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ABSTRACT

Watermark has been widely deployed by industry to detect AI-generated images.
The robustness of such watermark-based detector against evasion attacks in the
white-box and black-box settings is well understood in the literature. However,
the robustness in the no-box setting is much less understood. In this work, we
propose a new transfer evasion attack to image watermark in the no-box setting.
Our transfer attack adds a perturbation to a watermarked image to evade multiple
surrogate watermarking models trained by the attacker itself, and the perturbed
watermarked image also evades the target watermarking model. Our major con-
tribution is to show that, both theoretically and empirically, watermark-based AI-
generated image detector based on existing watermarking methods is not robust
to evasion attacks even if the attacker does not have access to the watermarking
model nor the detection API.

1 INTRODUCTION

Generative AI (GenAI) can create highly realistic images, raising concerns about online information
authenticity. Watermarking (Bi et al., 2007; Zhu et al., 2018; Tancik et al., 2020; Zhang et al.,
2020; Al-Haj, 2007; Abdelnabi & Fritz, 2021; Kirchenbauer et al., 2023) was highlighted as a key
technology for distinguishing AI-generated content in the White House’s October 2023 Executive
Order on AI security. In this approach, a watermark is embedded in AI-generated images, which can
be decoded to verify the image’s origin. Watermarking is widely used, with examples like Google’s
SynthID for Imagen (Saharia et al., 2022), OpenAI’s watermark for DALL-E (Ramesh et al., 2021),
and Stable Diffusion’s user-enabled watermarking (Rombach, 2022).

An attacker can use evasion attacks (Jiang et al., 2023; Zhao et al., 2023; Saberi et al., 2024; Lukas
et al., 2024) to remove a watermark from an image and evade detection. This involves adding a per-
turbation so that the watermark-based detector falsely identifies the image as non-AI-generated. The
robustness of such detectors against evasion attacks has been studied in both white-box (the attacker
has access to the watermarking model) and black-box (the attacker can query the detection API) set-
tings (Jiang et al., 2023). In white-box attacks, small perturbations evade detection while preserving
image quality, while in black-box attacks, perturbations are found by querying the detection API
multiple times.

However, robustness of watermark-based detection in the no-box setting (the attacker even lacks
access to the detection API) is less understood. In this setting, attackers may use common post-
processing (e.g., JPEG compression) or transfer attacks (Jiang et al., 2023; An et al., 2024). Transfer
attacks involve perturbing a watermarked image using surrogate models, which can be classifier-
based or watermark-based. Classifier-based attacks treat the detector as a binary classifier and
apply adversarial examples (Liu et al., 2017; Chen et al., 2024), while watermark-based attacks
train a surrogate watermarking model for white-box attacks (Jiang et al., 2023). Both methods have
limited success against advanced watermarking, leading to a misleading conclusion in prior studies
that watermarking is robust in the no-box setting.

Our work: In this work, we propose a new watermark-based transfer attack in the no-box setting to
evade AI-generated image detection. Unlike classifier-based attacks (An et al., 2024), our approach
directly uses surrogate watermarking models, making it more suited to watermark-based detection.
Unlike previous watermark-based attacks (Jiang et al., 2023), we employ multiple surrogate models
instead of one. Specifically, an attacker trains multiple surrogate watermarking models with different
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Figure 1: Watermarked images generated by Stable Diffusion (first row) and their perturbed versions
in our transfer attack that successfully evade detection (second row). The target watermarking model
uses ResNet architecture. Our transfer attack uses 100 surrogate watermarking models, each of
which uses CNN architecture.

architectures and watermark lengths on a surrogate dataset, which may differ in distribution from
the one used for the target watermarking model.

A key challenge for our attack is aggregating multiple surrogate watermarking models to find a small
perturbation that evades the target watermarking model. We show that simple aggregation methods
achieve suboptimal attack effectiveness. To address this, we propose a two-step approach. First,
the attacker selects a target watermark for each surrogate model to guide the perturbation search,
aiming to make each model decode this target watermark from the perturbed image. For instance,
one method flips each bit of the watermark decoded by a surrogate model and uses this as the target.
If multiple surrogate models decode flipped watermarks, the target model is likely to do the same,
thus evading detection.

In the second step, we generate a perturbation by aggregating multiple surrogate watermarking mod-
els. A simple approach is to apply a white-box attack (Jiang et al., 2023) on each model and its target
watermark, then average the resulting perturbations. However, this method performs poorly, as ag-
gregation compromises the perturbation patterns. To overcome this, we ensemble the models and
formulate an optimization problem that finds a minimum perturbation while ensuring each surrogate
model decodes its target watermark. Since this problem is hard to solve, we introduce strategies to
reformulate and approximate a solution.

We theoretically analyze the transferability of our attack. First, we quantify the correlation between
the target and surrogate watermarking models. Using this correlation, we derive the probability that
the target model’s decoded watermark is flipped after adding our perturbation. From this, we further
derive upper and lower bounds for the probability that the decoded watermark matches the ground
truth. These bounds quantify the transferability of our attack.

We empirically evaluate our transfer attack on image datasets from Stable Diffusion and Midjourney,
using multiple watermarking methods (Zhu et al., 2018; Tancik et al., 2020; Fernandez et al., 2023;
Jiang et al., 2024). Our attack, using dozens of surrogate models, successfully evades watermark de-
tectors while maintaining image quality (see examples in Figure 1). This holds even when surrogate
models differ from the target in algorithms, architectures, watermark lengths, and training datasets.
Our attack also outperforms common post-processing, existing transfer attacks (Jiang et al., 2023;
An et al., 2024), and the state-of-the-art purification method (Nie et al., 2022), showing that existing
image watermarks are broken even in the no-box setting. We note that the effectiveness of our attack
to a completely new target watermarking method is unclear, which we discuss in Section 7.

To summarize, our contributions are as follows:

• We propose a transfer attack based on multiple surrogate watermarking models to
watermark-based AI-generated image detector.

• We theoretically analyze the effectiveness of our attack.

• We empirically evaluate our attack and compare it with existing ones in different scenarios.
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2 RELATED WORK

2.1 IMAGE WATERMARKS

Three components: An image watermarking method consists of three components: a watermark (a
bitstring), an encoder that embeds it into an image, and a decoder that extracts it. In non-learning-
based methods (Al-Haj, 2007; Bi et al., 2007; Pereira & Pun, 2000; Kang et al., 2010; Pramila
et al., 2018), used for decades, the encoder and decoder are handcrafted but lack robustness to post-
processing like JPEG compression or Gaussian noise (Jiang et al., 2023) (as confirmed in Section 7).
In contrast, learning-based methods (Zhu et al., 2018; Zhang et al., 2020; Tancik et al., 2020) use
deep learning, with both the encoder and decoder trained end-to-end. The encoder combines water-
mark and image features to generate a watermarked image, while the decoder retrieves the water-
mark. Joint training minimizes visual differences while ensuring accurate decoding. Learning-based
methods, strengthened by adversarial training (Zhu et al., 2018), offer greater robustness, so we fo-
cus on them.

