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Figure 1: Showcases of the exceptional ability of HEAR to preserve individual identity while
maintaining high visual fidelity. Our method consistently retains identity-specific features across
diverse conditions, including varying artistic styles, age groups, and skin tones.

ABSTRACT

Recent autoregressive models such as LlamaGen, VAR, and Infinity have demon-
strated remarkable advancements in image generation, even surpassing popular
diffusion models in several aspects. However, diffusion models still dominate
in controllable image generation, particularly in identity-preserving (IP) text-to-
image generation, where autoregressive approaches remain underexplored. To
bridge this gap, we propose HEAR, a high-frequency enhanced autoregressive
identity-preserving text-to-image framework based on a coarse-to-fine next-scale
prediction paradigm, which leverages the key property of VAR we discovered for
separating high- and low-frequency features in image generation. Innovations of
our method include: (1) A comprehensive identity data curation pipeline that inte-
grates powerful open-source vision-language models (VLMs) for image filtering
and recaptioning, along with diffusion models for generating high-quality syn-
thetic training data; (2) A high-frequency identity feature tokenizer, fine-tuned
with compound losses and face-specific masking, to enhance high-frequency fea-
tures essential for identity preservation; (3) A dual-control strategy in the au-
toregressive backbone, incorporating global information into the cross-attention
blocks and introducing a decoupled adapter operating in parallel to maintain
high-frequency details. Extensive experiments demonstrate that HEAR surpasses
mostly existing diffusion-based methods in identity-preserving image generation.
This work presents a general and scalable autoregressive framework for control-
lable image generation.
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1 INTRODUCTION

The rapid advancement of autoregressive (AR) models (Lee et al., 2022; Zheng et al., 2022; Huang
et al., 2023; Yu et al., 2024c; Tian et al., 2024) has recently driven significant progress in text-to-
image generation (Sun et al., 2024; Han et al., 2024). However, research on controllable generation,
particularly identity-preserving (IP) image generation in autoregressive frameworks remains signifi-
cantly underexplored compared to the remarkable success of diffusion models (Ye et al., 2023; Wang
et al., 2024b; Li et al., 2024d). While diffusion-based paradigms (Sohl-Dickstein et al., 2015; Song
et al., 2020; Dhariwal & Nichol, 2021; Betker et al., 2023; Esser et al., 2024) have dominated the
field of controllable image generation (Zhang et al., 2023; Mou et al., 2024), their sequential denois-
ing process and architectural heterogeneity fundamentally conflict with the requirements for unified
multimodal modeling (Xie et al., 2024b; Yang et al., 2025). These limitations motivate our investi-
gation into controllable image generation within autoregressive frameworks (Li et al., 2024c;e; Xiao
et al., 2024), with a particular emphasis on identity-preserving image synthesis, which remains an
open challenge in autoregressive-based methods.

Traditional autoregressive frameworks for image generation preliminary rely on next-token predic-
tion for sequential modeling (Sun et al., 2024; Tang et al., 2024; Fan et al., 2024). However, this
token-level sequential modeling paradigm poses significant challenges for image generation, as it
lacks the flexibility to revise previously generated tokens based on subsequent tokens’ information,
creating critical limitations in achieving global coherence (Pang et al., 2024; Tian et al., 2024). Re-
cent advances have introduced novel approaches to address these limitations in visual autoregressive
modeling. VAR (Tian et al., 2024) proposes a novel next-scale prediction mechanism, redefining
image generation as a hierarchical coarse-to-fine process. Its scale-wise image generation process
shares structural similarities with the denoising process in diffusion models, as both employ pro-
gressive refinement from global structures to fine details, but it requires fewer steps. Building on
this, Infinity (Han et al., 2024) extends VAR for scalable text-to-image generation. Next-scale pre-
diction explicitly separates low-frequency macroscopic structures from high-frequency microscopic
details during image generation. This leads us to posit that the paradigm is especially well-suited
for identity-preserving image generation tasks, which demand precise control over high-frequency
details.

We conducted experiments to validate our arguments by sampling 2,000 diverse text prompts and
measuring both pixel-level and token-level reconstruction losses using Infinity (Han et al., 2024).
At each scale, we sum the tokens predicted from all previous scales and reconstruct the intermediate
image via detokenization. As shown in Fig. 2 (a), fundamental low-frequency features such as
layout and color are largely established in the early scales, while later scales focus on refining
details and reconstructing high-frequency components. Fig. 2 (b) further illustrates this high-low
frequency separation through metric trends: in the later stages of image generation, pixel-level MSE
exhibits smaller changes, indicating that these later scales primarily concentrate on fine-grained
detail reconstruction. This empirical observation supports the effectiveness of the hierarchical VAR
modeling paradigm, which performs coarse-to-fine feature decomposition with explicit separation
of high- and low-frequency components, making it particularly well-suited for identity-preserving
tasks that demand precise control over high-frequency information.

The separation of fine and coarse features in the hierarchical prediction framework renders it highly
effective in identity-preserving text-to-image synthesis. To this end, we introduce HEAR, a high-
frequency enhanced autoregressive identity-preserving text-to-image framework based on coarse-to-
fine next-scale prediction paradigm for high-quality identity-preserving image generation. We first
leverage the powerful open-sourced Vision-Language Models (VLMs) to perform precise face data
filtering and recaption, while employing advanced generative models, including FLUX-dev(Labs,
2024) and SD3.5-large(Rombach et al., 2022) for high-quality synthetic data generation. Then we
proposed a high-frequency identity encoder to specifically extract high-frequency face features. The
training process employed multiple heterogeneous loss functions (including structural similarity loss
and detail reconstruction loss) combined with a novel face-specific loss mask, which strategically
weights facial regions through adaptive attention mechanisms during backpropagation. Finally, we
implement a dual-controllable strategy for the backbone architecture by first injecting global in-
formation into the original cross-attention block and then incorporating a decoupled adapter that
operates in parallel to preserve high-frequency features. Extensive qualitative and quantitative ex-
periments demonstrate the effectiveness of our method and its significant improvement in identity-
preserving image generation.
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Prompt1: A woman adorned with vibrant orange flowers, showcasing intricate details, serene expression.

