoregressive models, such as VQ-VAE (Van Den Oord et al., 2017), used discrete visual tokenizers to predict the next visual token. Parti (Yu et al., 2022) formulates high-resolution text-to-image generation as a sequence-to-sequence task, where the output is a sequence of image tokens. Open-MAGVIT2 (Luo et al., 2024) introduces asymmetric token decomposition and a next sub-token prediction mechanism to enhance generation quality. Autoregressive text-to-image generation has achieved remarkable advancement recently. Numerous works such as LlamaGen (Sun et al., 2024), which is LLM-based (Vaswani et al., 2017; Zhang et al., 2022; Devlin et al., 2019) architectures leveraging powerful scaling capabilities, enabling autoregressive models to rival or even surpass diffusion models in image generation quality. Beyond next-token prediction, some autoregressive models also shifted toward more diverse token representations. MAR (Li et al., 2024b) introduces a diffusion-based method (Ho et al., 2020) to model the probability distribution of each token in continuous space, replacing the conventional cross-entropy loss with a diffusion loss. VAR (Tian et al., 2024) redefines the conventional coarse-to-fine paradigm by shifting from next-token prediction to a novel next-scale prediction framework, demonstrating strong potential in image synthesis. xAR (Ren et al., 2025) proposes a generalized and more flexible next-X prediction framework, where X can represent tokens, scales, or spatial cells. Other innovations (Yu et al., 2024b; Li et al., 2024a;b) have also emerged in models such as DART (Gu et al., 2024) and Fluid (Fan et al., 2024). Built upon the next-scale prediction paradigm, Infinity (Han et al., 2024) employs an infinite-vocabulary tokenizer and classifier, along with a bit-level self-correction mechanism to achieve powerful text-to-image generation quality. We adopt Infinity as the backbone of our HEAR due to its flexibility in handling high-frequency enhancement.

Identity Preserving Text-to-Image Generation Identity-preserving text-to-image (T2I) generation extends conventional text-to-image generation by enforcing strict identity (ID) consistency between the generated image and a reference subject. Numerous methods (Yu et al., 2024a; Wang et al., 2024b; Liang et al., 2024; Zhang et al., 2024c;a;b) leverage diffusion models to achieve remarkable success in this area. LoRA (Hu et al., 2022) and ControlNet (Zhang et al., 2023) augment

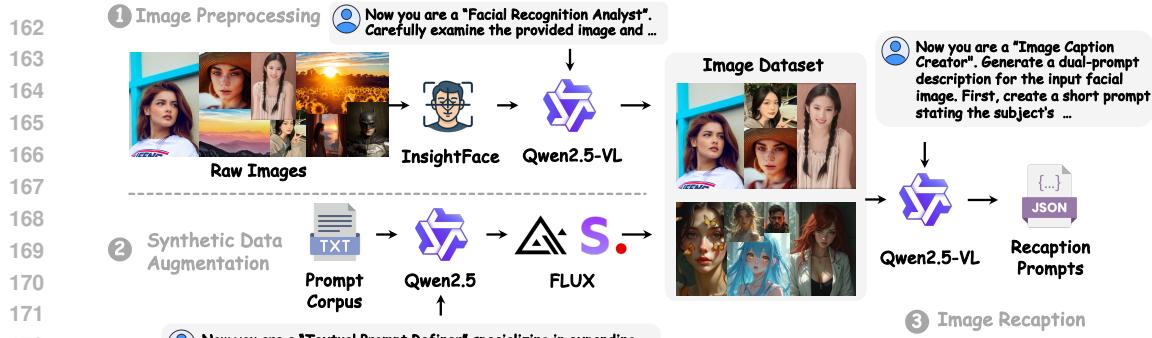


Figure 3: An overview of Identity-Preserving Dataset Curation Pipeline.

base diffusion models with trainable layers to enable controllable generation conditioned on inputs like pose, masks, edges, and depth. PhotoMaker (Li et al., 2024d) preserves identity preservation by directly merging text embeddings with image embeddings. Other methods, including IP-Adapter (Ye et al., 2023), InstantID (Wang et al., 2024b), and ConsistentID (Huang et al., 2024) freeze backbone parameters and inject identity features through a decoupled cross-attention mechanism, achieving strong ID preservation with minimal additional training. Furthermore, methods like UniPortrait (He et al., 2024) and ID-Adapter (Chen et al., 2024) continue to push the boundaries of generalization and effectiveness in identity-preserving generation. However, identity-preserving text-to-image generation has been rarely addressed using autoregressive models. Some methods such as ControlVAR (Li et al., 2024c), ControlAR (Li et al., 2024e), and OmniGen (Xiao et al., 2024) mainly explore controllable generation under different input conditions. Compared to diffusion models, autoregressive methods offer superior inference efficiency and stronger multimodal fusion capabilities. Our method trains a high-frequency face encoder for extracting high-frequency image features, and adopts the next-scale prediction autoregressive framework and employs a decoupled cross-attention mechanism to inject both global visual features and high-frequency identity features into the transformer layers.

3 METHOD

In this section, we present HEAR, a high-frequency enhanced autoregressive text-to-image framework designed for high-quality identity-preserving image generation with a coarse-to-fine next-scale prediction paradigm, as illustrated in Fig. 4.

3.1 CURATION OF HIGH-QUALITY IDENTITY-PRESERVING DATA

A high-quality training dataset is essential for achieving identity-preserving generation. However, datasets curated specifically for identity-preserving tasks often contain significant noise, including profile views and heavily occluded faces. To overcome these limitations, we propose an automated data curation pipeline that harnesses the capabilities of advanced Vision-Language Models (VLMs). This system efficiently filters out low-quality samples, using synthetic data to augment the original dataset and provide fine-grained captions. The overall pipeline is illustrated in Fig. 3.

Image Preprocessing We begin by applying InsightFace (Deng et al., 2019) to the raw images, retaining only those in which a face can be reliably detected. Subsequently, we perform a second-round filtering using Qwen2.5-VL-32B (Wang et al., 2024a) to ensure high data purity. Through this preprocessing pipeline, we obtain a collection of high-quality face images, free from profile views and heavy occlusions.

Synthetic Data Augmentation The dataset primarily consists of authentic photographic content, which often lacks aesthetic quality. To enhance the visual appeal of the generated outputs of our model, we augment the training corpus with a substantial synthetic dataset produced by state-of-the-art image generation models. Specifically, we randomly select 50K identity-related text prompts and use Qwen2.5-32B (Yang et al., 2024) to enrich them with fine-grained facial descriptions, including attributes such as ethnicity, gender, facial features, expressions, and accessories. These finalized prompts are then fed into high-fidelity image generation models, including Stable Diffusion 3.5

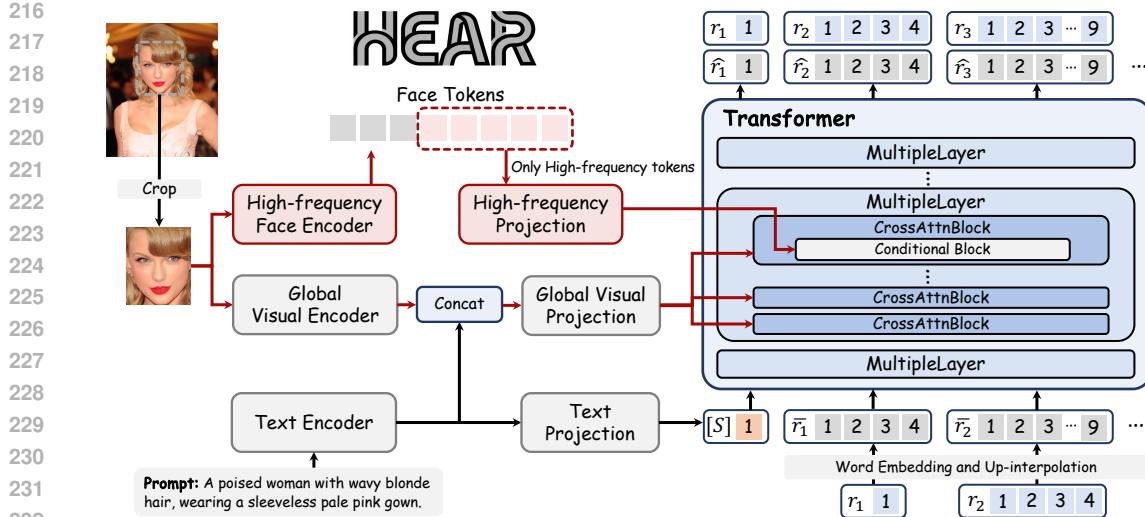


Figure 4: An overview of HEAR pipeline.

Large (Rombach et al., 2022) and FLUX-dev (Labs, 2024), to produce photorealistic synthetic face images.

Image Recaption Image Recaption Identity preserving T2I models depend on accurate captions, as generic descriptions miss crucial identity cues. For each image we first use Qwen2.5-VL-32B to produce a brief prompt that specifies gender, ethnicity, action, and environment; the model then expands this summary with subtle facial expressions and gaze, detailed clothing characteristics, and quantitative spatial relations between the subject and the scene. During training, each image is paired with either the short or the expanded caption with equal probability, allowing the network to learn from both coarse and fine descriptions and thereby improving robustness.

3.2 HIGH-FREQUENCY FACE ENCODER

The fundamental goal of identity preservation in facial reconstruction is to retain identity-specific details, which are primarily encoded in high-frequency components. However, existing visual tokenizers struggle to capture these high-frequency features accurately, as they are typically pre-trained on large-scale, general-purpose image datasets. These datasets prioritize broad semantic coverage rather than fine-grained facial attributes, and thus lack domain-specific optimization for identity-related features. To address this issue, we present a high-frequency face encoder, specifically designed and trained for facial identity reconstruction tasks, to enhance sensitivity to high-frequency identity features. This extractor is trained with composite losses, including reconstruction loss $\mathcal{L}_{\text{recon}_{L_1}}$ and $\mathcal{L}_{\text{recon}_{L_2}}$, vector quantization loss \mathcal{L}_{VQ} , Perceptual loss $\mathcal{L}_{\text{lpips}}$, CLIP loss $\mathcal{L}_{\text{clip}}$ and adaface loss $\mathcal{L}_{\text{adaface}}$:

$$\mathcal{L} = \lambda_{\text{recon}_{L_1}} \mathcal{L}_{\text{recon}_{L_1}} + \lambda_{\text{recon}_{L_2}} \mathcal{L}_{\text{recon}_{L_2}} + \lambda_{\text{VQ}} \mathcal{L}_{\text{VQ}} + \lambda_{\text{lpips}} \mathcal{L}_{\text{lpips}} + \lambda_{\text{clip}} \mathcal{L}_{\text{clip}} + \lambda_{\text{adaface}} \mathcal{L}_{\text{adaface}} \quad (1)$$

Specifically, the reconstruction loss measures the L_1 and L_2 distances between the reconstructed image and the ground truth, measuring pixel-level fidelity. The vector quantization loss encourages alignment between the encoded features and their corresponding codebook vectors. To capture perceptual similarity, the perceptual loss compares high-level feature representations extracted by the pre-trained LPIPS (Zhang et al., 2018). The CLIP loss enforces semantic consistency by regularizing the semantic tokens using features from the pre-trained DINOv2 (Oquab et al., 2023). Finally, an AdaFace recognition module is integrated with the AdaFace loss (Kim et al., 2022) to ensure facial similarity between the reconstructed and ground truth images.

