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Abstract

Large Language Models (LLMs) are effective
at natural language reasoning, but still strug-
gle with answering commonsense questions
that require implicit knowledge of the world.
LLMs rely on knowledge learned through train-
ing, which can be limited to specific domains
and may lack inductive abstraction, resulting
in hallucinations and inaccurate knowledge. To
alleviate these, recent research integrates exter-
nal knowledge sources (e.g., fine-tuning, self-
correction, retrieval enhancement, and chain-
of-thought (CoT)). While CoT reveals specific
incorrect knowledge in LLMs, it lacks abstrac-
tion and is uneasy to be revised. In this pa-
per, we propose a revisable three-step CoT
framework, categorizing knowledge into ab-
stract meta-knowledge and concrete instanti-
ated knowledge. Meanwhile, we use transfer
knowledge to address the logical form sensi-
tivity of LLMs. Furthermore, we propose on-
line revision by teacher models and offline re-
vision with knowledge base. We propose an
antisense retrieval method to check if the newly
generated knowledge contradicts any existing
knowledge in the knowledge base to avoid re-
trieving meta-knowledge that is not relevant
to the problem. The experimental results on
the Winogrande dataset have corroborated the
efficacy of our proposed method. We revised
the meta-knowledge of GPT-3.5 with GPT-4,
which enhanced the accuracy from 68.11% to
73.64%, an improvement of 5.53 percentage
points.

1 Introduction

Large language models (LLMs) (e.g. GPT-4 Ope-
nAl (2023)) have demonstrated strong capabili-
ties in dealing with natural language reasoning
(NLR) Yu et al. (2023); Lin et al. (2023) prob-
lems, where reasoning refers to the process of draw-
ing logical inferences or conclusions from given
information. Commonsense Question Answering
(CQA) Zhang et al. (2024); Talmor et al. (2021);

Huang et al. (2019) is a subfield of NLR that re-
quires the understanding and application of im-
plicit world knowledge(e.g., spatial relations, so-
cial conventions and scientific facts, etc.) Branco
et al. (2021); Zhou et al. (2021) .

Effective utilization of knowledge in LLMs is
crucial Yin et al. (2023). The knowledge embedded
in LLMs is known as parameterised knowledge Luo
et al. (2023), acquired through extensive data train-
ing within the neural network’s weights. Such pa-
rameterised knowledge in LLMs includes widely
accepted fundamental facts and concepts. When
answering commonsense questions, parameterized
knowledge faces two challenges: constrained train-
ing corpus leading to domain limitations; and a
lack of inductive abstraction, where models fail to
lift and drop. These limitations can lead to halluci-
nations, resulting in the generation of erroneous or
fictitious information without a clear basis.

To alleviate hallucinations, recent developments
focus on integrating external knowledge sources
but are limited in commonsense question answer-
ing: (a) Fine-tuning Shen et al. (2023); Fu et al.
(2023) improves model performance through addi-
tional training on specific datasets, but identifying
effective knowledge is still challenging (i.e. incor-
rect parameterised knowledge and unseen knowl-
edge). (b) Self-revision Madaan et al. (2023); Guo
et al. (2023) allows models to self-assess and cor-
rect potential errors before output, but it is ineffec-
tive when the model is uncertain of the correct
answer Huang et al. (2023). (c) Retrieval aug-
mentation Asai et al. (2023); Shuster et al. (2021)
strengthens models by retrieving from external in-
formation sources. Representing the knowledge
and its availability to LLM are the key challenges.
(d) Chain-of-thought(CoT) Wei et al. (2022); Zhou
et al. (2023) guides models to generate reasonable
results through a linear chain pattern of reason-
ing and interpretation. By observing solving how
LLMs solve commonsense questions through CoT,



Question:

Jessica lost to Jennifer at darts at the fair, so
_ won the goldfish in a bag. (A) Jessica (B)
Jennifer

Regular CoT:

To solve this problem, we need to identify who
won the goldfish in a bag based on the outcome
of a darts game between Jessica and Jennifer at
the fair.