Prompt2: A freckled beauty with cascading curls is encircled by vibrant monarch butterflies. The 
serene teal backdrop highlights her striking features.

Scale Index1 Index2 …Index3 Index4 Index5 Index6 Index8 Index13

(a) (b)

Figure 2: Motivation of HEAR. (a) In the early stages, smaller scales primarily determine low-
frequency features such as shape, position, and color, while larger determine high-frequency fea-
tures, including facial details. (b) This hypothesis is further validated through empirical experi-
ments.

Our contributions are summarized as follows:

• An insightful discovery regarding the coarse-to-fine feature decomposition with explicit
separation of high- and low-frequency in the next scale prediction paradigm.

• We propose HEAR, a new high-frequency enhanced visual autoregressive framework for
identity-preserving image generation, and provide a new perspective for controllable au-
toregressive image generation.

• We introduce a novel identity data curation pipeline and train a high-frequency face encoder
for the better construction of face details.

• Extensive qualitative and quantitative comparisons with previous powerful methods
demonstrate the effectiveness and superiority of our method.

2 RELATED WORK

Autoregressive Image Generation Autoregressive image generation models leveraged the GPT-
style (Radford et al., 2018) paradigm to model the distribution of pixels or latent codes in a se-
quential manner (Esser et al., 2021; Razavi et al., 2019; Yang et al., 2025). Earlier autoregressive
models, such as VQ-VAE (Van Den Oord et al., 2017), used discrete visual tokenizers to predict the
next visual token. Parti (Yu et al., 2022) formulates high-resolution text-to-image generation as a
sequence-to-sequence task, where the output is a sequence of image tokens. Open-MAGVIT2 (Luo
et al., 2024) introduces asymmetric token decomposition and a next sub-token prediction mechanism
to enhance generation quality. Autoregressive text-to-image generation has achieved remarkable ad-
vancement recently. Numerous works such as LlamaGen (Sun et al., 2024), which is LLM-based
(Vaswani et al., 2017; Zhang et al., 2022; Devlin et al., 2019) architectures leveraging powerful scal-
ing capabilities, enabling autoregressive models to rival or even surpass diffusion models in image
generation quality. Beyond next-token prediction, some autoregressive models also shifted toward
more diverse token representations. MAR (Li et al., 2024b) introduces a diffusion-based method
(Ho et al., 2020) to model the probability distribution of each token in continuous space, replac-
ing the conventional cross-entropy loss with a diffusion loss. VAR (Tian et al., 2024) redefines the
conventional coarse-to-fine paradigm by shifting from next-token prediction to a novel next-scale
prediction framework, demonstrating strong potential in image synthesis. xAR (Ren et al., 2025)
proposes a generalized and more flexible next-X prediction framework, where X can represent to-
kens, scales, or spatial cells. Other innovations (Yu et al., 2024b; Li et al., 2024a;b) have also
emerged in models such as DART (Gu et al., 2024) and Fluid (Fan et al., 2024). Built upon the
next-scale prediction paradigm, Infinity (Han et al., 2024) employs an infinite-vocabulary tokenizer
and classifier, along with a bit-level self-correction mechanism to achieve powerful text-to-image
generation quality. We adopt Infinity as the backbone of our HEAR due to its flexibility in handling
high-frequency enhancement.

Identity Preserving Text-to-Image Generation Identity-preserving text-to-image (T2I) gener-
ation extends conventional text-to-image generation by enforcing strict identity (ID) consistency
between the generated image and a reference subject. Numerous methods (Yu et al., 2024a; Wang
et al., 2024b; Liang et al., 2024; Zhang et al., 2024c;a;b) leverage diffusion models to achieve re-
markable success in this area. LoRA (Hu et al., 2022) and ControlNet (Zhang et al., 2023) augment
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Raw Images
InsightFace Qwen2.5-VL

Now you are a “Facial Recognition Analyst”. 
Carefully examine the provided image and …

Now you are a “Textual Prompt Refiner” specializing in expanding 
facial details for human-centric image generation. For each input 
prompt, first perform …

Prompt 
Corpus

Qwen2.5 FLUX

Image Dataset

Qwen2.5-VL

Now you are a ”Image Caption 
Creator". Generate a dual-prompt 
description for the input facial 
image. First, create a short prompt 
stating the subject‘s …

Recaption 
Prompts

1 Image Preprocessing

2 Synthetic Data 
Augmentation

3 Image Recaption

Figure 3: An overview of Identity-Preserving Dataset Curation Pipeline.

base diffusion models with trainable layers to enable controllable generation conditioned on inputs
like pose, masks, edges, and depth. PhotoMaker (Li et al., 2024d) preserves identity preservation by
directly merging text embeddings with image embeddings. Other methods, including IP-Adapter (Ye
et al., 2023), InstantID (Wang et al., 2024b), and ConsistentID (Huang et al., 2024) freeze backbone
parameters and inject identity features through a decoupled cross-attention mechanism, achieving
strong ID preservation with minimal additional training. Furthermore, methods like UniPortrait (He
et al., 2024) and ID-Adapter (Chen et al., 2024) continue to push the boundaries of generalization
and effectiveness in identity-preserving generation. However, identity-preserving text-to-image gen-
eration has been rarely addressed using autoregressive models. Some methods such as ControlVAR
(Li et al., 2024c), ControlAR (Li et al., 2024e), and OmniGen (Xiao et al., 2024) mainly explore con-
trollable generation under different input conditions. Compared to diffusion models, autoregressive
methods offer superior inference efficiency and stronger multimodal fusion capabilities. Our method
trains a high-frequency face encoder for extracting high-frequency image features, and adopts the
next-scale prediction autoregressive framework and employs a decoupled cross-attention mecha-
nism to inject both global visual features and high-frequency identity features into the transformer
layers.

