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Abstract001

Large Language Models (LLMs) are effective002
at natural language reasoning, but still strug-003
gle with answering commonsense questions004
that require implicit knowledge of the world.005
LLMs rely on knowledge learned through train-006
ing, which can be limited to specific domains007
and may lack inductive abstraction, resulting008
in hallucinations and inaccurate knowledge. To009
alleviate these, recent research integrates exter-010
nal knowledge sources (e.g., fine-tuning, self-011
correction, retrieval enhancement, and chain-012
of-thought (CoT)). While CoT reveals specific013
incorrect knowledge in LLMs, it lacks abstrac-014
tion and is uneasy to be revised. In this pa-015
per, we propose a revisable three-step CoT016
framework, categorizing knowledge into ab-017
stract meta-knowledge and concrete instanti-018
ated knowledge. Meanwhile, we use transfer019
knowledge to address the logical form sensi-020
tivity of LLMs. Furthermore, we propose on-021
line revision by teacher models and offline re-022
vision with knowledge base. We propose an023
antisense retrieval method to check if the newly024
generated knowledge contradicts any existing025
knowledge in the knowledge base to avoid re-026
trieving meta-knowledge that is not relevant027
to the problem. The experimental results on028
the Winogrande dataset have corroborated the029
efficacy of our proposed method. We revised030
the meta-knowledge of GPT-3.5 with GPT-4,031
which enhanced the accuracy from 68.11% to032
73.64%, an improvement of 5.53 percentage033
points.034

