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Abstract— Robot decision-making in partially observable,
real-time, dynamic, and multi-agent environments remains
a difficult and unsolved challenge. Model-free reinforcement
learning (RL) is a promising approach to learning decision-
making in such domains, however, end-to-end RL in complex
environments is often intractable. To address this challenge in
the RoboCup Standard Platform League (SPL) domain, we
developed a novel architecture integrating RL within a clas-
sical robotics stack, while employing a multi-fidelity sim2real
approach and decomposing behavior into learned sub-behaviors
with heuristic selection. Our architecture led to victory in the
2024 RoboCup SPL Challenge Shield Division. In this work,
we fully describe our system’s architecture and empirically
analyze key design decisions that contributed to its success.
Our approach demonstrates how RL-based behaviors can be
integrated into complete robot behavior architectures.

I. INTRODUCTION

In the field of robotics, reinforcement learning (RL) has
enabled complex and impressive behaviors [1]–[3]. Despite
the advances in RL, the training and deployment of RL for
strategic decision-making on physical robots in partially ob-
servable, real-time, dynamic, and multi-agent environments
remains a challenge.

One particular domain that exhibits these challenges is the
RoboCup Standard Platform League (SPL) [4]. The SPL is
part of the RoboCup initiative, which has driven advances in
robotics over the past three decades [5]. In the SPL, teams of
5 or 7 humanoid NAO robots compete in soccer games. Each
robot must be fully autonomous and act in real-time; and the
presence of teammates and adversaries makes the domain
highly dynamic. In addition, the competitive environment
requires teams to quickly adapt to different opponents and
improve their strategy between and within matches. Teams
participating in the SPL typically rely on a classical robot
behavior architecture with complex hand-coded behaviors,
and RL has had little use at the behavior level.

Toward the use of RL in partially observable, real-time,
dynamic, and multi-agent environments, we introduce an
RL-based robot architecture and training framework that
we evaluate in the RoboCup SPL domain. Using this ar-
chitecture, our joint team across two universities, WisTex
United, participated in and won the 2024 RoboCup SPL
Challenge Shield Division. Over 8 games we won 7 and
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outscored opponents 39-7. To the best of our knowledge,
our system represents the first successful use case of RL
for high-level decision-making in the SPL domain. While
specific to the SPL competition, our system design provides
insights for roboticists seeking to apply RL in domains of
similar complexity.

Our architecture is based upon a fairly standard classical
robotics stack that decomposes perception, state estimation,
behavior, and control into separate modules. Our main con-
tributions are then to enable the use of RL as a central
part of the behavior module that controls each robot’s high-
level, strategic decision-making. The architecture enjoys the
robustness of a modular approach, uses separately trained
RL policies to achieve flexibility and versatility, and allows
for improvement at deployment time.

To effectively train behaviors, we adopt a sim2real ap-
proach and use simulators of different fidelities. A lower fi-
delity simulator enables extensive full field training, whereas
a higher fidelity simulator enables the robot to learn more
precise ball control in critical situations. Furthermore, instead
of training a monolithic policy for all game scenarios, we de-
compose the overall behavior into four learned sub-behaviors
with different action and observation spaces. During games,
we heuristically select between behaviors to integrate human
knowledge into our strategy and enable rapid adjustment.

In this paper, we fully describe the key components of
our architecture and training framework and then empirically
study the importance of key design decisions. Specifically,
the main contributions of our work are:

• We detail our novel RL-based robot behavior architec-
ture and training framework that led to winning the
RoboCup SPL Challenge Shield Division.

• We identify and describe key design choices in the
architecture: multifidelity RL training, behavior decom-
position into sub-behaviors, heuristic selection of sub-
behaviors during deployment, and usage of different
action and observation spaces across sub-behaviors.

• We analyze our key design choices in a series of
ablation experiments. Our experiments validate the ef-
fectiveness of key aspects of our architecture, comple-
menting our victory in the 2024 SPL Challenge Shield
Division.



II. BACKGROUND

In this section, we provide background on reinforcement
learning and describe related work on enabling RL in
robotics and other use-cases of RL to target similar domains.