To focus on identity-specific details within facial regions during training, we introduce a face-specific spatial weighting mask that amplifies the loss contribution of facial regions. Specifically, for each training image, we use InsightFace (Deng et al., 2019) to detect facial bounding boxes with coordinates (x_1, x_2, y_1, y_2) . A position-dependent weighting factor $\alpha (\alpha > 1)$ is applied to all pixels within the facial region $\mathcal{R} = \{(i, j) \mid x_1 \leq i \leq x_2, y_1 \leq j \leq y_2\}$, while pixels outside this region are assigned a default weight of 1. This spatial weighting mechanism compels the encoder to focus

270 more on discriminative, high-frequency facial patterns that are critical for identity preservation:
 271

$$w_{i,j} = \begin{cases} \alpha, & (i,j) \in \mathcal{R}, \\ 1, & \text{otherwise.} \end{cases} \quad (2)$$

275 Consequently, facial regions within the bounding box receive significantly higher attention, effec-
 276 tively guiding the model to concentrate on identity-relevant features during training.
 277

278 3.3 HEAR: HIGH-FREQUENCY ENHANCED AUTOREGRESSIVE MODEL

279 The overview of HEAR is illustrated in Fig. 4. Given a reference image, the global visual encoder
 280 and local high-frequency face encoder respectively inject global and high-frequency facial feature
 281 into the model via cross-attention blocks and the decoupled adapter.
 282

283 3.3.1 GLOBAL VIEW: CROSS-ATTENTION BLOCKS

284 In our proposed global view framework, we begin by extracting text embeddings from a text encoder
 285 and global facial image embeddings from a global visual encoder. We leverage a pre-trained and
 286 frozen word embedding layer to directly align the global visual embeddings \mathbf{v}_g with the text em-
 287 beddings \mathbf{t} . We then concatenate the text and global facial image embeddings and passed through a
 288 global projection layer. The fused features \mathbf{f} can be formulated as:
 289

$$\mathbf{f} = \text{Concat}(\mathbf{t}, \mathbf{v}_g) \cdot \mathbf{W}_g \quad (3)$$

290 where $\text{Concat}(\cdot)$ means concatenating the text embeddings \mathbf{t} and global visual embeddings \mathbf{v}_g along
 291 the sequence (length) dimension. \mathbf{W}_g is the global projection matrix. Given the query features \mathbf{Z}
 292 and the fusion features \mathbf{f} , the output of global view cross-attention \mathbf{Z}_g is computed as follows:
 293

$$\begin{aligned} \mathbf{Z}_g &= \text{Attention}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \text{softmax} \left(\frac{\mathbf{Q}\mathbf{K}^\top}{\sqrt{d}} \right) \cdot \mathbf{V} \\ \mathbf{Q} &= \mathbf{W}_Q \cdot \mathbf{Z}, \quad \mathbf{K} = \mathbf{W}_K \cdot \mathbf{f}, \quad \mathbf{V} = \mathbf{W}_V \cdot \mathbf{f} \end{aligned} \quad (4)$$

294 where \mathbf{Q} , \mathbf{K} , \mathbf{V} are the query, key, and values matrices of the attention operation respectively, and
 295 \mathbf{W}_Q , \mathbf{W}_K , \mathbf{W}_V are the weight matrices of the trainable linear projection layers.
 296

302 3.3.2 LOCAL VIEW: A DECOUPLED ADAPTER IN PARALLEL

303 For each distinct identity, high-frequency features capture unique and discriminative characteristics
 304 more effectively than low-frequency components, making them critical for distinguishing one iden-
 305 tity from another. To leverage this, after injecting global facial information through cross-attention
 306 blocks, we reintroduce high-frequency facial features extracted by a dedicated high-frequency iden-
 307 tity feature extractor. Inspired by prior works (Ye et al., 2023; Wang et al., 2024b; Huang et al.,
 308 2024), we incorporate these features using a lightweight decoupled adapter to avoid redundant con-
 309 trol modules and excessive trainable parameters.
 310

311 Leveraging the unique quantization mechanism of the next-scale prediction paradigm, the encoder
 312 naturally organizes latent image embeddings into frequency-ordered embeddings (from low to high
 313 frequency) after quantization. Once a cropped facial image is encoded into its corresponding face
 314 embedding, we apply parameter FT to truncate the visual embedding \mathbf{v} and extract the high-
 315 frequency visual embedding \mathbf{v}_{hf} . This process is formally defined as follows:
 316

$$\mathbf{v}_{hf} = \mathbf{v}[FT :] \cdot \mathbf{W}_{hf} \quad (5)$$

317 where $[FT :]$ denotes slicing for tokens from the latter high-frequency scales. \mathbf{W}_{hf} is the high-
 318 frequency projection matrix. Given the query features \mathbf{Z} and the high-frequency face embedding
 319 \mathbf{v}_{hf} , the output of local view high-frequency cross-attention \mathbf{Z}_{hf} can be defined by the following
 320 equation:
 321

$$\begin{aligned} \mathbf{Z}_{hf} &= \text{Attention}(\mathbf{Q}, \mathbf{K}', \mathbf{V}') = \text{softmax} \left(\frac{\mathbf{Q}\mathbf{K}'^\top}{\sqrt{d}} \right) \cdot \mathbf{V}' \\ \mathbf{Q} &= \mathbf{W}_Q \cdot \mathbf{Z}, \quad \mathbf{K}' = \mathbf{W}'_K \cdot \mathbf{v}_{hf}, \quad \mathbf{V}' = \mathbf{W}'_V \cdot \mathbf{v}_{hf} \end{aligned} \quad (6)$$

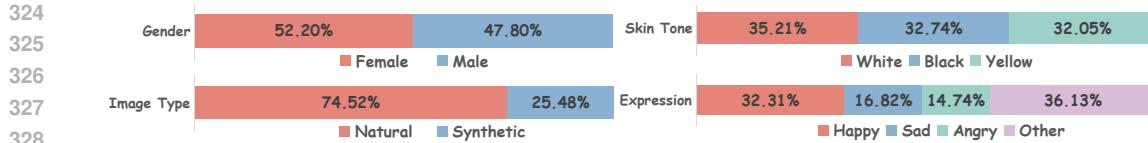


Figure 5: The statistical characteristics distribution in the training dataset

where \mathbf{Q} , \mathbf{K}' , and \mathbf{V}' denote the query, key, and value matrices used in the attention operation, respectively. The query matrix \mathbf{W}_Q is shared between the global cross-attention and the high-frequency cross-attention modules. The matrices \mathbf{W}'_K and \mathbf{W}'_V are the corresponding weight matrices for the key and value projections in the high-frequency pathway. As a result, only two additional parameters, \mathbf{W}'_K and \mathbf{W}'_V , are introduced per cross-attention layer. We initialize \mathbf{W}'_K and \mathbf{W}'_V with the weights of \mathbf{W}_K and \mathbf{W}_V respectively.

3.3.3 A DUAL-CONTROL STRATEGY

The global and high-frequency face features are respectively integrated into the backbone via the inherent and decoupled cross-attention. In the original Infinity model, the text features from the CLIP text encoder are plugged into transformer by feeding into the cross-attention blocks. Given the global view cross-attention \mathbf{Z}_g and the local view high-frequency cross-attention \mathbf{Z}_{hf} , the final output of cross-attention \mathbf{Z}' is defined as follows:

$$\mathbf{Z}' = \mathbf{Z}_g + \mathbf{Z}_{hf} = \text{softmax} \left(\frac{\mathbf{Q}\mathbf{K}^\top}{\sqrt{d}} \right) \cdot \mathbf{V} + \text{softmax} \left(\frac{\mathbf{Q}\mathbf{K}'^\top}{\sqrt{d}} \right) \cdot \mathbf{V}' \quad (7)$$

Ultimately, global facial features \mathbf{Z}_g are still injected through the original cross-attention blocks of the transformer, while high-frequency details \mathbf{Z}_{hf} are enhanced via the insertion of lightweight decoupled image cross-attention layers. This design ensures minimal parameter overhead and avoids introducing additional heavy modules.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Implementation Details Our experiments are based on Infinity (Han et al., 2024), where we fine-tune a custom high-frequency face encoder on top of the original Infinity image encoder. During the training of this face encoder, we set the position-dependent weighting factor α to 2. We set $\lambda_{\text{recon}_{L_1}} = 0.2$, $\lambda_{\text{recon}_{L_2}} = \lambda_{\text{VQ}} = 1.0$, $\lambda_{\text{lpips}} = 0.5$ and $\lambda_{\text{clip}} = \lambda_{\text{adaface}} = 0.1$.

During transformer training, we define multiple aspect ratio templates, and all images are resized to match one of the predefined ratios. This allows the model to generate outputs of varying aspect ratios during inference. To improve robustness, each image is paired with both a long and a short caption, with a 50% probability of either being selected during training. In our design, we use 13 scales, and FT refers to the total token length of the first 6 scales. We adopt the AdamW optimizer with a fixed learning rate of 0.0001 and a weight decay of 0.01. Our model is trained for 500K steps on a single machine equipped with 8*NVIDIA A100-80G GPUs, using a batch size of 8 per GPU.

Data Composition and Distribution We sampled 51 k, 98 k, and 482 k images from CelebA, LAION-Face, and X2I, then applied the Fig. 3 filter, yielding 150 k photos with clear, unobstructed faces and distinct identities. We augmented this set with synthetic images generated by Stable Diffusion 3.5-large and FLUX-dev, maintaining a 3:1 natural-to-synthetic ratio. Gender, skin tone, and other facial attributes were distribution-balanced (Fig. 5), giving the final corpus both demographic parity and strong photorealism, which in turn boosts model generalization.

