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RSMerge: Bridging Head and Tail Classes via Subsampled Model Merging
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Abstract

Class imbalance is a pervasive challenge in ma-
chine learning, where head classes have abundant
samples, while tail classes are severely underrep-
resented. This imbalance significantly impacts
predictive performance, particularly in scenarios
where maintaining balanced accuracy is critical.
Traditional fine-tuning methods for foundational
models such as CLIP often prioritize head-class
accuracy but distort pre-trained representations
for tail classes, leading to suboptimal overall per-
formance. Conversely, parameter-efficient fine-
tuning (PEFT) methods preserve tail-class fea-
tures but struggle to fully leverage head-class in-
formation. In this study, we first show empirically
how different head-to-tail class ratios affect model
performance, highlighting the limitations of ex-
isting fine-tuning methods across various imbal-
ance distributions. To address these limitations,
we propose a two-stage learning framework that
merges models fine-tuned on balanced subsets via
full-rank updates and then freezes the encoder to
retrain the classifier on the full dataset. Validated
across five benchmark datasets with distinct im-
balance patterns, our method achieves superior
trade-offs between head and tail class accuracies
while maintaining generalizability.

1. Introduction
In machine learning, the assumption of balanced class dis-
tributions is deeply ingrained in both theory and practice
(Deng et al., 2009; Zhou et al., 2018; Krizhevsky et al.,
2009). However, real-world datasets often deviate signif-
icantly from this assumption, with head classes (frequent
categories) dominating the data while tail classes (rare cate-
gories) are severely underrepresented (Van Horn et al., 2018;
Holste et al., 2022; Liu et al., 2019). This imbalance poses
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Dataset Imbalance Ratio (ρ) Head-to-Tail Ratio (η)

iNaturalist 2018 500 0.11
Places-LT 996 0.55
NIH-CXR-LT 6491 5.66

Methods iNaturalist 2018 Places-LT NIH-CXR-LT

Overall Head Tail Overall Head Tail Overall Head Tail

CE 72.6 82.3 71.5 38.9 53.1 31.0 16.5 20.6 0.0
LA 76.1 75.7 76.0 46.6 49.9 44.8 38.0 42.5 20.0
LIFT 79.1 72.4 79.9 51.5 51.3 51.7 38.5 41.9 25.0
RSMerge 78.2 76.7 78.4 51.7 51.2 52.0 39.3 41.5 30.8

Figure 1. Impact of ρ (degree of class skew) and η (proportion
of head vs. tail classes) on class distributions. (a–c) Example
distributions with varying ρ and η. While ρ is widely studied, η is
a critical but often overlooked factor that determines the sensitivity
of the predictor to head or tail classes. Our method achieves
robust performance across all regimes demonstrating insensitivity
to distributional asymmetry.

a fundamental challenge: models must effectively learn
from limited tail-class samples while maintaining robust
performance across all classes (Chen et al., 2024).

Traditional approaches to class imbalance, such as re-
sampling (Liu et al., 2008; Kim et al., 2020; Shi et al., 2023)
and re-weighting (Menon et al., 2021; Ren et al., 2020; Cao
et al., 2019), aim to mitigate the effects of skewed class
distributions, often called as imbalance ratio (ρ). While
these methods can improve tail-class recognition, they of-
ten fail to address the underlying representation learning
challenges, leading to suboptimal performance across the
entire dataset (Wang et al., 2021). Recent advances in vision-
language foundation models, particularly CLIP (Radford
et al., 2021), have opened new avenues for tackling this
problem. Pretrained on vast and diverse datasets, CLIP
exhibits inherent robustness to class imbalance, making it
a promising candidate for fine-tuning in imbalanced set-
tings (Wen et al., 2024; Wang et al., 2023; Ma et al., 2021;
Tian et al., 2022; Long et al., 2022). Notably, LIFT (Shi
et al., 2024) achieves state-of-the-art results by employing
parameter-efficient fine-tuning (PEFT) methods (Han et al.,
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2024) on CLIP’s vision encoder.

Despite these advances, a critical limitation remains: Exist-
ing methods often fail to adapt to varying head-to-tail ratios
(η), which represent the relative frequency gap between
dominant and rare classes. For instance, while LIFT ex-
cels in tail-dominated distributions (Figure 1a), its reliance
on low-rank adaptation compromises performance in bal-
anced (Figure 1b) or head-heavy scenarios (Figure 1c). This
highlights a fundamental trade-off: full-rank fine-tuning
enhances adaptability to specific imbalance patterns but
risks catastrophic forgetting of pretrained features, while
low-rank adaptation preserves generalizability at the cost of
task-specific optimization.

To address this challenge, we propose a two-stage frame-
work that strategically balances adaptability and stability. In
the first stage, we progressively subsample the training data
to create balanced subsets, fine-tune independent CLIP en-
coders on each subset via full-rank updates, and merge their
parameters to retain pretrained feature robustness. In the
second stage, we recycle all discarded data by freezing the
merged encoder and retraining only the classification head
on the full dataset. This approach ensures robust perfor-
mance across diverse imbalance patterns without distorting
learned representations.

Our work makes three key contributions: (1) We formally
characterize the impact of head-to-tail ratios on model per-
formance, providing a comprehensive analysis of different
imbalance manifestations. (2) Our two-stage approach rec-
onciles the stability-plasticity dilemma through decoupled
learning and model merging, achieving better trade-offs be-
tween head and tail class accuracies across diverse scenarios.
(3) We validate our approach on five benchmark datasets,
each representing distinct imbalance distributions, demon-
strating its effectiveness and generalizability in real-world
applications.

2. Related Work
2.1. Imbalanced Classification

We can roughly divide progress on imbalanced classification
into three groups.