1 Introduction035

Large language models (LLMs) (e.g. GPT-4 Ope-036

nAI (2023)) have demonstrated strong capabili-037

ties in dealing with natural language reasoning038

(NLR) Yu et al. (2023); Lin et al. (2023) prob-039

lems, where reasoning refers to the process of draw-040

ing logical inferences or conclusions from given041

information. Commonsense Question Answering042

(CQA) Zhang et al. (2024); Talmor et al. (2021);043

Huang et al. (2019) is a subfield of NLR that re- 044

quires the understanding and application of im- 045

plicit world knowledge(e.g., spatial relations, so- 046

cial conventions and scientific facts, etc.) Branco 047

et al. (2021); Zhou et al. (2021) . 048

Effective utilization of knowledge in LLMs is 049

crucial Yin et al. (2023). The knowledge embedded 050

in LLMs is known as parameterised knowledge Luo 051

et al. (2023), acquired through extensive data train- 052

ing within the neural network’s weights. Such pa- 053

rameterised knowledge in LLMs includes widely 054

accepted fundamental facts and concepts. When 055

answering commonsense questions, parameterized 056

knowledge faces two challenges: constrained train- 057

ing corpus leading to domain limitations; and a 058

lack of inductive abstraction, where models fail to 059

lift and drop. These limitations can lead to halluci- 060

nations, resulting in the generation of erroneous or 061

fictitious information without a clear basis. 062

To alleviate hallucinations, recent developments 063

focus on integrating external knowledge sources 064

but are limited in commonsense question answer- 065

ing: (a) Fine-tuning Shen et al. (2023); Fu et al. 066

(2023) improves model performance through addi- 067

tional training on specific datasets, but identifying 068

effective knowledge is still challenging (i.e. incor- 069

rect parameterised knowledge and unseen knowl- 070

edge). (b) Self-revision Madaan et al. (2023); Guo 071

et al. (2023) allows models to self-assess and cor- 072

rect potential errors before output, but it is ineffec- 073

tive when the model is uncertain of the correct 074

answer Huang et al. (2023). (c) Retrieval aug- 075

mentation Asai et al. (2023); Shuster et al. (2021) 076

strengthens models by retrieving from external in- 077

formation sources. Representing the knowledge 078

and its availability to LLM are the key challenges. 079

(d) Chain-of-thought(CoT) Wei et al. (2022); Zhou 080

et al. (2023) guides models to generate reasonable 081

results through a linear chain pattern of reason- 082

ing and interpretation. By observing solving how 083

LLMs solve commonsense questions through CoT, 084
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Question:
Jessica lost to Jennifer at darts at the fair, so
_ won the goldfish in a bag. (A) Jessica (B)
Jennifer
Regular CoT:
To solve this problem, we need to identify who
won the goldfish in a bag based on the outcome
of a darts game between Jessica and Jennifer at
the fair.
1. We are given that Jessica and Jennifer played
darts.
2. The sentence states that Jessica lost to Jen-
nifer.
3. Since Jennifer won the game of darts, she
was the victor.
4. The winner of the darts game won the gold-
fish in a bag.
5. Therefore, since Jennifer won the darts game,
she also won the goldfish.
Based on this chain of thought, the answer is
(B) Jennifer.
Revisable CoT:
• Meta-knowledge:
If X wins against Y, then X gets a reward.
• Transfer knowledge:
X wins against Y, so X gets a reward.
( If P, then Q. → P, so Q. )
• Instantiated knowledge:
X=Jennifer, Y=Jessica, X wins against Y = Y
lost to X, reward = goldfish, _=X=Jennifer

Table 1: Regular CoT, meta-knowledge, transfer knowl-
edge, instantiated knowledge of an example.

we find that some commonsense knowledge of085

LLMs is inaccurate. However, CoT can reveal086

specific wrong knowledge which is revisable.087

Revising regular CoT knowledge is challenging088

because it lacks abstraction and transferability (see089

reguar CoT in Table 1). Structuring the CoT and090

categorising the knowledge it contains, in turn, can091

help to identify and revise specific types of knowl-092

edge. Inspired by the discursive logic of “rising093

from the abstract to the concrete”, we believe that094

we need to identify the basic principles or laws095

of the problem in various scenarios, and then con-096

cretise the abstract concepts into context-specific097

instances. In addition, since LLMs are sensitive to098

logical forms of knowledge, such as the “curse of099

reversal”, they also need to deal with the restate-100

ment or reversal of basic principles.101

In this paper, we propose a revisable three-step 102

CoT framework on commonsense question answer- 103

ing tasks for enhancing knowledge. And we con- 104

duct an empirical study on revising knowledge. We 105

emphasize the following research questions: 106

• RQ1. Can we improve the performance of 107

commonsense question answering by revising 108

the knowledge in the chain of thought? We 109

classify the knowledge in commonsense ques- 110

tion answering into meta-knowledge, transfer 111

knowledge and instantiated knowledge, and 112

revise them progressively. Experiments prove 113

that revising meta-knowledge is the most crit- 114

ical. 115

• RQ2. Can LLMs revise themselves without 116

external help? If not who can revise them 117

and how? We find that model self-revision 118

fails to deliver gains while performance can 119

be enhanced by using more powerful models 120

or humans as teacher models. When teacher 121

models are unavailable or expensive, we use 122

a self-revision method via a knowledge base 123

(KB). Correcting models online on a case-by- 124

case basis is better than using offline models 125

for KB retrieval. 126

• RQ3. Which is more effective for knowl- 127

edge revision with KB: (a) determine whether 128

newly generated knowledge conflicts with 129

KB (i.e., antonymic retrieval), or (b) retrieve 130

knowledge from KB without new knowledge 131

generation? We find (a) is better than (b) be- 132

cause direct retrieval may introduce irrelevant 133

knowledge. Furthermore, it demonstrates that 134

LLMs perform better in determining knowl- 135

edge contradictions than in selecting appropri- 136

ate knowledge. 137

To sum up, our contributions are three-fold: 138

(1) We propose a revisable three-step CoT frame- 139

work for enhancing knowledge in commonsense 140

question answering tasks. We categorise knowl- 141

edge into meta-knowledge (abstract) and instanti- 142

ated knowledge (concrete), enhancing knowledge 143

transferability and ease of revision. Transfer knowl- 144

edge enables flexible application, reducing sensi- 145

tivity of LLMs’ logical form. 146

(2) We further propose online revision by teacher 147

models and offline revision with knowledge bases, 148

and our antonymic retrieval outperforms conven- 149

tional retrieval. 150
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(3) Experimental results on Winogrande show151