1. We are given that Jessica and Jennifer played
darts.

2. The sentence states that Jessica lost to Jen-
nifer.

3. Since Jennifer won the game of darts, she
was the victor.

4. The winner of the darts game won the gold-
fish in a bag.

5. Therefore, since Jennifer won the darts game,
she also won the goldfish.

Based on this chain of thought, the answer is
(B) Jennifer.

Revisable CoT:

e Meta-knowledge:

If X wins against Y, then X gets a reward.

o Transfer knowledge:

X wins against Y, so X gets a reward.

(If P,then Q. — P, s0 Q.)

o Instantiated knowledge:

X=Jennifer, Y=Jessica, X wins against Y =Y
lost to X, reward = goldfish, _=X=Jennifer

Table 1: Regular CoT, meta-knowledge, transfer knowl-
edge, instantiated knowledge of an example.

we find that some commonsense knowledge of
LLMs is inaccurate. However, CoT can reveal
specific wrong knowledge which is revisable.

Revising regular CoT knowledge is challenging
because it lacks abstraction and transferability (see
reguar CoT in Table 1). Structuring the CoT and
categorising the knowledge it contains, in turn, can
help to identify and revise specific types of knowl-
edge. Inspired by the discursive logic of “rising
from the abstract to the concrete”, we believe that
we need to identify the basic principles or laws
of the problem in various scenarios, and then con-
cretise the abstract concepts into context-specific
instances. In addition, since LLMs are sensitive to
logical forms of knowledge, such as the “curse of
reversal”, they also need to deal with the restate-
ment or reversal of basic principles.

In this paper, we propose a revisable three-step
CoT framework on commonsense question answer-
ing tasks for enhancing knowledge. And we con-
duct an empirical study on revising knowledge. We
emphasize the following research questions:

* RQI. Can we improve the performance of
commonsense question answering by revising
the knowledge in the chain of thought? We
classify the knowledge in commonsense ques-
tion answering into meta-knowledge, transfer
knowledge and instantiated knowledge, and
revise them progressively. Experiments prove
that revising meta-knowledge is the most crit-
ical.

* RQ2. Can LLMs revise themselves without
external help? If not who can revise them
and how? We find that model self-revision
fails to deliver gains while performance can
be enhanced by using more powerful models
or humans as teacher models. When teacher
models are unavailable or expensive, we use
a self-revision method via a knowledge base
(KB). Correcting models online on a case-by-
case basis is better than using offline models
for KB retrieval.

* RQ3. Which is more effective for knowl-
edge revision with KB: (a) determine whether
newly generated knowledge conflicts with
KB (i.e., antonymic retrieval), or (b) retrieve
knowledge from KB without new knowledge
generation? We find (a) is better than (b) be-
cause direct retrieval may introduce irrelevant
knowledge. Furthermore, it demonstrates that
LLMs perform better in determining knowl-
edge contradictions than in selecting appropri-
ate knowledge.

To sum up, our contributions are three-fold:

(1) We propose a revisable three-step CoT frame-
work for enhancing knowledge in commonsense
question answering tasks. We categorise knowl-
edge into meta-knowledge (abstract) and instanti-
ated knowledge (concrete), enhancing knowledge
transferability and ease of revision. Transfer knowl-
edge enables flexible application, reducing sensi-
tivity of LLMs’ logical form.

(2) We further propose online revision by teacher
models and offline revision with knowledge bases,
and our antonymic retrieval outperforms conven-
tional retrieval.



(3) Experimental results on Winogrande show
that our method is effective in correcting common-
sense knowledge and improve the accuracy.

2 Related Work

Chain-of-thought (CoT) reasoning Chu et al.
(2023) involves models explicitly outputting in-
termediate reasoning steps before the final answer.
It enhances LLMs’ performance on complex rea-
soning tasks and interpretability. We introduce
constructing, structuring, and enhancing the CoT.

