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Abstract
Optimization problems on the Stiefel manifold,
ranging from principal component analysis to en-
hancing neural network robustness, are ubiqui-
tous in machine learning. The Landing algorithm
avoids computationally expensive retraction oper-
ations on manifolds, making it highly compet-
itive for large-scale problems. This paper ex-
tends this method to distributed settings, introduc-
ing EF-Landing, the first retraction-free and
communication-efficient algorithm for distributed
stochastic optimization on the Stiefel manifold.
By incorporating communication compression
and error feedback, EF-Landing ensures conver-
gence and constraint feasibility while significantly
reducing communication overhead. We provide
sharp convergence guarantees, demonstrating that
EF-Landing achieves the same asymptotic linear
speedup convergence rate as existing methods
without communication compression. Further-
more, our analysis is highly versatile, applying
to both deterministic and stochastic settings and
encompassing algorithms based on gradient de-
scent or momentum-based gradient descent. We
also generalize EF-Landing to operate on block-
wise Stiefel manifolds, enabling greater flexibility
for structured constraints. Extensive numerical
experiments validate our theoretical results.

1. Introduction
The Stiefel manifold, defined as the set of matrices with
orthonormal columns, plays a crucial role in enhancing the
dissimilarity between learned features in machine learn-
ing. Many classical problems inherently require orthog-
onal constraints, such as Principal Component Analysis
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(PCA) (Hotelling, 1933) and Canonical Correlation Analy-
sis (CCA) (Hotelling, 1936). Furthermore, recent research
has demonstrated that incorporating additional orthogonal
constraints in deep learning problems often improves the
robustness of neural networks (Arjovsky et al., 2016; Wang
et al., 2020; Bansal et al., 2018). These insights underscore
the importance of optimization on the Stiefel manifold in
machine learning applications. Traditional methods typi-
cally involve a single computing node. However, state-of-
the-art performance in modern tasks is often achieved using
extremely large training datasets, necessitating efficient dis-
tributed algorithms for stochastic optimization on the Stiefel
manifold across multiple computing nodes.

This paper considers the following optimization problem
across N collaborative nodes:

min
X∈Rn×p

f(X)=
1

N

N∑
i=1

[
fi(X) :=Eξi∼Di

F (X; ξi)
]
, (1a)

s. t. X⊤X= Ip, (1b)

where n ≥ p, fi(X) represents the objective function for
each node i, and the random variable ξi corresponds to the
local data maintained by node i, following a local distri-
bution Di. The constraint (1b) can also be expressed as
X ∈ St(p, n) in which St(p, n) := {X ∈ Rn×p | X⊤X =
Ip} is referred to as the Stiefel manifold. It is straightfor-
ward to verify that the Stiefel manifold constraint (1b) is
non-convex.

Numerous approaches can be directly extended to solve the
distributed problem (1). One line of research employs Rie-
mannian methods to iteratively move towards the desired
solution, incorporating retraction operations to ensure feasi-
bility on the Stiefel manifold (Edelman et al., 1998; Absil
et al., 2009; Absil & Malick, 2012). However, retraction
operations are computationally expensive, often requiring
matrix inversion, matrix exponential calculations, or QR
factorization. To address this bottleneck, another line of re-
search introduced the retraction-free Landing method (Ablin
& Peyré, 2022), which relies solely on matrix multiplica-
tion and is particularly efficient on GPUs. In the Landing
algorithm, iterates do not remain on the Stiefel manifold but
gradually “land” (i.e., converge) onto it. This retraction-free
property makes the method highly practical for large-scale
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optimization problems. For these reasons, this paper focuses
on developing and analyzing distributed Landing algorithms
to solve problem (1).

In distributed optimization on the Stiefel manifold, each
worker transmits gradient matrices to a central server to
update the model parameters. Given the substantial size of
these gradient matrices, communicating them at every itera-
tion incurs significant overhead, which hinders algorithmic
efficiency and scalability. To address this issue, this paper
explores communication compression techniques (Alistarh
et al., 2017; Richtarik et al., 2021; Stich et al., 2018; Huang
et al., 2022) to reduce overhead. Instead of transmitting full
gradient or model matrices, these strategies communicate
compressed matrices with significantly smaller sizes at each
iteration. While communication compression has demon-
strated both theoretical guarantees and empirical successes
in unconstrained distributed optimization, no existing algo-
rithms, to the best of our knowledge, have been developed
for distributed stochastic optimization on Stiefel manifolds.
Several key questions arise when developing algorithms:
Q1. Which components of the algorithm can be compressed

to ensure convergence? Specifically, should we com-
press the Euclidean gradient, Riemannian gradient, or
gradient coupled with constraint penalty?

Q2. Is the error compensation strategy necessary for op-
timization on the Stiefel manifold to maintain both
optimality and feasibility?

This paper addresses these questions and introduces the first
retraction-free and communication-efficient algorithm for
distributed stochastic optimization on the Stiefel manifold.
Specifically, we make the following contributions:

• EF-Landing algorithm. We identify that compressing
the Euclidean gradient of each fi(x) ensures both op-
timality and feasibility. Furthermore, we demonstrate
that error feedback mechanisms are essential for con-
vergence, even in single-node settings. Building on
these insights, we propose the EF-Landing algorithm for
distributed stochastic optimization problem (1) on the
Stiefel manifold with communication compression.

• Sharp convergence guarantees. We provide conver-
gence guarantees and establish convergence rates for
EF-Landing. Our algorithm achieves the same asymp-
totic linear speedup convergence rate as the vanilla Land-
ing algorithm without any communication compression.
Furthermore, our results are highly versatile. By select-
ing appropriate hyper-parameters, our analysis applies
to both deterministic and stochastic settings, encom-
passing a wide range of algorithms based on gradient
descent or momentum-based gradient descent. Notably,
our established convergence rates also recover results
for communication compression in unconstrained dis-
tributed optimization. Our analysis is built upon a novel

merit function bound, which serves as a foundational
tool for algorithms utilizing lossy gradient estimates and
may be of independent interest.

• Generalization to block-wise Stiefel manifolds. We
extend our framework to a generalized setting where ma-
trix variables are partitioned into blocks with block-wise
orthogonal constraints. This enables greater flexibility
for large-scale optimization with structured constraints.
We develop communication-efficient algorithms for this
setting and provide convergence analysis, showing that
the proposed methods retain the same theoretical guar-
antees as their non-block counterparts.

2. Related Work
Optimization on manifolds. Riemannian methods are clas-
sical approaches for solving optimization problems on man-
ifolds. The foundational principles of Riemannian gradient
descent with retraction were established in (Edelman et al.,
1998; Absil et al., 2009; Absil & Malick, 2012). Build-
ing on gradient-based techniques, various algorithms and
convergence results have been developed, including first-
order methods (Zhang & Sra, 2016; Boumal et al., 2019),
second-order methods (Absil et al., 2007; Qi et al., 2010),
and accelerated methods (Liu et al., 2017; Ahn & Sra, 2020;
Alimisis et al., 2021). Stochastic optimization on manifolds
has also been explored (Bonnabel, 2013; Tripuraneni et al.,
2018), with further refinements presented in (Zhang et al.,
2016; Zhou et al., 2019). On the other hand, retraction-
free approaches primarily include methods based on penalty
functions and augmented Lagrangian formulations (Xiao
et al., 2021; 2022; Gao et al., 2019), as well as techniques
that reformulate manifold constraints (Lezcano-Casado &
Martı́nez-Rubio, 2019; Liu et al., 2024). Additionally, the
Landing method, designed specifically for the Stiefel man-
ifold, has been proposed and analyzed in (Ablin & Peyré,
2022; Ablin et al., 2024; Vary et al., 2024).

Distributed optimization. Distributed optimization has
been extensively studied, with Distributed Gradient Descent
(Tsitsiklis et al., 1986) serving as the representative method.
To address the communication bottleneck of central param-
eter servers, three main improvement strategies have been
explored: decentralized communication (Lopes & Sayed,
2008; Shi et al., 2015; Nedić et al., 2017), lazy communi-
cation (McMahan et al., 2017; Stich, 2019a), and commu-
nication compression (Alistarh et al., 2017; Richtarik et al.,
2021). Research on distributed optimization on manifolds
remains relatively limited (Chen et al., 2021; Wang & Liu,
2022; Sun et al., 2024; Hu & Deng, 2024; Qu et al., 2024;
Zhao et al., 2025; Zhang et al., 2024), including work such
as (Sun et al., 2024) which incorporated the Landing algo-
rithm with gradient tracking techniques, (Hu & Deng, 2024),
which applied communication compression, and (Zhang
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et al., 2024) which considered federated learning with local
updates.

Communication compression. Communication compres-
sion significantly reduces the amount of information ex-
changed during distributed optimization. These techniques
mainly fall into two categories: sparsification methods, such
as Rand-K and Top-K (Stich, 2019b; Wangni et al., 2018),
and quantization methods, like QSGD and TurnGrad (Al-
istarh et al., 2017; Wen et al., 2017). To further mitigate
information distortion, error feedback techniques have been
widely adopted (Richtarik et al., 2021; Seide et al., 2014;
Karimireddy et al., 2019; Stich & Karimireddy, 2021), with
(Fatkhullin et al., 2023) showing that incorporating momen-
tum enhances the effectiveness of error feedback. Optimal
compelxity with communicaiton compression has been ex-
amined in (Huang et al., 2022; He et al., 2024).

3. Preliminary
Notations. Given a matrix X ∈ Rm×n, let ∥X∥F de-
note the Frobenius norm, with the corresponding inner
product defined as ⟨X,Y ⟩ := Tr(X⊤Y ). For a square
matrix M ∈ Rn×n, the symmetric and skew-symmetric
components are given by sym(M) := 1

2 (M + M⊤) and
skew(M) := 1

2 (M −M⊤), respectively.

3.1. Landing Method

Descent direction. The Landing method (Ablin & Peyré,
2022; Ablin et al., 2024) utilizes both the Riemannian gradi-
ent and a penalty term to enforce constraints while eliminat-
ing the need for retraction operation. The descent direction
of Landing method is

Λ(X) = gradf(X) + λ∇N (X), (2)

where gradf(X) := skew
(
∇f(X)X⊤

)
X,

∇N (X) = X
(
X⊤X − Ip

)
.

The first term, gradf(X), represents the Riemannian gra-
dient on the Stiefel manifold St(p, n) with respect to the
canonical metric (Gao et al., 2022), when X satisfies the
manifold constraints. The second term, ∇N (X), denotes
the gradient of the penalty termN (X) := 1

4∥X
⊤X−Ip∥2F ,

where the penalty parameter λ > 0 controls its weight.

Landing. With descent direction (2), Landing method is:

Xk+1 = Xk − γΛ(Xk), (3)

where γ is the step size. Rather than enforcing an exact
constraint at each step, the Landing method only requires
the iterations to remain within the neighborhood of St(p, n),
i.e., the safe region defined as follows (Ablin et al., 2024):

Definition 3.1 (Safe Region). Given some ϵ ∈ (0, 3/4), we
define the safe region of a Stiefel manifold as

St(p, n)ϵ :=
{
X ∈ Rn×p | ∥X⊤X − Ip∥ ≤ ϵ

}
.

The intuition behind the Landing algorithm is that
gradf(X) drives the iteration towards the optimal solution
on the Stiefel manifold, while ∇N (X) steers the iteration
towards the Stiefel manifold constraint. The orthogonal-
ity between these two terms ensures both optimality and
feasibility as long as the algorithm converges.

3.2. Compressor and Error Feedback

Contractive compressor. This paper examines commu-
nication compression using contractive compressors, with
Top-K and Random-K being commonly used examples
(Wangni et al., 2018; Stich, 2019b).

Definition 3.2 (Contractive Compressor). A compressor C
is defined as a contractive compressor if it satisfies

EC

[
∥C(X)−X∥2F

]
≤ (1− α)∥X∥2F , ∀X ∈ Rn×p,

where α ∈ (0, 1] is the contractive factor. The expectation
is taken over the randomness of the compression operator C.

Error feedback. Consider the unconstrained problem:

min
X∈Rn×p

f(X). (4)

The error feedback method (Richtarik et al., 2021) to solve
the above unconstrained optimization problem is

Xk+1 = Xk − γY k, (5a)

Y k+1 = Y k + C(∇f(Xk+1)− Y k), (5b)

where Y k is the compressed approximation of the gradient
∇f(Xk), and C(·) satisfies Definition 3.2. The intuition
behind error feedback is straightforward:

EC∥Y k+1 −∇f(Xk+1)∥2

(5b)
= EC∥Y k −∇f(Xk+1)− C(Y k −∇f(Xk+1))∥2

≤ (1− α)∥Y k −∇f(Xk+1)∥2.

Suppose ∇f(Xk) → ∇f(X⋆) as k → ∞, where X⋆ is
a stationary solution to problem (4). The above inequality
implies that Y k converges to∇f(X⋆). Combined with (5a),
this guarantees that Xk → X⋆ under compression, thereby
validating the effectiveness of the error feedback method.