that our method is effective in correcting common-152

sense knowledge and improve the accuracy.153

2 Related Work154

Chain-of-thought (CoT) reasoning Chu et al.155

(2023) involves models explicitly outputting in-156

termediate reasoning steps before the final answer.157

It enhances LLMs’ performance on complex rea-158

soning tasks and interpretability. We introduce159

constructing, structuring, and enhancing the CoT.160

CoT construction are categorised into three161

main methods: manual, automatic and semi-162

automatic. Manual construction Wei et al. (2022);163

Gao et al. (2023) relies on complete manual anno-164

tation, which yields high-quality results and is par-165

ticularly beneficial for learning with fewer samples166

but faces larger labour costs and cross-task migra-167

tion challenges. In contrast, automatic construction168

eliminates human intervention. It generates infer-169

ence chains via both Zero-shot CoT Kojima et al.170

(2022) and Auto CoT Zhang et al. (2022), which171

reduces labour costs and facilitates cross-task mi-172

gration. Still, its performance may be limited by173

the lack of high-quality annotation and is prone174

to logical or factual errors. The semi-automatic175

construction Shum et al. (2023) method uses a few176

high-quality manually labelled “seed samples” Pitis177

et al. (2023) to generate reasoning chains through178

automatic expansion, balancing human cost and179

reasoning performance.180

CoT structures are varied, with the most prim-181

itive structure being a chain that describes inter-182

mediate reasoning steps in natural language Wei183

et al. (2022). (Gao et al., 2023) uses procedural184

language instead of natural language, while Long185

(2023) introduces a tree structure to tackle complex186

tasks. Graph structures Besta et al. (2023), on the187

other hand, can handle complex tasks efficiently188

due to their complex topology and ring structures.189

ResPrompt Jiang et al. (2023) connects reasoning190

steps with residual connections in the prompt text,191

building graph structures.192

CoT enhancement approach is a key strategy193

for addressing LLMs’ hallucinatory. Validation194

and refinement-based approaches (e.g. Verify-195

CoT Ling et al. (2023) and DIVERSE Li et al.196

(2023b)) ensure consistency through calibration of197

reasoning steps and deductive reasoning while in-198

troducing knowledge from internal and external199

sources to reinforce factual accuracy. Least-to-200

Most Zhou et al. (2022) and Successive Prompt- 201

ing Dua et al. (2022) decompose complex prob- 202

lems into manageable sub-problems. Chain-of- 203

Knowledge Li et al. (2023a) introduces exogenous 204

knowledge to provide up-to-date information for 205

the model. Sorting or voting-based methods (e.g., 206

Self-Consistency Wang et al. (2022)) optimise the 207

inference process by multiple sampling and result 208

integration to reduce errors due to randomness. 209

Ours is semi-automatically constructed through 210

a three-step revisable CoT framework. It pro- 211

gressively specifies the meta-knowledge, transfer 212

knowledge, and instantiated knowledge used in 213

new problems. It also self-revises by introducing a 214

knowledge base that can be either a larger model 215

or a human construct. 216

3 Methodology 217

3.1 Design of Revisable Chain-of-Thought 218

(RCoT) 219

We classify the knowledge in commonsense ques- 220

tion answering into meta-knowledge, transfer 221

knowledge and instantiated knowledge, and revise 222

them progressively. 223

3.1.1 Meta-knowledge(MK) and Instantiated 224

knowledge(IK) 225

Meta-Knowledge(MK) is the abstract, simple and 226

correct general knowledge that you need to mas- 227

ter when answering questions, and many ques- 228

tions may be solved by the same Meta-Knowledge. 229

Instantiated Knowledge(IK) is the knowledge 230

that corresponds the abstract elements of meta- 231

knowledge to the concrete content of the problem 232

to solve the concrete problem. 233

We design a Meta-Knowledge pattern in the 234

form of “If P, then Q," where P and Q repre- 235

sent the premise and conclusion, respectively. Ta- 236

ble 2 presents several typical instances of meta- 237

knowledge. Some symbols and concepts within P 238

and Q need to be instantiated, which we refer to as 239

slots. For example, in meta-knowledge “If X wins 240

against Y, then X gets a reward," X and Y could be 241

two individuals, two teams, two companies, or two 242

countries. The term “win" could refer to victory in 243

a game, a sports competition, a business rivalry, or 244

a war, while “reward" could signify a prize, market 245

share, honour, or war spoils, among other things. 246

The evaluation of meta-knowledge includes cor- 247

rectness, relevance and abstractness. Correctness 248

indicates whether the meta-knowledge is correct or 249
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not. If the meta-knowledge is wrong, it doesn’t mat-250