Re-sampling/Re-weighting. Class imbalance mitigation
strategies broadly involve oversampling minority classes
(Chawla et al., 2002), subsampling majority classes (Liu
et al., 2008), or reweighting losses (He & Garcia, 2009).
Subsampling risks losing majority-class discriminative pat-
terns, oversampling may overfit minority classes (Zhou et al.,
2020), and reweighting struggles in overparameterized net-
works (Zhai et al., 2023). Recent advances like logit ad-
justment loss (LA) (Menon et al., 2021; Ren et al., 2020)
addresses these issues by enforcing larger margins for tail

classes, bridging data imbalance with geometric regulariza-
tion. However, in our work, we argue LA loss is insufficient
to address full fine-tuning from foundational models.

Decoupled Learning. Decoupled learning frameworks
address class imbalance through sequential training phases:
representation learning via instance-balanced sampling fol-
lowed by classifier refinement using class-balanced strate-
gies (Kang et al., 2020; Zhang et al., 2021). This paradigm
assumes model biases primarily reside in the classifier layer,
positing that head-tail performance gaps can be resolved
through post-hoc classifier calibration (Izmailov et al., 2022;
Yang et al., 2023). However, we demonstrate this assump-
tion becomes invalid when fine-tuning foundational models
– neglecting tailored strategy for representation learning
degrades both head and tail class performance due to catas-
trophic forgetting of pre-trained features (Shi et al., 2024;
Mukhoti et al., 2023).

Ensemble Learning. Ensemble methods address data im-
balance by combining specialized experts trained on comple-
mentary distributions (Cai et al., 2021; Li et al., 2022). No-
table approaches include: BBN’s dual-branch architecture
balancing original and re-sampled distributions (Zhou et al.,
2020); RIDE’s dynamic routing of instances to distribution-
aware experts (Wang et al., 2021); and LFME’s multi-
teacher distillation across many/medium/few-shot groups
(Xiang et al., 2020). While effective, these methods rely on
heuristic expert specialization rules and often result in cum-
bersome architectures that hinder adaptation to foundational
models, increase training complexity, and limit inference
speed. Our work circumvents these limitations through two
key innovations: (1) replacing specialized expert design
with parallel fine-tuning of foundation models on controlled
subsamples, and (2) employing model averaging and EMA
instead of complex aggregation mechanisms. This preserves
the ensemble’s variance-reduction benefits while maintain-
ing the architectural simplicity and computational efficiency
of the original foundation model.

2.2. Model Merging

Model merging, also sometimes refer to weight averaging,
has gained significant attention in recent years as a promis-
ing research direction (Li et al., 2023), focusing on reducing
communication costs in federated learning (McMahan et al.,
2017) and distributed training (Douillard et al., 2023), en-
abling the efficient combination of multiple models without
additional training (Ilharco et al., 2023), and enhancing
model robustness in out-of-distribution scenarios (Worts-
man et al., 2022a; Rame et al., 2022). Early approaches like
Exponential Moving Average (EMA) (Tarvainen & Valpola,
2017) and Stochastic Weight Averaging (SWA) (Izmailov
et al., 2018) have been widely adopted to accelerate train-
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ing convergence and enhance the generalization capabilities
of deep neural networks. Recent work extends merging
to sequential adaptation: Alexandrov et al. (Alexandrov
et al., 2024) mitigate catastrophic forgetting in continual
pretraining via iterative merging, while Ramé et al. (Ramé
et al., 2024) align LLMs through multi-stage averaging
during RLHF. To our knowledge, no prior work applies
model merging to imbalanced recognition. Unlike exist-
ing sequential merging approaches, our framework trains
multiple models in parallel on complementary subsampled
distributions – a critical design choice for handling long-
tailed data. We propose the first schema specifically tailored
for imbalance, integrating subsampling (to retain tail-class
discriminability) and resampling (to stabilize head-class rep-
resentations). This parallelized merging strategy directly
addresses feature-space asymmetry in long-tailed distribu-
tions while maintaining computational efficiency, enabling
foundational models to adapt to extreme imbalance without
sacrificing pre-trained generalization.

2.3. Imbalanced Learning with Foundational Models

Foundation models such as CLIP exhibit inherent robustness
to class imbalance, as demonstrated by their zero-shot gen-
eralization capabilities (Wen et al., 2024). Recent advances
further enhance this property through retrieval-augmented
architectures (Tian et al., 2022; Long et al., 2022), prompt-
tuning strategies (Dong et al., 2022; Xia et al., 2023), and
joint vision-language training paradigms (Ma et al., 2021;
Wang et al., 2023). While these methods improve adap-
tation to long-tailed distributions, LIFT (Shi et al., 2024)
reveals that PEFT with LA loss achieves state-of-the-art
performance by selectively adapting CLIP’s pre-trained fea-
tures. We demonstrate that LIFT tail-class gains come at
the cost of degraded head-class accuracy—a critical flaw in
applications requiring balanced performance. Our frame-
work reduces this compromise through regularizing weight
updates via averaging across complementary subsampled
distributions, and full-rank optimization.

3. Imbalanced Learning with Foundational
Models

3.1. Preliminaries

Given training data D = {xi, yi}Ni=1, where xi is a train-
ing sample and yi ∈ C is class label with cardinality of K.
We assume that training data follow an imbalanced class
distribution where the class prior distribution P(y) is highly
skewed so that there exist some underrepresented classes
with a very low probability of occurrence. Specifically, we
define the imbalance ratio as ρ = maxy P(y)/miny P(y)
to indicate the skewness of data. Classes with high P(y)
are referred to as head classes, while others are referred

to as tail classes. We define head classes as those with
over 100 training samples1 (Liu et al., 2019). At test time,
as we are interested in obtaining a predictor capable of
recognizing all classes well, we maximize the BalAcc =
1
|C|

∑
c∈C Accuracy(c). We decompose the model into a

feature extraction and a classification head components. For
feature extraction, we use CLIP’s vision encoder imple-
mented by a ViT (Dosovitskiy et al., 2021), parameterized
by θ, defined as fI(x; θ) = z, where z represents the
extracted feature for input x. The final class prediction
ŷ = argmaxg(z;w) is produced by a classification head
g with parameters w. Following (Radford et al., 2021),
we adopt a prototypical classification head for g, where
both features and classifier weights are l2-normalized, and a
temperature is applied to the logits. The parameters w are
initialized by generating textual prompts2 for the classes and
extracting corresponding textual features using the CLIP
text encoder (Shi et al., 2024).