3 METHOD

In this section, we present HEAR, a high-frequency enhanced autoregressive text-to-image frame-
work designed for high-quality identity-preserving image generation with a coarse-to-fine next-scale
prediction paradigm, as illustrated in Fig. 4.

3.1 CURATION OF HIGH-QUALITY IDENTITY-PRESERVING DATA

A high-quality training dataset is essential for achieving identity-preserving generation. However,
datasets curated specifically for identity-preserving tasks often contain significant noise, including
profile views and heavily occluded faces. To overcome these limitations, we propose an automated
data curation pipeline that harnesses the capabilities of advanced Vision-Language Models (VLMs).
This system efficiently filters out low-quality samples, using synthetic data to augment the original
dataset and provide fine-grained captions. The overall pipeline is illustrated in Fig. 3.
Image Preprocessing We begin by applying InsightFace (Deng et al., 2019) to the raw images,
retaining only those in which a face can be reliably detected. Subsequently, we perform a second-
round filtering using Qwen2.5-VL-32B (Wang et al., 2024a) to ensure high data purity. Through this
preprocessing pipeline, we obtain a collection of high-quality face images, free from profile views
and heavy occlusions.
Synthetic Data Augmentation The dataset primarily consists of authentic photographic content,
which often lacks aesthetic quality. To enhance the visual appeal of the generated outputs of our
model, we augment the training corpus with a substantial synthetic dataset produced by state-of-the-
art image generation models. Specifically, we randomly select 50K identity-related text prompts and
use Qwen2.5-32B (Yang et al., 2024) to enrich them with fine-grained facial descriptions, including
attributes such as ethnicity, gender, facial features, expressions, and accessories. These finalized
prompts are then fed into high-fidelity image generation models, including Stable Diffusion 3.5
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Crop

Prompt: A poised woman with wavy blonde 
hair, wearing a sleeveless pale pink gown.

Global 
Visual Encoder

High-frequency
Face Encoder

Text Encoder

Face Tokens
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Projection

Only High-frequency tokens

Concat Global Visual 
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Text 
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Figure 4: An overview of HEAR pipeline.

Large (Rombach et al., 2022) and FLUX-dev (Labs, 2024), to produce photorealistic synthetic face
images.

Image Recaption Image Recaption Identity preserving T2I models depend on accurate captions,
as generic descriptions miss crucial identity cues. For each image we first use Qwen2.5-VL-32B
to produce a brief prompt that specifies gender, ethnicity, action, and environment; the model then
expands this summary with subtle facial expressions and gaze, detailed clothing characteristics, and
quantitative spatial relations between the subject and the scene. During training, each image is
paired with either the short or the expanded caption with equal probability, allowing the network to
learn from both coarse and fine descriptions and thereby improving robustness.

3.2 HIGH-FREQUENCY FACE ENCODER

The fundamental goal of identity preservation in facial reconstruction is to retain identity-specific
details, which are primarily encoded in high-frequency components. However, existing visual to-
kenizers struggle to capture these high-frequency features accurately, as they are typically pre-
trained on large-scale, general-purpose image datasets. These datasets prioritize broad semantic
coverage rather than fine-grained facial attributes, and thus lack domain-specific optimization for
identity-related features. To address this issue, we present a high-frequency face encoder, specif-
ically designed and trained for facial identity reconstruction tasks, to enhance sensitivity to high-
frequency identity features. This extractor is trained with composite losses, including reconstruction
loss LreconL1

and LreconL2
, vector quantization loss LVQ, Perceptual loss Llpips, CLIP loss Lclip and

adaface loss Ladaface:

L = λreconL1
LreconL1

+ λreconL2
LreconL2

+ λVQLVQ + λlpipsLlpips + λclipLclip + λadafaceLadaface (1)

Specifically, the reconstruction loss measures the L1 and L2 distances between the reconstructed
image and the ground truth, measuring pixel-level fidelity. The vector quantization loss encourages
alignment between the encoded features and their corresponding codebook vectors. To capture per-
ceptual similarity, the perceptual loss compares high-level feature representations extracted by the
pre-trained LPIPS (Zhang et al., 2018). The CLIP loss enforces semantic consistency by regulariz-
ing the semantic tokens using features from the pre-trained DINOv2 (Oquab et al., 2023). Finally,
an AdaFace recognition module is integrated with the AdaFace loss (Kim et al., 2022) to ensure
facial similarity between the reconstructed and ground truth images.

To focus on identity-specific details within facial regions during training, we introduce a face-
specific spatial weighting mask that amplifies the loss contribution of facial regions. Specifically,
for each training image, we use InsightFace (Deng et al., 2019) to detect facial bounding boxes with
coordinates (x1, x2, y1, y2). A position-dependent weighting factor α(α > 1) is applied to all pixels
within the facial region R =

{
(i, j) | x1 ≤ i ≤ x2, y1 ≤ j ≤ y2

}
, while pixels outside this region

are assigned a default weight of 1. This spatial weighting mechanism compels the encoder to focus
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more on discriminative, high-frequency facial patterns that are critical for identity preservation:

wi,j =

{
α, (i, j) ∈ R,

1, otherwise.
(2)

Consequently, facial regions within the bounding box receive significantly higher attention, effec-
tively guiding the model to concentrate on identity-relevant features during training.

3.3 HEAR: HIGH-FREQUENCY ENHANCED AUTOREGRESSIVE MODEL

The overview of HEAR is illustrated in Fig. 4. Given a reference image, the global visual encoder
and local high-frequency face encoder respectively inject global and high-frequency facial feature
into the model via cross-attention blocks and the decoupled adapter.