ter whether the result is correct or not. Relevance251

indicates whether meta-knowledge is applicable to252

answering the question that needs to be addressed.253

Meta-knowledge is of no value if it cannot answer254

the question. Abstractness indicates whether the255

meta-knowledge is reasonably abstract, meaning256

that it can be used to solve similar problems and257

can also be effectively instantiated for specific prob-258

lems.259

3.1.2 Transfer knowledge260

Transfer Knowledge(TK) is used to transform meta-261

knowledge into another form that is more suitable262

for the problem at hand, requiring the use of logical263

knowledge and linguistic expertise. The purpose264

of transforming linguistic knowledge is to better265

adapt to specific problems, thereby more effectively266

mapping the slots in the meta-knowledge to the267

actual issues.268

There are three aspects in which the various269

forms of meta-knowledge differ: first, the sequence270

of the premise P and the conclusion Q in the sen-271

tence. The premise P can precede the conclusion Q,272

or the conclusion Q can come before the premise P.273

Second, whether there is a negation in the premise274

P and the conclusion Q, which combines to create275

four possibilities. Third, the sentence components276

that connect the premise P and the conclusion Q.277

Table 3 shows typical examples of transfer knowl-278

edge.279

The evaluation metrics for transfer knowledge280

encompass correctness and applicability. Correct-281

ness pertains to the assessment of whether the trans-282

formation of meta-knowledge maintains equiva-283

lence. For example, given meta-knowledge in the284

form of “If P, then Q”, a correct transformation285

would be “not Q, so not P”, while “not Q, so P”286

would be incorrect. Applicability refers to the287

degree to which the transformed meta-knowledge288

aligns with the syntactic structure of the target prob-289

lem.290

3.2 Knowledge Revision Method291

If Model MT performs significantly better than292

Model M on a Commonsense Question Answer-293

ing task, this paper speculates that MT performs294

better than M on at least one, or all three, of the295

revisable chain-of-thought solutions in terms of296

meta-knowledge, transfer knowledge, and instan-297

tiated knowledge. The chain-of-thought of M can298

be modified with MT , which we call the teacher299

model. 300

3.2.1 Online Revision by Teacher Models 301

The Online Revision by Teacher Models (RTM) 302

method employs a teacher model MT to iteratively 303

refine the chain-of-thought in model M , specifi- 304

cally targeting the knowledge components Meta- 305

Knowledge(MK), Transfer Knowledge(TK), and 306

Instantiated knowledge(IK). The teacher model 307

MT can be a more capable language model or even 308

a human. For instance, GPT-4 serves as the teacher 309

model for GPT-3.5, while humans act as the teacher 310

model for GPT-4. 311

The teacher model possesses the capability ei- 312

ther to revise the knowledge embedded within the 313

model or to regard the model’s inherent knowledge 314

as accurate, thus not requiring revision. Algorithm 315

1 provides a simplified description of the RTM 316

method, omitting the details of revisions to TK and 317

IK. The revision process for TK and IK is identical. 318

In the algorithm 1, IsCorrect(mk) and 319

IsMatch(q,mk) respectively indicate whether mk 320

is correct and whether mk matches the question q. 321

These can be determined by the MT model or by a 322

specialized model.

Algorithm 1 Online Revision by Teacher Models

Input:
the question q, model M, teacher model MT .

Output:
The output is the revision sequence S0, S1, S2.

1: S0 : M(q) = (mk, tk, ik, a)
2: if IsCorrect(mk) and IsMatch(q,mk) then
3: S1 : mk′ = mk
4: else
5: S1 : mk′ = MT (q,mk)
6: end if
7: S2 : M(q,mk′) = (tk′, ik′, a′)
8: Output the sequence S0, S1, S2.