CoT construction are categorised into three
main methods: manual, automatic and semi-
automatic. Manual construction Wei et al. (2022);
Gao et al. (2023) relies on complete manual anno-
tation, which yields high-quality results and is par-
ticularly beneficial for learning with fewer samples
but faces larger labour costs and cross-task migra-
tion challenges. In contrast, automatic construction
eliminates human intervention. It generates infer-
ence chains via both Zero-shot CoT Kojima et al.
(2022) and Auto CoT Zhang et al. (2022), which
reduces labour costs and facilitates cross-task mi-
gration. Still, its performance may be limited by
the lack of high-quality annotation and is prone
to logical or factual errors. The semi-automatic
construction Shum et al. (2023) method uses a few
high-quality manually labelled “seed samples” Pitis
et al. (2023) to generate reasoning chains through
automatic expansion, balancing human cost and
reasoning performance.

CoT structures are varied, with the most prim-
itive structure being a chain that describes inter-
mediate reasoning steps in natural language Wei
et al. (2022). (Gao et al., 2023) uses procedural
language instead of natural language, while Long
(2023) introduces a tree structure to tackle complex
tasks. Graph structures Besta et al. (2023), on the
other hand, can handle complex tasks efficiently
due to their complex topology and ring structures.
ResPrompt Jiang et al. (2023) connects reasoning
steps with residual connections in the prompt text,
building graph structures.

CoT enhancement approach is a key strategy
for addressing LLLMs’ hallucinatory. Validation
and refinement-based approaches (e.g. Verify-
CoT Ling et al. (2023) and DIVERSE Li et al.
(2023b)) ensure consistency through calibration of
reasoning steps and deductive reasoning while in-
troducing knowledge from internal and external
sources to reinforce factual accuracy. Least-to-

Most Zhou et al. (2022) and Successive Prompt-
ing Dua et al. (2022) decompose complex prob-
lems into manageable sub-problems. Chain-of-
Knowledge Li et al. (2023a) introduces exogenous
knowledge to provide up-to-date information for
the model. Sorting or voting-based methods (e.g.,
Self-Consistency Wang et al. (2022)) optimise the
inference process by multiple sampling and result
integration to reduce errors due to randomness.

Ours is semi-automatically constructed through
a three-step revisable CoT framework. It pro-
gressively specifies the meta-knowledge, transfer
knowledge, and instantiated knowledge used in
new problems. It also self-revises by introducing a
knowledge base that can be either a larger model
or a human construct.

3 Methodology

3.1 Design of Revisable Chain-of-Thought
(RCoT)

We classify the knowledge in commonsense ques-
tion answering into meta-knowledge, transfer
knowledge and instantiated knowledge, and revise
them progressively.

3.1.1 Meta-knowledge(MK) and Instantiated
knowledge(IK)

Meta-Knowledge(MK) is the abstract, simple and
correct general knowledge that you need to mas-
ter when answering questions, and many ques-
tions may be solved by the same Meta-Knowledge.
Instantiated Knowledge(IK) is the knowledge
that corresponds the abstract elements of meta-
knowledge to the concrete content of the problem
to solve the concrete problem.

We design a Meta-Knowledge pattern in the
form of “If P, then Q," where P and Q repre-
sent the premise and conclusion, respectively. Ta-
ble 2 presents several typical instances of meta-
knowledge. Some symbols and concepts within P
and Q need to be instantiated, which we refer to as
slots. For example, in meta-knowledge “If X wins
against Y, then X gets a reward," X and Y could be
two individuals, two teams, two companies, or two
countries. The term “win" could refer to victory in
a game, a sports competition, a business rivalry, or
a war, while “reward" could signify a prize, market
share, honour, or war spoils, among other things.