During training, typically guided by the Empirical Risk
Minimization (ERM) framework, the cross-entropy loss is
minimized as follows:

ℓ(y, g(z)) = − log
exp(gy(x))∑

y′∈C exp(gy′(x))
(1)

where gy denotes the predictive logit of model on class y.
However, this ubiquitous approach neglects the issue of class
imbalance and makes the model biased toward head classes.
Logit Adjustment (LA) (Menon et al., 2021) loss instead
corrects head class biases by adding a label-dependent offset
to each of the logits as follows:

ℓLA(y, g(z)) = − log
exp(gy(x) + log πy)∑

y′∈C exp(gy′(x) + log πy′)
(2)

where π ∈ ∆y are estimates of the class priors P(y) based
on the empirical class frequencies on the training data D.

In a recent study, Shi et al. (2024) observed that starting from
CLIP pre-trained weights, the LA loss alone is insufficient to
achieve strong performance. Specifically, they showed that
full fine-tuning with LA, referred to as Full-FT hereafter,
often results in inconsistent class-conditional distributions,
particularly among tail classes. To address this, they suggest
maintaining proximity to the pre-trained initialization by
leveraging PEFT methods.

3.2. Head-Tail Trade-off for Imbalance Recognition

In practice, imbalanced distributions can manifest in various
forms. A crucial but often overlooked factor is the frequency

1Here, we define a single subset as the tail to simplify the anal-
ysis. Later, in the experiment section, we further divide the tail into
two smaller subsets—med-shots and few-shots—for consistency
with existing works.

2We use descriptive prompts such as ”a photo of a cat” or ”a
photo of a dog” to represent each class (Radford et al., 2021).
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Figure 2. Performance vs. head-tail ratio on proposed CIFAR100-
LT benchmark. Our proposed approach obtains good accuracy for
different levels of η for both head and tail classes

ratio between head and tail classes, which directly influences
predictive performance.

Definition 3.1. LetH = {c | nc > τ} and T = {c | nc ≤
τ} denote the partitioning of classes based on a sample
threshold τ for head and tail classes, respectively. Define
H = |H| and T = |T | as the number of head and tail
classes. The head-to-tail ratio is given by η = H

T .

While the LA loss is effective in correcting skewed class
priors, it does not address discrepancies in the head-to-tail
ratio. When the training distribution has a high η (i.e., many
head classes relative to tail classes), models benefit from
focusing on head classes to achieve high accuracy. Con-
versely, when η << 1, prioritizing tail classes becomes
sufficient for good performance. To better understand the
influence of η on the final performance, we design a syn-
thetic dataset based on CIFAR-100 with a fixed imbalance
ratio ρ = 100 but varying η. Specifically, for a given η,
we partition the classes into head and tail subsets. Within
each subset, class sample sizes follow an exponential decay
distribution, ranging from 500 to 101 for head classes and
from 100 to 5 for tail classes. This process is repeated for
η values ranging from 19 to 0.05 (see appendix for visual-
ization of resulting imbalance distributions (Figure 5) ). As
shown in Figure 2, our results confirm that full fine-tuning
consistently outperforms LIFT for head classes, while LIFT
excels in tail classes. As the proportion of head classes de-
creases and tail classes dominate, the mean accuracy shifts
in favor of LIFT, supporting our hypothesis. Notably, these
findings align with recent observations in LLM literature,
where LIFT often underperforms full fine-tuning but better
preserves the base model’s performance on tasks outside the
target domain (Biderman et al., 2024).

4. RSMerge: Imbalanced Learning by
Controlling Weight Change

Our findings uncover a fundamental trade-off in model op-
timization: full fine-tuning, which updates the full-rank
weight matrices, excels in head-class generalization but
significantly compromises tail-class accuracy. Conversely,
LoRA enhances tail-class performance by maintaining
weights close to the pre-trained initialization, yet it sacri-

Algorithm 1 RSMerge (Parallelizable Pseudocode)

1: Input: zero-shot weights θ0, N imbalance ratios {ρn},
M runs per ρn, T training steps, µ EMA rate, optimizer
Opt, training data D

2: {θ̄n}Nn=1 ← ∅
Parallel section (runs n = 1..N ):

3: for n = 1 to N do
4: {θmema}Mm=1 ← ∅

Parallel section (runs m = 1..M ):
5: for m = 1 to M do
6: Subsample D via ρn to create Dm

7: Initialize θm, θmema ← θ0
8: for t = 1 to T do
9: Sample (x, y) ∼ Dm

10: θm ← Opt(θm,∇θ[ℓLA(y, f(x))])
11: θmema ← (1− µ)θmema + µθm

12: end for
13: Save θmema

14: end for
15: θ̄n ← 1

M

∑M
m=1 θ

m
ema

16: Save θ̄n

17: end for
18: Calculate ΘN from Equation (5)
19: Re-train final classifier on full D

fices head-class accuracy. Striking a balance between these
objectives necessitates careful control over weight updates
while preserving the benefits of full-rank optimization.