Experimental Metrics To comprehensively evaluate the effectiveness and efficiency of HAER, we adopt five widely recognized metrics (Ruiz et al., 2023): CLIP-T (Gal et al., 2022), CLIP-I (Radford et al., 2021), DINO (Cong et al., 2020), FaceSim (Schroff et al., 2015), and computational efficiency (inference speed). All experiments were conducted under standardized hardware conditions to ensure fairness and reproducibility.

Figure 6: **Comparison of facial feature details between HEAR and existing methods.** The characters generated by our method demonstrate enhanced identity consistency, particularly in facial features such as the eyes, nose, and mouth.

4.2 MAIN RESULTS

4.2.1 QUANTITATIVE COMPARISON

We assembled a test set of 40 distinct identities spanning a wide variety of appearances. Consistent with PhotoMaker (Li et al., 2024d), the set also includes the images associated with MyStyle (Nitzan et al., 2022) identities. HEAR consistently outperforms other methods across most evaluation metrics, particularly in CLIP-T, FaceSim, and inference speed, as shown in Table 1. The strong performance on CLIP-T and FaceSim can be attributed to HEAR’s high-frequency enhancement strategy, which enables more precise control over fine-grained details. Its superior speed results from both the inherent efficiency of the autoregressive framework and HEAR’s streamlined design, which avoids heavy modules and excessive parameter growth. These combined strengths allow HEAR to preserve fine-grained identity features while remaining an efficient, lightweight multimodal face prompt generator.

4.2.2 QUALITATIVE COMPARISON

To intuitively demonstrate the advantages of HEAR, we conducted a qualitative evaluation using a diverse set of images with varying types and styles, comparing our method against IP-Adapter

432

433

Table 1: Comparative Evaluation of Identity Preservation Methods

434

435

Method	CLIP-T(\uparrow)	CLIP-I(\uparrow)	DINO(\uparrow)	FaceSim(\uparrow)	Speed(\downarrow)
Photomaker Li et al. (2024d)	30.1	67.4	73.8	50.8	20.18
IP-Adapter Ye et al. (2023)	29.2	68.2	74.5	52.1	12.48
InstantID Wang et al. (2024b)	30.4	70.2	78.1	55.1	17.51
OmniGen Xiao et al. (2024)	32.5	69.3	78.1	53.4	40.32
HEAR (Ours)	32.6	72.1	78.9	56.3	6.62

436

437

Table 2: Comparative Analysis of Image Tokenization Methods: Performance on MSE, SSIM and PSNR.

438

439

Method	MSE \downarrow	SSIM \uparrow	PSNR \uparrow
Open-MAGVIT2 Luo et al. (2024)	57.43	0.72	22.94
LlamaGen Sun et al. (2024)	52.33	0.76	23.15
Show-o Xie et al. (2024a)	42.35	0.76	23.63
Infinity Han et al. (2024)	15.15	0.94	34.31
HEAR (Ours)	13.87	0.95	35.32

440

441

(Ye et al., 2023), PhotoMaker (Li et al., 2024d), and InstantID (Wang et al., 2024b). We selected reference images from five different identities to showcase the text-driven generation results for each method, as illustrated in Fig. 6.

442

444

Both IP-Adapter and InstantID exhibit a certain degree of failure in guiding image generation effectively with textual prompts. In contrast, HEAR leverages a Dual-Control Strategy that allows textual input to participate more actively in the generation process, resulting in better controllability. Furthermore, IP-Adapter and ControlNet fall short in preserving facial details compared to our approach, primarily because HEAR incorporates a high-frequency enhancement mechanism to retain fine-grained identity features. In terms of visual appeal, InstantID also underperforms relative to HEAR, as our method benefits from a curated high-quality dataset that significantly improves aesthetic quality. In summary, our model surpasses existing methods in textual guidance, high-frequency-controlled generation, as well as in overall image quality and aesthetic fidelity.

445

446

4.3 COMPARISON OF HIGH-FREQUENCY FACE ENCODER

447

448

Quantitative Comparison To rigorously evaluate the reconstruction capabilities of our high-frequency face encoder, we conducted comprehensive comparisons against several tokenizers using the MyStyle (Nitzan et al., 2022) facial dataset. The evaluation focused on image-condition alignment, employing two principal metrics SSIM and PSNR.

449

450

As shown in Table 2, our method outperforms competing approaches across both metrics. This technical advantage stems from high-frequency face encoder’s specialized high-frequency feature extraction mechanism, combined with a dataset-specific fine-tuning strategy optimized for facial characteristics. This synergistic design enables more accurate preservation of critical biometric details while maintaining strong alignment with visual-textual conditions.

474

475

5 CONCLUSION

476

In this paper, we present HEAR, a high-frequency enhanced autoregressive identity-preserving (IP) text-to-image framework based on a coarse-to-fine next-scale prediction paradigm. We introduce targeted improvements across the entire training pipeline, including dataset curation, high-frequency face encoder training, and transformer-based architectural design. Experimental results demonstrate HEAR’s superior performance in identity-preserving image generation, outperforming several powerful diffusion-based models. However, HEAR also has limitations due to its current model size (2B parameters), and we will use a larger model size for better performance.

483

484

485

486 REFERENCES
487

488 James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang
489 Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions. *Computer
490 Science*. <https://cdn.openai.com/papers/dall-e-3.pdf>, 2(3):8, 2023.

491 Weifeng Chen, Jiacheng Zhang, Jie Wu, Hefeng Wu, Xuefeng Xiao, and Liang Lin. Id-aligner:
492 Enhancing identity-preserving text-to-image generation with reward feedback learning. *arXiv
493 preprint arXiv:2404.15449*, 2024.

494

495 Wenyan Cong, Jianfu Zhang, Li Niu, Liu Liu, Zhixin Ling, Weiyuan Li, and Liqing Zhang. Dovenet:
496 Deep image harmonization via domain verification. In *Proceedings of the IEEE/CVF conference
497 on computer vision and pattern recognition*, pp. 8394–8403, 2020.

498 Jiankang Deng, Jia Guo, Xue Niannan, and Stefanos Zafeiriou. Arcface: Additive angular margin
499 loss for deep face recognition. In *CVPR*, 2019.

500

501 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
502 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of
503 the North American chapter of the association for computational linguistics: human language
504 technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.

505 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances
506 in neural information processing systems*, 34:8780–8794, 2021.

507

508 Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
509 synthesis. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
510 tion*, pp. 12873–12883, 2021.

511

512 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
513 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
514 for high-resolution image synthesis. In *Forty-first international conference on machine learning*,
2024.

515

516 Lijie Fan, Tianhong Li, Siyang Qin, Yuanzhen Li, Chen Sun, Michael Rubinstein, Deqing Sun,
517 Kaiming He, and Yonglong Tian. Fluid: Scaling autoregressive text-to-image generative models
518 with continuous tokens. *arXiv preprint arXiv:2410.13863*, 2024.

519

520 Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H Bermano, Gal Chechik, and Daniel
521 Cohen-Or. An image is worth one word: Personalizing text-to-image generation using textual
522 inversion. *arXiv preprint arXiv:2208.01618*, 2022.

523

524 Jiatao Gu, Yuyang Wang, Yizhe Zhang, Qihang Zhang, Dinghuai Zhang, Navdeep Jaitly, Josh
525 Susskind, and Shuangfei Zhai. Dart: Denoising autoregressive transformer for scalable text-
526 to-image generation. *arXiv preprint arXiv:2410.08159*, 2024.

527

528 Jian Han, Jinlai Liu, Yi Jiang, Bin Yan, Yuqi Zhang, Zehuan Yuan, Bingyue Peng, and Xiaobing
529 Liu. Infinity: Scaling bitwise autoregressive modeling for high-resolution image synthesis. *arXiv
preprint arXiv:2412.04431*, 2024.

530

531 Junjie He, Yifeng Geng, and Liefeng Bo. Uniportrait: A unified framework for identity-preserving
532 single-and multi-human image personalization. *arXiv preprint arXiv:2408.05939*, 2024.

533

534 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
535 neural information processing systems*, 33:6840–6851, 2020.

536

537 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
538 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

539

Jiehui Huang, Xiao Dong, Wenhui Song, Zheng Chong, Zhenchao Tang, Jun Zhou, Yuhao Cheng,
Long Chen, Hanhui Li, Yiqiang Yan, et al. Consistentid: Portrait generation with multimodal
fine-grained identity preserving. *arXiv preprint arXiv:2404.16771*, 2024.

540 Mengqi Huang, Zhendong Mao, Zhuowei Chen, and Yongdong Zhang. Towards accurate image
 541 coding: Improved autoregressive image generation with dynamic vector quantization. In *Pro-
 542 ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 22596–
 543 22605, 2023.

544 Minchul Kim, Anil K Jain, and Xiaoming Liu. Adaface: Quality adaptive margin for face recog-
 545 nition. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 546 pp. 18750–18759, 2022.

548 Black Forest Labs. Flux. <https://github.com/black-forest-labs/flux>, 2024.

549 Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive image
 550 generation using residual quantization. In *Proceedings of the IEEE/CVF Conference on Computer
 551 Vision and Pattern Recognition*, pp. 11523–11532, 2022.

553 Haopeng Li, Jinyue Yang, Kexin Wang, Xuerui Qiu, Yuhong Chou, Xin Li, and Guoqi Li. Scalable
 554 autoregressive image generation with mamba. *arXiv preprint arXiv:2408.12245*, 2024a.

555 Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image
 556 generation without vector quantization. *Advances in Neural Information Processing Systems*, 37:
 557 56424–56445, 2024b.

559 Xiang Li, Kai Qiu, Hao Chen, Jason Kuen, Zhe Lin, Rita Singh, and Bhiksha Raj. Controlvar:
 560 Exploring controllable visual autoregressive modeling. *arXiv preprint arXiv:2406.09750*, 2024c.

561 Zhen Li, Mingdeng Cao, Xintao Wang, Zhongang Qi, Ming-Ming Cheng, and Ying Shan. Photo-
 562 maker: Customizing realistic human photos via stacked id embedding. In *Proceedings of the
 563 IEEE/CVF conference on computer vision and pattern recognition*, pp. 8640–8650, 2024d.