3.3.1 GLOBAL VIEW: CROSS-ATTENTION BLOCKS

In our proposed global view framework, we begin by extracting text embeddings from a text encoder
and global facial image embeddings from a global visual encoder. We leverage a pre-trained and
frozen word embedding layer to directly align the global visual embeddings vg with the text em-
beddings t. We then concatenate the text and global facial image embeddings and passed through a
global projection layer. The fused features f can be formulated as:

f = Concat(t,vg) ·Wg (3)

where Concat(·) means concatenating the text embeddings t and global visual embeddings vg along
the sequence (length) dimension. Wg is the global projection matrix. Given the query features Z
and the fusion features f , the output of global view cross-attention Zg is computed as follows:

Zg = Attention(Q,K,V) = softmax
(
QK⊤
√
d

)
·V

Q = WQ · Z, K = WK · f , V = WV · f
(4)

where Q, K, V are the query, key, and values matrices of the attention operation respectively, and
WQ, WK , WV are the weight matrices of the trainable linear projection layers.

3.3.2 LOCAL VIEW: A DECOUPLED ADAPTER IN PARALLEL

For each distinct identity, high-frequency features capture unique and discriminative characteristics
more effectively than low-frequency components, making them critical for distinguishing one iden-
tity from another. To leverage this, after injecting global facial information through cross-attention
blocks, we reintroduce high-frequency facial features extracted by a dedicated high-frequency iden-
tity feature extractor. Inspired by prior works (Ye et al., 2023; Wang et al., 2024b; Huang et al.,
2024), we incorporate these features using a lightweight decoupled adapter to avoid redundant con-
trol modules and excessive trainable parameters.

Leveraging the unique quantization mechanism of the next-scale prediction paradigm, the encoder
naturally organizes latent image embeddings into frequency-ordered embeddings (from low to high
frequency) after quantization. Once a cropped facial image is encoded into its corresponding face
embedding, we apply parameter FT to truncate the visual embedding v and extract the high-
frequency visual embedding vhf. This process is formally defined as follows:

vhf = v[FT :] ·Whf (5)

where [FT :] denotes slicing for tokens from the latter high-frequency scales. Whf is the high-
frequency projection matrix. Given the query features Z and the high-frequency face embedding
vhf, the output of local view high-frequency cross-attention Zhf can be defined by the following
equation:

Zhf = Attention(Q,K′,V′) = softmax

(
QK′⊤
√
d

)
·V′

Q = WQ · Z, K′ = W′
K · vhf, V

′ = W′
V · vhf

(6)
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32.31% 16.82% 14.74% 36.13%Expression

Happy Sad Angry Other

Figure 5: The statistical characteristics distribution in the training dataset

where Q, K′, and V′ denote the query, key, and value matrices used in the attention operation,
respectively. The query matrix WQ is shared between the global cross-attention and the high-
frequency cross-attention modules. The matrices W′

K and W′
V are the corresponding weight

matrices for the key and value projections in the high-frequency pathway. As a result, only two
additional parameters, W′

K and W′
V , are introduced per cross-attention layer. We initialize W′

K

and W′
V with the weights of WK and WV respectively.

3.3.3 A DUAL-CONTROL STRATEGY

The global and high-frequency face features are respectively integrated into the backbone via the
inherent and decoupled cross-attention. In the original Infinity model, the text features from the
CLIP text encoder are plugged into transformer by feeding into the cross-attention blocks. Given
the global view cross-attention Zg and the local view high-frequency cross-attention Zhf, the final
output of cross-attention Z′ is defined as follows:

Z′ = Zg + Zhf = softmax
(
QK⊤
√
d

)
·V + softmax

(
QK′⊤
√
d

)
·V′ (7)

Ultimately, global facial features Zg are still injected through the original cross-attention blocks
of the transformer, while high-frequency details Zhf are enhanced via the insertion of lightweight
decoupled image cross-attention layers. This design ensures minimal parameter overhead and avoids
introducing additional heavy modules.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Implementation Details Our experiments are based on Infinity (Han et al., 2024), where we fine-
tune a custom high-frequency face encoder on top of the original Infinity image encoder. During
the training of this face encoder, we set the position-dependent weighting factor α to 2. We set
λreconL1

= 0.2 ,λreconL2
= λVQ = 1.0, λlpips = 0.5 and λclip = λadaface = 0.1.

During transformer training, we define multiple aspect ratio templates, and all images are resized
to match one of the predefined ratios. This allows the model to generate outputs of varying aspect
ratios during inference. To improve robustness, each image is paired with both a long and a short
caption, with a 50% probability of either being selected during training. In our design, we use 13
scales, and FT refers to the total token length of the first 6 scales. We adopt the AdamW optimizer
with a fixed learning rate of 0.0001 and a weight decay of 0.01. Our model is trained for 500K steps
on a single machine equipped with 8*NVIDIA A100-80G GPUs, using a batch size of 8 per GPU.

Data Composition and Distribution We sampled 51 k, 98 k, and 482 k images from CelebA,
LAION-Face, and X2I, then applied the Fig. 3 filter, yielding 150 k photos with clear, unobstructed
faces and distinct identities. We augmented this set with synthetic images generated by Stable Dif-
fusion 3.5-large and FLUX-dev, maintaining a 3:1 natural-to-synthetic ratio. Gender, skin tone, and
other facial attributes were distribution-balanced (Fig. 5), giving the final corpus both demographic
parity and strong photorealism, which in turn boosts model generalization.