323

3.2.2 Offline Revision with Knowledge Base 324

When the teacher model is not available, or is ex- 325

pensive to use, such as when the teacher model 326

is human, we use a modified method of using the 327

teacher model knowledge offline, which is called 328

Offline Revision with Knowledge Base(RKB) in this 329

paper. 330

As mentioned in Section 3.1, since multiple prob- 331

lems may rely on the same meta-knowledge for res- 332

olution, the meta-knowledge required for a problem 333
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Question Options
Jessica lost to Jennifer at darts at the fair, so _ won the goldfish
in a bag.

(A) Jessica (B) Jennifer

Meta-knowledge Slot
If X wins against Y, then X gets a reward. X,Y,win, reward
Transfer knowledge Form
X wins against Y, so X gets a reward. If P, then Q. → P, so Q.
Instantiated knowledge
X=Jennifer, Y=Jessica, X wins against Y = Y lost to X, reward
= goldfish, _=X=Jennifer
Question Options
Michael had a cat but Nelson didn’t have any pets because _
had little allergies.

(A) Michael (B) Nelson

Meta-knowledge Slot
If X is allergic, then X does not have a pet. X,pet
Transfer knowledge Form
X have a pet because X is not allergic. If P, then Q. → not Q because not P.
Instantiated knowledge
X=Michael, pet=cat, _=X=Michael

Table 2: Examples of meta-knowledge, transfer knowledge,and knstantiated knowledge

Category Sentence Form
P Q Because P, so Q. P; therefore, Q. Q, as a result of P.
P not Q P, but not Q. Even though P, not Q. not Q, although P.
not P Q Although not P, Q. Even though not P, Q. Q, even though not p.
not P not Q not Q, because not P. not Q, not P. Since not P, then not Q.

Table 3: Hierarchical Classification of Transfer knowledge. The “Sentence Form” in the table represents an
incomplete list of examples.

might have already been provided by the teacher334

model when solving similar problems in the past335

and may exist within the meta-knowledge base.336

Despite the accuracy of the knowledge in the337

meta-knowledge base being ensured by the teacher338

model, finding the appropriate meta-knowledge339

for new questions from the vast meta-knowledge340

base is challenging. To reduce errors caused by341

irrelevant meta-knowledge, we adopt the most con-342

servative strategy: if there is meta-knowledge in343

the knowledge base that contradicts the model’s344

meta-knowledge, we can ascertain that the model’s345

meta-knowledge is incorrect, while also ensuring346

relevance. For details, see Algorithm 2.347

In Algorithm 2, NegateP and NegateQ represent348

the negations of the premise and conclusion, respec-349

tively, of the meta-knowledge. This process pro-350

duces the two antonymous meta-knowledge mkn1351

and mkn2. The generation and retrieval of antony-352

mous meta-knowledge can be accomplished by353

model M itself or by a dedicated model designed354

Algorithm 2 Offline Revision with Knowledge
Base
Input:

the question q, model M, Meta-Knowledge
Base MKB.

Output:
The output is the revision sequence S0, S1, S2.

1: S0 : M(q) = (mk, tk, ik, a)
2: NegateP (mk) = mkn1, NegateQ(mk) =

mkn2
3: if ∃mkb ∈MKB,mkb ≈ mkn1∨mkb ≈ mkn2

then
4: S1 : mk′ = mkb
5: else
6: S1 : mk′ = mk
7: end if
8: S2 : M(q,mk′) = (tk′, ik′, a′)
9: Output the sequence S0, S1, S2.
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for this purpose.355