The evaluation of meta-knowledge includes cor-
rectness, relevance and abstractness. Correctness
indicates whether the meta-knowledge is correct or



not. If the meta-knowledge is wrong, it doesn’t mat-
ter whether the result is correct or not. Relevance
indicates whether meta-knowledge is applicable to
answering the question that needs to be addressed.
Meta-knowledge is of no value if it cannot answer
the question. Abstractness indicates whether the
meta-knowledge is reasonably abstract, meaning
that it can be used to solve similar problems and
can also be effectively instantiated for specific prob-
lems.

3.1.2 Transfer knowledge

Transfer Knowledge(TK) is used to transform meta-
knowledge into another form that is more suitable
for the problem at hand, requiring the use of logical
knowledge and linguistic expertise. The purpose
of transforming linguistic knowledge is to better
adapt to specific problems, thereby more effectively
mapping the slots in the meta-knowledge to the
actual issues.

There are three aspects in which the various
forms of meta-knowledge differ: first, the sequence
of the premise P and the conclusion Q in the sen-
tence. The premise P can precede the conclusion Q,
or the conclusion Q can come before the premise P.
Second, whether there is a negation in the premise
P and the conclusion Q, which combines to create
four possibilities. Third, the sentence components
that connect the premise P and the conclusion Q.
Table 3 shows typical examples of transfer knowl-
edge.

The evaluation metrics for transfer knowledge
encompass correctness and applicability. Correct-
ness pertains to the assessment of whether the trans-
formation of meta-knowledge maintains equiva-
lence. For example, given meta-knowledge in the
form of “If P, then Q”, a correct transformation
would be “not Q, so not P”, while “not Q, so P”
would be incorrect. Applicability refers to the
degree to which the transformed meta-knowledge
aligns with the syntactic structure of the target prob-
lem.

3.2 Knowledge Revision Method

If Model Mt performs significantly better than
Model M on a Commonsense Question Answer-
ing task, this paper speculates that M performs
better than M on at least one, or all three, of the
revisable chain-of-thought solutions in terms of
meta-knowledge, transfer knowledge, and instan-
tiated knowledge. The chain-of-thought of M can
be modified with My, which we call the teacher

model.

3.2.1 Online Revision by Teacher Models

The Online Revision by Teacher Models (RTM)
method employs a teacher model My to iteratively
refine the chain-of-thought in model M, specifi-
cally targeting the knowledge components Meta-
Knowledge(MK), Transfer Knowledge(TK), and
Instantiated knowledge(IK). The teacher model
M can be a more capable language model or even
a human. For instance, GPT-4 serves as the teacher
model for GPT-3.5, while humans act as the teacher
model for GPT-4.

The teacher model possesses the capability ei-
ther to revise the knowledge embedded within the
model or to regard the model’s inherent knowledge
as accurate, thus not requiring revision. Algorithm
1 provides a simplified description of the RTM
method, omitting the details of revisions to TK and
IK. The revision process for TK and IK is identical.

In the algorithm 1, IsCorrect(mk) and
IsMatch(q, mk) respectively indicate whether mk
is correct and whether mk matches the question q.
These can be determined by the Mr model or by a
specialized model.

Algorithm 1 Online Revision by Teacher Models

Input:

the question g, model M, teacher model M.
Output:

The output is the revision sequence S0, S1, S2.

S2: M(q,mk') = (tk',ik',a’)
Output the sequence S0, 51, 52.

1: SO: M(q) = (mk,tk,ik,a)

2: if IsCorrect(mk) and IsMatch(q, mk) then
32 Sl:mk =mk

4: else

5. S1:mk' = Mp(q,mk)

6: end if

7:

8:

3.2.2 Offline Revision with Knowledge Base

When the teacher model is not available, or is ex-
pensive to use, such as when the teacher model
is human, we use a modified method of using the
teacher model knowledge offline, which is called
Offline Revision with Knowledge Base(RKB) in this
paper.