Adversarial training: Adversarial training (Madry et al., 2018; Goodfellow et al., 2014) is a
standard method to train robust classifiers and has been extended to train robust watermarking mod-
els (Zhu et al., 2018). The key idea is to add a post-processing layer between the watermark encoder
and decoder. The post-processing layer aims to mimic post-processing that a watermarked image
may undergo. Specifically, the post-processing layer post-processes a watermarked image before
sending it to the decoder. After jointly training the encoder and decoder using adversarial training,
the decoder can still decode the watermark in a watermarked image even if it undergoes some post-
processing. Thus, we use adversarial training in our experiments to train encoders and decoders.

2.2 EVASION ATTACKS

White-box: Jiang et al. (2023) proposed a white-box attack which assumes the attacker has access
to the target watermark decoder. Given the target watermark decoder and a watermarked image,
an attacker finds a small perturbation such that the watermark decoded from the perturbed image
is close to a random watermark. In other words, the perturbation removes the watermark from the
watermarked image and thus the perturbed image evades watermark-based detection. Specifically,
the attacker finds the perturbation by solving an optimization problem via gradient descent.

Black-box: In black-box setting, an attacker has access to the API of a watermark-based detector,
which detects images as AI-generated (watermarked) or non-AI-generated (non-watermarked). A
black-box attack (Jiang et al., 2023; Lukas et al., 2024) uses the API to modify a watermarked image
to remove its watermark. Starting with an initially perturbed image detected as non-AI-generated,
the attacker gradually reduces the perturbation by repeatedly querying the API. With enough queries,
the attacker can find a minimally perturbed image that evades detection.

No-box: In this setting, an attacker even has no access to the detection API. In such setting, com-
mon post-processing or transfer attacks can be used to remove watermarks. Specifically, common
post-processing refers to image editing methods such as JPEG compression and Gaussian noise. Wa-
termarks embedded by non-learning-based methods can be removed by common post-processing,
but learning-based methods are more robust due to adversarial training (Zhu et al., 2018).

Existing transfer attacks rely on a single surrogate model (Jiang et al., 2023) or conventional
classifier-based adversarial examples (An et al., 2024), but achieve limited success against learning-
based watermarks (Jiang et al., 2023; An et al., 2024), even if we leverage state-of-the-art multiple
surrogate classifiers based transfer adversarial examples (Chen et al., 2024). Note that compared to
the existing watermark-based transfer attack (Jiang et al., 2023) that leverages only one surrogate
watermarking model, our transfer attack leverages multiple surrogate watermarking models. One
technical contribution of our work is to develop methods to aggregate multiple surrogate water-
marking models when perturbing a watermarked image. Another technical contribution is that we
theoretically analyze the effectiveness of watermark-based transfer attacks.
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3 PROBLEM FORMULATION

3.1 WATERMARK-BASED DETECTION

A GenAI service provider trains a watermark encoder (target encoder) and decoder (target decoder,
denoted T ) for AI-generated image detection. A watermark w is embedded into each image during
generation and decoded from an image x using T (x). The bitwise accuracy BA(w1, w2) measures
the proportion of identical bits between two watermarks w1 and w2. Detection determines if an
image is AI-generated based on the bitwise accuracy BA(T (x), w) between the decoded watermark
and the ground-truth watermark. Specifically, x is flagged as AI-generated if BA(T (x), w) exceeds
a threshold τ or falls below 1− τ . τ is set to ensure the false detection rate does not exceed a small
value η (Jiang et al., 2023) (e.g., for a 30-bit watermark and η = 10−4, τ ≈ 0.83).

The above is known as a double-tail detector (Jiang et al., 2023). In a single-tail detector, an image
is detected as AI-generated if BA(T (x), w) > τ . The double-tail detector is more robust; if a
perturbed watermarked image evades the double-tail detector, it will evade the single-tail detector as
well, but not vice versa. Thus, we focus on the double-tail detector in this work.

3.2 THREAT MODEL

Attacker’s goal: Suppose an attacker uses a GenAI service to produce a watermarked image xw.
The attacker’s goal is to introduce a minimal perturbation δ to the watermarked image xw, aiming
to evade watermark-based detection while preserving image quality. Consequently, the attacker
can engage in illicit activities using this image, such as boosting disinformation and propaganda
campaigns as well as claiming ownership of the image.

Attacker’s knowledge: A GenAI service provider’s watermark-based detector includes a target
encoder, decoder, ground-truth watermark w, and a detection threshold τ . In a no-box setting, the
attacker has no access to any of these components, nor the architecture of the encoder/decoder, the
length of w, or the dataset used for training. This threat model applies when the GenAI service
keeps its detector private and limits API access to trusted customers.

Attacker’s capability: We assume an attacker can add a perturbation to an AI-generated, water-
marked image. Furthermore, we assume that the attacker has sufficient computational resources to
train multiple surrogate watermarking models, where each surrogate watermarking model includes
a surrogate encoder and a surrogate decoder.

4 OUR TRANSFER ATTACK

4.1 OVERVIEW

We propose a transfer attack to evade watermark-based AI image detection by training multiple
surrogate watermarking models. These models, trained independently on a different dataset than the
target model, are used to generate perturbations for watermarked images. For a given image xw,
we generate a perturbation δ such that the watermark decoded by each surrogate model for xw + δ
differs significantly from the original watermark. The intuition is that if multiple surrogate decoders
produce different watermarks, the target decoder will likely do the same, evading detection. The
same surrogate decoders are used for all images. Next, we detail the training of surrogate models
and perturbation generation.

4.2 TRAIN SURROGATE WATERMARKING MODELS

Transfer attacks require surrogate watermarking models to generate perturbations for watermarked
images. A key challenge is ensuring diversity among these models to improve transferability. The
attacker collects a surrogate dataset, potentially with a different distribution from the target model’s
dataset, and uses bootstrapping (Efron & Tibshirani, 1994) to promote diversity. Specifically, m
subsets are resampled from the dataset, each used to train one of the m surrogate models. Addition-
ally, the attacker can vary neural network architectures and watermark lengths across the models.
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4.3 FORMULATE AN OPTIMIZATION PROBLEM

To evade watermark-based detection, we generate a perturbation δ for a given watermarked image
xw based on the m surrogate decoders since the detection process only involves decoders. Specifi-
cally, our goal is to add a perturbation δ to the watermarked image xw such that, for each surrogate
decoder, the decoded watermark from the perturbed image xw + δ matches an attacker-chosen wa-
termark, which we call target watermark. Our transfer attack faces two key challenges: 1) how to
select a target watermark for a surrogate decoder, and 2) how to generate a perturbation δ based on
the m target watermarks and surrogate decoders. We discuss how to address the two challenges in
the following.