A. Reinforcement Learning

Reinforcement learning algorithms enable an agent to
learn optimal actions in sequential decision-making en-
vironments. We formalize this environment as a Par-
tially Observable Markov Decision Process (POMDP)
(S,A,P,R,O,Ω, γ), where S is the state space, A is the
action space, P : S × A → ∆(S) is the transition function,
R : S ×A → R is the reward function, O is the observation
space, Ω : S × A → ∆(O) is the observation model, and
γ is the discount factor. In a POMDP, the agent takes in
the history of observations or a belief state and outputs an
action. The objective is to maximize the expected cumulative
reward, defined as J(π) := E[

∑∞
t=0 γ

tR(st, at)]. It should
be noted that even though we are interested in the multi-robot
SPL domain, from the point of view of any single robot, the
actions of other robots are represented as just part of the
state transition function.

B. Related Work

Reinforcement Learning (RL) has significantly advanced
robot learning, particularly via sim2real transfer for tasks like
bipedal locomotion [2], [6]–[13]. However, these successes
often focus on lower-level control and haven’t addressed
high-level decision-making in complex, dynamic, multi-
agent domains like the RoboCup Standard Platform League
(SPL). While some research explores hierarchical RL [14]–
[16] or high-level policies in abstract simulation [17], [18],
these typically involve simpler dynamics or platforms than
the SPL. Our work differs by integrating RL for high-level
strategy within a classical robotics stack, using manually
decomposed sub-behaviors rather than a single monolithic
or hierarchical policy, enhancing fine-grained control and
transferability.

We utilize two simulation fidelities. While multi-fidelity
simulation has been used with RL to improve sample effi-
ciency or performance [19]–[23] and sometimes for sim2real
transfer [24], [25], these works often don’t target physical
robots or train a single policy across increasing realism. In
contrast, we train multiple, distinct policies specialized for
different tasks across different, complementary simulation
fidelities.

Within robot soccer [5], [26]–[28], many RL applications
are limited to simulation [29]–[34] or use non-bipedal robots
[35]–[40]. A notable exception learns agile bipedal soccer
skills [41], but relies on external motion capture, unlike the
fully autonomous SPL setting. While heuristics have been
used for teamwork [42], our approach integrates learned RL
policies with heuristic selection for strategic decision-making
on physical robots in the challenging SPL environment.

III. DOMAIN CHALLENGES AND RL INTEGRATION IN
ROBOCUP SPL

The RoboCup Standard Platform League (SPL) presents
significant robotics challenges relevant to developing our
RL approach. The SPL requires teams of fully autonomous
humanoid robots (5v5 in the Challenge Shield Division)
to play soccer using onboard perception and control, with
limited, unreliable communication [43]. Robots must act
in real-time under partial observability (uncertainty from
vision/proprioception), coordinating amidst dynamic changes
in ball/robot positions and unpredictable opponents. This
demands rapid decision-making based on incomplete in-
formation. Like many teams, we leverage the B-Human
codebase [43], a high-performing open-source system, as our
foundation.

While RL is a promising approach, applying it to a
testbed such as the SPL faces hurdles that, to our knowl-
edge, have prevented its successful use previously. End-to-
end learning from pixels to torques, while demonstrated in
simpler settings [44], appears computationally impracticable
for full 20-minute, multi-robot SPL games due to the scale
and complexity. Integrating RL for high-level control by
utilizing existing low-level skills also presents difficulties:
the sim2real gap is significant, the open source high-fidelity
simulator SimRobot is computationally slow and don’t easily
parallelize for RL training, and the domain’s complexity
makes training a single, monolithic RL policy to cover
all situations intractable. Our architecture (Section IV-B) is
designed to address these specific integration challenges.

IV. REINFORCEMENT LEARNING WITHIN A
COMPLETE ROBOT SYSTEM

We describe our system (Fig. 1) and key design decisions
enabling successful RL integration in the SPL.
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Fig. 1: Architecture of our training and deployment system.
Left: Multi-fidelity training setup using AbstractSim (low-
fi) and SimRobot (high-fi). Right: Deployment architecture
built on the B-Human classical stack (Perception, State-
Estimation, Low-level Control), integrating our RL-based
decision making. The RL module uses heuristic policy se-
lection based on the estimated world state to choose among
specialized sub-behaviors executed by the controller.



Policy Action Space Action Space Description Observation Space
MID-FIELD [∆Θ] Adjusts desired kick angle (global frame);

clipped.
[Ball, Can kick?, Goal ctr, Goalposts, Sides, Last
3 ball pos]

BALL DUEL [∆X , ∆Y , ∆Θ] Egocentric velocity control (x, y, theta). [Ball, Can kick?, Closest teammate, Goalposts,
Sides, Last 3 ball pos]

NEAR-GOAL [∆X , ∆Y , ∆Θ] Same as BALL DUEL. [Ball, Opp Goalposts, Last 3 ball pos]
POSITIONING [∆X , ∆Y , ∆Θ, Stand] Similar to BALL DUEL, plus Stand action. [Ball, Strat pos, Defenders, Goalposts, Sides,

Last 3 ball pos]

TABLE I: Action and observation space details for each sub-policy.