As mentioned in Section 3.1, since multiple prob-
lems may rely on the same meta-knowledge for res-
olution, the meta-knowledge required for a problem



Question

Jessica lost to Jennifer at darts at the fair, so _ won the goldfish

in a bag.

Meta-knowledge

If X wins against Y, then X gets a reward.
Transfer knowledge

X wins against Y, so X gets a reward.
Instantiated knowledge

Options
(A) Jessica (B) Jennifer

Slot

X,Y,win, reward

Form

If P, then Q. — P, so Q.

X=Jennifer, Y=Jessica, X wins against Y =Y lost to X, reward

= goldfish, _=X=Jennifer

Question

Michael had a cat but Nelson didn’t have any pets because

had little allergies.

Meta-knowledge

If X is allergic, then X does not have a pet.
Transfer knowledge

X have a pet because X is not allergic.
Instantiated knowledge

X=Michael, pet=cat, _=X=Michael

Options
_ (A) Michael (B) Nelson
Slot
X,pet
Form
If P, then Q. — not Q because not P.

Table 2: Examples of meta-knowledge, transfer knowledge,and knstantiated knowledge

Category Sentence Form
P Q Because P, so Q. P; therefore, Q. Q, as aresult of P.
P not Q P, but not Q. Even though P, not Q. not Q, although P.
notP Q Although not P, Q. Even though not P, Q. Q, even though not p.
notP notQ notQ, because not P. not Q, not P. Since not P, then not Q.

Table 3: Hierarchical Classification of Transfer knowledge. The “Sentence Form” in the table represents an

incomplete list of examples.

might have already been provided by the teacher
model when solving similar problems in the past
and may exist within the meta-knowledge base.

Despite the accuracy of the knowledge in the
meta-knowledge base being ensured by the teacher
model, finding the appropriate meta-knowledge
for new questions from the vast meta-knowledge
base is challenging. To reduce errors caused by
irrelevant meta-knowledge, we adopt the most con-
servative strategy: if there is meta-knowledge in
the knowledge base that contradicts the model’s
meta-knowledge, we can ascertain that the model’s
meta-knowledge is incorrect, while also ensuring
relevance. For details, see Algorithm 2.

In Algorithm 2, NegateP and NegateQ represent
the negations of the premise and conclusion, respec-
tively, of the meta-knowledge. This process pro-
duces the two antonymous meta-knowledge mk,,;
and mkys. The generation and retrieval of antony-
mous meta-knowledge can be accomplished by
model M itself or by a dedicated model designed

Algorithm 2 Offline Revision with Knowledge
Base
Input:
the question g, model M, Meta-Knowledge
Base MKB.
Output:
The output is the revision sequence S0, S1, S2.

1: SO: M(q) = (mk,tk,ik,a)

2: NegateP(mk) = mky1, NegateQ(mk) =
mkno

3. if Amk, eMKB, mky, = mky1Vmky ~ mkys
then

4. S1:mk' =mk,

5: else

6: S1:mk’ =mk

7. end if

8: S2: M(q,mk') = (tk',ik',d’)
9: Output the sequence S0, S1, .52.




for this purpose.

4 [Experiments

4.1 Winogrande

To validate our approach, we conducted relevant
experiments on the Winogrande Sakaguchi et al.
(2021) dataset. Winogrande takes inspiration from
winograd schemas Levesque et al. (2012) to cre-
ate a large-scale dataset of coreference resolution
problems requiring both physical and social com-
mon sense. Each question presents a sentence with
a blank where a pronoun might be and two op-
tions to fill it. The Winogrande dataset is divided
into training, development, and test sets, containing
9,248, 1,267, and 1,767 examples. Since the test
set does not provide answers, we carried out our
experiments on the development set.

For examples from the Winogrande dataset, refer
to the three questions in Table 2.