To tackle this challenge, we introduce Resample/Subsample
Model Merging (RSMerge), a novel model merging frame-
work tailored for imbalanced recognition tasks. RSMerge
operates in two distinct phases, as illustrated in Figure 3 and
outlined in Algorithm 1. (1) In the representation learning
phase, we train multiple models in parallel on resampled
versions of the training distribution, followed by a model
merging step. This strategy ensures proximity to the pre-
trained weights while effectively capturing essential features
from head classes. (2) In the second phase, we leverage the
previously discarded data from the first stage by fine-tuning
only the classifier head using the LA loss on the full dataset.
The remainder of this section provides a comprehensive de-
scription of our method, along with experimental validation
of our design choices and their impact on performance.

4.1. Representation Learning

The decoupled learning framework has emerged as a pow-
erful approach for addressing class imbalance, achieving
state-of-the-art performance across numerous benchmarks
(Yang et al., 2023). Conventional methods often assert that
correcting the classifier head alone is sufficient to handle
imbalanced data distributions (Kang et al., 2020). These
approaches typically rely on instance-balanced sampling

4
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Figure 3. RSMerge diagram: (1) Merging models fine-tuned on M
balanced subsets and N progressively varying imbalance ratios to
preserve pretrained features while adapting to class distribution
shifts. (2) Freezing the merged encoder and retraining the clas-
sifier on the full dataset to leverage all training samples without
representation distortion.

paired with vanilla cross-entropy loss for representation
learning, followed by reweighting or resampling techniques
to refine the classifier (Zhang et al., 2021).

However, with the advent of foundational models like CLIP,
neglecting the representation learning component can have
significant drawbacks (Shi et al., 2024; Wang et al., 2023).
Notably, CLIP’s zero-shot performance on many benchmark
datasets demonstrates remarkable balance across both head
and tail classes (Wen et al., 2024). Careless fine-tuning of
these representations can degrade the pre-trained features
(Mukhoti et al., 2024), which are challenging to restore dur-
ing subsequent classifier training. To address this challenge,
we propose four strategies designed to preserve the valuable
pre-trained knowledge while enabling the model to extract
task-relevant features for downstream tasks.

Exponential Moving Average (EMA). Fine-tuning risks
driving the model away from its pretrained state, leading to
catastrophic forgetting of pretrained knowledge and repre-
sentation collapse. This can harm generalization, particu-
larly for tail classes, as CLIP’s pretrained model itself is a
strong zero-shot learner (Wen et al., 2024). To counteract
this, RSMerge maintains an exponential moving average of
the model parameters throughout fine-tuning, updated at
each step with a momentum coefficient µ = 0.01:

θema = (1− µ) · θema + µ · θ0. (3)

EMA averages parameters from both the initialization phase
and the converged minima, acting as a regularizer that pulls
the model closer to its initial state (Huang et al., 2017). Ad-
ditionally, EMA encourages convergence to flatter minima
(Izmailov et al., 2018), improving generalization, particu-

larly for tail classes.

Progressive Subsampling. Subsampling is a common
strategy to address class imbalance, typically involving the
removal of data from overrepresented classes (He & Garcia,
2009). However, aggressive subsampling risks discarding
valuable information from head classes, which can degrade
overall model performance (Kim et al., 2020; Chawla et al.,
2002; Shi et al., 2023). To mitigate this issue, we pro-
pose progressive subsampling, a method that incrementally
increases the dataset’s imbalance ratio across multiple inde-
pendent rounds. While there are multiple ways to achieve
this, we adopt a straightforward approach: starting with a
balanced dataset, we double the imbalance ratio in each
round for a total of N rounds (see the appendix for visual-
ization of resulting subsampled distributions (Figure 6)).

Each model is fine-tuned independently on its respective
subsampled split, employing the LA loss function to adapt to
shifts in the label distribution when necessary. This progres-
sive approach alleviates the challenges posed by extreme
imbalance by preserving tail-class data through controlled
subsampling (Ren et al., 2020). Additionally, it enhances
worst-class generalization by restoring geometric symmetry
to the classifier (Chaudhuri et al., 2023), ensuring robust
performance across all classes. For all experiments, unless
explicitly stated otherwise, we set N = 6 corresponding to
imbalance ratios ρ ∈ {1, 2, 4, 8, 16, 32, 64}.

Resampling of Subsamples. Discarding data during the
subsampling step can increase the variance in fine-tuned
models. A common strategy to mitigate this variance
is model ensembling (Breiman, 1996). In our approach,
we leverage bootstrapping (bagging) and the inherent ran-
domness of SGD optimization to promote model diversity.
Specifically, for bootstrapping, we fine-tune M indepen-
dent models, each trained on a dataset sampled from an
imbalanced distribution with a fixed imbalance ratio ρ. Ad-
ditionally, we introduce further stochasticity by randomizing
batch ordering and applying diverse data augmentation tech-
niques (Lakshminarayanan et al., 2017). Unless otherwise
stated, we set M = 2 for all experiments.

Model Merging. The preceding stages produce NM inde-
pendently trained models, each designed to ensure balanced
representation and confident predictions. In this stage, we in-
troduce two model merging techniques to consolidate these
models into a single unified model for the subsequent phase
of training.

For the resampling step, consider M independently fine-
tuned models, all trained on the same distribution. We merge

5
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their weights uniformly using the following formulation:

θ̄n =
1

M

M∑
m=1

θmn (4)

Here, θmn represents the weights of the model trained on the
m-th resample split from the n-th subsampled distribution.
This weight-averaging process reduces variance within each
model and enhances robustness (Dietterich, 2000; Lakshmi-
narayanan et al., 2017).

For the subsampling step, given a sequence of models
{θn}Nn=0 initialized with pretrained weights θ0, we recur-
sively merge them through weighted interpolation:

Θk =

{
θ0 if k = 0,

λΘk−1 + (1− λ)θk for k = 1, . . . , N
(5)

where λ controls the preservation of earlier merged knowl-
edge. The final merged model. The final merged model ΘN

inherits two key properties. First, its proximity to θ0 ensures
retention of CLIP’s zero-shot capabilities (Wortsman et al.,
2022b). Second, progressive averaging models in ascending
order of imbalance ratio, encode complementary head/tail
class features (Zhou et al., 2020).