Experimental Metrics To comprehensively evaluate the effectiveness and efficiency of HAER,
we adopt five widely recognized metrics (Ruiz et al., 2023): CLIP-T (Gal et al., 2022), CLIP-I
(Radford et al., 2021), DINO (Cong et al., 2020), FaceSim (Schroff et al., 2015), and computa-
tional efficiency (inference speed). All experiments were conducted under standardized hardware
conditions to ensure fairness and reproducibility.
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OmniGen

Figure 6: Comparison of facial feature details between HEAR and existing methods. The char-
acters generated by our method demonstrate enhanced identity consistency, particularly in facial
features such as the eyes, nose, and mouth.

4.2 MAIN RESULTS

4.2.1 QUANTITATIVE COMPARISON

We assembled a test set of 40 distinct identities spanning a wide variety of appearances. Consistent
with PhotoMaker (Li et al., 2024d), the set also includes the images associated with MyStyle (Nitzan
et al., 2022) identities. HEAR consistently outperforms other methods across most evaluation met-
rics, particularly in CLIP-T, FaceSim, and inference speed, as shown in Table 1. The strong perfor-
mance on CLIP-T and FaceSim can be attributed to HEAR’s high-frequency enhancement strategy,
which enables more precise control over fine-grained details. Its superior speed results from both the
inherent efficiency of the autoregressive framework and HEAR’s streamlined design, which avoids
heavy modules and excessive parameter growth. These combined strengths allow HEAR to preserve
fine-grained identity features while remaining an efficient, lightweight multimodal face prompt gen-
erator.

4.2.2 QUALITATIVE COMPARISON

To intuitively demonstrate the advantages of HEAR, we conducted a qualitative evaluation using
a diverse set of images with varying types and styles, comparing our method against IP-Adapter
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Table 1: Comparative Evaluation of Identity Preservation Methods
Method CLIP-T(↑) CLIP-I(↑) DINO(↑) FaceSim(↑) Speed(↓)

Photomaker Li et al. (2024d) 30.1 67.4 73.8 50.8 20.18
IP-Adapter Ye et al. (2023) 29.2 68.2 74.5 52.1 12.48
InstantID Wang et al. (2024b) 30.4 70.2 78.1 55.1 17.51
OmniGen Xiao et al. (2024) 32.5 69.3 78.1 53.4 40.32
HEAR (Ours) 32.6 72.1 78.9 56.3 6.62

Table 2: Comparative Analysis of Image Tokenization Methods: Performance on MSE, SSIM and
PSNR.

Method MSE↓ SSIM↑ PSNR↑
Open-MAGVIT2 Luo et al. (2024) 57.43 0.72 22.94
LlamaGen Sun et al. (2024) 52.33 0.76 23.15
Show-o Xie et al. (2024a) 42.35 0.76 23.63
Infinity Han et al. (2024) 15.15 0.94 34.31
HEAR (Ours) 13.87 0.95 35.32

(Ye et al., 2023), PhotoMaker (Li et al., 2024d), and InstantID (Wang et al., 2024b). We selected
reference images from five different identities to showcase the text-driven generation results for each
method, as illustrated in Fig. 6.

Both IP-Adapter and InstantID exhibit a certain degree of failure in guiding image generation ef-
fectively with textual prompts. In contrast, HEAR leverages a Dual-Control Strategy that allows
textual input to participate more actively in the generation process, resulting in better controllabil-
ity. Furthermore, IP-Adapter and ControlNet fall short in preserving facial details compared to our
approach, primarily because HEAR incorporates a high-frequency enhancement mechanism to re-
tain fine-grained identity features. In terms of visual appeal, InstantID also underperforms relative
to HEAR, as our method benefits from a curated high-quality dataset that significantly improves
aesthetic quality. In summary, our model surpasses existing methods in textual guidance, high-
frequency-controlled generation, as well as in overall image quality and aesthetic fidelity.

4.3 COMPARISON OF HIGH-FREQUENCY FACE ENCODER

Quantitative Comparison To rigorously evaluate the reconstruction capabilities of our high-
frequency face encoder, we conducted comprehensive comparisons against several tokenizers us-
ing the MyStyle (Nitzan et al., 2022) facial dataset. The evaluation focused on image–condition
alignment, employing two principal metrics SSIM and PSNR.

As shown in Table 2, our method outperforms competing approaches across both metrics. This
technical advantage stems from high-frequency face encoder’s specialized high-frequency feature
extraction mechanism, combined with a dataset-specific fine-tuning strategy optimized for facial
characteristics. This synergistic design enables more accurate preservation of critical biometric
details while maintaining strong alignment with visual-textual conditions.

5 CONCLUSION

In this paper, we present HEAR, a high-frequency enhanced autoregressive identity-preserving (IP)
text-to-image framework based on a coarse-to-fine next-scale prediction paradigm. We introduce tar-
geted improvements across the entire training pipeline, including dataset curation, high-frequency
face encoder training, and transformer-based architectural design. Experimental results demonstrate
HEAR’s superior performance in identity-preserving image generation, outperforming several pow-
erful diffusion-based models. However, HEAR also has limitations due to its current model size (2B
parameters), and we will use a larger model size for better performance.
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This supplementary material is organized into several sections, each offering additional details and
analysis related to HEAR. The topics covered include:

• In Appendix A, we provide a preliminary about next-scale prediction and Infinity.
• In Appendix B, we provide more results of HEAR including ablation study, visualized

comparisons of high-frequency encoder and high-quality visualization.
• In Appendix C, we provide the prompts used in the ID dataset curation pipeline in Fig. 3.

