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ABSTRACT

Sparse Autoencoders (SAEs) are a powerful dictionary learning technique for de-
composing neural network activations, translating the hidden state into human
ideas with high semantic value despite no external intervention or guidance. How-
ever, this technique has rarely been applied outside of the textual domain, limiting
theoretical explorations of feature decomposition. We present the first applica-
tion of SAEs to the 3D domain, analyzing the features used by a state-of-the-art
3D reconstruction VAE applied to 53k 3D models from the Objaverse dataset. We
observe that the network encodes discrete rather than continuous features, leading
to our key finding: such models approximate a discrete state space, driven by
phase-like transitions from feature activations. Through this state transition
framework, we address three otherwise unintuitive behaviors — the inclination
of the reconstruction model towards positional encoding representations, the sig-
moidal behavior of reconstruction loss from feature ablation, and the bimodality
in the distribution of phase transition points. This final observation suggests the
model redistributes the interference caused by superposition to prioritize the
saliency of different features. Our work not only compiles and explains unex-
pected phenomena regarding feature decomposition, but also provides a frame-
work to explain the model’s feature learning dynamics. The code and dataset of
encoded 3D objects will be available on release.

1 INTRODUCTION

Interpretability research has recently focused on translating a model’s latent state into sets of human-
readable concepts. To this end, studies have used sparse autoencoders (SAEs) as a dictionary-
learning tool applied to the latent vectors of LLMs (Bricken et al. 2023). These publications find se-
mantically interpretable pipelines in foundational models for a myriad of tasks, including arithmetic
(Lindsey et al. 2025), protein characteristics (Garcia & Ansuini 2025), and image-text relationships
(Yan et al. 2025).

The success of these methods suggests that the hidden state functions as a concept space, where
individual axes correspond to independent features, allowing the model to generalize (Elhage et al.
2023). Furthermore, models can layer a number of feature vectors far greater than the cardinality of
the latent space through a process called superposition, at the cost of interference from compression
(Hänni et al. 2024). However, research in feature decomposition is lacking in two key areas. First,
the scope of data domains has been limited — recent feature decomposition techniques, particularly
SAEs, have rarely been applied to industries that use unordered data with continuous features, would
benefit from improved transparency. Second, a model’s learned features are often counter-intuitively
constructed — existing research tends to empirically discuss what features contribute to a model’s
performance, rather than explore why or how these features were chosen by the model. We believe
this problem is exacerbated by the focus on textual data, which draws input data from a finite,
discrete vocabulary. We cite further studies in Appendix A.

Our work seeks to address these gaps. For the first gap, we are, to the best of our knowledge, the
first work to apply an SAE on latent vectors handling 3D data; specifically, 3D models sampled from
Objaverse (Deitke et al. 2022) encoded with Dora-VAE (Chen et al. 2024). 3D data is a domain well-
suited for feature decomposition research, because a) it is visually obvious when detected features
have semantic meaning, b) existing datasets have a wide variety of immediately recognizable objects
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Figure 1: Our feature decomposition pipeline. Dora-VAE is a 3D reconstruction model,
encoding 3D objects to M latent vectors each. We apply our SAE to these latent vectors,
decomposing each vector to a linear combination of features. We can visualize the effects
of an individual feature by plotting the its presence in each latent vector (Section 3.1) or
modifying the latent vector and observing the effects on the reconstruction (Section 3.2).

with unique semantic combinations c) many large industries (animation, design, architecture, etc.)
rely on AI tools in this domain, and d) we avoid datasets that are noisy, synthetic, homogenous,
sparse, and/or constructed for toy experiments. In addition, 3D data draws from an unordered,
continuous domain, i.e. the position of points in 3D space. This is a qualitatively distinct challenge
to text, which results in interesting feature dynamics.

We find clear, human-interpretable features in the latent vectors and report on their semantic mean-
ing. We also observe that Dora-VAE learns feature representations that we would consider unortho-
dox. Namely, positional information is represented discretely rather than continuously, transition
points between high-impact states follow a unimodal distribution, and transition points between
low-impact states follow a bimodal distribution.

These idiosyncrasies present an opportunity to address the second gap in research. Where previous
work prioritized the identification of a model’s conceptual pipeline, we study the learning dynamics
behind this pipeline. We deconstruct the optimization step and identify two terms that independently
attend to the presence and identity of individual features. The dichotomy between these terms offers
explanations to the learning behaviors of Dora-VAE highlighted earlier — particularly, we suggest
the unimodality of high-impact transition states is explained through the presence term, and the
bimodality of low-impact transition states is explained through the redistribution of superposition
interference. This framework is potentially universally applicable, intended to provide context for
future interpretability work to discuss how concepts form a discrete state space.

We substantiate our framework through a set of verifying experiments. First, we establish the ve-
racity of our learned features by highlighting noteworthy features and demonstrating the effects of
targeted feature intervention. We show the clear semantic effect a feature has on a reconstructed
output. Second, we observe and discuss several counter-intuitive behaviors that are explained by our
framework. We do so through a series of 848k independent feature interventions across a set of 53k
3D models to observe patterns of changes in loss.