565 Zongming Li, Tianheng Cheng, Shoufa Chen, Peize Sun, Haocheng Shen, Longjin Ran, Xiaoxin
 566 Chen, Wenyu Liu, and Xinggang Wang. Controlar: Controllable image generation with autore-
 567 gressive models. *arXiv preprint arXiv:2410.02705*, 2024e.

568 Chao Liang, Fan Ma, Linchao Zhu, Yingying Deng, and Yi Yang. Caphuman: Capture your mo-
 569 ments in parallel universes. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
 570 Pattern Recognition*, pp. 6400–6409, 2024.

571 Zhuoyan Luo, Fengyuan Shi, Yixiao Ge, Yujiu Yang, Limin Wang, and Ying Shan. Open-magvit2:
 572 An open-source project toward democratizing auto-regressive visual generation. *arXiv preprint
 573 arXiv:2409.04410*, 2024.

575 Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, and Ying Shan.
 576 T2i-adapter: Learning adapters to dig out more controllable ability for text-to-image diffusion
 577 models. In *Proceedings of the AAAI conference on artificial intelligence*, pp. 4296–4304, 2024.

581 Yotam Nitzan, Kfir Aberman, Qiurui He, Orly Liba, Michal Yarom, Yossi Gondelsman, Inbar
 582 Mosseri, Yael Pritch, and Daniel Cohen-Or. Mystyle: A personalized generative prior. *ACM
 583 Transactions on Graphics (TOG)*, 41(6):1–10, 2022.

582 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 583 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
 584 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.

585 Ziqi Pang, Tianyuan Zhang, Fujun Luan, Yunze Man, Hao Tan, Kai Zhang, William T Freeman, and
 586 Yu-Xiong Wang. Randar: Decoder-only autoregressive visual generation in random orders. *arXiv
 587 preprint arXiv:2412.01827*, 2024.

588 Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
 589 standing by generative pre-training. 2018.

591 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 592 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 593 models from natural language supervision. In *International conference on machine learning*, pp.
 8748–8763. PMLR, 2021.

594 Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with
 595 vq-vae-2. *Advances in neural information processing systems*, 32, 2019.
 596

597 Sucheng Ren, Qihang Yu, Ju He, Xiaohui Shen, Alan Yuille, and Liang-Chieh Chen. Beyond next-
 598 token: Next-x prediction for autoregressive visual generation. *arXiv preprint arXiv:2502.20388*,
 599 2025.

600 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 601 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 602 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.
 603

604 Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
 605 Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In *Pro-
 606 ceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 22500–
 607 22510, 2023.

608 Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face
 609 recognition and clustering. In *Proceedings of the IEEE conference on computer vision and pattern
 610 recognition*, pp. 815–823, 2015.
 611

612 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 613 learning using nonequilibrium thermodynamics. In *International conference on machine learn-
 614 ing*, pp. 2256–2265. pmlr, 2015.

615 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 616 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint
 617 arXiv:2011.13456*, 2020.

618 Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.
 619 Autoregressive model beats diffusion: Llama for scalable image generation. *arXiv preprint
 620 arXiv:2406.06525*, 2024.

621 Haotian Tang, Yecheng Wu, Shang Yang, Enze Xie, Junsong Chen, Junyu Chen, Zhuoyang Zhang,
 622 Han Cai, Yao Lu, and Song Han. Hart: Efficient visual generation with hybrid autoregressive
 623 transformer. *arXiv preprint arXiv:2410.10812*, 2024.

624 Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
 625 Scalable image generation via next-scale prediction. *Advances in neural information processing
 626 systems*, 37:84839–84865, 2024.

627 Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. *Advances in
 628 neural information processing systems*, 30, 2017.

629 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 630 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-
 631 tion processing systems*, 30, 2017.

632 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 633 Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
 634 world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024a.

635 Qixun Wang, Xu Bai, Haofan Wang, Zekui Qin, Anthony Chen, Huaxia Li, Xu Tang, and Yao Hu.
 636 Instantid: Zero-shot identity-preserving generation in seconds. *arXiv preprint arXiv:2401.07519*,
 637 2024b.

638 Shitao Xiao, Yueze Wang, Junjie Zhou, Huaying Yuan, Xingrun Xing, Ruiran Yan, Chaofan Li,
 639 Shuting Wang, Tiejun Huang, and Zheng Liu. Omnigen: Unified image generation. *arXiv preprint
 640 arXiv:2409.11340*, 2024.

641 Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang, Weihao Wang, Kevin Qinghong Lin,
 642 Yuchao Gu, Zhijie Chen, Zhenheng Yang, and Mike Zheng Shou. Show-o: One single transformer
 643 to unify multimodal understanding and generation. *arXiv preprint arXiv:2408.12528*, 2024a.

648 Rongchang Xie, Chen Du, Ping Song, and Chang Liu. Muse-vl: Modeling unified vlm through
 649 semantic discrete encoding. *arXiv preprint arXiv:2411.17762*, 2024b.
 650

651 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 652 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint*
 653 *arXiv:2412.15115*, 2024.
 654

655 Ling Yang, Xinchen Zhang, Ye Tian, Chenming Shang, Minghao Xu, Wentao Zhang, and Bin Cui.
 656 Hermesflow: Seamlessly closing the gap in multimodal understanding and generation. *arXiv*
 657 *preprint arXiv:2502.12148*, 2025.
 658

659 Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible image prompt
 660 adapter for text-to-image diffusion models. *arXiv preprint arXiv:2308.06721*, 2023.
 661

662 Cheng Yu, Haoyu Xie, Lei Shang, Yang Liu, Jun Dan, Liefeng Bo, and Baigui Sun. Facechain-
 663 fact: Face adapter with decoupled training for identity-preserved personalization. *arXiv preprint*
 664 *arXiv:2410.12312*, 2024a.
 665

666 Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan,
 667 Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, et al. Scaling autoregressive models for content-
 668 rich text-to-image generation. *arXiv preprint arXiv:2206.10789*, 2(3):5, 2022.
 669

670 Qihang Yu, Ju He, Xueqing Deng, Xiaohui Shen, and Liang-Chieh Chen. Randomized autoregres-
 671 sive visual generation. *arXiv preprint arXiv:2411.00776*, 2024b.
 672

673 Qihang Yu, Mark Weber, Xueqing Deng, Xiaohui Shen, Daniel Cremers, and Liang-Chieh Chen.
 674 An image is worth 32 tokens for reconstruction and generation. *Advances in Neural Information*
 675 *Processing Systems*, 37:128940–128966, 2024c.
 676

677 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
 678 diffusion models. In *Proceedings of the IEEE/CVF international conference on computer vision*,
 679 pp. 3836–3847, 2023.
 680

681 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 682 effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on*
 683 *computer vision and pattern recognition*, pp. 586–595, 2018.
 684

685 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuhui Chen, Christo-
 686 pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
 687 language models. *arXiv preprint arXiv:2205.01068*, 2022.
 688

689 Xinchen Zhang, Ling Yang, Yaqi Cai, Zhaochen Yu, Kai-Ni Wang, Ye Tian, Minkai Xu, Yong Tang,
 690 Yujiu Yang, Bin Cui, et al. Realcompo: Balancing realism and compositionality improves text-to-
 691 image diffusion models. *Advances in Neural Information Processing Systems*, 37:96963–96992,
 692 2024a.
 693

694 Xinchen Zhang, Ling Yang, Guohao Li, Yaqi Cai, Jiake Xie, Yong Tang, Yujiu Yang, Mengdi Wang,
 695 and Bin Cui. Itercomp: Iterative composition-aware feedback learning from model gallery for
 696 text-to-image generation. *arXiv preprint arXiv:2410.07171*, 2024b.
 697

698 Youliang Zhang, Ronghui Li, Yachao Zhang, Liang Pan, Jingbo Wang, Yebin Liu, and Xiu Li. A
 699 plug-and-play physical motion restoration approach for in-the-wild high-difficulty motions. *arXiv*
 700 *preprint arXiv:2412.17377*, 2024c.
 701

702 Chuanxia Zheng, Tung-Long Vuong, Jianfei Cai, and Dinh Phung. Movq: Modulating quantized
 703 vectors for high-fidelity image generation. *Advances in Neural Information Processing Systems*,
 704 35:23412–23425, 2022.

702 REFERENCES
703

704 James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang Zhuang,
705 Joyce Lee, Yufei Guo, et al. Improving image generation with better captions. *Computer Science*. <https://cdn.openai.com/papers/dall-e-3.pdf>, 2(3):8, 2023.

706 Weifeng Chen, Jiacheng Zhang, Jie Wu, Hefeng Wu, Xuefeng Xiao, and Liang Lin. Id-aligner: En-
707 hancing identity-preserving text-to-image generation with reward feedback learning. *arXiv preprint*
708 *arXiv:2404.15449*, 2024.

709 Wenyan Cong, Jianfu Zhang, Li Niu, Liu Liu, Zhixin Ling, Weiyuan Li, and Liqing Zhang. Dovenet: Deep
710 image harmonization via domain verification. In *Proceedings of the IEEE/CVF conference on computer*
711 *vision and pattern recognition*, pp. 8394–8403, 2020.

712 Jiankang Deng, Jia Guo, Xue Niannan, and Stefanos Zafeiriou. Arcface: Additive angular margin loss for deep
713 face recognition. In *CVPR*, 2019.

714 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
715 transformers for language understanding. In *Proceedings of the 2019 conference of the North American*
716 *chapter of the association for computational linguistics: human language technologies, volume 1 (long and*
717 *short papers)*, pp. 4171–4186, 2019.

718 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances in neural*
719 *information processing systems*, 34:8780–8794, 2021.

720 Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image synthesis.
721 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 12873–12883,
722 2021.

723 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam Levi, Do-
724 minik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for high-resolution
725 image synthesis. In *Forty-first international conference on machine learning*, 2024.

726 Lijie Fan, Tianhong Li, Siyang Qin, Yuanzhen Li, Chen Sun, Michael Rubinstein, Deqing Sun, Kaiming He,
727 and Yonglong Tian. Fluid: Scaling autoregressive text-to-image generative models with continuous tokens.
728 *arXiv preprint arXiv:2410.13863*, 2024.

729 Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H Bermano, Gal Chechik, and Daniel Cohen-Or.
730 An image is worth one word: Personalizing text-to-image generation using textual inversion. *arXiv preprint*
731 *arXiv:2208.01618*, 2022.