A PRELIMINARY

A.1 NEXT-SCALE PREDICTION

VAR (Tian et al., 2024) reconceptualizes autoregressive modeling for images by shifting from a
next-token prediction strategy to a next-scale prediction strategy. In this formulation, the basic
autoregressive unit is an entire token map rather than a single token. We begin by quantizing a
feature map f ∈ Rh×w×C into K multi-scale token maps (r1, r2, . . . , rK), each corresponding to
progressively higher resolutions hk × wk, where rK matches the original feature map’s resolution
h× w. The autoregressive likelihood is then defined as:

p(r1, r2, . . . , rK) =

K∏
k=1

p(rk | r1, r2, . . . , rk−1), (8)

where each autoregressive unit rk ∈ [V ]hk×wk represents the token map at scale k, consisting
of hk × wk tokens. The sequence (r1, r2, . . . , rk−1) serves as the prefix for predicting rk. At
the k-th autoregressive step, the distributions over all hk × wk tokens are generated in parallel,
conditioned on rk’s prefix and the corresponding k-th position embedding map. During training,
a block-wise causal attention mask is applied to ensure that each rk only attends to its prefix r≤k.
During inference, key-value caching can be used and no masking is required.

A.2 AUTOREGRESSIVE TEXT-TO-IMAGE GENERATION: INFINITY

Infinity (Han et al., 2024) introduces a bitwise visual autoregressive framework that significantly
enhances high-resolution image synthesis through two core innovations:

Infinite-Vocabulary Tokenizer & Classifier Employing LFQ or BSQ, infinity quantizes residual
features Rk into binary bit sequences through dimension-independent encoding, theoretically scal-
ing vocabulary size to 232 or 264. Given K scales in the multi-scale quantizer, at the k-th scale, the
input continuous residual vector zk ∈ Rd is quantized into a binary output qk as illustrated below:

qk = Q(zk) =

{
sign(zk) if LFQ
1√
d

sign( zk
|zk| ) if BSQ (9)

The Infinite-Vocabulary Classifier (IVC) decomposes traditional Vd class prediction into d parallel
binary classifiers, reducing classifier parameters by 99.95% while maintaining exponential vocabu-
lary capacity. The index label yk(m,n) is obtained by multiplying the positive elements with their
corresponding bases and summing the results:

yk(m,n) =

d−1∑
p=0

IRk(m,n,p)>0 · 2p (10)

where m ∈ [0, hk) and n ∈ [0, wk). The next-scale residual Rk(m,n, p) is predicted to be positive
or negative by d binary classifiers operating in parallel.

Bitwise Self-Correction During training, random bit-flipping (p ∈ [0, 30%]) on Rk generates
perturbed features Rflip

k , followed by re-quantization of subsequent residuals. This forces the model
to learn to correct its own errors, effectively reducing error accumulation in teacher-forcing training:

Rflip
k = Random Flip(Rk, p) (11)
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Table 3: Quantitative comparative analysis of Global Cross-Attention and Local High-Frequency
Cross-Attention across multiple evaluation metrics.

Model CLIP-T(↑) CLIP-I(↑) DINO(↑) FaceSim(↑)

w/o Local High-frequency Cross-attention 30.5 70.4 77.2 52.8
w/o Global Cross-attention 28.6 69.3 74.1 50.2
HEAR 32.6 72.1 78.9 56.3

F flip
k =

k∑
i=1

up(Rflip
i , (h,w)) (12)

where Random Flip is uniformly sampled from the interval [0, p] to simulate varying levels of pre-
diction errors at the k-th scale and obtain Rflip

k by randomly flipping the bits in Rk.

B MORE RESULTS

B.1 ABLATION STUDY

B.1.1 COMPARISON OF GLOBAL CROSS-ATTENTION AND LOCAL HIGH-FREQUENCY
CROSS-ATTENTION

As shown in the table 3, the absence of either module leads to a noticeable decline across multi-
ple evaluation metrics. Combined with Figure 8 in Supplementary Material, we can confidently
conclude that our modules effectively contribute to both the preservation of global features and the
enhancement of high-frequency details.

In addition, we provide several other ablation studies to further ensure the rigor and validity of our
experimental results.

Reference

Only Global 
Cross-attention 

Only Local 
High-frequency
 Cross-attention

HEAR

Figure 7: Ablation study on the two key components of HEAR. We compare global cross-
attention and local high-frequency cross-attention. The results clearly demonstrate that HEAR sig-
nificantly outperforms High-frequency Enhancement only in terms of global control, while also
achieving superior high-frequency detail preservation compared to Global Control only.

To validate the effectiveness of the dual-control strategy, we also compare it against two ablated
variants: one with only global cross-attention and another with only local high-frequency cross-
attention. In the global-only setting, image features are concatenated with text features and injected
with global information via cross-attention blocks. In the local high-frequency-only setting, only the
high-frequency components of image features are retained and injected via a decoupled adapter. For
a fair comparison, both adapters are trained under the same configuration for 500K steps. Figure 7
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Table 4: Effect of Reconstruction Losses (RLs), Vector Quantization Loss (VQL), Perceptual Loss
(PL), CLIP Loss (CL), and AdaFace Loss (AL) as measured by automatic metrics.

Method MSE(↓) SSIM(↑) PSNR(↑)

w/o VQL 21.87 0.93 34.73
w/o PL 14.57 0.94 34.82
w/o CL 14.05 0.95 35.26
w/o AL 13.98 0.95 35.28
HEAR 13.87 0.95 35.32

presents qualitative examples comparing HEAR with the two ablated baselines. As shown, HEAR’s
dual-control strategy enables it to not only preserve global facial identity information effectively, but
also excel in capturing fine-grained local high-frequency details.

B.2 VALIDITY OF MOTIVATION AND HIGH-FREQUENCY ENHANCEMENT

Index1 Index3 Index5 Index6 Index7 Index8 Index9 Index10Reference\Scale Index11 Index12 Index13

Figure 8: Visualization of HEAR’s generation process across different scales. This illustrates
how HEAR controls the generation of image identities, particularly in terms of high-frequency vari-
ations.