Select a target watermark for a surrogate decoder: We use wt
i to denote the target watermark

for the ith surrogate decoder, where i = 1, 2, · · · ,m. We consider the following three approaches
to select wt

i .

Random-Different (RD). This method involves randomly generating different target watermarks
for the m surrogate decoders. For the ith surrogate decoder, each bit of wt

i is sampled from {0, 1}
uniformly at random. The intuition of this method is that, if the m surrogate decoders decode random
watermarks from the perturbed image, then the target decoder is also likely to decode a random
watermark from the perturbed image. As a result, the bitwise accuracy between the watermark
T (xw + δ) decoded by the target decoder for the perturbed image and the ground-truth watermark
w is expected to approach 0.5, thereby evading detection.

Random-Same (RS). This method randomly generates one random target watermark wt for all m
surrogate decoders, i.e., wt

i = wt,∀i = 1, 2, · · · ,m. The intuition is that it is more likely to find
a perturbation δ such that the m surrogate decoders decode the same target watermark from the
perturbed image, and thus it is more likely for the target decoder to decode wt from the perturbed
image. Since wt is picked uniformly at random, the bitwise accuracy between wt and w is expected
to approach 0.5 and detection is evaded.

Inverse-Decode (ID). Generating random watermarks for surrogate decoders poses a challenge, as
about 50% bits must be flipped during perturbation optimization, given that each bit of the target
watermark is uniformly sampled from {0, 1}. Some bits may be resistant to pixel changes, requiring
large perturbations.

To address this, we propose using the inverse of the watermark decoded by each surrogate decoder
as the target watermark. Let Si denote the ith surrogate decoder, which decodes a watermark from a
watermarked image xw, denoted as Si(xw). We use the inverse, 1−Si(xw), as the target watermark
wt

i for Si. The intuition is that if the surrogate-decoded watermark is reversed, the target decoder’s
output T (xw + δ) will likely also be close to the inverse of T (xw), making the bitwise accuracy
between T (xw + δ) and w very small. We note that such bitwise accuracy may be even smaller than
1−τ , which means that the double-tail detector can still detect the perturbed image as AI-generated,
watermarked image. We mitigate this issue using early stopping, as discussed in Section 4.4.

With the inverse watermark as target watermark, it may result in those bits that are less robust to pixel
changes being flipped first during perturbation optimization process, which can lead to a smaller
perturbation compared to random target watermark when the same portion of bits are flipped, as
shown in our experiments.

Aggregate m surrogate decoders: Given a target watermark wt
i for the ith surrogate decoder, the

attacker then finds a perturbation δ for the watermarked image xw by aggregating the m surrogate
decoders. We consider two ways to aggregate the m surrogate decoders.

Post-Aggregate (PA). A simple approach is to apply an existing white-box attack to find a pertur-
bation δi for each surrogate decoder. For example, given a watermarked image xw, the ith surrogate
decoder Si, and target watermark wt

i , the attacker can use the white-box attack (Jiang et al., 2023) to
obtain δi. This yields m perturbations {δi}mi=1, which are then aggregated into a final perturbation
δ using a method like mean or median. However, aggregation can disrupt effective patterns in the
individual perturbations, limiting transferability to the target decoder, as shown in our experiments.

Ensemble-Optimization (EO). To address the challenge of PA, EO considers the m surrogate de-
coders when optimizing the perturbation δ. Specifically, EO aims to find a minimum perturbation
such that the watermark Si(xw + δ) decoded by each surrogate decoder for the perturbed image

5
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xw + δ is the same as its corresponding target watermark wt
i . Formally, we formulate an optimiza-

tion problem as follows:

min
δ
∥δ∥∞ s.t. Si(xw + δ) = wt

i ,∀i = 1, 2, · · · ,m (1)

EO finds a single perturbation δ that makes all m surrogate decoders produce their respective target
watermarks for the perturbed image xw+δ. This unified perturbation improves transferability to the
target decoder, as demonstrated in our experiments. We use the ℓ∞-norm to measure perturbation
size, but our method adapts to other metrics like ℓ2 or SSIM, as shown in our results.

4.4 SOLVE THE OPTIMIZATION PROBLEM

Solving the optimization problem in Equation 1 gets the perturbation δ for the watermarked image
xw. However, since the constraints of the optimization problem are extremely strict, it is difficult to
solve the optimization problem. To address this challenge, we relax the constraints and reformulate
the optimization problem as follows:

min
δ
∥δ∥∞ s.t. l(Si(xw + δ), wt

i) < ϵ′,∀i = 1, 2, · · · ,m, (2)

where l(·, ·) denotes a metric to measure the distance between two watermarks. For instance, l(·, ·) is
the mean square error in our experiments. The reformulated optimization problem is still challenging
to solve due to the high non-linearity of the relaxed constraints. To address this challenge, we further
reformulate the optimization problem as follows:

min
δ

1

m

m∑︂
i=1

l(Si(xw + δ), wt
i)

s.t. ∥δ∥∞ < r,

1

m

m∑︂
i=1

BA(Si(xw + δ), wt
i) > 1− ϵ,

(3)

where r is a perturbation budget and ϵ (called sensitivity) is used to ensure that the bitwise accu-
racy between the watermark decoded by each surrogate decoder for the perturbed image and the
corresponding target watermark is high enough to produce an effective perturbation.

We use projected gradient descent (PGD) (Madry et al., 2018) to solve the optimization problem in
Equation 3. To control the strength of our transfer attack, we apply the second constraint as an early
stopping condition. Algorithm 1 (Appendix) outlines the procedure for finding the perturbation δ.
The algorithm initializes δ to zero, computes gradients of the objective in Equation 3, and updates δ
using gradient descent. If the ℓ∞-norm of δ exceeds r, it is projected back onto the ℓ∞-norm ball.
The algorithm stops when a set iteration limit or bitwise accuracy threshold is reached.