4.2 Experimental Settings

In this paper, we employ GPT-3.5 and GPT-4 as the
instruction-following models for our study, with
the model names designated as gpt-3.5-turbo-16k
and gpt-4-1106-preview, respectively. All other
parameters are maintained at their default settings.
Due to the high cost of human experts as a teacher
model and knowledge base source, we use GPT-4
to revise the response of GPT-3.5.

In the experiments on Online Revision by
Teacher Models(RTM), GPT-4 is utilized as the
teacher model for GPT-3.5. In the experiments
on Offline Revision with Knowledge Base(RKB),
this paper has a subset of instances from the Wino-
grande training set answered by GPT-4 in an RCoT
method, from which 5,000 meta-knowledge en-
tries are extracted to form a database. We test two
meta-knowledge retrieval models: the all-mpnet-
base-v2 vectorized retrieval Reimers and Gurevych
(2019) and the GPT-4 batch retrieval. The all-
mpnet-base-v2 is a language representation model
that vectorizes the meta-knowledge of GPT-4 and
the counter-knowledge of GPT-3.5, and then re-
trieves them using cosine similarity. We input meta-
knowledge into GPT-3.5, utilizing instructions and
eight examples to prompt GPT-3.5 to generate two
sets of meta-knowledge, one with negation applied
solely to the premise and the other with negation
applied solely to the conclusion. We then input
the two negated forms of meta-knowledge into the
all-mpnet-base-v2 model for vector retrieval.

We input meta-knowledge into GPT-3.5 by em-
ploying directives and eight examples, enabling
GPT-3.5 to generate two antisense meta-knowledge
representations: one that negates the premise and
another that negates the conclusion separately. Sub-
sequently, we input these two antisense meta-
knowledge into the all-mpnet-base-v2 model for
vector-based retrieval.

We employ a directive approach combined with
a four-shot learning technique to guide the GPT
model to respond to queries in accordance with our
specified intentions.

4.3 Experimental results

Table 4 shows the performance of the Enhancing
Knowledge through Revisable Chain-of-Thought
on the Winogrande development set.

The numbers in Table 4 all omit %, indicat-
ing the accuracy rate. We employ GPT-4 to eval-
uate the meta-knowledge provided by GPT-3.5
for problem-solving, determining its correctness
and suitability for the current issue. The last
two columns, CO and Cl1, represent whether the
evaluated meta-knowledge is inapplicable or ap-
plicable, with 414 and 853 instances respectively,
accounting for 32.68% and 67.32% of the total.
The content within the angle brackets “[]” fol-
lowing the model in the first column indicates
the method used. A blank space indicates that
no chain-of-thought is used. RCoT denotes the
use of a revisable COT, that is, the Revisable
Chain-of-Thought method proposed in this pa-
per. RTMgpr—a,,, and RTMGpr—4,, 74 TeP-
resent revising Meta-Knowledge(MK) and Trans-
fer Knowledge(TK) in GPT-3.5 with the MK and
TK of GPT-4. RKBgpr—4 represents a method
for offline revision based on a meta-knowledge
database from GPT-4. With and without the use of
chain-of-thought, GPT-4’s accuracy surpasses that
of GPT-3.5 by 17.28% to 19.10%, indicating that
GPT-4 possesses the fundamental qualifications to
serve as a teacher model for GPT-3.5.

From the experimental results in Table 4, we can
find the following observations and conclusions:

(1) In the role of a teacher model, GPT-4 can
assess the correctness and applicability of the meta-
knowledge possessed by GPT-3.5. We approach
this evaluation as a binary classification task, where
C1 denotes meta-knowledge that is correct and ap-
plicable, while CO indicates otherwise. Examina-
tion of the data reveals that, across all rows, the
values for C1 consistently exceed those for CO,