4.2. Classifier Re-Training

To address partial data utilization in Stage 1, we freeze the
backbone and retrain only the classifier head on the full
dataset using LA loss. This preserves Stage 1 representa-
tions while recovering discarded head-class samples. LA
loss encodes label frequencies into the objective, recali-
brating decision boundaries to reflect the true distribution.
Freezing the backbone stabilizes the feature space, forc-
ing the classifier to adapt without distorting representations,
ensuring tail classes retain discriminative power and head
classes regain accuracy.

4.3. Empirical analysis of RSMerge

In this section, we conduct a comprehensive analysis of
RSMerge through multiple perspectives. First, we demon-
strate that RSMerge achieves a balance between head and tail
class performance by carefully controlling weight updates,
resulting in significantly lower weight magnitudes compared
to full fine-tuning while surpassing LIFT in final accuracy.
Second, we evaluate the confidence of RSMerge predictions
using various calibration metrics, highlighting its improved
reliability. Third, we investigate the compatibility of PEFT
methods with the RSMerge framework, providing insights
into why PEFT may not be suitable in this context. Finally,
we emphasize the computational efficiency of RSMerge,
which leverages parallel training on subsampled distribu-
tions to optimize resource utilization. All empirical analyses

are conducted on the TinyImageNet-LT dataset, a bench-
mark constructed by exponentially decaying the sample
sizes across 200 classes, ranging from 500 samples for the
most frequent classes to just 5 samples for the rarest.

Figure 4. Classifiaciton accuracy for head, tail, mean, and weight
change magnitude for different methods on TinyImageNet.

Weight magnitude analysis. A key factor behind the suc-
cess of RSMerge is its ability to keep fine-tuned weights
close to the pre-trained initialization while enabling the
model to adapt to new task-specific features. To better un-
derstand how each component contributes to this balance,
we analyze the impact of our method on weight change mag-
nitude and accuracy for both head and tail classes. Starting
with the baseline, we sequentially incorporate each compo-
nent and track their effects.

As shown in Figure 4, full fine-tuning results in the largest
weight change magnitude, while LIFT produces the smallest.
The introduction of EMA improves performance for both
head and tail classes while slightly reducing weight magni-
tude. Progressive subsampling, which trains on less imbal-
anced distributions, significantly limits weight changes and
boosts tail-class accuracy, albeit at the cost of reduced head-
class performance. Model merging, even without resam-
pling, recovers head-class accuracy by averaging multiple
models trained on different imbalanced distributions and en-
hances tail-class accuracy by incorporating the pre-trained
model into the merging process. The final version which in-
corporates resampling, further refines performance by reduc-
ing noise in the trained models. Notably, RSMerge achieves
a slightly higher weight magnitude than LIFT, which we ar-
gue contributes to its superior final performance by striking
an optimal balance between adaptation and stability.

Model calibration analysis Table 1 An inherent ad-
vantage of model merging methods is their ability to
improve prediction calibration metrics. We evaluate
RSMerge against LIFT and Full-FT by measuring Neg-
ative Log-Likelihood (NLL), Expected Calibration Error
(ECE) (Naeini et al., 2015), and Brier score (Brier, 1950).
For NLL and Brier scores, we also provide category-wise
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results. All metrics are computed after temperature tuning
on the validation set. As shown in Table 1, RSMerge consis-
tently outperforms the other methods on TinyImageNet-LT
in terms of calibration.

Method Metric Mean Head Tail

Full-FT ECE 1.97 - -
Brier Score 0.36 0.21 0.40

NLL 1.03 0.63 1.25

LIFT ECE 1.95 - -
Brier Score 0.32 0.23 0.35

NLL 0.89 0.68 0.99

RSMerge ECE 1.36 - -
Brier Score 0.30 0.20 0.33

NLL 0.83 0.59 0.97

Table 1. Calibration metrics on TinyImageNet for Full-FT, LIFT,
and our RSMerge.

PEFT compatiblity A natural question is whether the full
fine-tuning process in RSMerge can be replaced by PEFT
methods. To investigate this, we use LoRA as a represen-
tative approach. In the representation learning stage, we
freeze the CLIP pre-trained weights and introduce LoRA
parameters to the attention and MLP layers of the ViT, tun-
ing their learning rate and rank. For model merging, the
LoRA parameters are combined with the pre-trained weights
before applying our merging schema. Finally, we retrain
the classifier using the LA loss. The performance (77.1 vs
77.2) matches that of end-to-end LoRA training. We hy-
pothesize this outcome is due to a phenomenon observed
in LLM literature (Shuttleworth et al., 2024), where LoRA
introduces high-ranking singular vectors (intruder dimen-
sions) that are absent in full fine-tuning. While these models
achieve comparable task performance, they adapt less ro-
bustly to sequential tasks and diverge from the pre-training
distribution.

Computational analysis RSMerge involves a total of
NM + 1 training runs, where M models are trained on
different subsampled distributions, N models are trained
per subsampling round by resampling the target distribution,
and a final classifier is trained on the full data distribution.
To evaluate the training complexity of RSMerge, two key
factors are important: (1) RSMerge operates on severely
subsampled distributions, meaning the training data in each
round is much smaller than the full dataset—progressive
subsampling, for example, often limits the imbalance ra-
tio to 64, corresponding to approximately 65% of the full
dataset (details in the appendix). (2) During the first stage
(representation learning), all models are trained indepen-
dently, allowing parallel execution. As a result, the overall
training time is dictated by the longest single training run,
typically corresponding to the subsampled distribution with
the highest imbalance ratio (e.g., 64).

In terms of memory complexity, compared to full fine-tuning
we also need to maintain the EMA version of the base model
inside the memory.