5 THEORETICAL ANALYSIS

Given the watermarks decoded by the m surrogate decoders for the perturbed image, we derive
both an upper bound and a lower bound for the probability that the watermark decoded by the
target decoder for the perturbed image matches with the ground-truth watermark, which quantify
the transferability of our transfer attack. Specifically, we derive the following theorem. Other details
are shown in Appendix B.
Theorem 1. For any watermarked image xw, perturbation δ satisfying the constraints in Equation 3,
and watermarks decoded by m surrogate decoders for the perturbed image, the probability that the
jth bit of the watermark decoded by T matches the ground-truth watermark w is bounded as follows:

Pr(T (xw + δ)j = wj | S1(xw + δ)j , · · · , Sm(xw + δ)j) ≥
{︃
max(βj − pj , 0), 1 ≤ j ≤ n,

0, n < j ≤ nt.

P r(T (xw + δ)j = wj | S1(xw + δ)j , · · · , Sm(xw + δ)j) ≤
{︃
1− |pj + βj − 1|, 1 ≤ j ≤ n,

1, n < j ≤ nt.
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(a) 20 bits
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(b) 30 bits

0 20 40 60 80 100
# of Surrogate Models

0.0

0.2

0.4

0.6

0.8

1.0

E
va

si
on

R
at

e

Stable Diffusion

Midjourney

(c) 64 bits
Figure 2: Evasion rate of our transfer attack when the target model uses CNN (first row) or ResNet
(second row) architecture and different watermark lengths (the three columns). The surrogate models
use CNN architecture and watermark length of 30 bits.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETUP

Datasets: In our experiments, we utilize three publicly available datasets (Wang et al., 2023; Turc
& Nemade, 2022; Images, 2023) generated by Stable Diffusion, Midjourney, and DALL-E 2. The
first two datasets are used to train and test the target watermarking models, while the last dataset is
used to train the surrogate watermarking model. Each training set contains 10,000 images, and each
testing set contains 1,000 images. The details of the datasets are introduced in Appendix H.

Surrogate watermarking models and watermark lengths: Unless otherwise mentioned, we use
HiDDeN (Zhu et al., 2018) and its CNN architecture with a 30-bit watermark length to train sur-
rogate watermarking models. This consistent setup serves two purposes: 1) it helps clearly assess
our attack’s transferability when the target and surrogate models have different architectures or wa-
termark lengths, and 2) it allows for better analysis of how the number of surrogate models affects
transferability, without the confounding factors of varying architectures or watermark lengths.

Target watermarking models and watermark lengths: For the target watermarking model, we
use different choices of watermarking methods, architectures, and watermark lengths to analyze the
transferability of our transfer attack in different scenarios. Specifically, we consider HiDDeN (Zhu
et al., 2018), StegaStamp (Tancik et al., 2020), Stable Signature (Fernandez et al., 2023), Smoothed
HiDDeN (Jiang et al., 2024), and Smoothed StegaStamp (Jiang et al., 2024) to train target water-
marking models. The detailed settings of each watermarking method are shown in Appendix I.

Common post-processing methods: We consider 4 common post-processing methods. They
are JPEG, Gaussian noise, Gaussian blur, and Brightness/Contrast. Details are introduced in Ap-
pendix J.

Transfer attacks: In our experiments, we compare with 5 existing transfer attacks and 1 state-
of-the-art purification method for adversarial examples. They are WEvade-B-S (Jiang et al., 2023),
AdvEmb-RN18 (An et al., 2024), AdvCls-Real&WM (An et al., 2024), AdvCls-Enc-WM1&WM2,
MI-CWA (Chen et al., 2024), and DiffPure (Nie et al., 2022). Details are introduced in Appendix K.

Evaluation metrics: We use two metrics: evasion rate and average perturbation. Evasion rate is
the proportion of perturbed images that evade the target watermark detector. Average perturbation,
measured by the ℓ∞-norm, is averaged across 1,000 watermarked images in the test set. Following
Jiang et al. (2023), with pixel values normalized from [0, 255] to [-1, 1], we divide the perturbation
by 2 to express it as a fraction of the full pixel range.

Parameter settings: We use adversarial training to train watermarking models since it enhances
robustness. The detailed settings of parameters are shown in Appendix L

7
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Figure 3: Average perturbation of our transfer attack when the target model uses CNN (first row) or
ResNet (second row) architecture and different watermark lengths (the three columns). The surro-
gate models use CNN architecture and watermark length of 30 bits.
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Figure 4: Comparing the average perturbations of our transfer attack and common post-processing
methods when they achieve the same evasion rate. The target model uses ResNet architecture and
different watermark lengths (the three columns). Dataset is Stable Diffusion. Results for Midjourney
are shown in Figure 7 in Appendix.

6.2 EXPERIMENTAL RESULTS

Our transfer attack is successful: Figure 2 and Figure 3 show the evasion rate and average pertur-
bation of our attack, across different numbers of surrogate models, target model architectures, and
watermark lengths. First, our attack successfully evades watermark-based detection, achieving an
evasion rate over 85% with an average perturbation below 0.25 when using 100 surrogate models,
regardless of target architecture or watermark length. Second, more complex target architectures
require more surrogate models and higher perturbation. For example, 40 surrogate models and per-
turbation of 0.09 achieve 100% evasion for a CNN with 30-bit watermarks, while 60 models and
0.14 perturbation are needed for a ResNet. Third, longer/shorter watermarks also increase the at-
tack’s complexity. For a ResNet with 30-bit watermarks, 40 surrogate models and perturbation of
0.08 yield 85% evasion, while 100 models and 0.15 perturbation are needed for 64-bit watermarks.

Our transfer attack outperforms common post-processing: Figure 4 compares the average per-
turbations of common post-processing methods and our transfer attack when they achieve the same
evasion rates for different target models. For each evasion rate achieved by our transfer attack, we
adjust the parameters of the post-processing methods to match it. We find that our attack intro-
duces much smaller perturbations than post-processing methods for the same evasion rate. Note
that Brightness/Contrast only reaches up to 75% or 50% evasion for some models, so its curves are
shorter in the graphs. For a broader comparison, Figures 8 and 9 in Appendix show results using
ℓ2-norm and SSIM. Our attack consistently introduces smaller perturbations and maintains better
visual quality than common post-processing, regardless of the metric used.

Our transfer attack outperforms existing ones: Figure 5a compares the evasion rates of existing
methods and our transfer attack when the target model is ResNet with varying watermark lengths.
Since AdvCls-Real&Wm and AdvCls-Enc-WM1&WM2 achieve average perturbations around 0.1
regardless of the budget r, we introduce a variant of our method with r = 0.1 for comparison. For
fairness, we constrain MI-CWA and DiffPure to an average SSIM of 0.9, similar to our attack with
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(c) ℓ∞-norm perturbation
Figure 5: (a) Comparing evasion rates of existing and our transfer attacks. The target model is
ResNet and uses watermarks with different lengths. Dataset is Stable Diffusion. Similar results
for Midjourney are shown in Figure 10 in Appendix. (b) Evasion rates and (c) average ℓ∞-norm
perturbation of our transfer attacks to different target watermarking methods.