4. EF-Landing Algorithm
In this section, we introduce EF-Landing, the first dis-
tributed Landing method incorporating Error Feedback.
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Figure 1: The necessity of error feedback

4.1. Compression on Euclidean Gradient

In the error feedback method for solving the unconstrained
optimization problem (4), compressing the gradient∇f(X)
is sufficient to ensure convergence. Given that the Landing
method can be expressed in a descent form (3), a natural
question arises: should we mimic recursion (5) and com-
press Λ(X) for EF-Landing?

We find that compressing Λ(X) does not necessarily guar-
antee convergence. Note that the key factor ensuring the
effectiveness of the Landing method (2)–(3) is the orthogo-
nality property between the Riemannian gradient gradf(X)
and the penalty gradient∇N (X), given by

⟨gradf(X), λ∇N (X)⟩ = 0, ∀X ∈ Rn×p. (6)

This orthogonality ensures that if ∥Λ(X)∥2F → 0, then both
∥gradf(X)∥2F → 0 and ∥λ∇N (X)∥2F → 0 hold, guaran-
teeing optimality while preserving feasibility on the Stiefel
manifold. However, it remains unclear whether orthogonal-
ity (6) is preserved after compressing Λ(X).

To address this issue, we propose to compress the Euclidean
gradient ∇f(X) in EF-Landing. Let g be the compressed
approximation of the Euclidean gradient∇f(X), we let

Λ̃(X; g) = grad(g) + λ∇N (X), (7)

where grad(g) := skew
(
gX⊤

)
X,

∇N (X) = X
(
X⊤X − Ip

)
.

The proposition below ensures the orthogonality between
grad(g) and ∇N (X) to hold after compressing∇f(X):

Proposition 4.1. For any gradient estimate g ∈ Rn×p, the
orthogonality between grad(g) and∇N (X) preserves (see
proof in Appendix A.1):

⟨grad(g),∇N (X)⟩ = 0, ∀X ∈ Rn×p,∀g ∈ Rn×p.

4.2. Error Feedback

Vanilla compression may lead to non-convergence. Vari-
ous approaches exist for compressing the Euclidean gradient

∇f(X). The most straightforward approach is to directly
compress ∇f(X), i.e., g = C(∇f(X)), where C(·) is the
contractive compressor satisfying Definition 3.2. However,
we observe that such vanilla compression may lead to non-
convergence, even in the case of the single-node Landing
(2)–(3). The main intuition is that the tangent space of
the Stiefel manifold and the compressed gradient may be-
come orthogonal, causing the iteration to stagnate. Figure 1
provides a schematic diagram of this phenomenon, while
Proposition 4.2 provides the corresponding rigorous formu-
lation.

Proposition 4.2. There exists an L-smooth objective func-
tion f : Rn×p → R, a contractive compressor satisfying
Definition 3.2, and an initial point X0 ∈ Rn×p such that
the following update scheme:

g = C(∇f(X)),

Λ̃(X; g) = grad(g) + λ∇N (X),

X ← X − γΛ̃(X; g)

results in the algorithm getting stagnant and failing to con-
verge to the stationary solution. (See proof in Appendix A.2.)

Remark 4.3. Proposition 4.2 suggests that vanilla gradient
compression results in non-convergence for optimization
on the Stiefel manifold, even in a deterministic and single-
node setting. In contrast, for unconstrained deterministic
optimization, vanilla gradient compression is guaranteed
to converge under the same conditions (see proof in Ap-
pendix A.3). This highlights the additional challenges in-
troduced by the Stiefel manifold constraint in algorithm
design.
Remark 4.4. Error feedback technique can be motivated
by diverse considerations. A similar work (Karimireddy
et al., 2019) discussed the necessity of error feedback in
the context of signSGD compressor (Bernstein et al., 2018).
However, this analysis remains orthogonal to our scenario,
as signSGD represents a specific type of compressor, and
it can be proved that signSGD does not satisfy contractive
compressor Definition 3.2. Consequently, the rationale for
employing error feedback varies across different settings.
Our theoretical analysis demonstrates that in our framework,
it is precisely the orthogonal constraint that necessitates the
use of error feedback.

Error feedback corrects non-convergence. Error feedback
can correct the non-convergence encountered with vanilla
gradient compression (more details in Appendix A.2). In-
spired by momentum error feedback (Fatkhullin et al., 2023),
we employ the following updates within each node i:

vk+1
i = (1− η)vk

i + η∇F (Xk+1; ξk+1
i ), (8a)

cki = C(vk+1
i − gk

i ), (8b)

gk+1
i = gk

i + cki , (8c)
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Algorithm 1 EF-Landing

Require: starting point X0 ∈ Rn×p; gradient bound L′;
step size γ > 0; compressor C; momentum η ∈ (0, 1];

1: Each node initializes v0
i = ∇F (X0; ξ0i ), g

0
i = C(v0

i )

for i = 1, . . . , N ; Master initializes g0 = 1
N

∑N
i=1 g

0
i .

2: for k = 0, 1, . . . ,K − 1 do
3: Master clips the gradient via (10);
4: Master computes Λ̃(Xk; g̃k) using (7);
5: Master computes Xk+1 = Xk − γΛ̃(Xk; g̃k) and

broadcasts Xk+1 to all nodes.
6: for all nodes i = 1, . . . , N in parallel do
7: Compute momentum vk+1

i via (8a);
8: Compress cki via (8b) and send it to the master;
9: Update local state gk+1

i via (8c).
10: end for
11: Master updates gk+1 via (9).
12: end for

where η is the momentum rate. Each node sends cki to the
master, and the master updates the Euclidean gradient:

gk+1 = gk +
1

N

N∑
i=1

cki . (9)

The compressed gradient gk provides a better approxima-
tion than vanilla compressed gradient C(∇f(Xk+1)) dis-
cussed in Section 4.2. Once gk is obtained through the error
feedback process (8)–(9), the master node will compute the
descent direction Λ̃(X; g) as outlined in (7).

4.3. EF-Landing Algorithm

EF-Landing comprises two key components: Euclidean gra-
dient compression and error feedback, as outlined in the
previous subsections. Additionally, before the master node
computes the Landing descent direction (7), we apply a clip-
ping operation to gk to ensure that the integrated gradient
estimate does not push the iterations beyond the safe region
St(p, n)ϵ (see Definition 3.1). Given a gradient bound L′

(specified later in Section 5.1), we clip gk as follows:

g̃k = min

{
1,

L′

∥gk∥F

}
gk. (10)

Once clipped, gk is ready for the computation of the Land-
ing descent direction (7) and the iteration (3). The complete
EF-Landing algorithm is presented in Algorithm 1.

The EF-Landing algorithm is highly versatile. When the gra-
dient oracle satisfies ∇F (X; ξi) ≡ ∇fi(X), the problem
reduces to deterministic optimization. The algorithm also
applies when the compressor C(·) is the identity mapping,
corresponding to distributed optimization without commu-
nication compression. Furthermore, it remains valid when

the momentum rate is set to η = 1, representing algorithms
without momentum. Notably, when all three conditions hold
simultaneously, EF-Landing simplifies to the basic Landing
algorithm with gradient clipping, with exact convergence
results as established in (Ablin et al., 2024). Table 1 shows
several scenarios to which EF-Landing is applicable.

Table 1: EF-Landing for diverse scenarios

Scenarios Deterministic Stochastic
(with momentum)

With
compression

EF-Landing
(Det.♯)
∼ O(1/K)

EF-Landing
(Sto.♭)

∼ O(1/
√
NK)

Without
compression

Vanilla
Landing
∼ O(1/K)

Stochastic
Landing

∼ O(1/
√
NK)

♯ Deterministic scenario. ♭ Stochastic scenario.

In the EF-Landing method (Algorithm 1), each node i trans-
mits the compressed variable ci to the master node, while
the master broadcasts the uncompressed variable X to all
workers. This unidirectional compression scheme is well-
established in the literature (e.g., (Fatkhullin et al., 2023;
Stich et al., 2018; Stich & Karimireddy, 2021; Alistarh et al.,
2017)), as upload costs typically dominate download costs in
distributed settings. Notably, the communication of X can
be removed in certain cases through system-level techniques
such as the All-Reduce protocol (Patarasuk & Yuan, 2009),
which eliminates the need for master-to-worker broadcasts.

5. EF-Landing Convergence Analysis
This section begins by presenting the necessary conditions,
and then proceeds to derive the convergence guarantees and
establish the convergence rates for EF-Landing.

5.1. Assumptions

The following assumptions are standard for optimization
on the Stiefel manifold (Ablin et al., 2024) and distributed
stochastic optimization.
Assumption 5.1 (Global Gradient Bound). There exists
constant L′ such that the following inequality holds

∥∇F (X; ξi)∥F ≤ L′, ∀X ∈ St(p, n)ϵ, ∀ξ ∼ Di.

Remark 5.2. The assumption of a gradient bound L′ is mild,
as the search domain St(p, n)ϵ is bounded, and we assume
that no highly anomalous data will cause gradient explosion.
Assumption 5.3 (Lipschitz Smoothness). For each node
i, fi(X) : Rn×p → R is differentiable and there exists a
smooth constant Li such that for any X,Y ∈ St(p, n)ϵ,

∥∇fi(X)−∇fi(Y )∥F ≤ Li∥X − Y ∥F .
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Remark 5.4. It is straightforward to show that the smooth-
ness constant L of the global function f(X) satisfies
L ≤ maxi=1,...,N{Li}. Additionally, we define L̃ :=√

1
N

∑N
i=1 L

2
i as the averaged smoothness constant.

Assumption 5.5 (Lower Bounded Objective Function).
The objective function f(X) is lower bounded by f∗ :=
infX∈St(p,n)ϵ f(X) > −∞.

Assumption 5.6 (Unbiasedness and Bounded Variance).
There exists a σ ≥ 0 such that for each node i, for any
X ∈ St(p, n)ϵ, it holds that

Eξi∼Di
[∇F (X; ξi)−∇fi(X)] = 0,

Eξi∼Di

[
∥∇F (X; ξi)−∇fi(X)∥2F

]
≤ σ2.

5.2. Supporting Lemmas

This section establishes supporting lemmas for the conver-
gence analysis of the EF-Landing algorithm.

Safe step size. The main objective of the Landing algorithm
is to select an appropriate step size that ensures the iterations
remain within St(p, n)ϵ. In our analysis, we require only
two assumptions—Assumptions 5.1 and 5.3—to determine
a uniform, non-vanishing step size that is valid throughout
the entire iteration process.

Lemma 5.7 (Uniform Safe Step Size). Consider the update
X̃ = X − γΛ̃(X; g), where Λ̃(X; g) is defined in (7) and
γ is a step size. For any X ∈ St(p, n)ϵ, g ∈ Rn×p, if
∥g∥F ≤ L′ and we choose

γ ≤ γs := min
{ λ(1− ϵ)ϵ

(1 + ϵ)2(L′)2 + λ2(1 + ϵ)ϵ2
,√

ϵ

2(1 + ϵ)2(L′)2
,
1

2λ

}
,

then the next iteration X̃ remains in St(p, n)ϵ (see proof in
Appendix B.1).

Merit function. We introduce a merit function to facilitate
convergence analysis of EF-Landing:

m(X) = f(X)− h(X) + µN (X), (11)

where h(x) =
1

2
⟨sym(X⊤∇f(X)), X⊤X − Ip⟩.

The constant µ is a hyperparameter, and its value will be
specified in Lemma 5.8. The merit function m(X) is Lm-
smooth when restricted to the bounded safe region St(p, n)ϵ,
with an upper bound for Lm provided by (Ablin et al., 2024).

Furthermore, under Assumption 5.5, since both h(X) and
N (X) are bounded for X ∈ St(p, n)ϵ, the merit func-
tion m(X) is also lower-bounded, with its infimum de-
noted as m∗. In this work, we derive a lower bound for

⟨∇m(X), Λ̃(X; g)⟩. This bound plays a critical role in
analyzing the impact of compression error, as it explicitly
isolates the difference term ∥g −∇f(X)∥2F .

Lemma 5.8 (Merit Function Bound). For all X ∈ St(p, n)ϵ

and g ∈ Rn×p, the inner product between the descent direc-
tion (7) and the gradient of the merit function (11) satisfies
the lower bound (see proof in Appendix B.2)

⟨Λ̃(X; g),∇m(X)⟩ ≥ 1

4
∥gradf(X)∥2F + λµN (X)

+
1

4
∥skew(gX⊤)X∥2F − ∥g −∇f(X)∥2F ,

provided that µ ≥ 2
3−4ϵ

(
L(1− ϵ)+3

√
1 + ϵL′+2L̂2 1+ϵ

λ

)
,

where L and L′ are defined in Assumptions 5.3 and 5.1,
respectively, L̂ = max{L,L′}, and ϵ < 3/4.