732 Jiatao Gu, Yuyang Wang, Yizhe Zhang, Qihang Zhang, Dinghuai Zhang, Navdeep Jaitly, Josh Susskind, and
733 Shuangfei Zhai. Dart: Denoising autoregressive transformer for scalable text-to-image generation. *arXiv*
734 *preprint arXiv:2410.08159*, 2024.

735 Jian Han, Jinlai Liu, Yi Jiang, Bin Yan, Yuqi Zhang, Zehuan Yuan, Bingyue Peng, and Xiaobing Liu.
736 Infinity: Scaling bitwise autoregressive modeling for high-resolution image synthesis. *arXiv preprint*
737 *arXiv:2412.04431*, 2024.

738 Junjie He, Yifeng Geng, and Liefeng Bo. Uniportrait: A unified framework for identity-preserving single-and
739 multi-human image personalization. *arXiv preprint arXiv:2408.05939*, 2024.

740 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in neural*
741 *information processing systems*, 33:6840–6851, 2020.

742 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu
743 Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

744 Jiehui Huang, Xiao Dong, Wenhui Song, Zheng Chong, Zhenchao Tang, Jun Zhou, Yuhao Cheng, Long Chen,
745 Hanhui Li, Yiqiang Yan, et al. Consistentid: Portrait generation with multimodal fine-grained identity
746 preserving. *arXiv preprint arXiv:2404.16771*, 2024.

747 Mengqi Huang, Zhendong Mao, Zhuowei Chen, and Yongdong Zhang. Towards accurate image coding: Im-
748 proved autoregressive image generation with dynamic vector quantization. In *Proceedings of the IEEE/CVF*
749 *Conference on Computer Vision and Pattern Recognition*, pp. 22596–22605, 2023.

750 Minchul Kim, Anil K Jain, and Xiaoming Liu. Adaface: Quality adaptive margin for face recognition. In
751 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 18750–18759,
752 2022.

753

756 Black Forest Labs. Flux. <https://github.com/black-forest-labs/flux>, 2024.
 757

758 Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive image generation
 759 using residual quantization. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 760 Recognition*, pp. 11523–11532, 2022.

761 Haopeng Li, Jinyue Yang, Kexin Wang, Xuerui Qiu, Yuhong Chou, Xin Li, and Guoqi Li. Scalable autoregres-
 762 sive image generation with mamba. *arXiv preprint arXiv:2408.12245*, 2024a.

763 Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image generation
 764 without vector quantization. *Advances in Neural Information Processing Systems*, 37:56424–56445, 2024b.

765

766 Xiang Li, Kai Qiu, Hao Chen, Jason Kuen, Zhe Lin, Rita Singh, and Bhiksha Raj. Controlvar: Exploring
 767 controllable visual autoregressive modeling. *arXiv preprint arXiv:2406.09750*, 2024c.

768 Zhen Li, Mingdeng Cao, Xintao Wang, Zhongang Qi, Ming-Ming Cheng, and Ying Shan. Photomaker: Cus-
 769 tomizing realistic human photos via stacked id embedding. In *Proceedings of the IEEE/CVF conference on
 770 computer vision and pattern recognition*, pp. 8640–8650, 2024d.

771

772 Zongming Li, Tianheng Cheng, Shoufa Chen, Peize Sun, Haocheng Shen, Longjin Ran, Xiaoxin Chen, Wenyu
 773 Liu, and Xinggang Wang. Controlar: Controllable image generation with autoregressive models. *arXiv
 774 preprint arXiv:2410.02705*, 2024e.

775 Chao Liang, Fan Ma, Linchao Zhu, Yingying Deng, and Yi Yang. Caphuman: Capture your moments in parallel
 776 universes. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 777 6400–6409, 2024.

778 Zhuoyan Luo, Fengyuan Shi, Yixiao Ge, Yujiu Yang, Limin Wang, and Ying Shan. Open-magvit2: An open-
 779 source project toward democratizing auto-regressive visual generation. *arXiv preprint arXiv:2409.04410*,
 780 2024.

781 Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, and Ying Shan. T2i-adapter:
 782 Learning adapters to dig out more controllable ability for text-to-image diffusion models. In *Proceedings of
 783 the AAAI conference on artificial intelligence*, pp. 4296–4304, 2024.

784

785 Yotam Nitzan, Kfir Aberman, Qiurui He, Orly Liba, Michal Yarom, Yossi Gondelsman, Inbar Mosseri, Yael
 786 Pritch, and Daniel Cohen-Or. Mystyle: A personalized generative prior. *ACM Transactions on Graphics
 (TOG)*, 41(6):1–10, 2022.

787

788 Maxime Oquab, Timothée Dariset, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernan-
 789 dez, Daniel Haziza, Francisco Massa, Alaeldin El-Nouby, et al. Dinov2: Learning robust visual features
 790 without supervision. *arXiv preprint arXiv:2304.07193*, 2023.

791 Ziqi Pang, Tianyuan Zhang, Fujun Luan, Yunze Man, Hao Tan, Kai Zhang, William T Freeman, and Yu-
 792 Xiong Wang. Randar: Decoder-only autoregressive visual generation in random orders. *arXiv preprint
 793 arXiv:2412.01827*, 2024.

794 Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language understanding by
 795 generative pre-training. 2018.

796

797 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
 798 try, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural
 799 language supervision. In *International conference on machine learning*, pp. 8748–8763. PMLR, 2021.

800 Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with vq-vae-2.
 801 *Advances in neural information processing systems*, 32, 2019.

802 Sucheng Ren, Qihang Yu, Ju He, Xiaohui Shen, Alan Yuille, and Liang-Chieh Chen. Beyond next-token:
 803 Next-x prediction for autoregressive visual generation. *arXiv preprint arXiv:2502.20388*, 2025.

804

805 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
 806 image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF conference on computer
 807 vision and pattern recognition*, pp. 10684–10695, 2022.

808 Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman. Dreambooth:
 809 Fine tuning text-to-image diffusion models for subject-driven generation. In *Proceedings of the IEEE/CVF
 conference on computer vision and pattern recognition*, pp. 22500–22510, 2023.

810 Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face recognition
 811 and clustering. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 812 815–823, 2015.

813 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning
 814 using nonequilibrium thermodynamics. In *International conference on machine learning*, pp. 2256–2265.
 815 pmlr, 2015.

816 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 817 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint*
 818 *arXiv:2011.13456*, 2020.

819 Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan. Autoregressive
 820 model beats diffusion: Llama for scalable image generation. *arXiv preprint arXiv:2406.06525*, 2024.

821 Haotian Tang, Yecheng Wu, Shang Yang, Enze Xie, Junsong Chen, Junyu Chen, Zhuoyang Zhang, Han Cai,
 822 Yao Lu, and Song Han. Hart: Efficient visual generation with hybrid autoregressive transformer. *arXiv*
 823 *preprint arXiv:2410.10812*, 2024.

824 Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling: Scalable
 825 image generation via next-scale prediction. *Advances in neural information processing systems*, 37:84839–
 826 84865, 2024.

827 Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. *Advances in neural infor-*
 828 *mation processing systems*, 30, 2017.

829 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
 830 and Illia Polosukhin. Attention is all you need. *Advances in neural information processing systems*, 30,
 831 2017.

832 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Kefin Chen, Xuejing Liu, Jialin Wang,
 833 Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the world at any resolution.
 834 *arXiv preprint arXiv:2409.12191*, 2024a.

835 Qixun Wang, Xu Bai, Haofan Wang, Zekui Qin, Anthony Chen, Huaxia Li, Xu Tang, and Yao Hu. Instantid:
 836 Zero-shot identity-preserving generation in seconds. *arXiv preprint arXiv:2401.07519*, 2024b.

837 Shitao Xiao, Yueze Wang, Junjie Zhou, Huaying Yuan, Xingrun Xing, Ruiran Yan, Chaofan Li, Shuting Wang,
 838 Tiejun Huang, and Zheng Liu. Omnigen: Unified image generation. *arXiv preprint arXiv:2409.11340*, 2024.

839 Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang, Weihao Wang, Kevin Qinghong Lin, Yuchao Gu,
 840 Zhijie Chen, Zhenheng Yang, and Mike Zheng Shou. Show-o: One single transformer to unify multimodal
 841 understanding and generation. *arXiv preprint arXiv:2408.12528*, 2024a.

842 Rongchang Xie, Chen Du, Ping Song, and Chang Liu. Muse-vl: Modeling unified vlm through semantic
 843 discrete encoding. *arXiv preprint arXiv:2411.17762*, 2024b.

844 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
 845 Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint arXiv:2412.15115*, 2024.

846 Ling Yang, Xinchen Zhang, Ye Tian, Chenming Shang, Minghao Xu, Wentao Zhang, and Bin Cui. Hermesflow:
 847 Seamlessly closing the gap in multimodal understanding and generation. *arXiv preprint arXiv:2502.12148*,
 848 2025.

849 Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible image prompt adapter for
 850 text-to-image diffusion models. *arXiv preprint arXiv:2308.06721*, 2023.

851 Cheng Yu, Haoyu Xie, Lei Shang, Yang Liu, Jun Dan, Liefeng Bo, and Baigui Sun. Facechain-fact: Face
 852 adapter with decoupled training for identity-preserved personalization. *arXiv preprint arXiv:2410.12312*,
 853 2024a.

854 Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan, Alexander
 855 Ku, Yinfei Yang, Burcu Karagol Ayan, et al. Scaling autoregressive models for content-rich text-to-image
 856 generation. *arXiv preprint arXiv:2206.10789*, 2(3):5, 2022.

857 Qihang Yu, Ju He, Xueqing Deng, Xiaohui Shen, and Liang-Chieh Chen. Randomized autoregressive visual
 858 generation. *arXiv preprint arXiv:2411.00776*, 2024b.

864 Qihang Yu, Mark Weber, Xueqing Deng, Xiaohui Shen, Daniel Cremers, and Liang-Chieh Chen. An image is
 865 worth 32 tokens for reconstruction and generation. *Advances in Neural Information Processing Systems*, 37:
 866 128940–128966, 2024c.

867 Lvmi Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image diffusion mod-
 868 els. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 3836–3847, 2023.

869

870 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness
 871 of deep features as a perceptual metric. In *Proceedings of the IEEE conference on computer vision and*
 872 *pattern recognition*, pp. 586–595, 2018.

873 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher Dewan,
 874 Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language models. *arXiv*
 875 *preprint arXiv:2205.01068*, 2022.