Ultimately, we provide the first application of SAEs to 3D data and explain the unusual properties
of the feature space exhibited through a novel theoretical framework. In future work, we hope to
evaluate the universality and consistency of our framework on different models and modalities, as
well as further investigate the feature dynamics of models in the 3D domain.
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2 FEATURE DECOMPOSITION PRELIMINARIES

We describe a model as the composition of functions f : x 7→ z and g : z 7→ y, where z is a latent
vector. Given a dataset {(xi,yi)}Ni=1, the training objective is to optimize parameters θf and θg by
minimizing a loss function L over the dataset:

min
θf ,θg

N∑
i=1

L (g(θg; f(θf ;xi)),yi) (1)

Several works have suggested theoretically (Bengio et al. 2013) and empirically (Elhage et al.
2022) that latent representations in both humans and models can be viewed sets of semantic ideas
— borrowing terminology proposed by Kim et al. (2018), we denote these ideas as a set of vectors
E, and the space spanned by these vectors as E. These works suggest that z ∈ E and that z can be
decomposed to a linear combination of vectors from E:

z = f(θf ;x) = E(θf )
Tα(θf ;x) where E = [e1, ..., en] ⊂ E, α = (α1, ..., αn)

T (2)

Abstractly, we state that a model’s latent space interprets a given input x as a set of scalars α
modifying a set of learned features E. We refer to αj as the presence of feature j and ej as the
identity of feature j.

Even if an input x is out of the domain of the training dataset, the model still attempts, and likely
fails, to frame the input in these features. For example, image adversarial attacks use noise that are
completely out-of-distribution, but a classification model must still estimate the presence of each
feature ej (Gorton & Lewis 2025). If the resulting feature presences is similar to an in-distribution
input, the image is misclassified.

Recent LLM studies (Bricken et al. 2023) use a sparse autoencoder (SAE) to approximate this
decomposition with the assumption that α is sparse; that is, the number of feature vectors in E (i.e.
the dictionary size) is large compared to the number of features needed to represent a vector in E.
Given a collection of input x and their corresponding latent vectors z, we attempt to approximate α
and E through the following parametrization, known as a BatchTopK SAE (Bussmann et al. 2024):

For fixed θf : α(θf ,x) ≈ Enc(z) where Enc(z) = TopK(WEncz+ bEnc)

E(θf ) ≈WDec where ẑ = WDecEnc(z) + bDec
(3)

where TopK selects the top k nonzero values across the batch. The linear weight matrix WDec

approximates the set of features E, forming an overcomplete dictionary. Thus, Enc(z) is a sparse
representation of z using WDec as the set of feature vectors. We train with standard reconstruction
loss, alongside an auxiliary loss based on the reconstruction from dead features — ẑdead is the
reconstruction using only dead features, and β is a scalar hyperparameter (Gao et al. 2025).

L(θSAE) = Lrecon(z, ẑ) + βLrecon(z, ẑdead)

Lrecon(z, ẑ) =
∑
i

||zi − ẑi||22 (4)

2.1 THE LEARNING DYNAMICS OF FEATURE DECOMPOSITION

Existing applications of SAEs to LLMs (Templeton et al. 2024) have shown extracted feature vectors
that have clear semantic meaning. However, this begs the question: Why were these features
learned by the model?

We examine the learning dynamics of α by deconstructing the gradient step. Optimization of θf , θg
is performed using gradient descent:

θf ← θf − η∇θfLtotal, θg ← θg − η∇θgLtotal, (5)

We take the gradient of Ltotal with respect to θf , substituting z with our definition from Equation 2.

∂L
∂θf

=
∂L
∂ŷ
· ∂ŷ
∂z
· ∂z
∂θf

where
∂z

∂θf
=

n∑
j=1

(
∂αj(θf ;x)

∂θf
· ej(θf ) + αj(θf ;x) ·

∂ej(θf )

∂θf

)
(6)
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We see that parameters are updated with respect to features in two ways: for each feature j, ∇θfαj

modifies the magnitude and frequency it fires, and ∇θf ej modifies the information carried. This
framework allows us to explain the following behaviors, through the lens of feature-based learning
dynamics.

The model learns features with discrete, state-like presences rather than those with a continu-
ous spectrum of presences. We see that the αj term controls the learning rate for∇θf ej , suggesting
that models prefer to learn features ej that naturally have high αj . (Section 4)

High-impact features have phase transition points that form a centered, unimodal distribution.
A transition point is where ∂L

∂z is highest, greatly affecting ∇θfαj . The model is incentivized to
represent the presence of each feature in states that are far from this point. (Section 5.1)

Low-impact features have phase transition points that form a symmetric bimodal distribution.
Due to condensing high-dimensional information into low-dimensional space, feature presences are
affected by interference from superposition. While transition points would be centered between ideal
presences, the model minimizes damaging superposition by perturbing presences of low-impact
features. (Section 5.2)

3 APPLICATIONS TO 3D RECONSTRUCTION

To verify our analysis, we apply an SAE to Dora-VAE (Chen et al. 2024). Dora-VAE is a Variational
Autoencoder (VAE) that encodes point clouds Pd sampled from 3D models to condensed latent
representations. These representations are then queried for diffusion-based reconstruction of the
initial geometry. Rather than a global latent for each shape, Dora-VAE selects a set PC of M
point cloud features from Pd using furthest point sampling (FPS), which is passed through several
cross-attention layers alongside Pd. This forms a set C of processed point features.