5.3. Main Convergence Theorem

Given an arbitrary momentum coefficient η > 0, we define
a Lyapunov function as follows:

Lk :=m(Xk)−m⋆+
c1γ

θ
G̃k+

2c1γηβ

θ
P̃ k+

c2γ

η
P k (12)

where G̃k :=
1

N

∑N

i=1
∥gk

i − vk
i ∥2F ,

P̃ k :=
1

N

∑N

i=1
∥vk

i −∇fi(Xk)∥2F ,

P k := ∥vk −∇f(Xk)∥2F ,

where vk := 1
N

∑N
i=1 v

k
i , and m∗ denotes the infimum of

the merit function in (11). Constants θ, β, c1, c2 will be
determined later. With the above Lyapunov function, we
derive the main convergence theorem as follows.

Theorem 5.9 (Main Convergence Theorem). Letting As-
sumptions 5.1, 5.3, 5.5 and 5.6 hold, if compressor C satis-
fies Definition 3.2, for an arbitrary momentum coefficient
η ∈ (0, 1], by running Algorithm 1 for K iterations, with
proper learning rate γ (see Appendix B.3), we have

1

4K

K−1∑
k=0

E[∥gradf(Xk)∥2F ] +
λµ

2K

K−1∑
k=0

E[N (Xk)]

≤ L
0

γK
+

c1η
2(1− α)σ2

θ
+

2c1η
3βσ2

θ
+

c2ησ
2

N
,

In the inequality, Lk is defined in (12), θ and β are two
scalars defined as θ := 1 −

√
1− α and β := 1−α

1−
√
1−α

.
c1, c2 are two constants differently specified in three cases:

• When the momentum coefficient η = 1 and the variance
of gradients σ2 = 0, the momentum and stochastic
error is 0, and c1, c2 are specified as c1 = 1, c2 = 0.

• When the contractive factor α = 1, the compression
error is 0, and c1, c2 are specified as c1 = 0, c2 = 1.

• Otherwise, we specify c1 = c2 = 2.
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Remark 5.10. The convergence theorem above is highly
versatile. By appropriately selecting hyper-parameters such
as the momentum coefficient η, gradient variance σ, and
compressor factor α, our analysis applies to both determin-
istic and stochastic settings, covering algorithms based on
gradient descent and momentum-based gradient descent,
with or without communication compression.

5.4. Convergence Rate in Deterministic Scenario

In this subsection, we set σ2 = 0 in Assumption 5.6. We
further set η = 1 to completely eliminate both momentum
and stochastic error. Under these conditions, the constants
in Theorem 5.9 simplify to c1 = 1 and c2 = 0, allowing the
theorem to naturally recover various convergence results in
deterministic scenarios.
Theorem 5.11 (EF-Landing in Deterministic Scenarios).
Letting Assumptions 5.1, 5.3, 5.5 and 5.6 hold, if compressor
C satisfies Definition 3.2, σ2 = 0, and η = 1, by running
Algorithm 1 for K iterations, with proper constant learning
rate γ (see Appendix B.4), we have

1

K

K−1∑
k=0

E[∥gradf(Xk)∥2F ] ≤
4(m(X0)−m⋆)

Kγ
+

4E[G̃0]

Kθ
,

1

K

K−1∑
k=0

E[N (Xk)] ≤ 2(m(X0)−m⋆)

Kγλµ
+

2E[G̃0]

Kθλµ
,

where θ and β are defined in Theorem 5.9.

By additionally setting α = 1 and G̃0 = 0, meaning no
compression is applied to the Landing method, the theorem
simplifies to the standard Landing convergence theorem:
Corollary 5.12 (Vanilla Landing in Deterministic Scenar-
ios). Letting Assumptions 5.1, 5.3, 5.5 and 5.6 hold, if
compressor C satisfies Definition 3.2, σ2 = 0, η = 1 and
α = 1, by running Algorithm 1 for K iterations, with proper
constant learning rate γ (see Appendix B.4), we have

1

K

K−1∑
k=0

∥gradf(Xk)∥2F ≤
4(m(X0)−m∗)

Kγ
,

1

K

K−1∑
k=1

N (Xk) ≤ 2(m(X0)−m∗)

Kγλµ
.

Remark 5.13. Our established rate for vanilla Landing with-
out compression is O(1/K), matching the state-of-the-art
result in (Ablin et al., 2024; Vary et al., 2024) with exact
constants, confirming the sharpness of our analysis. More-
over, by comparing Theorem 5.11 and Corollary 5.12, we
observe that Landing, with or without communication com-
pression, achieves the same O(1/K) rate, indicating that
compression does not degrade the convergence order. How-
ever, more aggressive compression (i.e., θ → 0) leads to
slower convergence for EF-Landing.

5.5. Convergence Rate in Stochastic Scenario

In this section, we consider the case where the variance
σ2 > 0 (Assumption 5.6). Notably, our assumption differs
from that of (Ablin et al., 2024), which directly assumes a
bounded variance for Λ̃(Xk; g̃k). The momentum technique
plays a crucial role in stochastic settings.

We consider the case with communication compression, i.e.,
α < 1, and analyze the most general version of the EF-
Landing algorithm. In this setting, the constants in Theorem
5.9 are specified as c1 = c2 = 2. The following theorem
presents the convergence result of EF-Landing in stochastic
scenarios, demonstrating a linear speedup.

Theorem 5.14 (EF-Landing in Stochastic Scenarios). Let-
ting Assumptions 5.1, 5.3, 5.5 and 5.6 hold, if compressor
C satisfies Definition 3.2, and we choose step size γ as in
Lemma B.6, by running Algorithm 1 for K iterations, with
proper learning rate γ and momentum coefficient η (see
Appendix B.6), we have

1

K

K−1∑
k=1

E[∥gradf(Xk)∥2F ] ≤ 4O
( 1√

NK

)
,

1

K

K−1∑
k=1

E[N (Xk)] ≤ 2

λµ
O
( 1√

NK

)
,

where the O( 1√
NK

) term is specified as

O
( 1√

NK

)
=

Cγ
1L0

K
+ 4

(2σ2Cγ
2L0

NK

) 1
2

+ 4
(2σ2(1− α)

θ

) 1
3
(Cγ

2L0

K

) 2
3

+ 4
(4βσ2

θ

) 1
4
(Cγ

2L0

K

) 3
4

,

The constant L0 is defined in (12), while θ and β are spec-
ified in Theorem 5.9. The constants Cγ

1 and Cγ
2 are in-

dependent of N and K, with their definitions provided in
Appendix B.6.

Remark 5.15. This theorem establishes that EF-Landing
achieves an asymptotic linear speedup convergence rate.
The impact of the communication compressor appears only
in higher-order terms and does not affect the dominant linear
speedup rate. Notably, this rate aligns with the momentum
error feedback method (Fatkhullin et al., 2023), which is
designed for unconstrained minimization problems. This
suggests that, with careful algorithmic design, the Stiefel
manifold constraint does not pose fundamental challenges
to communication compression.

To illustrate the versatility of our convergence analysis, we
now examine the stochastic Landing algorithm without com-
pression. In this case, the constants in Theorem 5.9 are
specified as c1 = 0 and c2 = 1, leading to the result:

Theorem 5.16 (Stochastic Landing Convergence). Letting
Assumptions, 5.1, 5.3, 5.5 and 5.6 hold, if compressor C

7
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satisfies Definition 3.2, α = 1, with proper learning rate γ
and momentum coefficient η (see Appendix B.7), by running
Algorithm 1 for K iterations, we have

1

K

K−1∑
k=0

E[∥gradf(Xk)∥2F ] ≤
4Cγ

1L0

K
+ 4σ

√
Cγ

2L0

NK
,

1

K

K−1∑
k=1

N (Xk) ≤ 2Cγ
1L0

Kλµ
+

2σ

λµ

√
Cγ

2L0

NK
,

where L0 is defined in (12), θ and β are defined in Theorem
5.9, Cγ

1 , C
γ
2 are two constants defined in Appendix B.7.

Remark 5.17. Our analysis demonstrates that the
vanilla Landing method achieves a convergence rate of
O(1/

√
NK) in stochastic scenarios without compres-

sion. Furthermore, by comparing Theorem 5.14 and The-
orem 5.16, we note that the Landing method attains the
same O(1/

√
NK) rate regardless of whether communica-

tion compression is applied. This indicates that the use
of compression does not adversely affect the convergence
order.

6. Optimization on Block-wise Manifolds
Practical problems typically require variables to satisfy or-
thogonal constraints in a block-wise manner, while the re-
maining variables remain unconstrained, e.g., orthogonal
CNN with orthogonally regularized convolutional layers
and unconstrained MLP layers (Wang et al., 2020). The
optimization problem can thus be formulated as follows:

min
X1,...,XJ ;x

f(X1, . . . , XJ ;x)

s. t. X⊤
j Xj = Ipj , j = 1, . . . , J,

(13)

where Xj ∈ Rnj×pj represents a constrained variable block
on St(pj , nj), and x ∈ Rn0 contains the remaining un-
constrained variables. We define X := (X1, . . . , XJ ;x),
a composite data type, whose domain is given by R :=
(Rn1×p1 , . . . ,RnJ×pJ ;Rn0). Consequently, f is well-
defined as a mapping from R to R, with its gradient as

∇f(X) :=
( ∂f

∂X1
, . . . ,

∂f

∂XJ
;
∂f

∂x

)
∈ R.

The inner product on R is computed as

⟨X,Y⟩ :=
J∑

j=1

⟨Xj , Yj⟩+ ⟨x, y⟩, X,Y ∈ R.

The norm on R is defined as ∥X∥ :=
√
⟨X,X⟩, allowing

Definition 3.2, Assumptions 5.1, 5.3, 5.5, and 5.6 to be
properly formulated for problem (13).

By applying the Landing descent direction to each orthogo-
nally constrained block and vanilla gradient descent to the

free variable block, the descent direction of the block-wise
constrained problem (13) can be expressed as:

Λ̃(X; g) :=
(
skew(g1X

⊤
1 )X1 + λX1(X

⊤
1 X1 − Ip1

),

...

skew(gJX
⊤
J )XJ + λXJ(X

⊤
J XJ − IpJ

);

g0

)
∈ R, (14)

where g1, . . . , gJ , g0 can be ∂f/∂X1, . . . , ∂f/∂XJ ,
∂f/∂x or their compressed approximations, as indicated by
(8)–(9). Using (14), the main update step follows:

Xk+1 = Xk − γΛ̃(X; g). (15)

Therefore, it is straightforward to extend the EF-Landing
Algorithm 1 to solve the optimization problem (13) on the
block-wise Stiefel manifolds. The implementation details
are provided in Appendix C.1. Moreover, Appendix C.2
presents the convergence results of EF-Landing in stochastic
scenario with block-wise constraints.

7. Numerical Experiments
To validate the performance of EF-Landing, we provide
experiments on two groups of problems: the distributed
online PCA for deterministic scenario and deep learning us-
ing ResNet-18 (He et al., 2016) neural network architecture
with orthogonal constraints applied to the convolutional lay-
ers for stochastic scenario. We compared EF-Landing with
other algorithms for optimization on the Stiefel manifold,
including vanilla Landing, QR retraction and the Euclidean
gradient descent with added ℓ2 squared penalty norm. In ad-
dition, to ensure the sufficiency and rigor of the experiments,
we compared our approach with several other distributed
algorithms on manifolds, including decentralized training
frameworks (Chen et al., 2021) and centralized frameworks
with multiple local updates before aggregation (Zhang et al.,
2024). In all experiments, the gradient clipping bound L′

was set to a sufficiently large value, as overestimating it does
not incur any loss. All the experiments were implemented
in PyTorch and performed using a single GPU. Further ex-
periments can be found in Appendix D.

7.1. Distributed Online PCA

The distributed online PCA problem can be expressed as

min
X∈St(p,n)

f(X) := − 1

2N

N∑
i=1

∥AiX∥2F ,

where Ai ∈ Rl×n is the synthetically generated local data
matrix for node i, with l being the number of samples for
each node. We set l = 5000, n = 5000, N = 4 and

8
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Figure 2: Performance comparison of EF-Landing and other algorithms on distributed online PCA with p = 1000.

Figure 3: Performance comparison on deep learning with ResNet-18 on CIFAR-10.

p = 1000. For EF-Landing algorthm, the penalty parameter
λ was set to 1, and we used three compressors: Top-K,
Rand-K with compression retention ratio 0.1 and QSGD
with quantization level s = 16. Using different algorithms
mentioned above, we get the results as in Figure 2.

In the experiments, the training loss was computed by
f(Xk) − f(X∗), where X∗ is the matrix composed by
p right singular vectors of A =

(
A⊤

1 , · · · , A⊤
N

)⊤
, and

the violation of constraint was computed by N (X) =
1
4∥X

⊤X− Ip∥2. The result shows that EF-Landing reaches
the same training loss as the vanilla Landing algorithm and
other algorithms. Furthermore, due to communication com-
pression technique, EF-Landing significantly reduces the
communication overhead. For penalty method, the penalty
parameter was set as λ = 8. We observe that the penalty
method performs poorly on this problem, which could not
enforce the orthogonal constraint during the optimization
process (its negative part of training loss was omitted). We
provide further discussion on the choice of penalty parame-
ters in Appendix D.3.