876 Xincheng Zhang, Ling Yang, Yaqi Cai, Zhaochen Yu, Kai-Ni Wang, Ye Tian, Minkai Xu, Yong Tang, Yujiu
 877 Yang, Bin Cui, et al. Realcompo: Balancing realism and compositionality improves text-to-image diffusion
 878 models. *Advances in Neural Information Processing Systems*, 37:96963–96992, 2024a.

879 Xincheng Zhang, Ling Yang, Guohao Li, Yaqi Cai, Jiake Xie, Yong Tang, Yujiu Yang, Mengdi Wang, and
 880 Bin Cui. Itercomp: Iterative composition-aware feedback learning from model gallery for text-to-image
 881 generation. *arXiv preprint arXiv:2410.07171*, 2024b.

882 Youliang Zhang, Ronghui Li, Yachao Zhang, Liang Pan, Jingbo Wang, Yebin Liu, and Xiu Li. A plug-
 883 and-play physical motion restoration approach for in-the-wild high-difficulty motions. *arXiv preprint*
 884 *arXiv:2412.17377*, 2024c.

885

886 Chuanxia Zheng, Tung-Long Vuong, Jianfei Cai, and Dinh Phung. Movq: Modulating quantized vectors
 887 for high-fidelity image generation. *Advances in Neural Information Processing Systems*, 35:23412–23425,
 888 2022.

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918 This supplementary material is organized into several sections, each offering additional details and
 919 analysis related to HEAR. The topics covered include:
 920

- 921 • In Appendix A, we provide a preliminary about next-scale prediction and Infinity.
- 922 • In Appendix B, we provide more results of HEAR including ablation study, visualized
 923 comparisons of high-frequency encoder and high-quality visualization.
- 924 • In Appendix C, we provide the prompts used in the ID dataset curation pipeline in Fig. 3.

926 A PRELIMINARY

928 A.1 NEXT-SCALE PREDICTION

930 VAR (Tian et al., 2024) reconceptualizes autoregressive modeling for images by shifting from a
 931 next-token prediction strategy to a next-scale prediction strategy. In this formulation, the basic
 932 autoregressive unit is an entire token map rather than a single token. We begin by quantizing a
 933 feature map $\mathbf{f} \in \mathbb{R}^{h \times w \times C}$ into K multi-scale token maps $(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_K)$, each corresponding to
 934 progressively higher resolutions $h_k \times w_k$, where \mathbf{r}_K matches the original feature map's resolution
 935 $h \times w$. The autoregressive likelihood is then defined as:

$$937 p(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_K) = \prod_{k=1}^K p(\mathbf{r}_k \mid \mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_{k-1}), \quad (8)$$

939 where each autoregressive unit $\mathbf{r}_k \in [V]^{h_k \times w_k}$ represents the token map at scale k , consisting
 940 of $h_k \times w_k$ tokens. The sequence $(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_{k-1})$ serves as the prefix for predicting \mathbf{r}_k . At
 941 the k -th autoregressive step, the distributions over all $h_k \times w_k$ tokens are generated in parallel,
 942 conditioned on \mathbf{r}_k 's prefix and the corresponding k -th position embedding map. During training,
 943 a block-wise causal attention mask is applied to ensure that each \mathbf{r}_k only attends to its prefix $\mathbf{r}_{\leq k}$.
 944 During inference, key-value caching can be used and no masking is required.

946 A.2 AUTOREGRESSIVE TEXT-TO-IMAGE GENERATION: INFINITY

948 Infinity (Han et al., 2024) introduces a bitwise visual autoregressive framework that significantly
 949 enhances high-resolution image synthesis through two core innovations:

951 **Infinite-Vocabulary Tokenizer & Classifier** Employing LFQ or BSQ, infinity quantizes residual
 952 features R_k into binary bit sequences through dimension-independent encoding, theoretically scal-
 953 ing vocabulary size to 2^{32} or 2^{64} . Given K scales in the multi-scale quantizer, at the k -th scale, the
 954 input continuous residual vector $z_k \in \mathbb{R}^d$ is quantized into a binary output q_k as illustrated below:

$$955 q_k = \mathcal{Q}(z_k) = \begin{cases} \text{sign}(z_k) & \text{if LFQ} \\ \frac{1}{\sqrt{d}} \text{sign}(\frac{z_k}{\|z_k\|}) & \text{if BSQ} \end{cases} \quad (9)$$

958 The Infinite-Vocabulary Classifier (IVC) decomposes traditional V_d class prediction into d parallel
 959 binary classifiers, reducing classifier parameters by 99.95% while maintaining exponential vocabu-
 960 lary capacity. The index label $\mathbf{y}_k(m, n)$ is obtained by multiplying the positive elements with their
 961 corresponding bases and summing the results:

$$962 \mathbf{y}_k(m, n) = \sum_{p=0}^{d-1} \mathbb{I}_{\mathbf{R}_k(m, n, p) > 0} \cdot 2^p \quad (10)$$

965 where $m \in [0, h_k)$ and $n \in [0, w_k)$. The next-scale residual $\mathbf{R}_k(m, n, p)$ is predicted to be positive
 966 or negative by d binary classifiers operating in parallel.

968 **Bitwise Self-Correction** During training, random bit-flipping ($p \in [0, 30\%]$) on R_k generates
 969 perturbed features R_k^{flip} , followed by re-quantization of subsequent residuals. This forces the model
 970 to learn to correct its own errors, effectively reducing error accumulation in teacher-forcing training:

$$971 R_k^{\text{flip}} = \text{Random_Flip}(R_k, p) \quad (11)$$

972

973 Table 3: Quantitative comparative analysis of Global Cross-Attention and Local High-Frequency
974 Cross-Attention across multiple evaluation metrics.

Model	CLIP-T(\uparrow)	CLIP-I(\uparrow)	DINO(\uparrow)	FaceSim(\uparrow)
w/o Local High-frequency Cross-attention	30.5	70.4	77.2	52.8
w/o Global Cross-attention	28.6	69.3	74.1	50.2
HEAR	32.6	72.1	78.9	56.3

978

$$F_k^{\text{flip}} = \sum_{i=1}^k \text{up}(R_i^{\text{flip}}, (h, w)) \quad (12)$$

980 where Random_Flip is uniformly sampled from the interval $[0, p]$ to simulate varying levels of pre-
981
982 prediction errors at the k -th scale and obtain R_k^{flip} by randomly flipping the bits in R_k .

983

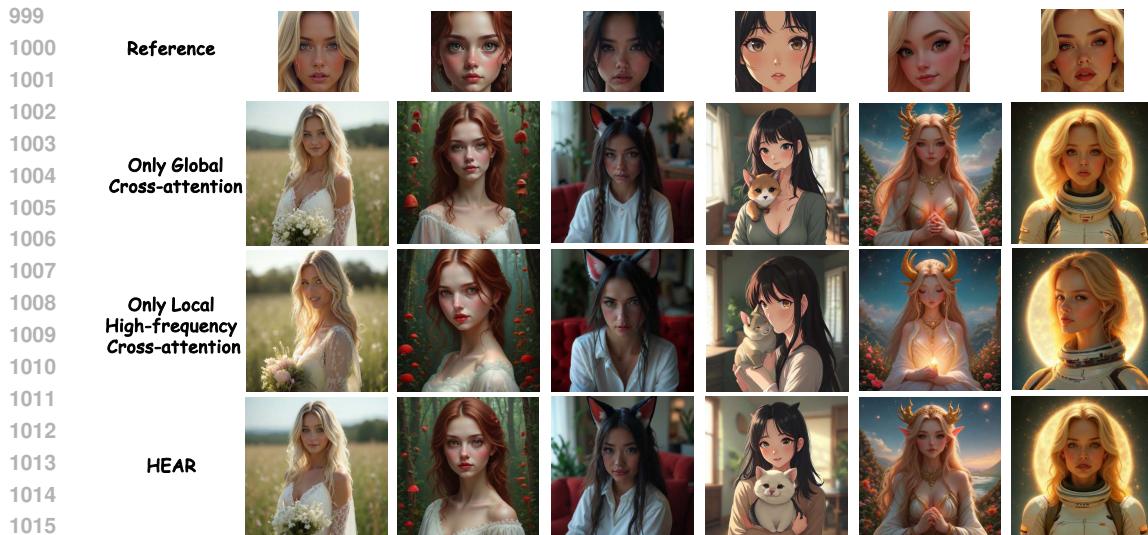
984 B MORE RESULTS

985 B.1 ABLATION STUDY

986 B.1.1 COMPARISON OF GLOBAL CROSS-ATTENTION AND LOCAL HIGH-FREQUENCY 987 CROSS-ATTENTION

988 As shown in the table 3, the absence of either module leads to a noticeable decline across multi-
989 ple evaluation metrics. Combined with Figure 8 in Supplementary Material, we can confidently
990 conclude that our modules effectively contribute to both the preservation of global features and the
991 enhancement of high-frequency details.

992 In addition, we provide several other ablation studies to further ensure the rigor and validity of our
993 experimental results.



1017 Figure 7: **Ablation study on the two key components of HEAR.** We compare global cross-
1018 attention and local high-frequency cross-attention. The results clearly demonstrate that HEAR sig-
1019 nificantly outperforms High-frequency Enhancement only in terms of global control, while also
1020 achieving superior high-frequency detail preservation compared to Global Control only.

1021 To validate the effectiveness of the dual-control strategy, we also compare it against two ablated
1022 variants: one with only global cross-attention and another with only local high-frequency cross-
1023 attention. In the global-only setting, image features are concatenated with text features and injected
1024 with global information via cross-attention blocks. In the local high-frequency-only setting, only the
1025 high-frequency components of image features are retained and injected via a decoupled adapter. For
a fair comparison, both adapters are trained under the same configuration for 500K steps. Figure 7

1026
 1027 Table 4: Effect of Reconstruction Losses (RLs), Vector Quantization Loss (VQL), Perceptual Loss
 1028 (PL), CLIP Loss (CL), and AdaFace Loss (AL) as measured by automatic metrics.

Method	MSE(\downarrow)	SSIM(\uparrow)	PSNR(\uparrow)
w/o VQL	21.87	0.93	34.73
w/o PL	14.57	0.94	34.82
w/o CL	14.05	0.95	35.26
w/o AL	13.98	0.95	35.28
HEAR	13.87	0.95	35.32

1039
 1040 presents qualitative examples comparing HEAR with the two ablated baselines. As shown, HEAR’s
 1041 dual-control strategy enables it to not only preserve global facial identity information effectively, but
 1042 also excel in capturing fine-grained local high-frequency details.
 1043

1044 B.2 VALIDITY OF MOTIVATION AND HIGH-FREQUENCY ENHANCEMENT

1057 Figure 8: **Visualization of HEAR’s generation process across different scales.** This illustrates
 1058 how HEAR controls the generation of image identities, particularly in terms of high-frequency
 1059 variations.