A. Robot Architecture and Simulation

We built upon the classical B-Human architecture [43],
leveraging its perception, localization, and motion primitives.
This avoids end-to-end learning challenges, allowing our RL
policies to operate at a high level, processing estimated game
state (e.g., ball/robot positions) and outputting parameterized
actions for low-level skills (Table I).

To manage the sim2real gap and training costs, we em-
ployed a multi-fidelity simulation strategy. We developed
AbstractSim (Fig. 1 top left), a fast, low-fidelity 2D simu-
lator abstracting robot kinematics, enabling efficient training
of broad behaviors across the field. For critical scenarios
requiring precision (e.g., near the goal), we used the high-
fidelity, physics-based SimRobot simulator (Fig. 1 middle
left), despite its slower speed.

B. RL Behavior Decomposition and Selection

Instead of a monolithic policy, we decomposed behavior
into four sub-policies trained with PPO [45], [46], each
specialized using different simulators and action/observation
spaces (Table I). Each policy is instantiated as a neural
network, and the output is used as input to a low-level skill.

The BALL DUEL policy, trained in a 2 vs. 0 AbstractSim
environment, develops ball control skills through velocity-
based maneuvering. Despite the absence of opponents in
training, its proficiency in ball handling makes it effective
in real-world contested situations.

The MID-FIELD policy addresses the BALL DUEL pol-
icy’s limitations in walking and kicking for less contested
scenarios. Developed in a 1 vs. 0 AbstractSim environment,
it outputs a kick angle parameterizing B-Human’s walk-and-
kick skill, which incorporates obstacle avoidance. This policy
sacrifices precise velocity control for enhanced movement
speed and kicking accuracy.

The NEAR-GOAL policy is designed for critical situations
near the goal requiring decisive, precise movement. Trained
using a 1 vs. 0 scenario in the high-fidelity SimRobot sim-
ulator, it learned subtle strategies like making small lateral
movements to effectively bump the ball towards the goal,
proving more efficient than actively kicking.

Finally, the POSITIONING policy guides the robot’s move-
ment when a teammate is closer to the ball. Trained in
AbstractSim, it considers the ball’s position and a manually
defined strategy position, aiming to keep the ball in view
while avoiding opponents.

A heuristic policy selector dynamically switches between
these behaviors based on game state: POSITIONING is active

if a teammate is closer to the ball; NEAR-GOAL activates
within the opponent’s goal box; BALL DUEL engages if an
opponent is very close (≤ 0.5m) to the ball; otherwise, the
default MID-FIELD policy is used. This modular, heuristic
approach provided flexibility, allowing us to tune activation
regions (e.g., for NEAR-GOAL) and integrate improvements
during the competition, contributing to our performance.

V. EMPIRICAL ANALYSIS

In this section, we study the key decisions that led to
our first-place finish in the RoboCup competition. We fo-
cus on three elements that we hypothesized contributed to
our success: heuristic policy selection, training policies in
different simulation fidelities, and utilizing distinct action
spaces for the BALL DUEL and MID-FIELD policies. We
conduct experiments on physical robots and in high-fidelity
simulation (SimRobot).

A. Heuristic Policy Conditioning

Experiment Physical Successes
Full Suite 6/10± 3
No MID-FIELD 0/10± 0
No NEAR-GOAL 4/10± 3
No BALL DUEL 3/10± 3

Fig. 2: Evaluation of policy decomposition on success rate
against a defender robot. Success is a goal, failure is an out of
bounds or timeout of a minute. Higher is better. Confidence
intervals are 95% bootstrapped.

The first experiment evaluates our policy decomposition
and heuristic selection. We tested performance on physical
robots against a weakened defender and goalie1 with disabled
kicking abilities in a 1 vs. 2 scoring evaluation. The results
(Figure 2) show that the full suite of policies outperforms
systems where one policy is removed, indicating that each
policy plays a crucial role.

B. Simulation Fidelity

The second experiment examines the impact of simu-
lation fidelity, comparing the NEAR-GOAL policy trained
in high-fidelity SimRobot versus low-fidelity AbstractSim.
We trained policies to convergence and tested them in
two scenarios: goalie only, and defender and goalie to-
gether, starting the attacker with the ball near the goal
box. The results (Figure 3) demonstrate that on physical
robots, the SimRobot-trained policy achieves significantly

1The goalie code in our system is manually defined, as the behavior for
this role is relatively simple to implement.