PC = FPS(Pd)

C = CrossAttn(PosEnc(PC),PosEnc(Pd))
(7)

We take the provided Dora-VAE network, pretrained on a subset of Objaverse, and encode 53k
objects from Objaverse-XL. These encodings form a dataset of pre-KL embedding network states.
The number of latents in C is determined by the number of points initially sampled; we record a set
for M = 4096, where each pre-embedding is size 128.

After encoding, for each pre-embedding, Dora-VAE isolates a mean µi ∈ R64 and variance σi ∈
R64 by chunking.

C = {(µi,σi)}Mi=1

Thus, ∀i ∈ {1, 2, ...,M}, j ∈ {1, 2, ..., 64}, the KL embedding is:

zi,j = µi,j + σi,j · ϵ (8)

where ϵ ∼ N (0, 1). This embedding is fed through the decoder before querying for occupancy.
Here, the term latent with respect to Dora-VAE will refer to the network state post-KL embedding.

3.1 SAE ON DORA-VAE

The dataset for our SAE is constructed from these recorded pre-embeddings. Each epoch, through
KL, we sample each recorded pre-embedding for new latents. Our latent space is thus extremely
well-defined, as each epoch of training has 217 million newly sampled latents. In addition, since
these latents are point cloud features initially downsampled from Pd, each latent will correspond to
a point of the initial point cloud sample. This relationship allows us to interpret a feature based off
of the position or structure of points with high presence for that feature.

We train our BatchTopK SAE with M = 4096, codebook size n = 512, threshold k = 8, and
β = 0.125. We use a batch size of 327680 latents, randomly selected regardless of which 3D model
produced each latent. We use the Adam optimizer with an initial learning rate of 1e-3 and train for
ten epochs. The model was trained on a single A100 and took 2 hours to train. We also present
metrics for variations on codebook size and threshold in Appendix B.1.
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Figure 2: Overview of Dora-VAE features. Each point’s color represents the presence of
feature j at that point. Visually, most features congregate in stripes along a single axis.
This suggests that continuous position is represented by a set of discrete elements, which
each activate in separate regions. We show further examples in Appendix C.

We highlight the qualitative performance of our feature extraction in Figure 2. For each encoded 3D
object, we obtain a set of latents {zi}Mi=1, and αi for each latent by passing it through the SAE. We
plot the M latents as points from their initially sampled positions Pd. Finally, to examine a feature
j, we color each point i of each latent based off the presence αi,j .

Most features display positional information along a single axis. Notably, features appear state-like,
and store information in a binary manner. Features emerge at striped intervals across models in
a manner akin to positional encoding, suggesting latents form a discrete representation. In other
words, a feature doesn’t have a range of possible values (“As feature j increases, the point travels
further along the axis”) — instead, a feature tends towards one of two states (“If feature j is present,
it is within this region”). We discuss the discretization of features further in Section 4.

These positional features are highly visually interpretable due to the 3D medium. We see that such
features are applicable across all models, and activate with significant sensitivity and specificity.
Some features, although they are highly present across the model, have meanings that are difficult to
interpret through observation. We can instead intervene on these features to determine their purpose.

3.2 FEATURE ABLATION AND ADDITION

It is possible these features are simply vestiges of correlations between the sampled points; points
that share close coordinates may simply propagate similarly across the encoder. To disprove this,
and demonstrate these features are meaningful internal representations, we examine the downstream
effects of modifying latents along feature axes.

We intervene on features through ablation and addition based on SAE decoder weights. In our
pipeline, inputs are encoded by Dora-VAE to a set of latent vectors {zi}Mi=1. We recall Eq. 2; to
visualize the effect of modifying feature j on the reconstruction, we want to approximate a modified
set of latents such that:

z′i = ETα′
i where α′

i = αi, α
′
i,j = (1− t) · αi,j (9)

5
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Figure 3: Top: Example ablation on feature 313. a⃝ This feature primarily attends to
points on the positive end of the z-axis. As the feature is removed, shapes disappear and
appear spontaneously, rather than moving along the object b⃝. This suggests the feature
represents a discrete region in space, rather than a continuous range of positions. Bottom:
Example of feature 363 ablation and feature 426 addition. Both features attend to regions
along the y-axis. f⃝ Shapes that had their region fixed by feature 363 are moved to regions
defined by feature 426. In addition, they preserve their local structure. See Appendix B.2.

where (1 − t) is the proportion of the original presence, set externally. Rather than rely on the
reconstruction provided by our SAE, we modify the latents with the decoder weight for feature j.