100 surrogate models. Other attacks have r set to 0.25. We also report the evasion rate for each
method across a wide range of SSIM constraints in Figure 11 in Appendix.

Our transfer attack significantly outperforms existing methods, which mostly achieve 0% evasion,
except AdvCls-Enc-WM1&WM2, which reaches 10% on Stable Diffusion with 20-30 bit water-
marks but requires access to the target encoder. MI-CWA and DiffPure show low evasion rates due
to the limitations of classifier-based attacks and heavy image modification for watermark removal.
In contrast, our transfer attack achieves much higher evasion rates while maintaining high image
quality, with an average SSIM above 0.97 for r = 0.1 and above 0.92 for r = 0.25.

Our transfer attack transfers to other target watermarking methods: Figures 5b and 5c show
the evasion rates and average ℓ∞-norm perturbations of our transfer attack across different target wa-
termarking methods. To improve transferability, we use equal numbers of HiDDeN and StegaStamp
as surrogate models. Our attack remains effective even when surrogate and target methods dif-
fer, achieving over 77% evasion across all five target methods with 100 surrogate models. Despite
Smoothed HiDDeN and Smoothed StegaStamp being certifiably robust, they are still vulnerable
to our attack. While evasion rates are slightly lower for Smoothed HiDDeN with 20 models and
Smoothed StegaStamp with over 60 models, we still exceed 77% evasion with up to 100 models, as
our perturbations exceed their certified bounds while preserving image quality.

Impact of sensitivity ϵ: Figures 12a and 12b in Appendix show the evasion rate and average
ℓ∞-norm perturbation for different sensitivity values (ϵ) in our transfer attack on Stable Diffusion,
with a CNN target model using 30-bit watermarks. Figures 13a and 13b in Appendix show results
for ℓ2-norm and SSIM. We observe that fewer surrogate models are needed for the same evasion
rate when ϵ is smaller. However, with very small ϵ (e.g., 0.1), the evasion rate first increases but
then decreases as more surrogate models are used, due to reduced bitwise accuracy in watermark
decoding. Across different ϵ values, the average perturbation (whether measured by ℓ∞-norm, ℓ2-
norm, or SSIM) remains nearly constant for a given evasion rate, reflecting the strong correlation
between perturbation size and evasion success.

Different variants of our transfer attack: Our attack has two steps, each with multiple design
options. In the first step, we use RD, RS, or ID; in the second step, PA or EO is used. Variants
are denoted by combining these symbols, e.g., RD-PA. When PA is used, “Mean” or “Median”
indicates the aggregation rule, such as RD-PA-Mean. Figures 12c and 12d in Appendix show evasion
rates and ℓ∞-norm perturbations for different variants on Stable Diffusion, with a CNN using 30-
bit watermarks. Figures 13c and 13d in Appendix show ℓ2-norm and SSIM results. EO-based
variants successfully evade detection, while PA-based variants do not, showing EO is more effective
for surrogate decoder aggregation. Among EO variants, ID-EO outperforms RD-EO and RS-EO,
achieving 100% evasion with fewer surrogate models, lower perturbations, and higher SSIM.

Theoretical vs. empirical results: Figures 6a and 6b show the empirical bitwise accuracy between
the watermark decoded by the target decoder and the ground truth, along with our theoretical upper
and lower bounds on the Stable Diffusion dataset. To estimate these bounds, we measured unper-
turbed similarity, transfer similarity, and attack strength using 1,000 test images. Using Theorem 1,
we computed the probability for each bit pj , then averaged the bounds across all bits. We observe
that the empirical results generally fall within our theoretical bounds, with a few exceptions due to
the use of only 1,000 images for estimation, leading to minor inaccuracies.
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Figure 6: Comparing empirical bitwise accuracy and theoretical bounds of our transfer attack when
the target model is (a) CNN and (b) ResNet. (c) Comparing evasion rates of non-learning-based
watermarking models and HiDDeN under Gaussian noise with varying standard deviations.

7 DISCUSSION AND LIMITATIONS

Non-learning-based watermarking: We focus on transfer attacks against learning-based water-
marking models because they are more robust than non-learning-based ones. For example, common
post-processing like Gaussian noise can easily remove watermarks from non-learning-based mod-
els, but learning-based models resist such attacks (Jiang et al., 2023). Figure 6c presents the evasion
rates of Tree-Ring (Wen et al., 2024), RingID (Ci et al., 2025), Gaussian Shading (Yang et al., 2024),
and HiDDeN with ResNet under Gaussian noise. For the standard deviation larger than 0.1, the
non-learning-based methods exhibit significantly higher evasion rates, whereas the learning-based
method maintains an evasion rate close to zero. These results underscore the superior robustness of
learning-based watermarking methods compared to the non-learning-based ones.

Our attack can also be applied to non-learning-based methods. Figure 15 in the Appendix shows
that our attack achieves high evasion rates when the target watermarking method is DWT-DCT (Al-
Haj, 2007) while the surrogate models are trained under our default experimental settings. Unlike
learning-based methods, DWT-DCT is a non-learning-based watermarking method used by Stable
Diffusion. It employs the Discrete Wavelet Transform (DWT) to decompose an image into frequency
sub-bands, applies the Discrete Cosine Transform (DCT) to blocks within selected sub-bands, and
embeds the watermark by modifying specific frequency coefficients. The watermarked image is then
reconstructed using inverse transforms. The result shows that our attack requires more surrogate
models compared to learning-based methods. This is because non-learning-based watermarking
method is substantially different from learning-based, and our attack needs more surrogate models
to increase diversity to enhance transferability.

We acknowledge that the victim may design a new watermarking method entirely different from
those used by the attacker as surrogates, and the effectiveness of our attack in such scenarios is
unclear. We believe this can be an interesting future work to explore.

Computational cost: Our transfer attack trains surrogate watermarking models and optimizes per-
turbations for watermarked images. Thus, the computational cost consists of training time (to train
surrogate models) and inference time (to optimize a perturbation for an image). Table 2 in Ap-
pendix compares the computational costs of our attack with six baselines. Attacking high-capacity
watermarks (Zhong & Shih, 2019) may require more surrogate models, further increasing training
cost—a practical limitation of our approach. However, training multiple surrogate models can be
parallelized across GPUs, and this training is a one-time process, which helps mitigate the limita-
tion. We acknowledge that our inference time exceeds most baselines but remains acceptable with
adequate computational resources.