5. Experiments
Datasets and evaluation protocol. We evaluate our
method on both synthetic and real-world datasets. For syn-
thetic cases, we use ImageNet-LT, Places-LT, and CIFAR-
100-LT, which exhibit Pareto or exponential decay distri-
butions with class sample sizes ranging from 1,280 to 5
images. For real-world scenarios, we test on iNaturalist
2018 (8,142 species, 437.5K images) and NIH-CXR-LT
(20 classes, 88,637 images), representing distinct imbal-
ance patterns with 10% and 90% head classes, respectively.
Following Liu et al. (2019), we report accuracy across
many-shot (>100 images), medium-shot (20–100 images),
and few-shot (<20 images) subsets. We report the base-
line results without test-time augmentation, as it offers an
orthogonal improvement. To conserve space, only the CLIP-
based method is presented in the main manuscript. Further
details on results, datasets, and baselines are available in the
appendix.

5.1. Main results

Synthetic datasets. We report the test accuracy in Ta-
ble 2, Table 3 and Table 4 for CIFAR100-LT, Places-LT
and ImageNet-LT respectively. As shown in the table, our
method achieves state-of-the-art accuracy in all datasets.
Unlike LIFT, which prioritizes tail classes via low-rank up-
dates, our full-rank optimization leverages medium/many-
shot samples more effectively while maintaining competi-
tive few-shot performance. This highlights the advantage
of balancing adaptation (via full-rank updates) and stability
(via subsampling and merging).

Real-world datasets. We validate our method on iNatu-
ralist 2018 (89% few-shot and med-shot classes) and NIH-
CXR-LT (predominantly many-shot classes), representing
opposing extremes of class imbalance. As shown in Ta-
ble 6 for iNaturalist, while LIFT achieves higher over-
all accuracy by specializing in tail-class optimization, our
method demonstrates balanced improvements across all tiers
(many/medium/few-shot), reflecting its generalizability be-
yond extreme-tail regimes. For NIH-CXR-LT (Table 5)
our approach excels due to two key factors: (1) NIH-CXR-
LT’s chest X-ray images exhibit significant divergence from
CLIP’s pretraining distribution (evidenced by lower linear
probe accuracy vs. iNaturalist). (2) Full-rank fine-tuning
enables better feature adaptation to novel medical semantics
– a capability fundamentally limited by low-rank approxi-
mations in LIFT.
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Methods Overall Many Medium Few

ViT-B/16 CLIP pre-trained backbone

Linear Prob (LA) 70.0 77.2 71.1 60.4
Full-FT (LA) 79.6 88.1 79.9 69.3
cRT (Kang et al., 2020) 78.8 89.7 79.7 65.1
LIFT (Shi et al., 2024) 81.3 85.2 80.9 77.1

RSMerge (Ours) 83.5 88.2 83.5 78.0

Table 2. Accuracy for different methods on CIFAR100-LT.

Methods Overall Many Medium Few

ViT-B/16 CLIP pre-trained backbone

Linear Prob (LA) 48.8 48.8 49.7 47.1
cRT (Kang et al., 2020) 44.4 51.0 43.1 35.4
BALLAD (Ma et al., 2021) 49.5 49.3 50.2 48.4
Decoder (Wang et al., 2023) 46.8 - - -
LPT (Dong et al., 2022) 50.1 49.3 52.3 46.9
Full-FT (LA) 46.6 49.9 46.3 41.4
cRT (Kang et al., 2020) 44.4 51.0 43.1 35.4
LIFT (Shi et al., 2024) 51.5 51.3 52.2 50.5

RSMerge (Ours) 51.7 51.2 52.8 50.3

Table 3. Accuracy for different methods on Places-LT.

Methods Overall Many Medium Few

ViT-B/16 CLIP pre-trained backbone

Linear Prob (LA) 60.4 48.9 60.0 63.9
Decoder (Wang et al., 2023) 59.2 - - -
LPT (Dong et al., 2022) 76.1 - - 79.3
Full-FT (LA) 76.1 75.7 76.9 75.3
LIFT (Shi et al., 2024) 79.1 72.4 79.0 81.1

RSMerge (Ours) 78.2 76.7 78.5 78.2

Table 6. Comparison of methods for training on iNaturalist 2018.
LIFT performs better because most of the classes are among few-
shots and med-shots.

5.2. Ablations

Merging interpolation (λ). For CIFAR100-LT,
ImageNet-LT, and Place-LT, we set λ = 0.7, while for
iNaturalist and NIH-CXR-LT, we use λ = 0.3. Empirically,
we observe that datasets with distributions closely aligned
with the pre-trained distribution of CLIP benefit from a
higher λ, whereas datasets with significant distribution
shifts require a smaller λ. This choice is further supported
by analyzing the performance gap between linear probing
and full fine-tuning on each dataset. A large gap indicates
that the pre-trained representations are already well-suited
for the downstream task, reducing the need for extensive
feature adaptation. Conversely, a smaller gap suggests
that additional feature adaptation is necessary to achieve
optimal performance.

Methods Overall Many Medium Few

ViT-B/16 CLIP pre-trained backbone

Linear Prob (LA) 74.2 77.8 73.3 67.4
BALLAD (Ma et al., 2021) 75.7 79.1 74.5 69.8
Decoder (Wang et al., 2023) 73.2 - - -
Full-FT (LA) 73.9 79.8 71.9 63.9
cRT (Kang et al., 2020) 72.6 81.1 70.6 56.1
LIFT (Shi et al., 2024) 77.0 80.2 76.1 71.5

RSMerge (Ours) 77.4 81.2 76.1 70.7

Table 4. Accuracy for different methods on ImageNet-LT.