As shown in Figure 8, we visualize the generation process of HEAR across different scales. It can
be observed that when the process reaches the stage of high-frequency detail generation (specifically
after Index 6 in the figure), each scale’s residual summation results in progressively greater similarity
to the reference image. This indicates that every high-frequency control adapter contributes mean-
ingfully to the generation. Moreover, through the accumulation of incremental changes, a qualitative
transformation is eventually achieved.

B.3 ABLATION STUDY AND VISUALIZED COMPARISONS OF RECONSTRUCTION FIDELITY

As illustrated in the table 4, the exclusion of any individual loss component results in a noticeable
increase in MSE and a decrease in SSIM and PSNR scores. The relatively smaller impact of the
Adaface loss may be attributed to its specific role in enhancing the VAE’s facial reconstruction
capability by computing facial similarity loss. Both the perceptual loss and CLIP loss compute
image-level similarity to enhance the encoder’s reconstruction capability, and their impact is slightly
greater than that of the AdaFace loss.

Thank you for your feedback. We will incorporate ablation studies into the revised version of the
paper.

To visually demonstrate the reconstruction fidelity of the high-frequency face encoder, we con-
ducted visualization experiments using several tokenizers, including Open-MAGVIT2 Luo et al.
(2024), LlamaGen Sun et al. (2024), Show-o Xie et al. (2024a), and Infinity Han et al. (2024).
Fig. 9 presents side-by-side comparisons of reconstruction results from all evaluated methods, us-
ing reference images from two distinct identities. The visual evidence highlights high-frequency
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Original InfinityOpen-MAGVIT2 LlamaGen Show-o HEAR(Ours)

Figure 9: Reconstruction Comparison Across Different Visual Tokenizers. The proposed high-
frequency visual tokenizer consistently outperforms existing approaches in both pixel-level accuracy
and perceptual fidelity.

face encoder’s ability to produce highly accurate facial reconstructions, preserving both color con-
sistency and fine-grained facial morphology. To further validate these observations, we magnified
and compared specific facial features across both identities. By leveraging fine-grained multimodal
cues and identity-specific details within key regions, particularly the eyes, nose, and lips, our model
exhibits exceptional identity preservation. These results emphasize high-frequency face encoder’s
superiority in maintaining anatomical precision and textural authenticity, clearly surpassing existing
methods in visual fidelity.

B.3.1 EXPLORING HEAR’S POTENTIAL ACROSS DIVERSE ID TYPES AND PROMPT
VARIATIONS

We selected a wide range of identity (ID) types without restricting to any single category as con-
trolled reference images, and used a diverse set of prompts to provide textual guidance. We aimed
to evaluate HEAR’s ability to preserve facial identity, follow prompt instructions, and maintain
aesthetic quality across various scenarios. As illustrated in Fig. 10 and 11, the results were truly
remarkable: HEAR consistently retained the facial ID while satisfying most prompt requirements,
and demonstrated exceptionally high aesthetic quality.
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C PROMPTS USED IN THE IDENTITY-PRESERVING DATASET CURATION
PIPELINE

To provide a clearer understanding of our Identity-Preserving Dataset Curation Pipeline, we present
the complete prompts that were partially omitted in Figure 3 as follow.

Prompt of Image Preprocessing

Your Role: Facial Recognition Analyst
Objective: Determine if the subject’s face in the provided image meets frontal orientation
and clarity requirements by verifying some specific criteria.
Process Steps:

1. Measure the face’s side/profile angles to ensure they do not exceed 30 degrees.
2. Verify eyes, nose, and mouth are mostly visible (e.g., no hair, accessories, or hands

blocking features). Ensure no reflections (e.g., glasses) obscure key areas.
3. Evaluate Image Clarity: Look for blurring, pixelation, or compression artifacts af-

fecting facial details. Check resolution quality (e.g., edges of facial features must
be sharp).

4. Ensure even illumination across the face (no shadows over eyes/nose/mouth). Con-
firm no overexposure or underexposure distorting features.

Examples:
- Example 1 (Non-Compliant):

[leftmargin=2em]
User Prompt: Now you are a “Facial Recognition Analyst”. Carefully examine the
provided image and ...
Reasoning: Face has a 45-degree side angle. Left eye obscured by hair. Blurring
around the mouth. Harsh shadows under the nose.
Objects: [(”face”, [”45° side angle”, ”obscured eye”, ”blurring”, ”harsh shad-
ows”])]
Negation: True

- Example 2 (Compliant):
[leftmargin=2em]
User Prompt: Now you are a “Facial Recognition Analyst”. Carefully examine the
provided image and ...
Reasoning: Full frontal view (5° tilt). All features visible. Sharp resolution. Even
lighting with no shadows.
Objects: [(”face”, [None, None, None, None])]
Negation: False

Your Current Task:
Follow the Process Steps to analyze the provided image. Present results in the format:

[leftmargin=2em]
Reasoning: Detailed analysis of each criterion.
Objects: List attributes (or None if compliant).
Negation: Boolean (True/False) indicating compliance.

User prompt: {Now you are a “Facial Recognition Analyst”. Carefully examine the pro-
vided image and determine whether the subject’s face meets frontal orientation and clarity
requirements by verifying the following criteria: Full frontal view with no side/profile angles
exceeding 30 degrees, all facial features (eyes, nose, mouth) fully visible and unobstructed,
no significant blurring or low-resolution artifacts, and proper illumination without harsh
shadows obscuring features. }
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Prompt of Synthetic Data Augmentation

Your Role: Textual Prompt Refiner
Objective: Enhance human-centric image generation prompts by diversity injection through
3-4 specific physical attributes.
Process Steps:

1. Inject descriptors like ”high nasal root typical of East Asian ancestry” or ”broad
alar base common in West African phenotypes”.