7.2. Neural Network with Orthogonal Constraints

Another group of experiments were conducted on Resnet18.
We apply orthogonal constraints to the convolutional lay-
ers by reshaping the convolutional kernels to size nout ×
ninnxny, where nin and nout are the numbers of input and
output channels, and nx, ny are the filter dimensions (Ablin

et al., 2024). In case that the reshaped matrix becomes wide
instead of tall, we enforce orthogonality on its transpose.
Problem formulation (13) is suitable for our settings.

We tested the performance of EF-Landing on the CIFAR-10
dataset, using Top-K and Random-K compressors with a
compression retention ratio of 0.2. We compared the re-
sults of EF-Landing with vanilla Landing and QR retraction
methods in Figure 3. For each algorithm, the network is
trained for 150 epochs, and the learning rate is reduced to
0.1 of its original value after the 100th epoch.

As shown in Figure 3, EF-Landing and other algorithms
reach similar accuracy in terms of iterations, while EF-
Landing significantly reduces the communication overhead.
Additional experimental details, including the choice of
hyper-parameters such as momentum and step size, can be
found in Appendix D.

8. Conclusion
In this paper, we propose EF-Landing algorithm for solv-
ing distributed optimization problems on Stiefel manifolds,
which is both computationally and communicationally ef-
ficient. EF-Landing encompasses various scenarios with
sharp convergence guarantees and linear speedup rate. The
good compatibility with block-wise problems extends the
practicality of EF-Landing even further. Extensive numeri-
cal experiments validate our theoretical results.
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A. Details of Realizing EF-Landing
A.1. Proof of Proposition 4.1

Proof. For any g ∈ Rn×p, we have

⟨skew(gX⊤)X,λX(X⊤X − Ip)⟩ = Tr
(
X⊤skew(gX⊤)⊤ · λX(X⊤X − Ip)

)
= Tr

(
skew(gX⊤)⊤ · λX(X⊤X − Ip)X

⊤) = ⟨skew(gX⊤), λX(X⊤X − Ip)X
⊤⟩,

where skew(gX⊤) is a skew-symmetric matrix and λX(X⊤X − Ip)X
⊤ is a symmetric one. For any skew-symmetric

matrix X and symmetric matrix Y ,

⟨X,Y ⟩ = ⟨X⊤, Y ⊤⟩ = −⟨X,Y ⟩ = 0,

which leads to the conclusion.
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A.2. Example Showing the Necessity of Error Feedback

Here is a toy example illustrating the phenomenon of stagnation. Let X ∈ R2×1 and the Stiefel manifold {X ∈ R2×1 |
X⊤X = 1} is now a unit circle. We only consider distributed learning on a single node with gradient ∇f(X) = (2, 1)⊤.
Top-1 compressor will compress the gradient into C(∇f(X)) = (2, 0)⊤. If the iteration point X happens to be (1, 0)⊤,
the Riemannian gradient after compression grad(g) = skew(gX⊤)X will be 0 since C(∇f(X)) = (2, 0)⊤ happens to
be orthogonal to the tangent space of Stiefel manifold at point X = (1, 0)⊤, i.e., span{(0, 1)⊤}. The iteration point X is
on St(1, 2), so the gradient of penalty term λN (X) is also 0. Therefore, the descent direction Λ̃(X; C(∇f(X))) is 0 but
the iteration does not reach a stationary point. Furthermore, greedy compressor Top-1 will permanently output the same
compressed gradient (2, 0)⊤ as long as the iteration point does not move. This causes the iteration to stagnate.

However, when using error feedback, for the same situation, we first make a stagnant step to X ′ = X = (1, 0)⊤. But since
the error feedback technique compresses the difference of two consecutive gradients, the next gradient after compression
will be C(∇f(X))+C(∇f(X ′)−C(∇f(X))) = (2, 0)⊤+(0, 1)⊤ = (2, 1)⊤, which is no longer orthogonal to the tangent
space of X ′ on the Stiefel manifold because the direction parallel with the tangent space comes into effect. Hence, the
iteration escapes the stagnation point. Figure 4 illustrates the process.

Figure 4: Diagram for the toy example in Appendix A.2.

The heuristic reason explaining the phenomenon of stagnation is: Greedy compressors choose the directions with largest
magnitude in unconstrained Euclidean space, but these directions are not necessarily directions with largest magnitude in
feasible subspaces of the Stiefel manifold. In extreme cases, when the two sets of directions do not intersect at all and the
greedy compressors cannot give other feasible directions for the current iteration point, the iteration falls into stagnation.
Error feedback, however, tends to select directions that were discarded in the previous iteration, ensuring that the feasible
directions of the Stiefel manifold could always be selected within a few steps. Hence, error feedback technique overcomes
the phenomenon of stagnation. In fact, for any deterministic optimization problem on the Stiefel manifold, when using
greedy compressors, stagnation occurs with high probability. Thus this is a general problem that is eventually solved by
error feedback technique.

A.3. Unconstrained Deterministic Optimization with Vanilla Gradient Compression

The error feedback strategy was introduced in (Richtarik et al., 2021) mainly to eliminate the instability caused by
compression among more than one nodes at the stationary point. A straightforward idea is that when using contractive
compressors, the same issue does not exist in the single-node scenario without any extra constraint. In fact, we have the
following algorithm and its convergence result.

Algorithm 2 Unconstrained Deterministic Optimization with Vanilla Gradient Compression (Single node)

1: Input: starting point x0 ∈ Rd, learning rate γ > 0
2: for t = 0, 1, 2, . . . , T − 1 do
3: gk = C(∇f(xk))
4: xk+1 = xk − γgk

5: end for
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Theorem A.1. Suppose f : Rd → R is L-smooth and lower bounded by f∗, and the compressor C satisfies Definition 3.2,
if we choose the step size γ < 1/L, by running Algorithm 2 for K iterations, we have

1

K

K−1∑
k=0

E[∥∇f(xk)∥2] ≤ 2(f(x0)− f∗)

γαK

Proof. Using L-smoothness of f , we have

f(xk+1) ≤ f(xk) + ⟨∇f(xk), xk+1 − xk⟩+ L

2
∥xk+1 − xk∥2

= f(xk)− γ⟨∇f(xk), gk⟩+ L

2
∥xk+1 − xk∥2

= f(xk)− γ

2
∥∇f(xk)∥2 − γ

2
∥gk∥2 + γ

2
∥gk −∇f(xk)∥2 + L

2
∥xk+1 − xk∥2

= f(xk)− γ

2
∥∇f(xk)∥2 − (

1

2γ
− L

2
)∥xk+1 − xk∥2 + γ

2
∥gk −∇f(xk)∥2.

Noticing that Definition 3.2 of contractive compressor leads to

E[∥gk −∇f(xk)∥2] ≤ (1− α)∥∇f(xk)∥2,
we have

E[f(xk+1)] ≤ E[f(xk)]− γ

2
E[∥∇f(xk)∥2]− (

1

2γ
− L

2
)E[∥xk+1 − xk∥2] + γ

2
E[∥gk −∇f(xk)∥2]

≤ E[f(xk)]− γ

2
E[∥∇f(xk)∥2]− (

1

2γ
− L

2
)E[∥xk+1 − xk∥2] + γ

2
(1− α)E[∥∇f(xk)∥2]

= E[f(xk)]− γα

2
E[∥∇f(xk)∥2]− (

1

2γ
− L

2
)E[∥xk+1 − xk∥2]

If γ ≤ 1/L, we immediately have

γα

2
E[∥∇f(xk)∥2] ≤ E[f(xk)]− E[f(xk+1)]

After telescoping, we get the final result.

B. Details of Convergence Analysis
B.1. Proof of Lemma 5.7

It is important to note that points within St(p, n)ϵ have bounded singular values. The proof is straightforward and can be
referred to (Ablin et al., 2024).

Lemma B.1 (Singular Values). If X ∈ St(p, n)ϵ, we have
√
1− ϵ ≤ σ ≤

√
1 + ϵ, for any singular value σ of X .

And the proof of Lemma 5.7 is also based on (Ablin et al., 2024).

Proof. (Ablin et al., 2024) proved that for any given X ∈ St(p, n)ϵ and g ∈ Rn×p, there exists an upper bound of step size
γ∗(X; g). If step size γ(X; g) ≤ γ∗(X; g), the next iteration remains in St(p, n)ϵ. Further, if ∥skew(gX⊤)X∥F = a, the
upper-bound of step size γ∗(X; g) will not disappear but can be lower-bounded as

γ∗(X; g) ≥ min
{ λ(1− ϵ)ϵ

a2 + λ2(1 + ϵ)ϵ2
,

√
ϵ

2a2
,
1

2λ

}
.
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Let’s take one step further, if ∥g∥F ≤ L′, we have:

∥skew(gX⊤)X∥2F ≤ (1 + ϵ)∥skew(gX⊤)∥2F ≤ (1 + ϵ)∥gX⊤∥2F ≤ (1 + ϵ)2∥g∥2F ≤ (1 + ϵ)2(L′)2, (16)

where the first and the third equations are from Lemma B.1 and the second is due to the orthogonality between symmetric
and skew-symmetric matrices. Therefore, if we choose a uniform step size

γ ≤ γs := min
{ λ(1− ϵ)ϵ

(1 + ϵ)2(L′)2 + λ2(1 + ϵ)ϵ2
,

√
ϵ

2(1 + ϵ)2(L′)2
,
1

2λ

}
,

then for any given X, g, the next iteration will remain in the safe region.

B.2. Proof of Lemma 5.8

Lemma B.2 (Gradient of merit function). m(X) is the merit function defined in (11), and its gradient can be expressed as

∇m(X) = ∇f(X)− 1

2
JX(Φ)∗[X⊤X − Ip]−Xsym(X⊤∇f(X)) + µ∇N (X), (17)

where Φ(X) = sym(∇f(X)⊤X) : Rn×p → Rn×p, JX(Φ) denotes its derivative at X , and JX(Φ)∗[X⊤X − Ip] denotes
the adjoint of the Jacobian in the sense of the Frobenius inner product of Φ(X) = sym(X⊤∇f(X)) in X evaluated in
the direction X⊤X − Ip. Further, let vec(·) : Rm×n → Rmn denote the vectorization operation, and let HX ∈ Rnp×np

denote the matrix representation of the Hessian of f at X , we have

vec(JX(Φ)∗[X⊤X − Ip]) = HXvec(∇N (X)) + vec(∇f(X)(X⊤X − Ip)). (18)

The main part of proof for this lemma can be found at (Ablin et al., 2024).

Now we are ready to prove lemma 5.8.

Proof. STEP 1. We will bound all the terms from the inner product ⟨Λ̃(X; g),∇m(X)⟩ separately by considering the four
terms in (17) respectively.

The inner product between the first term of (17) and the descent direction is

⟨Λ̃(X; g),∇f(X)⟩ = ⟨skew(gX⊤)X + λX(X⊤X − Ip),∇f(X)⟩
= ⟨skew(gX⊤),∇f(X)X⊤⟩+ λ⟨X⊤X − Ip, X

⊤∇f(X)⟩
= ⟨skew(gX⊤), skew(∇f(X)X⊤)⟩+ λ⟨X⊤X − Ip, sym(X⊤∇f(X))⟩. (19)

The first inner product term can be lower bounded as

⟨skew(gX⊤), skew(∇f(X)X⊤)⟩

=
1

2
∥skew(gX⊤)∥2F +

1

2
∥skew(∇f(X)X⊤)∥2F −

1

2
∥skew((g −∇f(X))X⊤)∥2F

≥ 1

2
∥skew(gX⊤)∥2F +

1

2
∥skew(∇f(X)X⊤)∥2F −

σ2
1

2
∥g −∇f(X)∥2F , (20)

where the last inequality is due to the orthogonality between symmetric and skew-symmetric parts of one matrix, and σ1 is
the maximum singular value of X .