4 Experiments356

4.1 Winogrande357

To validate our approach, we conducted relevant358

experiments on the Winogrande Sakaguchi et al.359

(2021) dataset. Winogrande takes inspiration from360

winograd schemas Levesque et al. (2012) to cre-361

ate a large-scale dataset of coreference resolution362

problems requiring both physical and social com-363

mon sense. Each question presents a sentence with364

a blank where a pronoun might be and two op-365

tions to fill it. The Winogrande dataset is divided366

into training, development, and test sets, containing367

9,248, 1,267, and 1,767 examples. Since the test368

set does not provide answers, we carried out our369

experiments on the development set.370

For examples from the Winogrande dataset, refer371

to the three questions in Table 2.372

4.2 Experimental Settings373

In this paper, we employ GPT-3.5 and GPT-4 as the374

instruction-following models for our study, with375

the model names designated as gpt-3.5-turbo-16k376

and gpt-4-1106-preview, respectively. All other377

parameters are maintained at their default settings.378

Due to the high cost of human experts as a teacher379

model and knowledge base source, we use GPT-4380

to revise the response of GPT-3.5.381

In the experiments on Online Revision by382

Teacher Models(RTM), GPT-4 is utilized as the383

teacher model for GPT-3.5. In the experiments384

on Offline Revision with Knowledge Base(RKB),385

this paper has a subset of instances from the Wino-386

grande training set answered by GPT-4 in an RCoT387

method, from which 5,000 meta-knowledge en-388

tries are extracted to form a database. We test two389

meta-knowledge retrieval models: the all-mpnet-390

base-v2 vectorized retrieval Reimers and Gurevych391

(2019) and the GPT-4 batch retrieval. The all-392

mpnet-base-v2 is a language representation model393

that vectorizes the meta-knowledge of GPT-4 and394

the counter-knowledge of GPT-3.5, and then re-395

trieves them using cosine similarity. We input meta-396

knowledge into GPT-3.5, utilizing instructions and397

eight examples to prompt GPT-3.5 to generate two398

sets of meta-knowledge, one with negation applied399

solely to the premise and the other with negation400

applied solely to the conclusion. We then input401

the two negated forms of meta-knowledge into the402

all-mpnet-base-v2 model for vector retrieval.403

We input meta-knowledge into GPT-3.5 by em- 404

ploying directives and eight examples, enabling 405

GPT-3.5 to generate two antisense meta-knowledge 406

representations: one that negates the premise and 407

another that negates the conclusion separately. Sub- 408

sequently, we input these two antisense meta- 409

knowledge into the all-mpnet-base-v2 model for 410

vector-based retrieval. 411

We employ a directive approach combined with 412

a four-shot learning technique to guide the GPT 413

model to respond to queries in accordance with our 414

specified intentions. 415

4.3 Experimental results 416

Table 4 shows the performance of the Enhancing 417

Knowledge through Revisable Chain-of-Thought 418

on the Winogrande development set. 419

The numbers in Table 4 all omit %, indicat- 420

ing the accuracy rate. We employ GPT-4 to eval- 421

uate the meta-knowledge provided by GPT-3.5 422

for problem-solving, determining its correctness 423

and suitability for the current issue. The last 424

two columns, C0 and C1, represent whether the 425

evaluated meta-knowledge is inapplicable or ap- 426

plicable, with 414 and 853 instances respectively, 427

accounting for 32.68% and 67.32% of the total. 428

The content within the angle brackets “[]” fol- 429

lowing the model in the first column indicates 430

the method used. A blank space indicates that 431

no chain-of-thought is used. RCoT denotes the 432

use of a revisable COT, that is, the Revisable 433

Chain-of-Thought method proposed in this pa- 434

per. RTMGPT−4MK
and RTMGPT−4MK,TK

rep- 435

resent revising Meta-Knowledge(MK) and Trans- 436

fer Knowledge(TK) in GPT-3.5 with the MK and 437

TK of GPT-4. RKBGPT−4 represents a method 438

for offline revision based on a meta-knowledge 439

database from GPT-4. With and without the use of 440

chain-of-thought, GPT-4’s accuracy surpasses that 441

of GPT-3.5 by 17.28% to 19.10%, indicating that 442

GPT-4 possesses the fundamental qualifications to 443

serve as a teacher model for GPT-3.5. 444

From the experimental results in Table 4, we can 445

find the following observations and conclusions: 446

(1) In the role of a teacher model, GPT-4 can 447

assess the correctness and applicability of the meta- 448

knowledge possessed by GPT-3.5. We approach 449

this evaluation as a binary classification task, where 450

C1 denotes meta-knowledge that is correct and ap- 451

plicable, while C0 indicates otherwise. Examina- 452

tion of the data reveals that, across all rows, the 453

values for C1 consistently exceed those for C0, 454
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Method Acc C0 C1
GPT-4 86.03 83.57 87.22
GPT-4 [Regular CoT] 86.58 85.02 87.34
GPT-4 [Revisable CoT] 87.21 85.75 87.92
GPT-3.5 68.75 65.70 70.22
GPT-3.5 [Regular CoT] 68.35 64.00 70.46
GPT-3.5 [Revisable CoT] 68.11 62.80 70.70
GPT-3.5 [RTMGPT−4MK