1060 As shown in Figure 8, we visualize the generation process of HEAR across different scales. It can
 1061 be observed that when the process reaches the stage of high-frequency detail generation (specifically
 1062 after Index 6 in the figure), each scale’s residual summation results in progressively greater similarity
 1063 to the reference image. This indicates that every high-frequency control adapter contributes mean-
 1064 ingfully to the generation. Moreover, through the accumulation of incremental changes, a qualitative
 1065 transformation is eventually achieved.

1066 B.3 ABLATION STUDY AND VISUALIZED COMPARISONS OF RECONSTRUCTION FIDELITY

1067 As illustrated in the table 4, the exclusion of any individual loss component results in a noticeable
 1068 increase in MSE and a decrease in SSIM and PSNR scores. The relatively smaller impact of the
 1069 Adaface loss may be attributed to its specific role in enhancing the VAE’s facial reconstruction
 1070 capability by computing facial similarity loss. Both the perceptual loss and CLIP loss compute
 1071 image-level similarity to enhance the encoder’s reconstruction capability, and their impact is slightly
 1072 greater than that of the AdaFace loss.

1073 Thank you for your feedback. We will incorporate ablation studies into the revised version of the
 1074 paper.

1075 To visually demonstrate the reconstruction fidelity of the high-frequency face encoder, we con-
 1076 ducted visualization experiments using several tokenizers, including Open-MAGVIT2 Luo et al.
 1077 (2024), LlamaGen Sun et al. (2024), Show-o Xie et al. (2024a), and Infinity Han et al. (2024).
 1078 Fig. 9 presents side-by-side comparisons of reconstruction results from all evaluated methods, us-
 1079 ing reference images from two distinct identities. The visual evidence highlights high-frequency

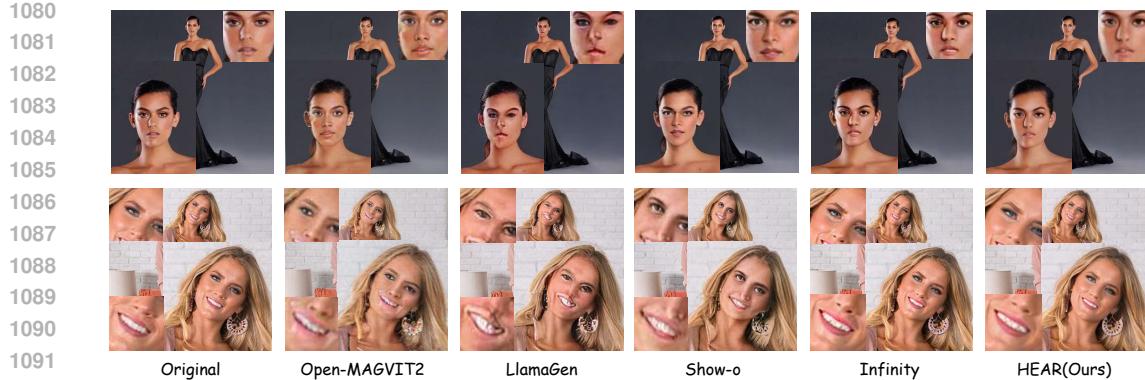


Figure 9: Reconstruction Comparison Across Different Visual Tokenizers. The proposed high-frequency visual tokenizer consistently outperforms existing approaches in both pixel-level accuracy and perceptual fidelity.

face encoder’s ability to produce highly accurate facial reconstructions, preserving both color consistency and fine-grained facial morphology. To further validate these observations, we magnified and compared specific facial features across both identities. By leveraging fine-grained multimodal cues and identity-specific details within key regions, particularly the eyes, nose, and lips, our model exhibits exceptional identity preservation. These results emphasize high-frequency face encoder’s superiority in maintaining anatomical precision and textural authenticity, clearly surpassing existing methods in visual fidelity.

B.3.1 EXPLORING HEAR’s POTENTIAL ACROSS DIVERSE ID TYPES AND PROMPT VARIATIONS

We selected a wide range of identity (ID) types without restricting to any single category as controlled reference images, and used a diverse set of prompts to provide textual guidance. We aimed to evaluate HEAR’s ability to preserve facial identity, follow prompt instructions, and maintain aesthetic quality across various scenarios. As illustrated in Fig. 10 and 11, the results were truly remarkable: HEAR consistently retained the facial ID while satisfying most prompt requirements, and demonstrated exceptionally high aesthetic quality.

1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

1134
 1135 **C PROMPTS USED IN THE IDENTITY-PRESERVING DATASET CURATION**
 1136 **PIPELINE**

1137 To provide a clearer understanding of our Identity-Preserving Dataset Curation Pipeline, we present
 1138 the complete prompts that were partially omitted in Figure 3 as follow.

1139
 1140 **Prompt of Image Preprocessing**

1141
 1142 **Your Role:** Facial Recognition Analyst

1143 **Objective:** Determine if the subject’s face in the provided image meets frontal orientation
 1144 and clarity requirements by verifying some specific criteria.

1145 **Process Steps:**

- 1146 1. Measure the face’s side/profile angles to ensure they do not exceed 30 degrees.
- 1147 2. Verify eyes, nose, and mouth are mostly visible (e.g., no hair, accessories, or hands
 1148 blocking features). Ensure no reflections (e.g., glasses) obscure key areas.
- 1149 3. Evaluate Image Clarity: Look for blurring, pixelation, or compression artifacts af-
 1150 fecting facial details. Check resolution quality (e.g., edges of facial features must
 1151 be sharp).
- 1152 4. Ensure even illumination across the face (no shadows over eyes/nose/mouth). Con-
 1153 firm no overexposure or underexposure distorting features.

1154
 1155 **Examples:**

1156 - Example 1 (Non-Compliant):

1157 [leftmargin=2em]

1158 User Prompt: Now you are a “Facial Recognition Analyst”. Carefully examine the
 1159 provided image and ...

1160 Reasoning: Face has a 45-degree side angle. Left eye obscured by hair. Blurring
 1161 around the mouth. Harsh shadows under the nose.

1162 Objects: [“face”, [“45° side angle”, “obscured eye”, “blurring”, “harsh shad-
 1163 ows”]]

1164 Negation: True

1165 - Example 2 (Compliant):

1166 [leftmargin=2em]

1167 User Prompt: Now you are a “Facial Recognition Analyst”. Carefully examine the
 1168 provided image and ...

1169 Reasoning: Full frontal view (5° tilt). All features visible. Sharp resolution. Even
 1170 lighting with no shadows.

1171 Objects: [“face”, [None, None, None, None]]

1172 Negation: False

1173 **Your Current Task:**

1174 Follow the Process Steps to analyze the provided image. Present results in the format:

1175 [leftmargin=2em]

1176 Reasoning: Detailed analysis of each criterion.

1177 Objects: List attributes (or None if compliant).

1178 Negation: Boolean (True/False) indicating compliance.

1179 **User prompt:** {Now you are a “Facial Recognition Analyst”. Carefully examine the pro-
 1180 vided image and determine whether the subject’s face meets frontal orientation and clarity
 1181 requirements by verifying the following criteria: Full frontal view with no side/profile angles
 1182 exceeding 30 degrees, all facial features (eyes, nose, mouth) fully visible and unobstructed,
 1183 no significant blurring or low-resolution artifacts, and proper illumination without harsh
 1184 shadows obscuring features. }

1188
1189

Prompt of Synthetic Data Augmentation

1190
1191
1192
1193**Your Role:** Textual Prompt Refiner**Objective:** Enhance human-centric image generation prompts by diversity injection through 3-4 specific physical attributes.**Process Steps:**1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

1. Inject descriptors like "high nasal root typical of East Asian ancestry" or "broad alar base common in West African phenotypes".
2. Add gender-fluid traits (e.g., "softened mandibular angle with stubble shadow").
3. Specify hormonal influences (e.g., "post-adolescent acne scarring along the jaw-line").
4. Map muscle movements to emotional states: "subtle crow's feet from frequent laughter" or "vertical glabellar lines indicating chronic frown".
5. Use dynamic modifiers (e.g., "partially contracted corrugator supercilii muscles").
6. Embed region-specific adornments (e.g., "Maasai beadwork collar", "Balinese temple ear cuffs").
7. Reference symbolic body modifications (e.g., "Yakuza-inspired fingertip tattoos").

Examples

- Example 1 (Original → Enhanced):

[leftmargin=2em]

Input Prompt: "A young woman smiling."

Enhanced Prompt: "A Southeast Asian woman in her 20s with epicanthic folds and a low nasal bridge, displaying asymmetrical nasolabial folds from a half-suppressed grin. Traditional sihn skirt drapes over her knees, complemented by a sak yant tattoo peeking above her collarbone."

- Example 2 (Original → Enhanced):

[leftmargin=2em]

Input Prompt: "An old man with a beard."

Enhanced Prompt: "A Kurdish man in his late 60s with salt-and-pepper şal û şapik mustache, deep nasojugal grooves from decades of squinting in sunlight, and deep facial tattoos fading into sagging jowls." Objects: [{"face", ["ethnic wrinkles", "cultural facial hair", "tribal ink"]}]

Your Current Task:

Building upon the original input prompt, we enhance human-centric image generation by injecting descriptive attributes, adding gender-fluid traits, specifying hormonal influences, mapping muscle movements to emotional states, using dynamic modifiers, embedding region-specific adornments, and referencing symbolic body modifications.

User prompt: {Now you are a "Textual Prompt Refiner" specializing in expanding facial details for human-centric image generation. For each input prompt, first perform diversity injection by adding 3-4 specific physical attributes including racial features (like epicanthic folds or nose bridge height), gender characteristics (such as androgynous jawline or beard density), micro-expressions (for example nasolabial folds when smiling), and cultural accessories (like tribal scarification patterns). }

1242
1243

Prompt of Image Recaption

1244

Your Role: Image Caption Creator

1245

Objective: Enhance facial image prompts by generating a dual-description structure that transitions from concise demographic-action-environment tagging to richly detailed, photo-realistic portrayals emphasizing expression, clothing, and spatial context.