∀zi ∈ {zi}Mi=1

{
Ablation: z′i ≈ zi − t · Enc(zi)jwdec

j

Addition: z′i ≈ zi + α′
jw

dec
j

(10)

During ablation, the portion of feature j removed is scaled by value t; here, t = 1 implies the feature
is completely removed. During addition, feature j is added by amount of a manually set α′

j . Each
modified set of latents is passed through the the Dora-VAE decoder to be compared to the original
model. We record the mean squared error (MSE) of the decoded reconstruction.

The top of Figure 3 demonstrates an ablation of feature 313. As shown by the red points in a⃝,
this feature primarily attends to points on the positive end of the z-axis, with a small region on the
negative end. When the feature is ablated, shapes whose position relied on it are rendered elsewhere
— this is indicative of a causal relationship between this feature and the shape’s position. In addition,
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as shown in b⃝, rendered points appear spontaneously, rather than moving across the model. This
again suggests that features represent discrete states, and presences do not have a continuous range
of information.

At the bottom of Figure 3, we demonstrate an ablation of feature 363 alongside an addition of feature
426. Rather than applying a constant presence of feature 426 on all latents, we instead replace every
presence of feature 363 with an equal presence of feature 426.

∀zi ∈ {zi}Mi=1, z′i ≈ zi − Enc(zi)363wdec
363 + Enc(zi)363wdec

426

Note that, because both features 363 and 426 attend to positions on the y-axis, points displaced by
the removal of feature 363 are anchored by the addition of feature 426. Rendered shapes preserve
their form even after moving. We discuss further observations in Appendix B.2.

4 DO FEATURES SHOW STATE-BASED BEHAVIOR?

A significant portion of features in Dora-VAE are dedicated to representing the position of the la-
tent. Intuitively, one would assume that these features should be continuous, as points are relatively
uniformly distributed across 3D space. Each latent’s position could be represented by only three
features, with others for additional fidelity. Despite this, the model chooses to represent features
discretely; if the feature has a high presence, the position is within a defined region. This method of
representation is akin to binary positional encoding. Some features make the similarity more explicit
by representing a set of multiple regions across an axis, rather than a single one.

To verify whether these features are truly discrete, we perform a series of systematic feature ab-
lations over our dataset and measure the change in loss. As above, we pass the M latents of 53k
3D objects through our BatchTopK SAE with k = 8 and codebook size 512. Each 3D object thus
has a set of presence vectors {αi}Mi=1 where each αi ∈ R512 shows the presences of 512 fea-
tures and has 8 nonzero values on average. For each 3D object, we randomly select 16 features to
intervene on, preferring features that are present in more latents. We perform each ablation with
t ∈ {0.00, 0.05, 0.10, ..., 1.0}, recording the MSE of the decoded reconstruction for each t. We
evaluated 848k ablations in total.

The model’s response to feature ablation displays interesting recurring behaviors. Given our set
{αi}Mi=1, we define the feature density of feature j as 1

M

∑M
i=1 1{αi,j ̸= 0}, and the average pres-

ence of feature j as 1
M

∑M
i=1 αi,j . We also define the impact ∆L of an ablation as the difference

in MSE between t = 0 and t = 1. Figure 4 shows kernel density estimations (KDEs) for these
properties of each feature ablation. We note that our set of ablations shows a wide variety of im-
pact, feature density, and average presence. In addition, impact is positively correlated with both the
feature density and average presence.

We also plot several ablation-response curves (ARCs). Each curve represents a single ablation, and
shows the change in MSE as t increases. We normalize MSE such that the plotted error at t = 0
is 0, and at t = 1 is 1. We also record the transition point of an ablation as the value of t when
the normalized MSE is 0.5. Note that the ARCs do not show a linear relationship between change
in latents and MSE. Rather, they exhibit variable curvature, with two inflection points — initial
changes in loss are below our projected linear growth, then accelerate at the transition point, before
again slowing down.

We find ARCs with greater impact exhibit more discrete behavior. To demonstrate this, we group
ARCs together based on ∆L and perform four experiments. First, for each group of similar ∆L, we
plot a KDE of all normalized MSE for 0.05 ≤ t ≤ 0.95. Notably, as impact increases, intermediate
MSE values tend to cluster towards the initial and final MSE. Second, we analyze the maximum
slope of each ARC to determine if it is an outlier in the distribution of slopes. For each ARC, we
estimate slope as the difference of normalized MSE between every two consecutive t values. We
then z-score the greatest slope of each ARC relative to the distribution formed by all slopes in the
group, and plot the average for each group. As the ∆L of an ARC increases, the greatest slope of the
ARC trends further from the group distribution, suggesting the transition point is more well defined
as impact increases. Third, we find the point of flattest slope for each ablation, record the value of
t, and plot a KDE of these values. We see that points near the beginning and end have typically the
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Figure 4: Top left: Examples and quantiles of ARCs. ARCs display an almost sigmoidal
behavior, with a varied transition point. Top right: Correlations of loss with average value
and feature density. Bottom: Various experiments to demonstrate discretization. ARCs
will typically have stagnant MSE near the beginning and end, and change most rapidly in
a small interval.

flattest slope. Finally, we note that the distribution of slopes across ARCs leans further left as ∆L
increases, showing that ARCs are typically flatter, with sharper jumps, when impact increases.