For the inner product between the second term of (17) and the descent direction,

⟨Λ̃(X; g),−1

2
JX(Φ)∗[X⊤X − Ip]⟩ =−

1

2
λ⟨HXvec(∇N (X)), vec(∇N (X))⟩ (21)

− 1

2
⟨HXvec(∇N (X)), vec(skew(gX⊤)X)⟩ (22)

− 1

2
⟨∇f(X)⊤skew(gX⊤)X,X⊤X − Ip⟩ (23)

− 1

2
λ⟨sym(X⊤∇f(X)), (X⊤X − Ip)

2⟩. (24)
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In the third term of the inner product, the lossy gradient estimate g has no effect:

⟨Λ̃(X; g),−Xsym(X⊤∇f(X))⟩ = ⟨skew(gX⊤)X + λ∇N (X),−Xsym(X⊤∇f(X))⟩ (25)

=− λ⟨sym(X⊤∇f(X)), X⊤X(X⊤X − Ip)⟩. (26)

The last term is also not affected by the lossy gradient estimate:

⟨Λ̃(X; g), µ∇N (X)⟩ = λµ∥∇N (X)∥2F . (27)

Adding all the four terms and applying the lower bound in the first term gives

⟨Λ̃(X; g),∇m(X)⟩ ≥ 1

2
∥skew(gX⊤)∥2F +

1

2
∥skew(∇f(X)X⊤)∥2F −

σ2
1

2
∥g −∇f(X)∥2F (28)

+ λ⟨(µInp −
1

2
HX)vec(∇N (X)), vec(∇N (X))⟩ (29)

− 3

2
λ⟨(X⊤X − Ip)

2, sym(X⊤∇f(X))⟩ (30)

− 1

2
⟨HXvec(∇N (X)), vec(skew(gX⊤)X)⟩ (31)

− 1

2
⟨∇f(X)⊤skew(gX⊤)X,X⊤X − Ip⟩, (32)

where the first line (28) comes from the lower bound (20); the second line (29) is a combination of (21) and (27); the third
line (30) comes from the second term of (19), (24) and (26); the fourth and the fifth terms are the rest terms (22) and (23).

STEP 2. we should separately bound the new five terms. Setting aside the first term, we first analyze the second term (29):

λ⟨(µInp −
1

2
HX)vec(∇N (X)), vec(∇N (X))⟩ ≥λ(µ− L

2
)∥∇N (X)∥2F

≥4λ(µ− L

2
)σ2

pN (X), (33)

where L is the Lipschitz constant of ∇f(X) over St(p, n)ϵ defined by Assumption 5.3, and σp is the minimum singular
value of X; the first inequality comes from the smoothness of f(X) and the second by the property of singular values of X .

The third term (30) can be lower bounded using Cauchy-Schwarz inequality as

−3

2
λ⟨(X⊤X − Ip)

2, sym(X⊤∇f(X))⟩ ≥ − 6λN (X)∥sym(X⊤∇f(X))∥F

≥ − 6λσ1L
′N (X), (34)

where the second inequality is again due to the orthogonality between symmetric and skew-symmetric matrices and L′ is
such that ∥∇f(X)∥F ≤ L′ for all X ∈ St(p, n)ϵ defined by 5.1.

We further use Cauchy-Schwarz inequality to bound the fourth and the fifth terms. The fourth term (31) is lower bounded as

−1

2
⟨HXvec(∇N (X)), vec(skew(gX⊤)X)⟩ ≥ − L

2
∥X(X⊤X − Ip)∥F ∥skew(gX⊤)X∥F

≥− Lσ1

√
N (X)∥skew(gX⊤)X∥F . (35)

The fifth term is lower bounded as

−1

2
⟨∇f(X)⊤skew(gX⊤)X,X⊤X − Ip⟩ ≥ −

1

2
∥∇f(X)∥F ∥skew(gX⊤)X∥F ∥X⊤X − Ip∥F

≥− L′
√
N (X)∥skew(gX⊤)X∥F . (36)
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Putting the fourth and the fifth terms together, we have

− 1

2
⟨HXvec(∇N (X)), vec(skew(gX⊤)X)⟩ − 1

2
⟨∇f(X)⊤skew(gX⊤)X,X⊤X − Ip⟩

≥ − (L′ + Lσ1)
√
N (X)∥skew(gX⊤)X∥F

≥− 1

2
(L′ + Lσ1)(bN (X) + b−1∥skew(gX⊤)X∥2F ), (37)

where in the last inequality we use the average inequality
√
xy ≤ 1

2 (x+y) with x = bN (X) and y = b−1∥skew(gX⊤)X∥2F
for an arbitrary b > 0 which will be specified later.

Now for the first term (28), by using the property of singular values of X again, we have

∥skew(gX⊤)∥F ≥ σ−1
1 ∥skew(gX⊤)X∥F , ∥skew(∇f(X)X⊤)∥F ≥ σ−1

1 ∥gradf(X)∥F . (38)

Adding all lower bounds (33), (34), (37) and (38) together, we have a total lower bound expressed as

⟨Λ̃(X; g),∇m(X)⟩ ≥ 1

2σ2
1

∥gradf(X)∥2F + ∥skew(gX⊤)X∥2F
( 1

2σ2
1

− 1

2

(L′ + Lσ1)

b

)
− σ2

1

2
∥g −∇f(X)∥2F +N (X)

(
4λ(µ− L

2
)σ2

p − 6λσ1L
′ − 1

2
(L′ + Lσ1)b

)
. (39)

Finally, we choose b so that the coefficient of ∥skew(gX⊤)X∥2F equals to 1/4, namely b =
2σ2

1(L
′+Lσ1)

2−σ2
1

, and noticing
√
1− ϵ ≤ σp ≤ σ1 ≤

√
1 + ϵ ≤

√
2, we have

⟨Λ̃(X; g),∇m(X)⟩ ≥ 1

4
∥gradf(X)∥2F +

1

4
∥skew(gX⊤)X∥2F − ∥g −∇f(X)∥2F

+ N (X)
(
4λ(µ− L

2
)σ2

p − 6λσ1L
′ − σ2

1

(L′ + Lσ1)
2

2− σ2
1

)
. (40)

Denoting L̂ = max{L′, L}, the last term of (40) can be simplified as

N (X)(4λ(µ− L

2
)σ2

p − 6λσ1L
′ − σ2

1

(L′ + Lσ1)
2

2− σ2
1

≥ N (X)(4λ(µ− L

2
)(1− ϵ)− 6λ

√
1 + ϵL′ − L̂2(1 + ϵ)

(2
√
1 + ϵ)2

2− (1− ϵ)
)

≥ N (X)(4λ(µ− L

2
)(1− ϵ)− 6λ

√
1 + ϵL′ − 4L̂2(1 + ϵ))

≥ λµN (X), (41)

where in the last inequality, we choose µ as

µ ≥ 2

3− 4ϵ

(
L(1− ϵ) + 3

√
1 + ϵL′ + 2L̂2 1 + ϵ

λ

)
, (42)

which leads to the conclusion.

B.3. Proof of Theorem 5.9

We introduce some notation for convenience.

• Auxiliary variables: momentum vector of the mastervk := 1
N

∑N
i=1 v

k
i ; random variable of the master ξk :=

(ξk1 , . . . , ξ
k
N ); stochastic gradient of the master∇F (Xk; ξk) := 1

N

∑N
i=1∇F (Xk; ξki ).

• Momentum and stochastic error: error of each node P k
i := ∥vk

i −∇fi(Xk)∥2F ; averaged error P̃ k := 1
N

∑N
i=1 ∥vk

i −
∇fi(Xk)∥2F ; error of the master P k := ∥vk −∇f(Xk)∥2F .
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• Compression error: error of each node Gk
i := ∥gk

i − vk
i ∥2F ; averaged error G̃k := 1

N

∑N
i=1 ∥gk

i − vk
i ∥2F ; error of the

master Gk := ∥gk − vk∥2F .

• Filtrations: filtration for the conditional expectation of stochastic gradient Fk
P := {ξ0, X1, ξ1, X2, . . . , ξk−1, Xk};

filtration for the conditional expectation of compressor Fk
C := {ξ0, X1, ξ1, X2, . . . , ξk−1, Xk, ξk}.

Next, for arbitrary momentum factor η, The following two lemmas provide the iterative formats of two kinds of errors.

Lemma B.3. The iteration of momentum and stochastic error satisfies

E[P k+1
i ] ≤ (1− η)E[P k

i ] + (1− η)2(1 +
1

η
)L2

iE
[
∥Xk+1 −Xk∥2F

]
+ η2σ2; (43)

E[P̃ k+1] ≤ (1− η)E[P̃ k] + (1− η)2(1 +
1

η
)L̃2E

[
∥Xk+1 −Xk∥2F

]
+ η2σ2; (44)

E[P k+1] ≤ (1− η)E[P k] + (1− η)2(1 +
1

η
)L2E

[
∥Xk+1 −Xk∥2F

]
+

η2σ2

N
. (45)

Proof. For the first inequality (43),

E[P k+1
i ] = E

[
∥vk+1

i −∇fi(Xk+1)∥2F
]

= E
[
∥(1− η)vk

i + η∇F (Xk+1; ξk+1
i )−∇fi(Xk+1)∥2F

]
= E

[∥∥(1− η)
(
vk
i −∇fi(Xk+1)

)
+ η

(
∇F (Xk+1; ξk+1

i )−∇fi(Xk+1)
)∥∥2

F

]
= E

[
Eξk+1

i

[∥∥(1− η)
(
vk
i −∇fi(Xk+1)

)
+ η

(
∇F (Xk+1; ξk+1

i )−∇fi(Xk+1)
)∥∥2

F

∣∣∣Fk+1
P

]]
≤ E

[
(1− η)2∥vk

i −∇fi(Xk+1)∥2F
]
+ η2σ2

≤ (1− η)2(1 + η)E
[
∥vk

i −∇fi(Xk)∥2F
]
+ (1− η)2(1 +

1

η
)E

[
∥∇fi(Xk+1)−∇fi(Xk)∥2F ] + η2σ2

≤ (1− η)E[P k
i ] + (1− η)2(1 +

1

η
)L2

iE
[
∥Xk+1 −Xk∥2F

]
+ η2σ2, (46)

where the second equation is by the update rule of vk+1
i , the first inequality is due to Assumption 5.6, the second inequality

is the consequence of Young’s inequality and the last is by the smoothness of each local function.

By simply summing all inequalities in terms of node from 1 to N , we get the second inequality (44). Notic-
ing that ∇F (Xk; ξk) := 1

N

∑N
i=1∇F (Xk; ξki ) and according to the independency of each entry of ξ, we have

Eξk+1

[
∥∇F (Xk+1; ξk+1)−∇f(Xk+1)∥2F

∣∣Fk+1
P

]
≤ σ2/N . Similarly, we can derive the third inequality (45).

Lemma B.4. The iteration of compression error satisfies

E[Gk+1
i ] ≤ (1− θ)E[Gk

i ] + 2βη2L2
iE

[
∥Xk+1 −Xk∥2F

]
+ 2βη2E[P k

i ] + (1− α)η2σ2; (47)

E[G̃k+1] ≤ (1− θ)E[G̃k] + 2βη2L̃2E
[
∥Xk+1 −Xk∥2F

]
+ 2βη2E[P̃ k] + (1− α)η2σ2, (48)

where θ and β are two scalars related to the contractive factor α, i.e., θ := 1−
√
1− α and β := 1−α

1−
√
1−α

.
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Proof. For the first inequality (47),

E[Gk+1
i ] = E

[
∥gk+1

i − vk+1
i ∥2F

]
= E

[
∥gk

i + cki − vk+1
i ∥2F

]
= E

[
∥(vk+1

i − gk
i )− C(vk+1

i − gk
i )∥2F

]
= E

[
EC

[
∥(vk+1

i − gk
i )− C(vk+1

i − gk
i )∥2F

∣∣Fk+1
C

]]
≤ (1− α)E

[
∥vk+1

i − gk
i ∥2F

]
= (1− α)E

[
∥(1− η)vk

i + η∇F (Xk+1; ξk+1
i )− gk

i ∥2F
]

= (1− α)E
[∥∥vk

i − gk
i + η

(
∇fi(Xk+1)− vk

i

)
+ η

(
∇F (Xk+1; ξk+1

i )−∇f(Xk+1
)∥∥2

F

]
= (1− α)E

[
Eξk+1

i

[∥∥vk
i − gk

i + η
(
∇fi(Xk+1)− vk

i

)
+ η

(
∇F (Xk+1; ξk+1

i )−∇f(Xk+1
)∥∥2

F

∣∣∣Fk+1
P

]]
≤ (1− α)E

[∥∥vk
i − gk

i + η
(
∇fi(Xk+1)− vk

i

)∥∥2
F

]
+ (1− α)η2σ2

≤ (1− α)(1 + ρ)E
[
∥gk

i − vk
i ∥2F

]
+ (1− α)(1 +

1

ρ
)η2E

[
∥∇fi(Xk+1)− vk

i ∥2F
]
+ (1− α)η2σ2, (49)

where the first inequality is due the property of contractive compressors (Definition 3.2), the second inequality is by the
bounded variance (Assumption 5.6) and the third is the consequence of Young’s inequality with parameter ρ. We should
choose a proper ρ satisfying (1− α)(1 + ρ) < 1 and (1− α)(1 + 1/ρ) < +∞. (Richtarik et al., 2021) provided a to some
degree optimal choice ρ = 1√

1−α
−1. Denoting 1− θ = (1−α)(1+ρ) =

√
1− α, and β = (1−α)(1+1/ρ) = 1−α

1−
√
1−α

,
we have

E[Gk+1
i ] ≤ (1− θ)E

[
∥gk

i − vk
i ∥2F

]
+ βη2E

[
∥∇fi(Xk+1)− vk

i ∥2F
]
+ (1− α)η2σ2

≤ (1− θ)E
[
∥gk

i − vk
i ∥2F

]
+ 2βη2E[∥∇fi(Xk+1)−∇fi(Xk)∥2F

]
+ 2βη2E

[
∥∇fi(Xk)− vk

i ∥2F
]
+ (1− α)η2σ2

≤ (1− θ)E[Gk
i ] + 2βη2L2

iE
[
∥Xk+1 −Xk∥2F

]
+ 2βη2E[P k

i ] + (1− α)η2σ2. (50)

The second inequality (48) follows the same process as lemma B.3. Lacking the unbiasedness assumption of the compressor,
we have no similar inequality for master, which is fortunately unnecessary.