8 CONCLUSION AND FUTURE WORK

In this work, we find that watermark-based detection of AI-generated images is not robust to transfer
attacks in the no-box setting. Given a watermarked image, an attacker can remove the watermark
by adding a perturbation to it, where the perturbation can be found by ensembling multiple surro-
gate watermarking models. Our results show that transfer attack based on surrogate watermarking
models outperforms those based on surrogate classifiers that treat a watermark-based detector as a
conventional classifier. Moreover, leveraging surrogate watermarking models enables us to perform
a rigorous analysis on the transferability of our attack. Interesting future work includes extending
our transfer attack to text and audio watermarks, as well as designing more robust watermarks.
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Table 1: The detailed settings of α for different number of surrogate models.
# of Surrogate Models 1 5 10 20 30 40 60 80 100

α 0.1 1 2 4

Table 2: Computational cost comparison of existing attacks and our transfer attack on a single
NVIDIA RTX-6000 GPU. ∆RN18 denotes the pre-training time of ResNet-18 on ImageNet, and
∆Diff denotes the training time of the unconditional diffusion model used by DiffPure. We note that
training only needs to be done once.

Method Training Time (h) Inference Time per Image (s)
AdvEmb-RN18 ∆RN18 72.09
AdvCls-Real&WM ∆RN18 + 0.11 77.04
AdvCls-Enc-WM1&WM2 ∆RN18 + 0.11 77.70
MI-CWA ∆RN18 + 0.11 27.01
DiffPure ∆Diff 8.96
WEvade-B-S 17.06 187.03
Ours 6.50 177.97
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Figure 7: Comparing the average perturbations of our transfer attack and common post-processing
methods when they achieve the same evasion rate. The target model uses ResNet architecture and
different watermark lengths (the three columns). Dataset is Midjourney.

A ETHICS CONCERNS

Our proposed method has the potential to compromise the identity and authenticity of AI-generated
images, raising ethical and societal concerns. Such misuse could erode trust in digital media by en-
abling unauthorized modifications or misattributions. To mitigate these risks, it is crucial to develop
robust watermarking methods that can withstand our transfer attack. As discussed in Section 7,
our attack’s effectiveness is unclear when the target watermarking method is entirely unknown and
significantly different from the surrogate methods used by attackers. Therefore, designing novel
watermarking techniques with fundamentally different mechanisms and maintaining their confiden-
tiality could serve as an effective strategy to mitigate these risks.

B THEORETICAL ANALYSIS

We derive both an upper bound and a lower bound of the probability because we consider double-tail
detectors. Specifically, they enable us to compute the upper bound and lower bound of the expected
bitwise accuracy between the watermark decoded by the target decoder for the perturbed image and
the ground-truth watermark. If such upper bound and lower bound of the expected bitwise accuracy
fall between τ and 1 − τ , the perturbed image produced by our transfer attack is expected to evade
the target watermark-based detector. All our proofs are shown in Appendix.
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Figure 8: Comparing the average ℓ2-norm perturbations of our transfer attack and common post-
processing methods when they achieve the same evasion rate. The target model uses ResNet archi-
tecture and different watermark lengths (the three columns). First row: Stable Diffusion. Second
row: Midjourney.
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Figure 9: Comparing the average SSIM of our transfer attack and common post-processing methods
when they achieve the same evasion rate. The target model uses ResNet architecture and different
watermark lengths (the three columns). First row: Stable Diffusion. Second row: Midjourney.

B.1 NOTATIONS

We adopt T to denote the target decoder and {Si}mi=1 to represent the m surrogate decoders. w
denotes the ground-truth watermark and xw denotes a watermarked image embedded with w. δ
denotes a perturbation that satisfies the constraints of the optimization problem in Equation 3. We
use ns and nt to denote the watermark length of surrogate decoders and target decoder respectively,
while we define n = min(ns, nt). T (·)j and Si(·)j denote the jth bit of the watermarks decoded
by T and Si for an image, respectively. Moreover, we consider inverse watermarks as the target
watermarks in our transfer attack.
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Figure 10: Comparing the evasion rates of existing and our transfer attacks when the target model is
ResNet and uses watermarks with different lengths. Dataset is Midjourney.
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Figure 11: Comparing the evasion rates of existing and our transfer attacks under different SSIM
constraints between the watermarked and perturbed images. The target model uses ResNet architec-
ture and watermark length of 30 bits. Dataset is Stable Diffusion.
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Figure 12: (a) Evasion rate and (b) average ℓ∞-norm perturbation of our transfer attack when using
different sensitivity ϵ. (c) Evasion rate and (d) average ℓ∞-norm perturbation of different variants of
our transfer attack.
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Figure 13: (a, b) Average ℓ2-norm perturbations and average SSIM of our transfer attack with dif-
ferent sensitivity ϵ. The target model uses CNN architecture and watermark length of 30 bits. (c, d)
Average ℓ2-norm perturbations and average SSIM of different variants of our transfer attack. The
target model uses CNN architecture and watermark length of 30 bits.
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Figure 14: Percentage of the pairs of surrogate watermarking models that pass the Chi-square test of
independence with confidence of 0.95 on each bit. We randomly sampled 100 pairs of surrogate wa-
termarking models from the 100 surrogate models in our experiments. For each bit of the watermark
and pair of surrogate models, we performed the Chi-square independence test with a confidence
level of 0.95 using the decoded watermarks from the 1,000 perturbed images. The y-axis in the
graph shows the percentage of the 100 pairs of the surrogate models that passed the independence
test for each bit. These results verify that our independence assumption in Assumption 2 roughly
hold.
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Figure 15: Evasion rate of our transfer attack when the target watermarking model is non-learning-
based.