The discretization of features can be explained through the learning dynamics defined in Section
2.1. The signal to the identity of feature j,∇θf ej , is scaled by the presence αj . Thus, the identity of
feature j is most influenced when αj is high, while, when αj is low, the signal to identity is diluted
by other signals for features with higher presence. We further discuss this intuition in Appendix B.3.

5 THE BIMODALITY OF TRANSITION POINTS

If we interpret feature activations as a discrete state space with distinct phase transitions, we can
follow up by investigating when these phase transitions occur. We plot KDEs of two properties —
transition points and the points of greatest slope — for all ARCs in Figure 5. Surprisingly, both
distributions are bimodal.

We further investigate this behavior by again grouping ARCs by ∆L and plotting the KDEs of
transition points and points of greatest slope for each group. From this figure, we see that the
transition points of high-impact ARCs form a unimodal distribution around the center (t ≈ 0.5),
while the transition points of low-impact ARCs form a bimodal distribution roughly symmetric
about this center.

We then further group ablations based on which feature j is removed and repeat the same investiga-
tions as above. Again, for high-impact ablations, each feature has a peak near the center. However,
low-impact ablations are no longer bimodal, and instead there is instead a single peak that strays
from the center. Some fall closer to the beginning, while others are nearer the end. Thus, it is
only when all ARCs are aggregated together, regardless of feature, that we observe a bimodality of
transition points in low-impact features.

5.1 UNIMODAL TRANSITION POINTS OF HIGH-IMPACT ABLATIONS

We explain the distribution of high-impact transition points using the learning dynamics defined
in Equation 6. Because our feature activations, especially high-impact ones, approximate discrete

8
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Figure 5: Top: Distributions of transition points and points of maximum slope over all
ARCs, grouped by ∆L. ARCs with greater ∆L form a unimodal distribution of transition
points centered about t ≈ 0.5, while those with less ∆L have a symmetric, bimodal
distribution. Bottom: Distributions of transition points of individual features, grouped by
∆L. ARCs with greater ∆L still form a somewhat centered, unimodal distribution, but
those with less ∆L now also unimodal, further from the center. This polarization across
individual features causes the bimodal distribution when considered in aggregate.

behavior, we can consider a feature to be on (high presence) or off (low presence). During the
gradient step, the effect on∇θfαj is scaled by ∂L

∂z . This gradient, by definition, reaches a peak near
the transition point. Because of the rapid change in loss associated with the transition point, ∇θfαj

is incentivized to adjust αj such that both on and off states of the feature are at a distance from the
transition point. The magnitude of ∂L

∂z at the transition point is not necessarily equivalent for when
feature j is on and off — however, over many different transition points, we can assume it is roughly
symmetric. Thus, the overall distribution of high-impact transition points is located at the center.

5.2 BIMODAL TRANSITION POINTS OF LOW-IMPACT ABLATIONS

The bimodality of low-impact transition points is a more complex property. When examining in-
dividual features, the distribution of low-impact transition points forms a unimodal peak that drifts
away from the center. This behavior is not caused by a weaker ∂L

∂z at the transition point, which
would’ve only increased the variance of the distribution. Instead, the peak itself is offset to the left
or right — as if a polarizing effect drives transition points away from the center as ∆L decreases.

We speculate that this effect is caused by a variable offset applied to the feature presence, and provide
a visual aid in Figure 6. We suggest that as impact decreases, the larger this offset becomes. In this
way, the transition point is moved earlier or later in the ablation. This effect does not make the feature
presence estimation less accurate; again, in that case, we would see the low-impact distribution have
greater variance, but retain the same center. Rather, the peak itself moves. We hypothesize that this
offset is caused by the model learning to redistribute interference from superposition.

Superposition occurs when high-dimensional features are constrained to a low dimensional space,
causing interference between features in previously distinct dimensions. (Elhage et al. 2022). We
show another visual aid in Figure 7. Suppose the model has determined to represent a latent through
high-impact feature 1, low-impact feature 2, and a set of several other features ∗. We refer to the
presences as α1, α2, and α∗. As shown at the top of Figure 7, due to superposition, the features ∗

9
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Figure 6: Left: A visual aid of a high-impact ARC. As feature presence is ablated, the loss
(MSE) increases. It is fastest when passing through the transition point, then stagnates.
Center and Right: A visual aid of two low-impact ARCs. We suggest that low-impact
ARCs are affected by a polarizing offset. If the presence is decreased by the offset, the
relative transition point is moved left. If increased, the point is moved right.

add interference in the direction of α1 and α2. We suggest that the model selects features ∗ such that
feature 2, a low-impact feature, is affected by this superposition more than feature 1, a high-impact
feature. This causes the offset shown at the bottom of Figure 7 — while the transition point of
feature 1 is still centered, the transition point of feature 2 is moved.