Method Acc CO0 C1
GPT-4 86.03 83.57 87.22
GPT-4 [Regular CoT] 86.58 85.02 87.34
GPT-4 [Revisable CoT] 87.21 85.75 87.92
GPT-3.5 68.75 65.70 70.22
GPT-3.5 [Regular CoT] 68.35 64.00 70.46
GPT-3.5 [Revisable CoT] 68.11 62.80 70.70
GPT-3.5 [RTMGpr—1,,,] 73.64 71.74 74.56
GPT-3.5 [RTMGpr—4,,5 711 7459 69.81 7691
GPT-3.5 [RKBgpr—4]
Retrieval:all-mpnet-base-v2  68.67 64.49 70.70
GPT-3.5 [RKBgpr—4]

Retrieval Model:GPT-4 70.80 67.39 72.45
GPT-4 [RKBgpr—4]

Retrieval Model:GPT-4 86.98 84.78 88.04

Table 4: Results for the Enhancing Knowledge through
Revisable Chain-of-Thought on the Winogrande devel-
opment set.

with a range spanning from 2.32% to 7.9%. This
discrepancy reflects an inherent imbalance in the
meta-knowledge of GPT-3.5 and GPT-4 and sug-
gests a positive correlation between the quality of
meta-knowledge and the accuracy of responses.

(2) In the third section of the table, we revised the
meta-knowledge and transfer knowledge of GPT-
3.5 with that of GPT-4, resulting in a performance
improvement of to 5.53% to 6.48% for GPT-3.5.
This demonstrates the effectiveness of GPT-4 as a
teacher model for GPT-3.5.

(3) In addressing the issue of inappropriate meta-
knowledge discernment by GPT-4, GPT-3.5 of-
fline revises the meta-knowledge through the meta-
knowledge base of GPT-4, resulting in a marginal
improvement of 0.56%. The slight enhancement
is due to using the most conservative strategy
for offline revision, which is only to revise meta-
knowledge when its antonymous meta-knowledge
exists within the knowledge base. Owing to the
antonymy of meta-knowledge and the deficiencies
of the semantic retrieval model, we set the correla-
tion coefficient to 0.8, leading to only 16% of the
meta-knowledge being offline revised.

(4) To verify the coverage capability of the
knowledge base, we ignore the ability to retrieve
the model. We directly used GPT-4 as the re-
trieval model of GPT-4 knowledge base, and the
results showed that the performance of the model
improved by 2.69%, which was higher than that of
the conservative strategy (0.56%) and lower than

that of the online teacher model (5.53%). It shows
that the conservative correction strategy needs to be
improved, and the knowledge base of the teacher
model can play a more significant role. The pur-
pose of our experiment is to illustrate the impor-
tance of retrieval models. If the teacher model
is available, online revision is better than offline
revision.

(5) The last line in Table 4 shows that GPT-4
uses its own past unprocessed knowledge base for
offline revision without benefit, indicating that the
model cannot revise faulty knowledge in the chain-
of-thought without external help.

GPT-3.5’s accuracy improved from 68.11%
(GPT-3.5 [Revisable CoT]) to 74.59% (GPT-
3.5[RTMGPr—4,, 4 74 1)- However, it is still sig-
nificantly smaller than the 87.21% (GPT-4 [Revis-
able CoT]) used directly with GPT-4. We consider
the reason lies in the difference in the knowledge
representations of language models. Although the
accuracy after knowledge revision does not surpass
the accuracy of the teacher model, the goal of our
study was not to surpass the performance of the
teacher model but to explore the potential of knowl-
edge revision as a viable approach to improve large
models with the help of teacher models like human
expertise, in scenarios such as education, health,
and law, where the expertise of human profession-
als is paramount. In the experiments, GPT-4 plays
the role of teacher model to help GPT-3.5, as get-
ting human expertise in the experiment is costly.

4.4 Case Study

By revising the chain-of-thought, we can obtain the
correct answer, as shown in Table 5.