Another lemma helps us split ∥Xk+1 −Xk∥2F term to two orthogonal component used for convergence analysis.

Lemma B.5.

∥Xk+1 −Xk∥2F = γ2∥Λ̃(Xk; g̃k)∥2F ≤ γ2
(∥∥skew(g̃k(Xk)⊤

)∥∥2
F
+ 4λ2(1 + ϵ)N (Xk)

)
(51)

Proof. This lemma can be easily proved by the orthogonality between two terms of Λ̃(Xk; g̃k) and the sigular values bound
of Xk (Lemma B.1).

Now we are able to prove the main theorem.

Proof. STEP 1. Dividing different Errors. Using smoothness of m(Xk) mentioned in Section 3.1 and Lemma 5.8, we
have:

m(Xk+1) ≤m(Xk) + ⟨∇m(Xk), Xk+1 −Xk⟩+ Lm

2
∥Xk+1 −Xk∥2F

=m(Xk)− γ⟨∇m(Xk), Λ̃(Xk; g̃k)⟩+ Lmγ2

2
∥Λ̃(Xk; g̃k)∥2F

≤m(Xk)− γ

4
∥gradf(Xk)∥2F −

γ

4

∥∥skew(g̃k(Xk)⊤
)
Xk

∥∥2
F
+ γ∥g̃k −∇f(Xk)∥2F

− γλµN (Xk) +
Lmγ2

2
∥Λ̃(Xk; g̃k)∥2F . (52)
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Denote S :=
{
X ∈ Rn×p

∣∣∥X∥F ≤ L
}

, then we have g̃k = projS(g
k), and∇f(Xk) = projS(∇f(Xk)). Therefore, using

the property of projections,

∥g̃k −∇f(Xk)∥2F ≤ ∥gk −∇f(Xk)∥2F (53)

Next, we need to separete the momentum and stochastic error as well as compression error. We first introduce an inequality
∥gk−∇f(Xk)∥2F ≤ c1∥gk−vk∥2F + c2∥vk−∇f(Xk)∥2F , where two undetermined constants are specified in three cases:

• When the momentum rate η = 1 and the variance of gradients σ2 = 0, the momentum and stochastic error will be 0, so
c1, c2 are specified as c1 = 1, c2 = 0, which is trivial.

• When the contractive factor α = 1, the compression error will be 0, so c1, c2 are specified as c1 = 0, c2 = 1, which is
trivial too.

• Otherwise, we specify c1 = c2 = 2, which is the consequence of mean value inequality.

Therefore,

∥gk −∇f(Xk)∥2F ≤ c1∥gk − vk∥2F + c2∥vk −∇f(Xk)∥2F

≤ c1
N

N∑
i=1

∥gk
i − vk

i ∥2F + c2∥vk −∇f(Xk)∥2F = c1G̃
k + c2P

k, (54)

where the second inequality is due to Jensen’s inequality.

For convenience, we denote Sk = ∥skew(g̃k(Xk)⊤)Xk∥2F , whose influence will be eliminated later by choosing a proper
step size. Substituting (54) into (52) after using (53) , we have:

m(Xk+1) ≤m(Xk)− γ

4
∥gradf(Xk)∥2F −

γ

4
Sk + γc1G̃

k + γc2P
k − γλµN (Xk) +

Lmγ2

2
∥Λ̃(Xk; g̃k)∥2F (55)

STEP 2. Constructing Lyapunov Function. Adding c1γ
θ Gk+1 to both sides of 55, taking expectation and using lemma

B.4, we have:

E[m(Xk+1)] +
c1γ

θ
E[G̃k+1]

≤ E[m(Xk)]− γ

4
E[∥gradf(Xk)∥2F ]−

γ

4
E[Sk]

+
c1γ

θ

(
E[G̃k] + 2βη2L̃2E[∥Xk+1 −Xk∥2F ] + 2βη2E[P̃ k] + (1− α)η2σ2

)
+ c2γE[P k]− γλµE[N (Xk)] +

Lmγ2

2
E[∥Λ̃(Xk; g̃k)∥2F ]

= E[m(Xk)] +
c1γ

θ
E[G̃k]

− γ

4
E[∥gradf(Xk)∥2F ]−

γ

4
E[Sk]− γλµE[N (Xk)]

+
(2c1γ3η2βL̃2

θ
+

Lmγ2

2

)
E[∥Λ̃(Xk; g̃k)∥2F ]

+
2c1γη

2β

θ
E[P̃ k] + c2γE[P k] +

c1γη
2(1− α)σ2

θ
. (56)

Further adding 2c1γηβ
θ P̃ k+1, c2γ

η P k+1 to both sides, subtracting lower bound m∗ by Assumption 5.5, and using lemma B.3,
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we have the following collated inequality

E[m(Xk+1)]−m∗ +
c1γ

θ
E[G̃k+1] +

2c1γηβ

θ
E[P̃ k+1] +

c2γ

η
E[P k+1]

≤ E[m(Xk)]−m∗ +
c1γ

θ
E[G̃k] +

2c1γηβ

θ
E[P̃ k] +

c2γ

η
E[P k]

− γ

4
E[∥gradf(Xk)∥2F ]−

γ

4
E[Sk]− γλµE[N (Xk)]

+
(2c1βL̃2

θ
(1− η + η3)γ3 +

c2L
2

η2
(1− η)2(1 + η)γ3 +

Lmγ2

2

)
E[∥Λ̃(Xk; g̃k)∥2F ]

+
c1γη

2(1− α)σ2

θ
+

2c1γη
3βσ2

θ
+

c2γησ
2

N
, (57)

which corresponds to the Lyapunov function we defined as (12).

STEP 3. Choosing Step Size. Next, we split ∥Λ̃(Xk; g̃k)∥2F using lemma B.5, which splits E[∥Λ̃(Xk; g̃k)∥2F ] into E[Sk]
and E[N (Xk)]. To eliminate the influence of Sk and to make the coefficient beforeN (Xk) negative enough, we are looking
for a sufficiently small step size to make the coefficients before E[Sk] and E[N (Xk)] satisfy

−γ

4
+

2c1βL̃
2

θ
(1− η + η3)γ3 +

c2L
2

η2
(1− η)2(1 + η)γ3 +

Lmγ2

2
≤ 0 (58)

and

−γλµ+ 4λ2(1 + ϵ)
(2c1βL̃2

θ
(1− η + η3)γ3 +

c2L
2

η2
(1− η)2(1 + η)γ3 +

Lmγ2

2

)
≤ −γλµ

2
. (59)

It’s reducible to a quadratic inequality problem. suppose a, b > 0, if we choose 0 ≤ x ≤ (
√
a + b)−1, the inequality

ax2 + bx ≤ 1 holds. So it’s enough to choose step size γ as

γ = min{γs, γ1, γ2},

where γs is the uniform safe step size defined by Lemma 5.7, and γ1, γ2 are defined as

γ1 :=
(
2
√
a+ 2Lm

)−1

γ2 :=

(
2

√
2λ2(1 + ϵ)a

µ
+

4λ2(1 + ϵ)Lm

µ

)−1

,

where

a =
2c1βL̃

2

θ
(1− η + η3) +

c2L
2

η2
(1− η)2(1 + η).

With a small enough step size γ, we have

E[Lk+1] ≤ E[Lk]− γ

4
E[∥gradf(Xk)∥2F ]−

γλµ

2
E[N (Xk)] +

c1γη
2(1− α)σ2

θ
+

2c1γη
3βσ2

θ
+

c2γησ
2

N
(60)

STEP 4. Summing Up. Summing up all inequalities from k = 0 to K − 1 and dividing by K, we have

1

4K

K−1∑
k=0

E[∥gradf(Xk)∥2F ] +
λµ

2K

K−1∑
k=0

E[N (Xk)] ≤ L
0

γK
+

c1η
2(1− α)σ2

θ
+

2c1η
3βσ2

θ
+

c2ησ
2

N
, (61)
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B.4. Details of Theorem 5.11 and Corollary 5.12

1. Theorem 5.11. When σ = 0, η = 1, c1 = 1 and c2 = 0, the momentum and stochastic error P̃ k = 0, so the Lyapunov
function defined in (12) can be simplified as

Lk = m(Xk)−m∗ +
γ

θ
G̃k. (62)

According to the rule of choosing step size in Appendix B.3, the step size should be chosen as

γ = min{γs, γ1, γ2},

where γs is the uniform safe step size defined by Lemma 5.7, and γ1, γ2 are defined as

γ1 :=
(
2
√
a+ 2Lm

)−1

γ2 :=

(
2

√
2λ2(1 + ϵ)a

µ
+

4λ2(1 + ϵ)Lm

µ

)−1

,

where

a =
2βL̃2

θ
.

2. Theorem 5.12. When α = 1, the compression error G̃k will be 0, so the Lyapunov function can be further simplified as
Lk = m(Xk)−m∗. And the choice of the step size can also be simplified as

γ = min

{
γs,

1

2Lm
,

µ

4λ2(1 + ϵ)Lm

}
.

B.5. An adequate Selection of Step Size with momentum

Before deriving conclusions about convergence with momentum, we give a lemma about the step size. This lemma gives an
adequate but not necessary choice for step size, for the convenience of analyzing the influence of momentum.

Lemma B.6 (An adequate Selection of Step Size with momentum). For the step size defined in Theorem 5.9,

fix momentum rate η ∈ (0, 1). If we further choose γ = min{γs, 1
6L̃

√
θ

2c1β
, η
6L

√
2c2

, 1
6Lm

, 1
12L̃

√
µθ

c1λ2(1+ϵ)β ,
η

12L

√
µ

c2λ2(1+ϵ) ,
µ

12λ2(1+ϵ)Lm
}, then the step size satisfies γ ≤ min{γs, γ1, γ2} defined in Theorem 5.9.

Proof. The rule of choosing step size in Appendix B.3 is

γ = min{γs, γ1, γ2},

where γs is the uniform safe step size defined by Lemma 5.7, and γ1, γ2 are defined as

γ1 :=
(
2
√
a+ 2Lm

)−1

γ2 :=

(
2

√
2λ2(1 + ϵ)a

µ
+

4λ2(1 + ϵ)Lm

µ

)−1

,

where

a =
2c1βL̃

2

θ
(1− η + η3) +

c2L
2

η2
(1− η)2(1 + η).

We can bound
√
a as

√
a =

√
2c1βL̃2

θ
(1− η + η3) +

c2L2

η2
(1− η)2(1 + η) ≤

√
2c1βL̃2

θ
+

2c2L2

η2
≤ L̃

√
2c1β

θ
+

L

η

√
2c2, (63)
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where the last inequality is due to
√
x+ y ≤

√
x+
√
y, x, y ≥ 0.

Therefore,

γ1 = (2
√
a+ 2Lm)−1 ≥

(
2L̃

√
2c1β

θ
+ 2

L

η

√
2c2 + 2Lm

)−1

. (64)

For (x + y + z)−1, x, y, z > 0, if we denote M = max{x, y, z}, then 1
M = min{ 1x ,

1
y ,

1
z}. So (x + y + z)−1 ≥ 1

3M =

1
3 min{ 1x ,

1
y ,

1
z}. Hence, if we choose γ ≤ min{ 1

6L̃

√
θ

2c1β
, η
6L

√
2c2

, 1
6Lm
}, then it satisfies γ ≤ γ1.

The same reasoning leads to

γ2 =
(
2

√
2λ2(1 + ϵ)a

µ
+

4λ2(1 + ϵ)Lm

µ

)−1

≥
(
4L̃

√
c1λ2(1 + ϵ)β

µθ
+ 4

L

η

√
c2λ2(1 + ϵ)

µ
+

4λ2(1 + ϵ)Lm

µ

)−1

.

(65)

Choosing γ ≤ min{ 1
12L̃

√
µθ

c1λ2(1+ϵ)β ,
η

12L

√
µ

c2λ2(1+ϵ) ,
µ

12λ2(1+ϵ)Lm
} satisfies γ ≤ γ2. And the conclusion follows.