Offset

Transition 
Points

Figure 7: Superposition inter-
ference affects feature presences.
We suggest this offsets low-impact
features, shifting the relative tran-
sition point.

Even though ∆L has correlations with other variables, they
are not strong enough to cause a third variable contamination
that affects SAE estimations of presences (see Appendix B.4).
Thus, we can reasonably conclude the offset is present even be-
fore the latent is passed to the SAE. In other words, we specu-
late the model itself is actively preserving high-impact features
by passing interference to features that are lower impact.

Previous works have shown that a model learns a set of features
that minimizes interference from superposition during train-
ing. However, this work suggests that a model can redistribute
interference from superposition at inference time; that not only
does the model select the most important features with respect
to the dataset, but it dynamically estimates the importance of features input to input.

6 FUTURE WORK AND CONCLUSION

These results are very motivating for model learning dynamics research, but further work is neces-
sary to generalize and substantiate our findings. First, by validating our observations across other
domains (text, image) and models (PointNet++ (Qi et al. 2017), LION (Zeng et al. 2022)), we can
confirm our results here and broaden the scope of our work. Second, examining Dora-VAE with
circuit detection techniques (Ameisen et al. 2025) and extracting an attribution graph may show
how features flow through the architecture and form discrete patterns. Third, probing gradients of
toy models, similar to Elhage et al. (2022), will evaluate the feature learning framework we present
here. Finally, if we can identify what influences redistribution of interference among features, we
can potentially perform feature decomposition at training time to develop a meta-learning module.

Our work is the first to apply an SAE to 3D data, highlighting specific discovered features and
showing the causally related downstream effects. We then take advantage of the continuous and
unstructured nature of the domain to investigate the model’s feature decomposition, confirming that
the latent space can be interpreted as a discrete, state-based feature space driven by phase transi-
tions. We then provide a potentially general framework of feature learning dynamics that explains
the unexpected discretization we observe. Finally, we explain the counter-intuitive property of the
bimodality of transition points by proposing a mechanism by which the model redistributes super-
position to only affect low-impact features.

10
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A FURTHER RELATED WORKS

The theory behind neural networks performing feature decomposition has seen several variations in
previous years (Bengio et al. 2013), (Locatello et al. 2019). Even prior to studies of latent space
decomposition, studies found interpretable axes in concept embeddings such as language vectors
(Mikolov et al. 2013). However, in recent years, we can generally divide discussions of feature
decomposition into two camps.

Empirical papers discuss the decomposition of features for interpretability of specific models or
domains. Most notable of these are applications of SAEs and similar techniques on LLMs (Bricken
et al. 2023), (Ameisen et al. 2025), (Gao et al. 2025), which followed the initial results of SAEs
(Cunningham et al. 2024). These include analyses to extract internal representations of true and false
statements (Marks et al. 2024), or discovering function vectors by analysing the cumulative impact
of attention heads (Todd et al. 2024). Similarly, image classification and reconstruction studies have
proposed new CNN decomposition methods, highlighting segmentations of the input image that led
to appropriate classification (Ghorbani et al. 2019), (Zhang et al. 2021), (Fel et al. 2023b), (Fel et al.
2025), (Rao et al. 2024). Particularly, we point out Thasarathan et al. (2025), which suggests that
text and image features can operate in the same feature space. This suggests that features can bridge
modalities, and although it doesn’t address it independently, the paper invites further investigation
into the dynamics of cross-modal models. Still other papers propose variations or improvements on
feature decomposition techniques (Rajamanoharan et al. 2024), (Bussmann et al. 2024) or draw
comparisons between them (Fel et al. 2023a). Empirical papers typically focus on either the method
of feature extraction or the application of specifically extracted features towards robustness, safety,
or interpretability; however, they do not discuss how this feature space was learned by the model or
generally functions, and, as said before, have left unstructured data domains relatively unexplored.

Theoretical papers discuss the structure and formation of the feature space. These papers are fewer
and further between. We primarily draw on these for our framework of superposition, as these
papers provided abstracted experiments on feature learning dynamics to build intuition (Elhage et al.
2022), (Elhage et al. 2023). Rarely, other works have investigated concept learning dynamics
through accuracy evaluation of individual concepts at each stage of the model (Park et al. 2024).
However, this body of work has been significantly abstracted away from current state-of-the-art
models, relying on controlled or toy experiments.