2. Add gender-fluid traits (e.g., ”softened mandibular angle with stubble shadow”).
3. Specify hormonal influences (e.g., ”post-adolescent acne scarring along the jaw-

line”).
4. Map muscle movements to emotional states: ”subtle crow’s feet from frequent

laughter” or ”vertical glabellar lines indicating chronic focus”.
5. Use dynamic modifiers (e.g., ”partially contracted corrugator supercilii muscles”).
6. Embed region-specific adornments (e.g., ”Maasai beadwork collar”, ”Balinese tem-

ple ear cuffs”).
7. Reference symbolic body modifications (e.g., ”Yakuza-inspired fingertip tattoos”).

Examples
- Example 1 (Original → Enhanced):

[leftmargin=2em]
Input Prompt: ”A young woman smiling.”
Enhanced Prompt: ”A Southeast Asian woman in her 20s with epicanthic folds and
a low nasal bridge, displaying asymmetrical nasolabial folds from a half-suppressed
grin. Traditional sihn skirt drapes over her knees, complemented by a sak yant
tattoo peeking above her collarbone.”

- Example 2 (Original → Enhanced):
[leftmargin=2em]
Input Prompt: ”An old man with a beard.”
Enhanced Prompt: ”A Kurdish man in his late 60s with salt-and-pepper şal û şapik
mustache, deep nasojugial grooves from decades of squinting in sunlight, and deq
facial tattoos fading into sagging jowls.” Objects: [(”face”, [”ethnic wrinkles”,
”cultural facial hair”, ”tribal ink”])]

Your Current Task:
Building upon the original input prompt, we enhance human-centric image generation by
injecting descriptive attributes, adding gender-fluid traits, specifying hormonal influences,
mapping muscle movements to emotional states, using dynamic modifiers, embedding
region-specific adornments, and referencing symbolic body modifications.
User prompt: {Now you are a “Textual Prompt Refiner” specializing in expanding facial
details for human-centric image generation. For each input prompt, first perform diversity
injection by adding 3-4 specific physical attributes including racial features (like epicanthic
folds or nose bridge height), gender characteristics (such as androgynous jawline or beard
density), micro-expressions (for example nasolabial folds when smiling), and cultural ac-
cessories (like tribal scarification patterns). }
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Prompt of Image Recaption

Your Role: Image Caption Creator
Objective: Enhance facial image prompts by generating a dual-description structure that
transitions from concise demographic-action-environment tagging to richly detailed, photo-
realistic portrayals emphasizing expression, clothing, and spatial context.
Process Steps:

1. Short-Form Prompt Construction: ”[Gender] [Ethnicity] [Action] in [Environ-
ment]” (e.g., ”Middle-aged Hispanic man adjusting tie in a city street at dusk”)

2. Long-Form Prompt Expansion:
• Facial Expression Expansion: Describe micro-expressions and gaze direction

with anatomical precision. (e.g.,”slight levator labii contraction from a half-
smirk,” ”glance directed 30° rightward,” ”orbicularis oculi tension from nar-
rowed gaze.”)

• Clothing Detailing: Highlight fabric type, texture, and interaction with light.
(e.g.,”wool-blend blazer catching low-angle sunlight,” ”crimson silk scarf
loosely looped at clavicle.”)

• Spatial Elements: Specify physical orientation and spatial relationships with
the surrounding environment. (e.g.,”leaning 15° toward a reflective window
1 meter to his left,” ”background softened by a 3-meter depth of field with
blurred pedestrians.”)

• Photorealism Enforcement: Include optical effects that simulate real-world
imaging conditions. (e.g.,”light scattering,” ”depth blur,” ”lens distortion.”)

Examples
• Short Prompt: ”Young East Asian woman sipping coffee in a sunlit cafe corner.”
• Long Prompt: ”A young East Asian woman sipping from a white ceramic mug,

with a soft smile indicated by gentle zygomaticus major activation and a downward
gaze angled 45°, showing mild orbicularis oculi engagement. She wears a cream
cashmere sweater with visible ribbing, catching warm sunlight across the sleeves,
and a loosely tied silk scarf with floral tones at her collarbone. Her posture leans
10° forward, right elbow resting on a polished wooden table; a frosted window 80
cm to her left reflects ambient light. The background fades with a 2-meter depth
blur, and subtle lens bloom and light scattering reinforce the scene’s photorealism.”

Your Current Task: Generate both a short and a detailed caption for the following image
using a full attribute structure. Present the results in the following format:

• Short Prompt: ”[Gender] [Ethnicity] [Action] in [Environment]”
• Long Prompt: Detailed expansion based on the short prompt, covering facial ex-

pression, clothing, spatial elements and photorealism enforcemen.
User prompt: {Now you are a ”Image Caption Creator”. Generate a dual-prompt descrip-
tion for the input facial image. First, create a short prompt stating the subject’s gender,
ethnicity, action, and surrounding environment in a concise format (e.g., ’[Gender] [Ethnic-
ity] [Action] in [Environment]’). Then, expand this into a long prompt by adding: 1) De-
tailed facial expressions (e.g., micro-expressions, eye direction, muscle tension), 2) Cloth-
ing specifics (textures, colors, material interactions), and 3) Spatial relationships between
the subject and objects or environment (quantify distances and angles where applicable).
Ensure both prompts maintain photographic realism and avoid artistic stylization. }
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Reference Realism, industrial, 
cinematic 

Fantasy, 
ethereal, angelic

Ancient egyptian, 
lavish gold, jewel

Anthropomorphism,
anime, kemonomimi

Maritime, sailor 
uniforms, nautical 

Figure 10: Remarkable capability of HEAR to preserve individual identity while achieving
high visual fidelity. Our method consistently retains identity-specific features across a wide range
of conditions, including diverse artistic styles, age groups, and skin tones.
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Musicalism, guitar,
ornate accessories 

Heroism,moonlit 
warrior, full-moon 

Steampunk, 
futuristic,industrial

snowscapes, winter, 
fur-lined collars

Reference

Figure 11: More Results.
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