] 73.64 71.74 74.56
GPT-3.5 [RTMGPT−4MK,TK

] 74.59 69.81 76.91
GPT-3.5 [RKBGPT−4]
Retrieval:all-mpnet-base-v2 68.67 64.49 70.70
GPT-3.5 [RKBGPT−4]
Retrieval Model:GPT-4 70.80 67.39 72.45
GPT-4 [RKBGPT−4]
Retrieval Model:GPT-4 86.98 84.78 88.04

Table 4: Results for the Enhancing Knowledge through
Revisable Chain-of-Thought on the Winogrande devel-
opment set.

with a range spanning from 2.32% to 7.9%. This455

discrepancy reflects an inherent imbalance in the456

meta-knowledge of GPT-3.5 and GPT-4 and sug-457

gests a positive correlation between the quality of458

meta-knowledge and the accuracy of responses.459

(2) In the third section of the table, we revised the460

meta-knowledge and transfer knowledge of GPT-461

3.5 with that of GPT-4, resulting in a performance462

improvement of to 5.53% to 6.48% for GPT-3.5.463

This demonstrates the effectiveness of GPT-4 as a464

teacher model for GPT-3.5.465

(3) In addressing the issue of inappropriate meta-466

knowledge discernment by GPT-4, GPT-3.5 of-467

fline revises the meta-knowledge through the meta-468

knowledge base of GPT-4, resulting in a marginal469

improvement of 0.56%. The slight enhancement470

is due to using the most conservative strategy471

for offline revision, which is only to revise meta-472

knowledge when its antonymous meta-knowledge473

exists within the knowledge base. Owing to the474

antonymy of meta-knowledge and the deficiencies475

of the semantic retrieval model, we set the correla-476

tion coefficient to 0.8, leading to only 16% of the477

meta-knowledge being offline revised.478

(4) To verify the coverage capability of the479

knowledge base, we ignore the ability to retrieve480

the model. We directly used GPT-4 as the re-481

trieval model of GPT-4 knowledge base, and the482

results showed that the performance of the model483

improved by 2.69%, which was higher than that of484

the conservative strategy (0.56%) and lower than485

that of the online teacher model (5.53%). It shows 486

that the conservative correction strategy needs to be 487

improved, and the knowledge base of the teacher 488

model can play a more significant role. The pur- 489

pose of our experiment is to illustrate the impor- 490

tance of retrieval models. If the teacher model 491

is available, online revision is better than offline 492

revision. 493

(5) The last line in Table 4 shows that GPT-4 494

uses its own past unprocessed knowledge base for 495

offline revision without benefit, indicating that the 496

model cannot revise faulty knowledge in the chain- 497

of-thought without external help. 498

GPT-3.5’s accuracy improved from 68.11% 499

(GPT-3.5 [Revisable CoT]) to 74.59% (GPT- 500

3.5[RTMGPT−4MK,TK
]). However, it is still sig- 501

nificantly smaller than the 87.21% (GPT-4 [Revis- 502

able CoT]) used directly with GPT-4. We consider 503

the reason lies in the difference in the knowledge 504

representations of language models. Although the 505

accuracy after knowledge revision does not surpass 506

the accuracy of the teacher model, the goal of our 507

study was not to surpass the performance of the 508

teacher model but to explore the potential of knowl- 509

edge revision as a viable approach to improve large 510

models with the help of teacher models like human 511

expertise, in scenarios such as education, health, 512

and law, where the expertise of human profession- 513

als is paramount. In the experiments, GPT-4 plays 514

the role of teacher model to help GPT-3.5, as get- 515

ting human expertise in the experiment is costly. 516

4.4 Case Study 517

By revising the chain-of-thought, we can obtain the 518

correct answer, as shown in Table 5. 519

Block 1 of Table 5 presents an example of Meta- 520

Knowledge of GPT-3.5 revised by GPT-4. In the 521

cognition of GPT-3.5, a good doctor should handle 522

simple cases, whereas in reality, a good doctor 523

needs to take on difficult cases. GPT-4 revises it. 524

This case shows that large models may have meta- 525

knowledge contrary to reality and can be revised 526

by other large models. 527

Block 2 of Table 5 presents an example of a 528

Transfer Knowledge of GPT-4 revised by a human. 529