In short, there has been a gap in establishing general dynamics of real-world feature spaces. Al-
though feature decomposition itself has significantly improved with the advent of SAEs, the field
lacks an equivalent explanation of how these feature spaces are formed. Our work addresses this
absence though a thorough investigation of a real-world feature space, analyzing the overall trends
in presence and identity of learned features in addition to their specific function. We also believe the
gap in generalized feature space research is the result of heavy investment in LLM interpretability
research. While such studies are clearly highly salient and fruitful, relationships between tokens
are not explicit, and can be difficult to intuit. In contrast, unstructured and unordered data, while
difficult to work worth, have clear spatial relationships that allow for intuitive interpretation. We
hope to further discussion regarding properties of the feature space in general, as any insights are
likely to inform improvements in transparency, robustness, and meta-training.

B ADDITIONAL DISCUSSION

B.1 ADDITIONAL SAE VARIATIONS

n Relative ℓ2 (↓) Universality (↑) Dora-VAE Loss (↓)
256 0.518 / 0.366 / 0.194 0.420 / 0.421 / 0.420 0.538 / 0.300 / 0.228
512 0.507 / 0.355 / 0.187 0.293 / 0.297 / 0.295 0.427 / 0.409 / 0.216
1024 0.501 / 0.356 / 0.182 0.206 / 0.208 / 0.209 0.407 / 0.414 / 0.239

Table 1: SAE Variations, where threshold k =4 / 8 / 16.
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In addition to the SAE trained in the main paper, we also train several variations on codebook size
and threshold k to establish a general intuition regarding the effects of modifying these hyperpa-
rameters. We report the reconstruction loss of the latent, the loss produced by the reconstructed
latent passed through the Dora-VAE decoder, and universality. Universality is a measurement of the
similarity between features of separately trained SAEs, inspired by Fel et al. (2023a) and Bricken
et al. (2023). To measure universality, for each set of hyperparameters, we train 10 identical SAEs
on 10-fold subsets of the data. We then use a pairwise Procrustes alignment to align feature vectors
between two trained SAEs. Finally, we report the average cosine similarity of vectors among paired
models as universality.

We present our results in Table 1. Performance is as expected — as k increases, the reconstruction is
allowed higher fidelity, improving the reconstruction loss of both the SAE and Dora-VAE. Similarly,
codebook size improves our metrics, as the dictionary of vectors becomes larger.

The same cannot be said for universality, however; as codebook size increases, features become less
universal. We suspect this is due to the many possible tilings of positional encoding — as features
are allowed to become more specific, there is a greater variation of feature collections that cover a
similar space. In future work, we explore how codebook size affects the patterns of features learned.

B.2 FURTHER FEATURE ABLATION AND ADDITION INSIGHTS

Feature 3130%33%67%100%

ba
c

d

e

b b

Feature 363 
Feature 426

f gf

Figure 8: Reprint of Figure 3. Top: Example ablation on feature 313. Bottom: Example
of feature 363 ablation and feature 426 addition.
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We discuss some interesting properties in Figure 3 here. By gradually removing a single feature, we
affect the reconstruction by Dora-VAE. In this case, we remove feature 313, which is responsible for
points along the positive end of the z-axis, as well a small section of points towards the negative end.
When we remove feature 313, these points move towards the center of the model, forming distinct
shapes. We frame the discussion around several key properties.

As seen in b⃝, the appearance of these shapes is not reflected as a continuous shift in position. In-
stead, points are spontaneously instantiated in their final position, with more of the shape becoming
visible over time. This supports our claim that features represent discrete states.

In c⃝, we see that points, even after shifts, can merge with their neighbors if they share compatible
latents. The upper right corner of the bench, originally higher on the z-axis, merges successfully with
the lower corner of the bench after transposition. This is as opposed to e⃝ and g⃝, where the edges
of the tree and bush prevent shapes that would render at that location after a shift. We suggest this
is because latents in the bench have a collaborative relationship with other nearby latents, ensuring
that nearby points with the same properties will attempt to merge. On the other hand, points on the
edge of the tree and bush have features for non-occupancy, ensuring that other latents that would
conflict with the model do not render.

d⃝ shows an example of latent redundancy within shapes. We note that, even though a section of
the bush was removed, the remaining latents were able to reconstruct the local scene with strong
accuracy. In addition, the new shape rendered by the shifted latents also recreates the bush with
similar success. We suggest this is due to a set of redundancies within the model decoder to help
preserve shapes, such that only major changes to latents can affect the model.

In the latter figure, we refer to the replacement of feature 363 with feature 426. In short, we substitute
every presence of feature 363 in the model latents with a presence of equal magnitude in feature 426.
As both features attend to positions on the y-axis, we see that through this substitution, we displace
shapes previously located at the region marked in feature 363, and shift them to feature 426. We
highlight f⃝ here — note that the cobblestone path is now elevated to a region marked by feature
426, while maintaining its shape. We use this substitution to demonstrate the independence of these
features, able to affect position while still preserving the majority of the form.

B.3 LEARNING DYNAMICS’ EFFECT ON DISCRETIZATION

One might assume the discretization of features arrives solely from the interference caused by the
superposition. When a model attempts to represent a large number of features in a small number of
dimensions, features that appear with low presence are more likely to be construed as interference.
Thus, the model learns to prefer features that only fire with a significant presence.