B.6. Proof of Theorem 5.14

Proof. When c1 = c2 = 2, the Lyapunov function is

Lk = m(Xk)−m∗ +
2γ

θ
G̃k +

4γηβ

θ
P̃ k +

2γ

η
P k. (66)

Choosing step size γ as Lemma B.6 and setting c1 = c2 = 2 leads to

1

γ
≤

( 1

γs
+ 6Lm +

12λ2(1 + ϵ)Lm

µ
+ 12L̃

√
β

θ
+ 12L̃

√
2λ2(1 + ϵ)β

µθ

)
+
(
12L+ 12L

√
2λ2(1 + ϵ)

µ

)
· 1
η
. (67)

We denote Cγ
1 = 1

γs
+6Lm+ 12λ2(1+ϵ)Lm

µ +12L̃
√

β
θ +12L̃

√
2λ2(1+ϵ)β

µθ and Cγ
2 = 12L+12L

√
2λ2(1+ϵ)

µ for convenience.
Using Theorem 5.9, we have

1

4K

K−1∑
k=1

E[∥gradf(Xk)∥2F ] +
λµ

2K

K−1∑
k=1
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1L0

K
+

Cγ
2L0

ηK
+

2η2(1− α)σ2

θ
+

4η3βσ2

θ
+

2ησ2

N
. (68)

We choose η = min{(C
γ
2 NL0

2σ2K )1/2, (
θCγ

2 L0

2(1−α)σ2K )1/3, (
θCγ

2 L0

4βσ2K )1/4}, so that Cγ
2 L0

ηK ≥ 2ησ2

N , Cγ
2 L0

ηK ≥ 2η2(1−α)σ2

θ and Cγ
2 L0

ηK ≥
4η3βσ2

θ , and at least one inequality takes equal. Hence, (68) can be bounded as

1
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K
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N
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θ
+

4η3βσ2
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)
≤ Cγ

1L0

K
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(2σ2Cγ
2L0
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) 1
2

+ 4
(2σ2(1− α)

θ

) 1
3
(Cγ

2L0

K

) 2
3

+ 4
(4βσ2

θ

) 1
4
(Cγ

2L0

K

) 3
4

, (69)

which leads to the conclusion.
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B.7. Proof of Theorem 5.16

Proof. When c1 = 0, c2 = 1, the Lyapunov function can be simplified as

Lk = m(Xk)−m∗ +
γ

η
P k. (70)

And Theorem 5.9 leads to

1

4K

K−1∑
k=1

E[∥gradf(Xk)∥2F ] +
λµ

2K

K−1∑
k=1

E[N (Xk)] ≤ L
0

γK
+

ησ2

N
. (71)

Choosing step size γ as Lemma B.6 and setting c1 = 0, c2 = 1 leads to

1

γ
≤

( 1

γs
+ 6Lm +

12λ2(1 + ϵ)Lm

µ

)
+
(
6
√
2L+ 12L

√
λ2(1 + ϵ)

µ

)
· 1
η
. (72)

We denote Cγ
1 = 1

γs
+ 6Lm + 12λ2(1+ϵ)Lm

µ and Cγ
2 = 6

√
2L+ 12L

√
λ2(1+ϵ)

µ for convenience, and (71) leads to

1

4K

K−1∑
k=1

E[∥gradf(Xk)∥2F ] +
λµ

2K

K−1∑
k=1

E[N (Xk)] ≤ Cγ
1L0

K
+

Cγ
2L0

ηK
+

ησ2

N
. (73)

Choosing η =

√
Cγ

2 NL0

σ2K leads to the conclusion.

C. Details of Optimization on Block-wise Manifolds
In this section, we provide a block-wise version of EF-Landing algorithm. And we further prove the convergence result for
stochastic scenarios with compression. Other Scenarios can be deduced similarly.

C.1. Algorithm for Block-wise Problems

Algorithm 3 Block-wise EF-Landing

Require: starting point X0 ∈ R; gradient bound L′; step size γ > 0; compressor C; momentum η ∈ (0, 1];

1: Each node initializes v0i = ∇F (X0; ξ0i ), g
0
i = C(v0i ) for i = 1, . . . , N ; Master initializes g0 = 1

N

∑N
i=1 g

0
i .

2: for k = 0, 1, . . . ,K − 1 do
3: Master clips the gradient g̃k = min{1, L′/∥gk∥}gk;
4: Master computes Λ̃(Xk; g̃k) using (14);
5: Master computes Xk+1 = Xk − γΛ̃(Xk; g̃k) and broadcasts Xk+1 to all nodes.
6: for all nodes i = 1, . . . , N in parallel do
7: Compute momentum vk+1

i = (1− η)vkk + η∇F (Xk+1; ξk+1
i );

8: Compress cki via cki = C(vk+1
i − gki ) and send it to the master;

9: Update local state gk+1
i via gk+1

i = gki + cki .
10: end for
11: Master updates gk+1 via gk+1 = gk + 1

N

∑N
i=1 c

k
i .

12: end for
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C.2. Convergence Results of EF-Landing in Stochastic Scenarios for Block-wise Constraints

Theorem C.1 (Block-wise EF-Landing Convergence in Stochastic Scenarios). Consider the problem (13) with block-wise
constraints (13). Letting Assumptions 5.1, 5.3, 5.5 and 5.6 hold, if compressor C satisfies Definition 3.2 (all in the sense of
composite data type in R ), if we choose step size γ as in Lemma B.6, by running Algorithm 1 for K iterations, we have

1

K

K−1∑
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J∑
j=1

E[∥gradjf(Xk
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,

where O( 1√
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) is specified as
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=
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,

when choosing η = min{(C
γ
2 NL0

2σ2K )1/2, (
θCγ

2 L0

2(1−α)σ2K )1/3, ( θC
γ
2 L0

4βσ2K )1/4}. L0 is defined in (12), θ and β are defined in

Theorem 5.9, Cγ
1 , C

γ
2 are two constants defined as Cγ

1 = 1
γs

+ 6Lm + 12λ2(1+ϵ)Lm

µ + 12L̃
√

β
θ + 12L̃

√
2λ2(1+ϵ)β

µθ and
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2 = 12L+ 12L

√
2λ2(1+ϵ)

µ .

Proof. We choose the merit function as:

m(X) = f(X)−
J∑

j=1

hj(Xj) +

J∑
j=1

µNj(Xj), (74)

where hj(Xj) =
1

2

〈
sym

(
X⊤

j

∂f

∂Xj

)
, X⊤

j Xj − Ipj

〉
and µ is a hyper-parameter specified later.

Noticing that partial functions like hj(Xj) satisfies ∂hj

∂Xk
= 0, ∀j ̸= k, we have

⟨Λ̃(X; g),∇m(X)⟩ =
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⊤
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⊤
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∂f

∂Xj
−∇hj(Xj) +∇µNj(Xj)

〉
+

〈
g0,

∂f

∂x

〉
.

Noticing that for all j = 1, . . . , J , ∂f
∂Xj

is L-Lipschitz smooth as long as ∇f(X) is L-Lipschitz smooth, and ∂f
∂Xj

is
L′-bounded as long as∇f(X) is L′-bounded, using Lemma 5.8 with the same choice of µ, we have

⟨Λ̃(X; g),∇m(X)⟩ ≥ 1

4

J∑
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∥∥∥skew( ∂f

∂Xj
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∂Xj
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, (75)

where for ⟨g0,
∂f
∂x ⟩ we use ⟨a, b⟩ = 1

2∥a∥
2
2 +

1
2∥b∥

2
2 − 1

2∥a− b∥22 ≥ 1
2∥a∥

2
2 +

1
2∥b∥

2
2 − ∥a− b∥22. The inequality is for the

sake of ∥g−∇f(X)∥2 =
∑J

j=1 ∥gj −
∂f
∂Xj
∥2F + ∥g0 −

∂f
∂x∥

2
2. Hence, using smoothness of m(Xk) and the merit function
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bound (75), we have

m(Xk+1) ≤m(Xk) + ⟨m(Xk),Xk+1 − Xk⟩+ Lm

2
∥Xk+1 − Xk∥2

=m(Xk)− γ⟨∇m(Xk), Λ̃(Xk; g̃k⟩+ Lmγ2

2
∥Λ̃(Xk; g̃k)∥2

≤m(Xk)− γ

4

J∑
j=1

∥gradjf(Xk
j )∥2F −

γ

4

J∑
j=1

∥skew
(
g̃k
j (X

k
j )

⊤)Xk
j ∥2F − γλµ

J∑
j=1

Nj(X
k
j )

+
Lmγ2

2
∥Λ̃(Xk; g̃k)∥2 − γ

2
∥g̃k

0∥22 −
γ

2

∥∥∥ ∂f

∂xk

∥∥∥2
2
+ γ∥g̃k −∇f(Xk)∥2 (76)

Denote Sk =
∑J

j=1 ∥skew(g̃
k
j (X

k
j )

⊤)Xk
j ∥2F , following the same process as the proof of Theorem 5.9, we have
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Noticing that ∥Λ̃(Xk; g̃k)∥2 ≤
∑J

j=1 ∥skew(g̃j(X
k
j )

⊤)Xk
j ∥2F + 4λ2(1 + ϵ)

∑J
j=1Nj(X

k
j ) + ∥g̃0∥22, if we choose γ ≤ γ1

defined in Theorem 5.9, the following inequality also holds, so that the influence of ∥g̃0∥22 can be eliminated.
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2
≤ 0. (78)

Hence, we do not need any additional restriction for γ apart from γs, γ1, γ2 in Theorem 5.9. With the step size above, we
have

E[Lk+1] ≤ E[Lk]− γ
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Summing up all inequalities from k = 0 to K − 1 and dividing by K, we have
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Follow the same process of proof of Theorem 5.14, we achieve the final result.

27



Distributed Retraction-Free and Communication-Efficient Optimization on the Stiefel Manifold

D. Further Numerical Experiments
D.1. Online PCA

D.1.1. DATASETS

In the experiment, the matrix A ∈ RN×n is synthetically generated, where N = 20, 000 represents the number of samples,
each of dimension n = 5000. The columns of A are independently sampled from the normal distributionN (0, UUT +σIn),
with σ = 0.1, and U ∈ Rn×p is sampled from the Stiefel manifold using the uniform Haar distribution.

D.1.2. HYPERPARAMETERS

We conducted the experiment in deterministic scenarios and distributed the data across 4 nodes. The EF-Landing algorithm
was tested for different values of p (100, 200, 500, and 1000). The results were compared with the QR retraction method,
Euclidean gradient descent with ℓ2 regularization (referred to as the Penalty method), and the Landing algorithm. The
compression methods used included Top-K, Random-K and QSGD. For the Top-K and Random-K compression, the
compression rate was set to 0.1, and for QSGD, the quantization level s was set to 8 for p = 100 and p = 200, and 16 for
p = 500 and p = 1000. The experiment involved 600 iterations for all algorithms with a fixed learning rate, except for the
QSGD algorithm when p = 1000, where a learning rate decay was applied during the iterations.

Method/Hyperparameter γ Clipping λ compress rate /s

EF-Landing-Top-K 1.0 108 0.5 0.1
EF-Landing-Random-K 1.0 108 0.5 0.1

EF-Landing-QSGD 1.0 (0.01 after 100 steps) 108 0.5 8
Landing 1.0 108 0.5 –

Retraction 1.0 – 0.5 –
Penalty method 1.0 – 8.0 –

Table 2: Hyperparameters of p = 100

Method/Hyperparameter γ Clipping λ compress rate /s

EF-Landing-Top-K 1.0 108 0.5 0.1
EF-Landing-Random-K 1.0 108 0.5 0.1

EF-Landing-QSGD 1.0 (0.01 after 100 steps) 108 0.5 8
Landing 1.0 108 0.5 –

Retraction 1.0 – 0.5 –
Penalty method 1.0 – 8.0 –

Table 3: Hyperparameters of p = 200

Method/Hyperparameter γ Clipping λ compress rate /s

EF-Landing-Top-K 1.0 (0.01 after 100 steps) 108 0.5 0.1
EF-Landing-Random-K 1.0 108 0.5 0.1

EF-Landing-QSGD 1.0 (0.1 after 50 steps) 108 0.5 16
Landing 1.0 108 0.5 –

Retraction 1.0 – 0.5 –
Penalty method 1.0 – 8.0 –

Table 4: Hyperparameters of p = 500
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Method/Hyperparameter γ Clipping λ compress rate /s

EF-Landing-Top-K 1.0 108 0.5 0.1
EF-Landing-Random-K 1.0 108 0.5 0.1

EF-Landing-QSGD 1.0 (0.1 after 100 steps) 108 0.5 16
Landing 1.0 108 0.5 –

Retraction 1.0 – 0.5 –
Penalty method 1.0 – 8.0 –

Table 5: Hyperparameters of p = 1000

D.1.3. EXPERIMENT RESULTS

Figure 5: Performance of EF-Landing and other algorithms on online PCA, with p = 100

The corresponding experimental results for parameter p taking values of 100, 200, and 500 are shown in Figures 5, 6,
and 7, respectively. We can observe that, regardless of the compression algorithm, EF-Landing consistently reduces the
communication volume by at least half while still converging to the optimal value of the function and ensuring that the norm
of Riemannian gradient approaches 0. Additionally, compared to the Landing algorithm, the EF-Landing algorithm requires
less communication to satisfy the constraints on the variable X , specifically ensuring that N (X) is sufficiently small, as
demonstrated in Figures 6 and 7.