Block 1 of Table 5 presents an example of Meta-
Knowledge of GPT-3.5 revised by GPT-4. In the
cognition of GPT-3.5, a good doctor should handle
simple cases, whereas in reality, a good doctor
needs to take on difficult cases. GPT-4 revises it.
This case shows that large models may have meta-
knowledge contrary to reality and can be revised
by other large models.

Block 2 of Table 5 presents an example of a
Transfer Knowledge of GPT-4 revised by a human.
In the cognition of GPT-4, it understands that if a
person is allergic, they will not keep pets. However,
the question in the table requires the knowledge
that if a person has a pet, then they are not allergic.
This necessitates the use of the transfer knowledge
that the contrapositive of a statement is logically
equivalent to the original statement in order to trans-



Question

Sarah was a much better surgeon than Maria so _ always got the easier cases.

Meta-knowledge of GPT-3.5

If X is a better surgeon than Y, then X always gets the easier cases.
Online Revision by GPT-4

If X is a better surgeon than Y, then Y always gets the easier cases.

Options

(A) Sarah (B) Maria
Evaluation
Incorrect, Applicable
Evaluation:

Correct, Applicable

Question

Michael had a cat as a pet but Nelson didn’t have any pets

because _ had little allergies in their system.

Meta-knowledge of GPT-4

If X has allergies, especially to pets,then X is less likely to have pets.
Transfer knowledge of GPT-4

If P, then Q. — Q, due to not P.

Online Revision by a human

If P, then Q. — not Q because not P.

Options

(A) Michael (B) Nelson
Evaluation

Correct, Applicable
Evaluation

Incorrect, Inapplicable
Evaluation

Correct, Applicable

Question

Felicia wanted to be pampered by Emily, so _ went to the jewelry store and
bought an expensive ring.

Meta-knowledge of GPT-3.5

If X wants to be pampered by Y, then X will buy something expensive.
Offline Revision with Knowledge Base of GPT-4

If X treats Y to something, then X is the one who spends money for it.

Options

(A) Felicia (B) Emily
Evaluation
Incorrect,Applicable
Evaluation

Correct, Applicable

Table 5: Three examples of Revision chain-of-thoughts. Text in red indicates errors, while text in blue represents

the revistion made.

form the form of the meta-knowledge. However,
GPT-4 lacks this capability and has to be corrected
by a human.

Block 3 of Table 5 presents an example of of-
fline revision of GPT-3.5 using the knowledge base
from GPT-4. The meta-knowledge possessed by
GPT-3.5 is not sufficiently abstract and is some-
times contrary to the facts. In contrast, the meta-
knowledge abstracted by GPT-4, when addressing
similar problems in the past, can be demonstrated
by its ability to recognize that ‘pamper’ can be
instantiated as a ‘treat.’

5 Conclusion

In this paper, we identify a category of common-
sense question answering problems that can be ad-
dressed by utilizing the same abstract knowledge
and its variations. Through the structured design
of chain-of-thought patterns, we propose a revis-
able chain-of-thought approach that allows for the
modification of steps within the chain-of-thought.
We introduce two revision methods: 1) specific
revisions made by a teacher model for individual
problems, and 2) offline revision using a teacher’s
knowledge base when the teacher model is unavail-

able or too costly to use. We analyze the difficulty
of offline revision, which lies in the potential in-
troduction of correct but irrelevant knowledge. To
address this, we propose a method of antonym re-
trieval that only corrects meta-knowledge conflict-
ing with the meta-knowledge base. Our empirical
studies validate the feasibility of correcting thought
chains in large language models and highlight the
challenges of revision based on offline knowledge
bases. This paper suggests that how a model can
detect conflicts between its knowledge and external
knowledge bases is a question worthy of further
investigation.

6 Limitations

In this paper, we only conducted experiments
on the Winogrande dataset, given its clear and
straightforward problem patterns, which facilitate
the demonstration of our proposed revisable chain-
of-thought method. Although we did not perform
experiments on other datasets, we expect that the
underlying principles of our proposed method re-
main valid.
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