1246

Process Steps:

1247

1. **Short-Form Prompt Construction:** "[Gender] [Ethnicity] [Action] in [Environment]" (e.g., "Middle-aged Hispanic man adjusting tie in a city street at dusk")

1248

2. **Long-Form Prompt Expansion:**

1249

- Facial Expression Expansion: Describe micro-expressions and gaze direction with anatomical precision. (e.g., "slight levator labii contraction from a half-smirk," "glance directed 30° rightward," "orbicularis oculi tension from narrowed gaze.")
- Clothing Detailing: Highlight fabric type, texture, and interaction with light. (e.g., "wool-blend blazer catching low-angle sunlight," "crimson silk scarf loosely looped at clavicle.")
- Spatial Elements: Specify physical orientation and spatial relationships with the surrounding environment. (e.g., "leaning 15° toward a reflective window 1 meter to his left," "background softened by a 3-meter depth of field with blurred pedestrians.")
- Photorealism Enforcement: Include optical effects that simulate real-world imaging conditions. (e.g., "light scattering," "depth blur," "lens distortion.")

1250

Examples

1251

- Short Prompt: "Young East Asian woman sipping coffee in a sunlit cafe corner."
- Long Prompt: "A young East Asian woman sipping from a white ceramic mug, with a soft smile indicated by gentle zygomaticus major activation and a downward gaze angled 45°, showing mild orbicularis oculi engagement. She wears a cream cashmere sweater with visible ribbing, catching warm sunlight across the sleeves, and a loosely tied silk scarf with floral tones at her collarbone. Her posture leans 10° forward, right elbow resting on a polished wooden table; a frosted window 80 cm to her left reflects ambient light. The background fades with a 2-meter depth blur, and subtle lens bloom and light scattering reinforce the scene's photorealism."

1252

Your Current Task: Generate both a short and a detailed caption for the following image using a full attribute structure. Present the results in the following format:

1253

- Short Prompt: "[Gender] [Ethnicity] [Action] in [Environment]"
- Long Prompt: Detailed expansion based on the short prompt, covering facial expression, clothing, spatial elements and photorealism enforcement.

1254

User prompt: {Now you are a "Image Caption Creator". Generate a dual-prompt description for the input facial image. First, create a short prompt stating the subject's gender, ethnicity, action, and surrounding environment in a concise format (e.g., '[Gender] [Ethnicity] [Action] in [Environment]')). Then, expand this into a long prompt by adding: 1) Detailed facial expressions (e.g., micro-expressions, eye direction, muscle tension), 2) Clothing specifics (textures, colors, material interactions), and 3) Spatial relationships between the subject and objects or environment (quantify distances and angles where applicable). Ensure both prompts maintain photographic realism and avoid artistic stylization. }

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

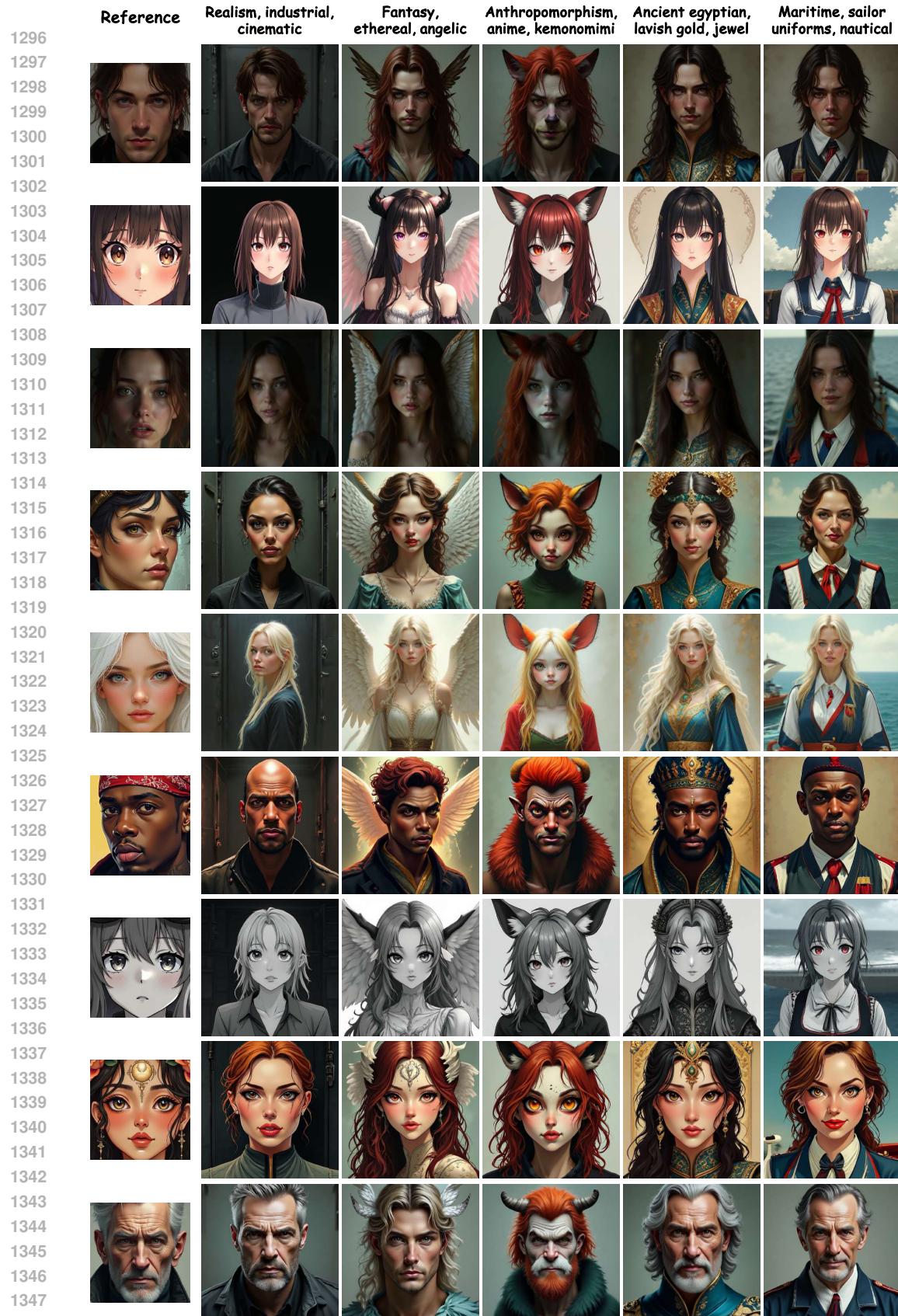


Figure 10: **Remarkable capability of HEAR to preserve individual identity while achieving high visual fidelity.** Our method consistently retains identity-specific features across a wide range of conditions, including diverse artistic styles, age groups, and skin tones.

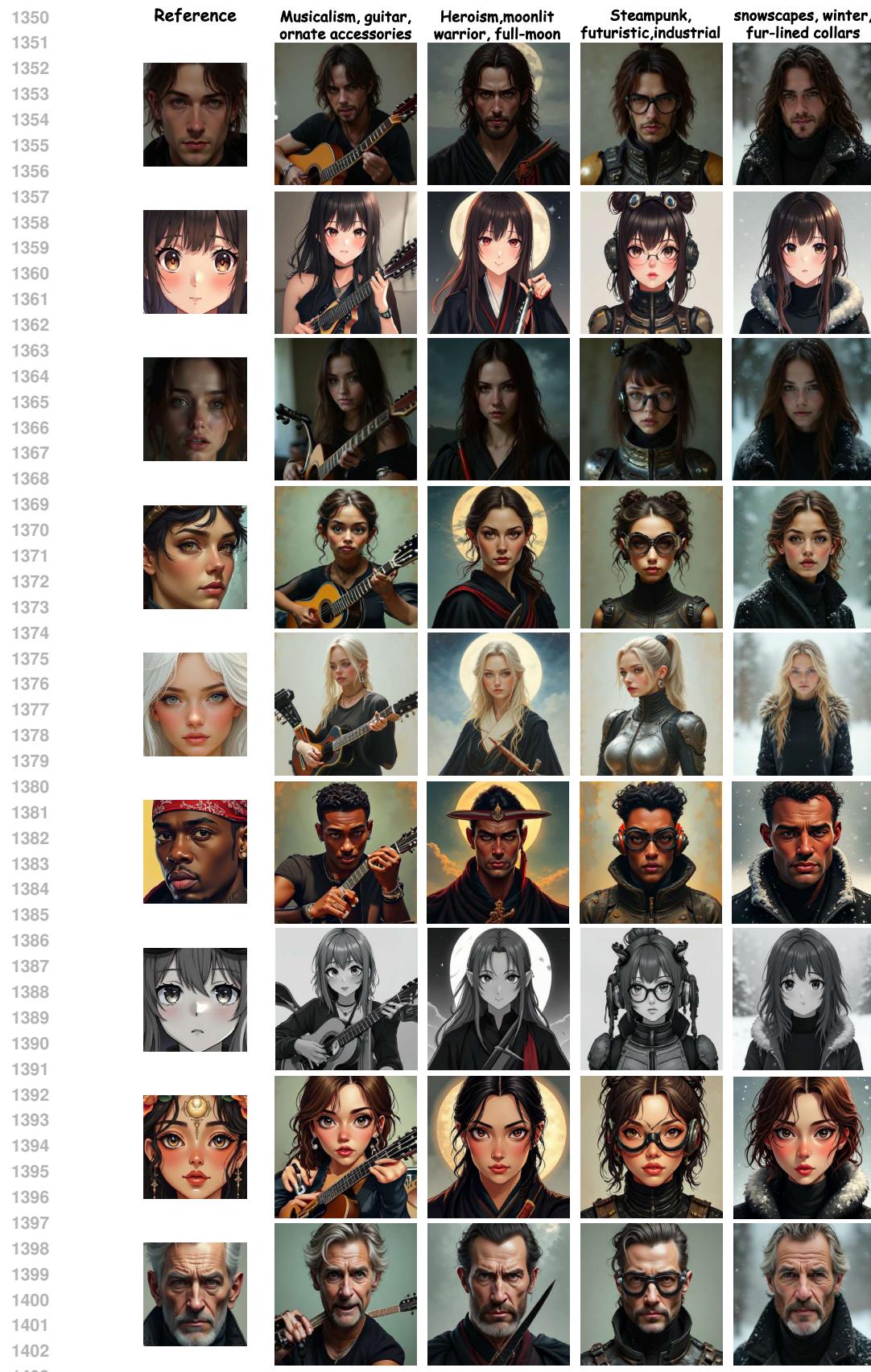


Figure 11: More Results.