Figure 6: Performance of EF-Landing and other algorithms on online PCA, with p = 200
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Figure 7: Performance of EF-Landing and other algorithms on online PCA, with p = 500

Compared to the QR retraction method, EF-Landing reduces a significant amount of computational effort by eliminating the
need for QR decomposition, making the algorithm more efficient. On the other hand, the Penalty method is highly sensitive
to the choice of λ. If λ is too small, the parameters may fail to satisfy the constraint, as shown in Figures 2 and 5 to 7. If
λ is too large, the Riemannian gradient may fail to converge to zero and can lead to numerical instability. Although the
Landing method can more accurately satisfy the orthogonality constraints, it requires several times more communication.
By contrast, the EF-Landing algorithm remains highly efficient.

D.2. Neural Networks with Orthogonality Constraints

We also tested the performance of the EF-Landing algorithm on neural network models with orthogonal constraints applied
to the convolutional layers. Orthogonal constraints are playing an increasingly important role in deep learning. For example,
they can ensure the stability of gradient magnitudes during training (Arjovsky et al., 2016; Saxe et al., 2014), preventing
issues like gradient explosion or vanishing. Furthermore, there has been growing attention on how to design orthogonal
convolutions (Singla & Feizi, 2021; Boissin et al., 2025; Yu et al., 2022).

D.2.1. DATASETS

The MNIST dataset only has a citation requirement (LeCun et al., 2010). It includes 28 × 28 grayscale images of handwritten
digits from 0 to 9, containing 60,000 training data samples and 10,000 test data samples.

The CIFAR-10 dataset, which consists of 32 × 32 color images depicting 10 distinct categories of real-world objects, is
comprised of 50,000 training samples and 10,000 testing samples. It requires citation (Krizhevsky et al., 2009) for usage.

We applied some basic data augmentation techniques to these datasets during the training stage. For CIFAR-10, we applied
random cropping, random horizontal flipping and random gray scale.

We conducted experiments on VGG16 and ResNet-18, comparing the performance of the EF-Landing algorithm with
the Landing and QR retraction algorithms. Specifically, we applied orthogonal constraints to the convolutional layers by
reshaping the convolutional kernels to the size nout × ninnxny , where nin and nout represent the number of input and output
channels, respectively, and nx and ny are the filter dimensions (Ablin et al., 2024). In cases where the reshaped matrix
becomes wide instead of tall, we enforce orthogonality on its transpose.It is worth noting that the Block-wise Constraints
formulation in (13) better suits this problem, as we impose constraints on each individual convolutional layer rather than on
the entire neural network parameters X .

D.2.2. VGG16 ON MNIST

In this experiment, we use the built-in VGG16 model from PyTorch and initialize the convolutional layers using QR
decomposition to enforce orthogonal constraints. To match the model architecture, we added a convolutional layer to the
VGG16 model. This convolutional layer has an output channel size of 3 and a padding of 3. Consequently, we adjusted the
shape of the data to 32× 32. The compression methods applied are Top-K and Rand-K, with a compression ratio of 0.2.
The training data is uniformly distributed across 4 nodes. The initial learning rate γ is determined via grid search over the
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Method/Hyperparameter γ η Clipping λ compress rate

EF-Landing-Top-K 0.1 0.1 108 1.0 0.2
EF-Landing-Random-K 0.1 0.5 108 1.0 0.2

Landing 0.1 – – 1.0 –
Retraction 0.1 – – 1.0 –

Table 6: Hyperparameters: VGG16 on MNIST

set {0.001, 0.01, 0.1, 1.0}, and is decayed by a factor of 1/10 every 10 epochs. Similarly, the step size η is selected from
{0.1, 0.5, 0.7} via grid search. We use a batch size of 128 and train the model for a total of 30 epochs.

Figure 8: Performance of EF-Landing and other algorithms on deep learning with VGG16 on MNIST.

Figure 8 demonstrates that the EF-Landing algorithm achieves convergence of the training loss function and test accuracy to
a steady state with less communication volume, and the accuracy on the test set stabilizes around 99%. In addition, the
EF-Landing algorithm outperforms the Landing algorithm in satisfying the orthogonality constraint under this experiment,
which also highlights the advantage of the EF-Landing algorithm to some extent.
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Method/Hyperparameter γ η Clipping λ compress rate

EF-Landing-Top-K 0.1 0.5 108 1.0 0.2
EF-Landing-Random-K 0.1 0.1 108 1.0 0.2

Landing 0.1 – – 1.0 –
Retraction 0.1 – – 1.0 –

Table 7: Hyperparameters: VGG16 on CIFAR-10

D.2.3. VGG16 AND RESNET-18 ON CIFAR-10

Additionally, we tested the performance of EF-Landing on the CIFAR-10 dataset in a 4-node setting, using the Top-K and
Rand-K compressors with a compression ratio of 0.2. We compared the results with the Landing and QR retraction methods.
In the experiment, each algorithm was trained for 150 epochs, and after the 100th epoch, the learning rate was reduced to 1

10
of its original value, with λ set to 1.0.

Figure 9: Performance of EF-Landing and other algorithms on deep learning with VGG16 on CIFAR-10.

As shown in Figures 3 and 9, in terms of satisfying the constraint conditions, the EF-Landing algorithm not only reduces
N (X) with less communication overhead compared to the Landing algorithm, but also satisfies the constraints more
accurately. Furthermore, in terms of computational cost, the EF-Landing algorithm offers a clear advantage over the QR
retraction method, being free of QR decomposition calculations.
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Method/Hyperparameter γ η Clipping λ compress rate

EF-Landing-Top-K 0.1 0.5 108 1.0 0.2
EF-Landing-Random-K 0.1 0.5 108 1.0 0.2

Landing 0.1 – – 1.0 –
Retraction 0.1 – – 1.0 –

Table 8: Hyperparameters: ResNet-18 on CIFAR-10

D.3. Comparison with the Penalty method

This section mainly compares the performance of the EF-Landing algorithm and the Penalty method.

D.3.1. PCA PROBLEM

The data generation process for the Online PCA problem follows the description provided in Appendix D.1.1. The step
size γ is selected via grid search over the set {0.001, 0.01, 0.1, 1.0}. As shown in Figures 10 to 13, compared with
the EF-Landing-based algorithm, the Penalty method is highly sensitive to the choice of the penalty parameter λ. When
λ is set too small, the orthogonality constraint cannot be effectively enforced. On the other hand, choosing a larger λ
may introduce numerical instability, necessitating a smaller step size and consequently slowing down convergence. In
contrast, the EF-Landing-based algorithm can satisfy the orthogonality constraint with a relatively small λ, leading to faster
convergence, and consistently achieves a smaller Riemannian gradient norm.

Figure 10: Comparison with Penalty Method: p = 100

Method/Hyperparameter γ Clipping λ compress rate /s

EF-Landing-Top-K 1.0 108 0.5 0.1
EF-Landing-Random-K 1.0 108 0.5 0.1

Penalty method 0.01 – 10.0 –
Penalty method 0.001 – 1000.0 –

Table 9: Hyperparameters: Comparison with Penalty Method p = 100
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Figure 11: Comparison with Penalty Method: p = 200

Method/Hyperparameter γ Clipping λ compress rate /s

EF-Landing-Top-K 1.0 108 0.5 0.1
EF-Landing-Random-K 1.0 108 0.5 0.1

Penalty method 0.01 – 10.0 –
Penalty method 0.001 – 1000.0 –

Table 10: Hyperparameters: Comparison with Penalty Method p = 200

Figure 12: Comparison with Penalty Method: p = 500

Method/Hyperparameter γ Clipping λ compress rate /s

EF-Landing-Top-K 1.0 108 0.5 0.1
EF-Landing-Random-K 1.0 108 0.5 0.1

Penalty method 0.01 – 10.0 –
Penalty method 0.001 – 1000.0 –

Table 11: Hyperparameters: Comparison with Penalty Method p = 500
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Figure 13: Comparison with Penalty Method: p = 1000

Method/Hyperparameter γ Clipping λ compress rate /s

EF-Landing-Top-K 1.0 108 0.5 0.1
EF-Landing-Random-K 1.0 108 0.5 0.1

Penalty method 0.01 – 10.0 –
Penalty method 0.001 – 1000.0 –

Table 12: Hyperparameters: Comparison with Penalty Method p = 1000

D.3.2. NEURAL NETWORK

We compare the Penalty method and the EF-Landing-based algorithm on the CIFAR-10 dataset using VGG16 and ResNet-18
neural network architectures. A grid search was conducted over γ ∈ {0.001, 0.01, 0.1, 1.0} and η ∈ {0.1, 0.5, 0.7} to
determine the optimal hyperparameters. Each algorithm was trained for 150 epochs, and after the 100th epoch, γ was
reduced to 1

10 of its original value. A batch size of 128 was used throughout the training process.

From the experimental results (Figures 14,15), we observe that the EF-Landing-based algorithm achieves higher accuracy
while significantly reducing communication costs, and it satisfies the orthogonality constraint more precisely. In contrast,
the Penalty method performs poorly. When using a relatively small penalty coefficient, such as λ = 10, it can achieve
relatively high accuracy, but fails to satisfy the constraint as precisely as the EF-Landing-based algorithm. On the other
hand, increasing the penalty to λ = 1000 improves constraint satisfaction but leads to a significant drop in accuracy.

Method/Hyperparameter γ η Clipping λ compress rate

EF-Landing-Top-K 0.1 0.5 108 1.0 0.2
EF-Landing-Random-K 0.1 0.1 108 1.0 0.2

Penalty method 0.01 – – 10.0 –
Penalty method 0.001 – – 1000.0 –

Table 13: Hyperparameters: EF-Landing Algorithm and Penalty Method: VGG16 on CIFAR-10

Method/Hyperparameter γ η Clipping λ compress rate

EF-Landing-Top-K 0.1 0.5 108 1.0 0.2
EF-Landing-Random-K 0.1 0.5 108 1.0 0.2

Penalty method 0.01 – – 10.0 –
Penalty method 0.001 – – 1000.0 –

Table 14: Hyperparameters: EF-Landing Algorithm and Penalty Method: ResNet-18 on CIFAR-10
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Figure 14: Comparison of EF-Landing Algorithm and Penalty Method: VGG16 on CIFAR-10

Figure 15: Comparison of EF-Landing Algorithm and Penalty Method: ResNet-18 on CIFAR-10
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D.4. Comparison with Decentralized Setting

We performed online PCA experiments using synthetic datasets, each comprising 1000 data points per node with n = 100
and p = 5, following a data generation process which is detailed in Appendix D.1.1.

For the Decentralized distributed experiment, we chose the DRSGD and DRGTA algorithms from (Chen et al., 2021) as
baselines. In the experiment, we set the number of nodes to 20, the communication rounds t to 1, and selected a ring
topology with the Metropolis constant matrix associated with the graph. Under a ring topology communication structure,
each node interacts solely with its two immediate neighbors. When the number of nodes is set to 20, this configuration is
approximately equivalent to the centralized setting with a compression rate of 0.1. For DRGTA, we set β̂ to 0.05, while for
the DRSGD algorithm, we set β̂ to 0.01.

For the EF-Landing algorithm, we set λ = 1.0, the learning rate γ = 0.2, and the compress rate to 0.1.It is worth noting that
the metric used to evaluate the satisfaction of the manifold constraint follows the approach proposed in this paper, which is
based on the canonical correlations (Golub & Zha, 1995) between Xk and X∗.

Figure 16: Comparison of EF-Landing Algorithm and Decentralized Algorithm On Synthetic Dataset 1

Figure 17: Comparison of EF-Landing Algorithm and Decentralized Algorithm On Synthetic Dataset 2

Figures 16 and 17 demonstrate that the EF-Landing-based algorithm achieves faster convergence compared to DRGTA and
DRSGD, while also exhibiting superior constraint satisfaction performance.

D.5. Comparison with Centralized Multi-Local-Update Setting

Using the algorithm proposed in (Zhang et al., 2024) as a benchmark, we conducted experiments on the Online PCA
problem using synthetic datasets. The number of nodes was set to 4, with a total sample size of N = 800, n = 20 or
n = 200, and p = 5.

For Algorithm 1 proposed in (Zhang et al., 2024), we set the parameters as τ = 5, 10, η = 0.001, and ηg = 1.0, where τ
represents the number of local update rounds, η denotes the learning rate for local updates, and ηg represents the learning
rate at the center.
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For the EF-Landing algorithm, we set λ = 1.0, the learning rate γ = 0.2, and the compress rate to 0.1.

Figures 18 and 19 demonstrate that the EF-Landing-based algorithm exhibits superior performance in terms of constraint
violation and achieves comparable convergence speed to the benchmark.

Figure 18: Comparison of EF-Landing Algorithm and Algorithm 1 in [Zhang et al. 2024],synthetic dataset n = 20

Figure 19: Comparison of EF-Landing Algorithm and Algorithm 1 in [Zhang et al. 2024],synthetic dataset n = 200
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