In the cognition of GPT-4, it understands that if a 530

person is allergic, they will not keep pets. However, 531

the question in the table requires the knowledge 532

that if a person has a pet, then they are not allergic. 533

This necessitates the use of the transfer knowledge 534

that the contrapositive of a statement is logically 535

equivalent to the original statement in order to trans- 536
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Question Options
Sarah was a much better surgeon than Maria so _ always got the easier cases. (A) Sarah (B) Maria
Meta-knowledge of GPT-3.5 Evaluation
If X is a better surgeon than Y, then X always gets the easier cases. Incorrect, Applicable
Online Revision by GPT-4 Evaluation:
If X is a better surgeon than Y, then Y always gets the easier cases. Correct, Applicable
Question Options
Michael had a cat as a pet but Nelson didn’t have any pets
because _ had little allergies in their system. (A) Michael (B) Nelson
Meta-knowledge of GPT-4 Evaluation
If X has allergies, especially to pets,then X is less likely to have pets. Correct, Applicable
Transfer knowledge of GPT-4 Evaluation
If P, then Q. → Q, due to not P. Incorrect, Inapplicable
Online Revision by a human Evaluation
If P, then Q. → not Q because not P. Correct, Applicable
Question Options
Felicia wanted to be pampered by Emily, so _ went to the jewelry store and
bought an expensive ring. (A) Felicia (B) Emily
Meta-knowledge of GPT-3.5 Evaluation
If X wants to be pampered by Y, then X will buy something expensive. Incorrect,Applicable
Offline Revision with Knowledge Base of GPT-4 Evaluation
If X treats Y to something, then X is the one who spends money for it. Correct, Applicable

Table 5: Three examples of Revision chain-of-thoughts. Text in red indicates errors, while text in blue represents
the revistion made.

form the form of the meta-knowledge. However,537

GPT-4 lacks this capability and has to be corrected538

by a human.539

Block 3 of Table 5 presents an example of of-540

fline revision of GPT-3.5 using the knowledge base541

from GPT-4. The meta-knowledge possessed by542

GPT-3.5 is not sufficiently abstract and is some-543

times contrary to the facts. In contrast, the meta-544

knowledge abstracted by GPT-4, when addressing545

similar problems in the past, can be demonstrated546

by its ability to recognize that ‘pamper’ can be547

instantiated as a ‘treat.’548

5 Conclusion549

In this paper, we identify a category of common-550

sense question answering problems that can be ad-551

dressed by utilizing the same abstract knowledge552

and its variations. Through the structured design553

of chain-of-thought patterns, we propose a revis-554

able chain-of-thought approach that allows for the555

modification of steps within the chain-of-thought.556

We introduce two revision methods: 1) specific557

revisions made by a teacher model for individual558

problems, and 2) offline revision using a teacher’s559

knowledge base when the teacher model is unavail-560

able or too costly to use. We analyze the difficulty 561

of offline revision, which lies in the potential in- 562

troduction of correct but irrelevant knowledge. To 563

address this, we propose a method of antonym re- 564

trieval that only corrects meta-knowledge conflict- 565

ing with the meta-knowledge base. Our empirical 566

studies validate the feasibility of correcting thought 567

chains in large language models and highlight the 568

challenges of revision based on offline knowledge 569

bases. This paper suggests that how a model can 570

detect conflicts between its knowledge and external 571

knowledge bases is a question worthy of further 572

investigation. 573

6 Limitations 574

In this paper, we only conducted experiments 575

on the Winogrande dataset, given its clear and 576

straightforward problem patterns, which facilitate 577

the demonstration of our proposed revisable chain- 578

of-thought method. Although we did not perform 579

experiments on other datasets, we expect that the 580

underlying principles of our proposed method re- 581

main valid. 582
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