Methods Overall Many Medium Few

ViT-B/16 CLIP pre-trained backbone

Linear Prob (LA) 17.5 13.3 21.1 16.7
BALLAD (Ma et al., 2021) 34.5 36.7 38.9 20.8
Full-FT (LA) 38.0 43.8 41.5 20.0
cRT (Kang et al., 2020) 37.7 42.9 39.3 25.0
LIFT (Shi et al., 2024) 38.5 43.3 40.4 25.5

RSMerge (Ours) 39.3 42.4 40.7 30.8

Table 5. Accuracy for different methods and different pre-trained
backbones on NIH-CXR-LT.

Subsampling rounds N . Table 7 shows the sampling
round we use for each dataset. Empirically, we identify two
key factors that influence the choice of N : (1) Increasing N
beyond half of the total imbalance ratio leads to diminishing
or even negative returns. This occurs because the repre-
sentation becomes overly skewed toward the head classes,
making it difficult to recover the balance using models fine-
tuned on less imbalanced distributions. (2) For datasets
with distributions closely aligned with the pre-trained dis-
tribution of CLIP (as argued earlier), additional rounds of
subsampling are beneficial. These datasets gain more from
feature learning in the head classes, which is enhanced by a
subsampling using a higher imbalance ratio.

6. Conclusion
In this work, we address the challenge of long-tailed recog-
nition by proposing a novel two-stage framework that bal-
ances adaptation and stability. Our approach leverages full-
rank optimization to effectively utilize medium- and many-
shot samples while maintaining robust performance on tail
classes through progressive subsampling and model merg-
ing. By systematically analyzing the impact of head-to-tail
ratios, we demonstrate that existing methods, such as LIFT,
often sacrifice head-class performance for tail-class gains
due to their reliance on low-rank updates. In contrast, our
method achieves a superior trade-off, outperforming state-
of-the-art baselines across multiple benchmarks.
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Impact Statement
Our work advances the field of long-tailed recognition by
improving model performance across imbalanced datasets,
which are prevalent in real-world applications such as medi-
cal imaging, wildlife monitoring, and autonomous driving.
By enhancing accuracy for both head and tail classes, our
method promotes fairness and inclusivity in AI systems,
reducing biases toward dominant categories.
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A. Baselines and implementation details.
We use CLIP with the ViT-B/16 backbone and optimize the model using the AdamW optimizer (Loshchilov & Hutter,
2019). The batch size is set to 128, with learning rates of 3e − 4 for both the representation and the classification stage.
A cosine decay learning rate scheduler is employed, gradually reducing the learning rate to 0.1 ·max lr after a warmup
period spanning max(100, 0.01 · total steps) steps. The validation set of each dataset is used to select the best checkpoint.

B. Ablations

Dataset N Training Percentage

CIFAR100-LT 5 67
Places-LT 5 63

ImageNet-LT 7 79
iNaturalist 8 90

NIH-CXR-LT 8 24

Table 7. Number of sampling rounds (N ) and the corresponding percentage of training data used for each dataset.

C. Visualization

Figure 5. Visualization of imbalance distributions in CIFAR100-LT with varying values of η.

Figure 6. Example of subsampled distributions used in RSMerge, with the x-axis shown on a logarithmic scale.

D. Dataset details.
• ImageNet-LT (Liu et al., 2019):

– 115.8K images, 1,000 classes.
– Class sample sizes: 1,280 (head) to 5 (tail).
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– Constructed by Pareto sampling from ImageNet.

• Places-LT (Liu et al., 2019):

– 62.5K images, 365 classes.
– Class sample sizes: 4,980 (head) to 5 (tail).
– Subsampled from Places365 using Pareto distribution.

• CIFAR-100-LT (Cao et al., 2019):

– 100 classes, exponential decay distribution.
– Class sample sizes: 500 (head) to 5 (tail).

• iNaturalist 2018 (Van Horn et al., 2018):

– 437.5K images, 8,142 species.
– Class sample sizes: 1,000 (head) to 2 (tail).

• NIH-CXR-LT (Holste et al., 2022):

– 88,637 images, 20 classes (7 head, 10 medium, 3 tail).
– Training set: 68,058 images.
– Test set: 20,279 images.
– Validation/balanced test sets: 15 and 30 images per class, respectively.

E. Full results

Methods Backbone Overall Many Medium Few

Training from scratch

LDAM (Cao et al., 2019) ResNet-32 42.0 - - -
BBN (Zhou et al., 2020) ResNet-32 42.6 - - -
DiVE (He et al., 2021) ResNet-32 45.4 - - -
MiSLAS (Zhong et al., 2021) ResNet-32 47.0 - - -
BS (Ren et al., 2020) ResNet-32 50.8 - - -
PaCo (Cui et al., 2021) ResNet-32 52.0 - - -
BCL (Zhu et al., 2022) ResNet-32 51.9 - - -

Fine-tuning foundation model

Linear Prob (LA) ViT-B/16 70.0 77.2 71.1 60.4
Full-FT (LA) ViT-B/16 79.6 88.1 79.9 69.3
cRT (Kang et al., 2020) ViT-B/16 78.8 89.7 79.7 65.1
LIFT (Shi et al., 2024) ViT-B/16 81.3 85.2 80.9 77.1

RSMerge (Ours) ViT-B/16 83.5 88.2 83.5 78.0

Table 8. Comparison of methods for training on CIFAR100-LT.
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Methods Backbone Overall Many Medium Few

Training from ImageNet-1K pre-trained backbone

OLTR (Liu et al., 2019) ResNet-152 35.9 44.7 37.0 25.3
cRT (Kang et al., 2020) ResNet-152 36.7 42.0 37.6 26.4
LWS (Kang et al., 2020) ResNet-152 37.6 40.6 39.1 28.6
MiSLAS (Zhong et al., 2021) ResNet-152 40.4 39.6 43.3 36.1
DisAlign (Zhang et al., 2021) ResNet-152 39.3 40.4 39.4 32.9
ALA (Zhao et al., 2022) ResNet-152 41.2 36.1 47.9 35.3
PaCo (Cui et al., 2021) ResNet-152 40.5 33.7 44.4 35.3
LiVT (Xu et al., 2023) ViT-B/16 40.8 48.1 40.6 27.5