Experiment Training
Simulation

Physical
Success

Simulation
Success

Goalie AbstractSim 7/10± 3 77/100± 8
SimRobot 9/10± 1.5 62/100± 9

Goalie and
Defender

AbstractSim 4/10± 3 62/100± 9
SimRobot 9/10± 1.5 60/100± 10

(a) Simulation type success results. Higher is better.
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(b) Simulation type time to success results. Lower is better.

Fig. 3: Training simulation fidelity comparison for the
NEAR-GOAL policy (AbstractSim vs. SimRobot training).
Tested against goalie only or goalie+defender scenarios.
Confidence intervals are 95% bootstrap.

higher success rates and shorter scoring times. Interestingly,
AbstractSim-trained policies performed better in simulation,
indicating the AbstractSim policy failed to generalize effec-
tively despite apparent simulation success.

C. Action Spaces

Experiment Physical
Success

Simulation
Success

Walk at
Relative Speed 7/10± 3 41/100± 15

Walk to Point 1/10± 1.5 11/100± 6

(a) Evaluation of action spaces. Success moving the ball past the
opponent with control. Failure is a timeout at a minute or losing
control of the ball. Higher is better.
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(b) Walking Type Experimental Results. Time to reach a point on
the opposite side of the field as the robot. Lower is better.

Fig. 4: Results from action space experiments. In Figure 4a
we show the success of dribbling around an opponent. In
Figure 4b we show the time to walk to a point 4m away
from the robot. Confidence intervals are 95% bootstrap.

The third experiment examines the trade-offs between the
action spaces used in our BALL DUEL (walk-at-relative-
speed) and MID-FIELD (walk-to-point) policies via two tests
(Figure 4).

The first test assesses moving the ball around an opposing
robot (defender code with kicking disabled). The walk-
at-relative-speed action space achieved significantly higher
success than walk-to-point, demonstrating superior precise
ball manipulation needed for dribbling.

The second test measures the time to walk 4m away. Qual-
itatively, the walk-to-point action space produced smoother
and faster movement due to its stable desired location,

whereas the walk-at-relative-speed action space, adjusting
velocity frequently, resulted in slower traversal.

VI. DISCUSSION AND LIMITATIONS

Our SPL case study offers lessons for similar domains. De-
composing complex RL tasks into learnable sub-behaviors al-
lows faster training and facilitates adjustments to the overall
behavior post-training. Bootstrapping off of existing classical
robotics stacks can also make RL more feasible with limited
resources. Our approach also shows that matching simulator
fidelity to the target task is crucial. For tasks requiring both
global coverage and local precision, using multiple fidelities
of simulation can enhance overall performance.

These lessons could generalize to other complex domains.
For instance, in multi-robot disaster response, teams could
use simplified simulators to develop general exploration
policies and high-fidelity simulations to refine task-specific
sub-behaviors (e.g., debris removal), integrating these using
heuristic selection within classical frameworks to reduce
computational burden compared to end-to-end training.

Our current approach faces limitations addressable by fu-
ture work. Developing multi-agent training methods beyond
hand-coded scenarios could improve complex team behav-
iors. Our heuristic selection ignores teammate policy choices,
leading to potentially rapid role switching; communication or
bidding systems could help. Other directions include learning
the sub-behavior selection, better balancing simulator fideli-
ties, and exploring human-in-the-loop methods.

VII. CONCLUSION

Robot soccer and the annual RoboCup competition is a
research challenge task designed to spur innovation in build-
ing complete robot architectures that can operate in dynamic,
partially observable, and adversarial domains. In this paper,
we have described an RL approach for developing high-level
behaviors for the NAO robot that won the Challenge Shield
division of the 2024 RoboCup Standard Platform League
competition. This work provides insights and lessons for
using model-free RL as a primary driver of decision-making
in dynamic, multi-agent and partially observable robot tasks
where end-to-end RL may be intractable yet domain com-
plexity suggests that manual programming of behaviors is
likely suboptimal. In addition to describing our system, we
conducted empirical analysis of three critical components:
heuristic-based policy selection, varying simulation fidelity
and different action spaces. The results of this analysis
provide further lessons for the application of RL in domains
with similar challenges. This work demonstrates the promise
of RL for developing robot behaviors in complex, dynamic,
partially observable, and multi-agent domains.
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