However, this doesn’t address the effect across all features, nor does it describe the movement of
parameters that brings about discretization. Notably, models prefer to superimpose features that are
a) sparse and b) less important. Given that positional information is highly relevant across the entire
span of inputs, it is unlikely the model would prioritize the information presented by other features
at the expense of position information.

Our framework in Eq. 6 offers a possible explanation to this counter-intuitive behavior, through the
second term αj · ∇θf ej . We see that the signal to the identity of feature j, ∇θf ej , is scaled by the
presence αj . Suppose we had a continuous positional feature j, where αj(x) was higher and lower
based on whether x was closer or further along a designated axis. Across x at a variety of positions,
the identity of feature j would receive the strongest signal at positions that have a high presence.
Conversely, during optimization, positions with lower presence of feature j have to contend with
other features that have a higher presence, diluting the signal to identity. Over time, we suspect
that this dynamic drives the identity of j to solely consider x at a specific position with the highest
presence, localizing the feature. This effect contributes to the discretization of all features, not just
positional ones.

B.4 CROSS-CONTAMINATION OF LOSS DIFFERENCE

One might object to the supposition that the reconstruction model itself is shifting interference from
superposition, and instead suggest these shifts reflect a bias in the SAE’s estimations. This objection
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doesn’t argue that the SAE is misestimating based on the importance of the feature (as the SAE does
not optimize based off the effect of the feature on the final Dora-VAE reconstruction loss); rather, it
proposes there exists a correlating property with feature importance that consistently increases the
error of the SAE, causing an offset in its estimation.

Given the SAE is a simple two-layer encoder-decoder structure and that encoder and decoder weights
share a high cosine similarity, if there exists a correlating property, such a feature would affect the
input with a relatively linear correlation similar to the effect on the estimation observed from the
output — as this feature increases/decreases, the error of the SAE increases. The two candidates
with the highest potential for cross-contamination with loss difference in this manner are average
presence and feature density. We investigate if these two properties drive the relationship between
loss difference and transition point.

To do so, grouping ARCs by feature, we compile loss difference, average presence on active features,
and feature density as dependent variables, to test their relationship with transition point location.
For each feature, we perform a linear regression through OLS on these variables, as well as with
their log forms, to determine which variables scale nonlinearly. We find only loss difference per-
forms better in log. Then, again for each feature, we perform a partial R2 analysis to quantify the
improvement each variable has on predicting transition point. Finally, we take the average R2 value
for each of the investigated variables over all features in a defined subset. We repeat this investigation
four times, considering subsets of features with a number of ablations nabl >= {500, 1k, 3k, 6k}
ablations, and report our results in Table 2.

nabl # of Features Log Loss Diff R2 Avg Val R2 Density R2

500 150 0.188±0.104 0.042±0.056 0.025±0.027
1k 128 0.181±0.105 0.046±0.059 0.023±0.025
3k 91 0.183±0.116 0.053±0.064 0.020±0.018
6k 59 0.188±0.119 0.058±0.068 0.017±0.017

Table 2: Partial R2 analysis of variables contributing to transition point.

Log loss difference consistently contributes to transition point estimation more than other variables.
This suggests that, rather than either average presence or feature density driving the location of the
transition point, both variables’ effect are likely the result of the correlation with loss difference.
Thus, the offset in transition points is not caused by an artifact of the SAE.

This distinction is important. As opposed to average presence or feature density, neither the dif-
ference in loss caused by moving the latent in a chosen direction nor the location of the transition
point is apparent from examining the latent individually. This suggests the model has a complex,
non-linear relationship with both feature importance and relative transition point, and the correlation
between these two properties is highly relevant to model behavior.

C FURTHER FEATURE EXAMINATIONS

We demonstrate further examinations of individual features here. Each feature, randomly selected,
is highlighted across three objects, and ablated for a single object. We also give our qualitative
impression of each feature’s purpose. Note that some ablations have little or no effect, due to the
redundancy discussed in Appendix B.2, section d⃝.
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Feature 424 Feature 425

Feature 424
Feature 119 Feature 130

Feature 13 Feature 300

Figure 9: Feature 424: Smoothness of right-facing surface. Feature 425: x-axis encoding,
right side. Feature 119: Unknown. Feature 130: Left-facing regional smoothness. Feature
13: Edge encoding. Feature 300: x-axis encoding, right side.
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Feature 313 Feature 248

Feature 60 Feature 64

Feature 415

Feature 64

Feature 453

Figure 10: Feature 313: z-axis encoding. Feature 248: Smoothness of upright-facing
surface. Feature 60: Unknown. Feature 64: Unknown. Feature 415: z-axis encoding.
Feature 453: Upper edge encoding.
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Feature 22 Feature 351

Feature 97 Feature 379

Feature 381 Feature 303

Figure 11: Feature 22: z-axis encoding. Feature 351: z-axis encoding. Feature 97: Right-
facing smoothness. Feature 379: y-axis encoding. Feature 381: z-axis encoding. Feature
303: z-axis encoding.
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