Fine-tuning foundation model

Linear Prob (LA) ViT-B/16 48.8 48.8 49.7 47.1
cRT (Kang et al., 2020) ViT-B/16 44.4 51.0 43.1 35.4
BALLAD (Ma et al., 2021) ViT-B/16 49.5 49.3 50.2 48.4
Decoder (Wang et al., 2023) ViT-B/16 46.8 - - -
LPT (Dong et al., 2022) ViT-B/16 50.1 49.3 52.3 46.9
Full-FT (LA) ViT-B/16 46.6 49.9 46.3 41.4
cRT (Kang et al., 2020) ViT-B/16 44.4 51.0 43.1 35.4
LIFT (Shi et al., 2024) ViT-B/16 51.5 51.3 52.2 50.5

RSMerge (Ours) ViT-B/16 51.7 51.2 52.8 50.3

Table 9. Comparison of methods for training on Places-LT.

Methods Backbone Overall Many Medium Few

Training from scratch

cRT (Kang et al., 2020) ResNet-50 47.3 58.8 44.0 26.1
LWS (Kang et al., 2020) ResNet-50 47.7 57.1 45.2 29.3
MiSLAS (Zhong et al., 2021) ResNet-50 52.7 62.9 50.7 31.0
LA (Menon et al., 2021) ResNet-50 51.1 - - -
DisAlign (Zhang et al., 2021) ResNet-50 52.9 61.3 52.2 31.4
BCL (Zhu et al., 2022) ResNet-50 56.0 - - -
PaCo (Cui et al., 2021) ResNet-50 57.0 - - -
NCL (Li et al., 2022a) ResNet-50 57.4 - - -
LiVT (Xu et al., 2023) ViT-B/16 60.9 73.6 56.4 41.0

Fine-tuning foundation model

Linear Prob (LA) ViT-B/16 74.2 77.8 73.3 67.4
BALLAD (Ma et al., 2021) ViT-B/16 75.7 79.1 74.5 69.8
Decoder (Wang et al., 2023) ViT-B/16 73.2 - - -
Full-FT (LA) ViT-B/16 73.9 79.8 71.9 63.9
cRT (Kang et al., 2020) ViT-B/16 72.6 81.1 70.6 56.1
LIFT (Shi et al., 2024) ViT-B/16 77.0 80.2 76.1 71.5

RSMerge (Ours) ViT-B/16 77.4 81.2 76.1 70.7

Table 10. Comparison of methods for training on ImageNet-LT.
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Methods Backbone Overall Many Medium Few

Training from ImageNet-1K pre-trained backbone

cRT (Kang et al., 2020) ResNet-50 38.0 43.3 37.4 30.0
LWS (Kang et al., 2020) ResNet-50 28.0 45.7 23.0 08.3
CB LDAM-DRW (Cao et al., 2019) ResNet-50 37.7 47.6 35.6 25.0
CB Softmax (Cui et al., 2019) ResNet-50 33.3 29.5 41.5 21.7

Fine-tuning foundation model

Linear Prob (LA) ViT-B/16 17.5 13.3 21.1 16.7
BALLAD (Ma et al., 2021) ViT-B/16 34.5 36.7 38.9 20.8
Full-FT (LA) ViT-B/16 38.0 43.8 41.5 20.0
cRT (Kang et al., 2020) ViT-B/16 37.7 42.9 39.3 25.0
LIFT (Shi et al., 2024) ViT-B/16 38.5 43.3 40.4 25.5

RSMerge (Ours) ViT-B/16 39.3 42.4 40.7 30.8

Table 11. Comparison of methods for training on NIH-CXR-LT.

Methods Backbone Overall Many Medium Few

Training from scratch

cRT (Kang et al., 2020) ResNet-50 65.2 69.0 66.0 63.2
LWS (Kang et al., 2020) ResNet-50 65.9 65.0 66.3 65.5
MiSLAS (Zhong et al., 2021) ResNet-50 71.6 73.2 72.4 70.4
DiVE (He et al., 2021) ResNet-50 69.1 70.6 70.0 67.7
DisAlign (Zhang et al., 2021) ResNet-50 69.5 69.1 69.9 69.4
ALA (Zhao et al., 2022) ResNet-50 69.6 69.5 70.2 69.0
RIDE (Wang et al., 2021c) ResNet-50 71.5 72.4 73.1 70.4
RIDE+CR (Ma et al., 2023) ResNet-50 73.5 74.0 74.3 73.1
RIDE+OTmix (Gao et al., 2023) ResNet-50 73.7 74.1 75.2 72.8
BCL (Zhu et al., 2022) ResNet-50 71.8 - - -
PaCo (Cui et al., 2021) ResNet-50 73.2 70.4 72.8 75.8
NCL (Li et al., 2022a) ResNet-50 74.2 72.0 74.9 73.8
GML (Suh & Seo, 2023) ResNet-50 74.5 - - -
LiVT (Xu et al., 2023) ViT-B/16 76.1 78.9 76.5 74.8

Fine-tuning foundation model

Linear Prob (LA) ViT-B/16 60.4 48.9 60.0 63.9
Decoder (Wang et al., 2023) ViT-B/16 59.2 - - -
LPT (Dong et al., 2022) ViT-B/16 76.1 - - 79.3
Full-FT (LA) ViT-B/16 76.1 75.7 76.9 75.3
LIFT (Shi et al., 2024) ViT-B/16 79.1 72.4 79.0 81.1

RSMerge (Ours) ViT-B/16 78.2 76.7 78.5 78.2

Table 12. Comparison of methods for training on iNaturalist 2018.
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