B.2 FORMAL DEFINITIONS

In this section, we will introduce the details of our formal definitions. We formally define un-
perturbed similarity, positive transferring similarity, negative transferring similarity, q-attacking
strength, β-accurate watermarking, Bit-level dependency, Independency, and Conditional indepen-
dency. Specifically, unperturbed similarity measures the probability that the watermarks decoded
by the target decoder and surrogate decoders are identical for a watermarked image xw without
perturbation, which is formally defined as follows:
Definition 1 (Unperturbed similarity). For any watermarked image xw and δ satisfying the con-
straints of the optimization problem in Equation 3, the jth bit of the watermark decoded by T
matches with the jth bit of the watermark decoded by Si for xw with probability kij , given that
the jth bits of the watermarks for xw + δ and xw decoded by Si are inverse. Conversely, it occurs
with probability k′ij given that the jth bits of the watermarks for xw + δ and xw decoded by Si are
identical. Formally, for i = 1, 2, · · · ,m and j = 1, 2, · · · , n, we have:

Pr(T (xw)j = Si(xw)j | Si(xw + δ)j = 1− Si(xw)j) = kij ,

P r(T (xw)j = Si(xw)j | Si(xw + δ)j = Si(xw)j) = k′ij .
(4)
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Algorithm 1 Find the Perturbation δ

Require: Watermarked image xw, m surrogate decoders {Si}mi=1, m target watermarks {wt
i}mi=1,

distance metric l, perturbation budget r, sensitivity ϵ, learning rate α, and maximum number of
iterations max iter.

Ensure: Perturbation δ
1: Initialize δ ← 0
2: for k = 1, 2, · · · ,max iter do
3: g ← ∇δ

1
m

∑︁m
i=1 l(Si(xw + δ), wt

i)
4: δ ← δ − α · g
5: if ∥δ∥∞ > r then
6: δ ← δ · r

∥δ∥∞

7: end if
8: if 1

m

∑︁m
i=1 BA(Si(xw + δ), wt

i) ≥ 1− ϵ then
9: Return δ

10: end if
11: end for
12: Return δ

Note that both kij and k′ij can be estimated in experiments. Positive transferring similarity measures
the probability that the watermarks decoded by target decoder and surrogate decoders for a perturbed
image xw+ δ are identical when the watermarks decoded by the surrogate decoders are flipped after
adding the perturbation, which is defined as follows:
Definition 2 (Positive transferring similarity). For any watermarked image xw and δ satisfying the
constraints of the optimization problem in Equation 3, the jth bit of the watermark decoded by T
matches with the jth bit of the watermark decoded by Si for xw + δ with probability aij , given that
the jth bits of the watermarks decoded by T and Si are identical for xw, and the jth bits of the
watermarks for xw + δ and xw decoded by Si are inverse. Conversely, it occurs with probability a′ij
given that the jth bits of the watermarks decoded by T and Si for xw are inverse, and the jth bits
of the watermarks for xw + δ and xw decoded by Si are also inverse. Formally, for i = 1, 2, · · · ,m
and j = 1, 2, · · · , n, we have the following:

Pr(T (xw + δ)j =Si(xw + δ)j | T (xw)j = Si(xw)j ,

Si(xw + δ)j = 1− Si(xw)j) = aij ,

P r(T (xw + δ)j =Si(xw + δ)j | T (xw)j = 1− Si(xw)j ,

Si(xw + δ)j = 1− Si(xw)j) = a′ij .

(5)

Both aij and a′ij can be estimated in experiments. Similarly, we use negative transferring similarity
to measure the probability that the watermarks decoded by target decoder and surrogate decoders for
a perturbed image xw + δ are identical when the outputs of surrogate decoders remain unchanged
after adding the perturbation, which is defined as follows:
Definition 3 (Negative transferring similarity). For any watermarked image xw and δ satisfying
the constraints of the optimization problem in Equation 3, the jth bit of the watermark decoded by
T matches with the jth bit of the watermark decoded by Si for xw + δ with probability bij , given
that the jth bits of the watermarks decoded by T and Si are inverse for xw, and the jth bits of the
watermarks for xw+δ and xw decoded by Si are identical. Conversely, it occurs with probability b′ij
given that the jth bits of the watermarks decoded by T and Si for xw are identical, and the jth bits
of the watermarks for xw+δ and xw decoded by Si are also identical. Formally, for i = 1, 2, · · · ,m
and j = 1, 2, · · · , n, we have the following:

Pr(T (xw + δ)j = Si(xw + δ)j | T (xw)j = 1− Si(xw)j ,

Si(xw + δ)j = Si(xw)j) = bij ,

P r(T (xw + δ)j = Si(xw + δ)j | T (xw)j = Si(xw)j ,

Si(xw + δ)j = Si(xw)j) = b′ij .

(6)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Both bij and b′ij can be estimated in experiments. To quantify the magnitude of our transfer attack,
we formally define the q-attacking strength which measures the probability that the watermarks
for the perturbed image and the watermarked image decoded by surrogate decoders are inverse as
follows:
Definition 4 (q-attacking strength). For any watermarked image xw and δ satisfying the constraints
of the optimization problem in Equation 3, the jth bit of the watermark decoded by Si for the
perturbed image is the inverse of the jth bit of the watermark decoded by Si for the watermarked
image with probability qij . Formally, for i = 1, 2, · · · ,m and j = 1, 2, · · · , ns, we have the
following:

Pr(Si(xw + δ)j = 1− Si(xw)j) = qij . (7)

qij can also be estimated in experiments. To quantify the performance of the target watermarking
model when no perturbations are added to watermarked images, we introduce the following defi-
nition on β-accurate watermarking: assume the bitwise accuracy between the watermark decoded
by the target decoder for the watermarked image and the ground-truth watermark following Poisson
binomial distribution. Specifically, we have the following assumption:
Definition 5 (β-accurate watermarking). For any watermarked image xw, the bits of the watermark
decoded by T are mutually independent and the probability that the jth bit of the decoded watermark
matches with that of the ground-truth watermark w is βj , where 1 ≤ j ≤ nt.

β1, β2, · · · , βnt
can be estimated in experiments. Next, we introduce three assumptions regarding

the surrogate decoders and the target decoder. For bit-level dependency, it is assumed that each
bit of the watermark decoded by the target decoder only depends on the corresponding bits of the
watermarks decoded by the surrogate decoders. Formally, we have the assumption as follows:
Assumption 1 (Bit-level dependency). For any watermarked image xw and δ satisfying the con-
straints of the optimization problem in Equation 3, each bit of the watermark decoded by T for the
perturbed image only depends on the corresponding bits of the watermarks decoded by the surrogate
decoders for the perturbed image. Formally, for j = 1, 2, · · · , n, we have the following:

Pr(T (xw + δ)j | S1(xw + δ), · · · , Sm(xw + δ))

= Pr(T (xw + δ)j | S1(xw + δ)j , · · · , Sm(xw + δ)j).
(8)

Additionally, since all the surrogate decoders are trained independently with different subsets of
data, we further assume that the watermarks decoded by the surrogate decoders are independent and
conditionally independent given the watermark decoded by the target decoder for the watermarked
or perturbed image. We verify the independency assumption and the results are shown in Figure 14.
Assumption 2 (Independency). For any watermarked image xw and δ satisfying the constraints of
the optimization problem in Equation 3, the jth bits of the watermarks decoded by the m surrogate
decoders for the perturbed image are independent. Formally, for j = 1, 2, · · · , ns, we have the
following:

Pr(S1(xw + δ)j , · · · , Sm(xw + δ)j)

= Pr(S1(xw + δ)j) · · ·Pr(Sm(xw + δ)j).
(9)

Assumption 3 (Conditional independency). For any watermarked image xw and δ satisfying the
constraints of the optimization problem in Equation 3, the jth bits of the watermarks decoded by the
m surrogate decoders for xw + δ are independent when the jth bit of the watermark decoded by the
target decoder for xw or xw + δ is given. Formally, for j = 1, 2, · · · , n, we have:

Pr(S1(xw + δ)j , · · · , Sm(xw + δ)j | T (xw)j)

= Pr(S1(xw + δ)j | T (xw)j) · · ·
Pr(Sm(xw + δ)j | T (xw)j),∀j,

Pr(S1(xw + δ)j , · · · , Sm(xw + δ)j | T (xw + δ)j)

= Pr(S1(xw + δ)j | T (xw + δ)j) · · ·
Pr(Sm(xw + δ)j | T (xw + δ)j),∀j.

(10)
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B.3 DERIVING Pr(T (xw + δ)j = 1− T (xw)j)

We first derive the probability that the watermark decoded by the target decoder is flipped after
adding the perturbation found by our transfer attack to the watermark image, conditioned on that the
watermark decoded by a surrogate decoder is flipped or not after adding the perturbation. Formally,
we have the following lemma:
Lemma 1. For any watermarked image xw and δ satisfying the constraints of the optimization
problem in Equation 3, the jth bit of the watermark decoded by T for xw + δ is the inverse of the
jth bit of the watermark decoded by T for xw with probability aijkij + (1 − a′ij)(1 − k′ij), given
that the jth bits of the watermarks for the xw + δ and xw decoded by Si are inverse. Conversely,
it occurs with probability (1 − b′ij)k

′
ij + bij(1 − k′ij) given that the jth bits of the watermarks for

xw + δ and xw decoded by Si are identical. Formally, for j = 1, 2, · · · , n, we have:

Pr(T (xw + δ)j = 1− T (xw)j | Si(xw + δ)j = 1− Si(xw)j)

= cij ,

P r(T (xw + δ)j = 1− T (xw)j | Si(xw + δ)j = Si(xw)j)

= c′ij ,

(11)

where cij = aijkij + (1− a′ij)(1− kij) and c′ij = (1− b′ij)k
′
ij + bij(1− k′ij).

Then, we derive the unconditional probability that the watermark decoded by the target decoder is
flipped after adding the perturbation to the watermarked image as follows:
Theorem 2. For any watermarked image xw and δ satisfying the constraints of the optimization
problem in Equation 3, the jth bit of the watermark decoded by T for the perturbed image is the
inverse of the jth bit of the watermark decoded by T for the watermarked image with probability
cijqij + c′ij(1− qij). Formally, for j = 1, 2, · · · , n, we have the following:

Pr(T (xw + δ)j = 1− T (xw)j) = ej , (12)

where ej = cijqij + c′ij(1− qij),∀i.

Then we derive the probability that the watermarks decoded by the surrogate decoders are flipped
when the watermark decoded by the target decoder is flipped after adding the perturbation as follows:
Lemma 2. For any watermarked image xw and δ satisfying the constraints of the optimization
problem in Equation 3, the jth bit of the watermark decoded by Si for the perturbed image is the
inverse of the jth bit of the watermark decoded by Si for the watermarked image with probability

cijqij
cijqij+c′ij(1−qij)

, given that the watermarks for the perturbed image and the watermarked image
decoded by T are inverse. Formally, for j = 1, 2, · · · , n, we have the following:

Pr(Si(xw + δ)j = 1− Si(xw)j | T (xw + δ)j = 1− T (xw)j)

=
cijqij

cijqij + c′ij(1− qij)
.

(13)

Finally, we derive the probability that the watermark decoded by the target decoder is flipped after
adding the perturbation to the watermarked image, given the watermarks decoded by the m surrogate
decoders for the perturbed image. Formally, we have the following:
Theorem 3. For any watermarked image xw and δ satisfying the constraints of the optimization
problem in Equation 3, the jth bit of the watermark decoded by T for the perturbed image is the
inverse of the jth bit of the watermark decoded by T for the watermarked image with probability
pj , when the watermarks for the perturbed image decoded by the m surrogate decoders are given.
Formally, for j = 1, 2, · · · , n, we have the following:

Pr(T (xw + δ)j = 1− T (xw)j | S1(xw + δ)j , · · · , Sm(xw + δ)j)

= pj ,
(14)

where pj = min(ej
∏︁

i∈Mj1

cij
cijqij+c′ij(1−qij)

∏︁
i∈Mj2

c′ij
cijqij+c′ij(1−qij)

,

1), Mj1 = {i | Si(xw + δ)j = 1 − Si(xw)j}, and Mj2 = {i | Si(xw + δ)j = Si(xw)j}. Mj1

(or Mj2) is the set of surrogate decoders whose jth bits of the decoded watermarks flip (or not flip)
after adding the perturbation to the watermarked image.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

B.4 DERIVING Pr(T (xw + δ)j = wj)

The bitwise accuracy between the decoded watermark T (xw + δ) and the ground-truth watermark
w is used to detect whether the perturbed image xw + δ is AI-generated. Therefore, given the
watermarks decoded by the m surrogate decoders for the perturbed image xw + δ, we derive an
upper bound and a lower bound of the probability that the watermark decoded by the target decoder
matches with the ground-truth watermark after adding the perturbation. Note that we consider 1 ≤
j ≤ nt in this section. Formally, based on the theorems in Section B.3, we derive the Theorem 1 in
Section 5.

Our theoretical analysis demonstrates that the probability of the jth bit of the watermark decoded by
T for the perturbed image matching with the jth bit of the ground-truth watermark can be bounded,
which can be used to compute the upper bound and lower bound of the expected bitwise accuracy
between T (xw + δ) and w. If such upper bound and lower bound fall between τ and 1 − τ , the
perturbed image is expected to evade the target watermark-based detector.

C PROOF OF LEMMA 1

Based on Definition 1, 2, and 3, we have the followings:

Pr(T (xw + δ)j = 1− T (xw)j | Si(xw + δ)j = 1− Si(xw)j)

= Pr(T (xw + δ)j = 1− T (xw)j , T (xw)j = Si(xw)j |
Si(xw + δ)j = 1− Si(xw)j)

+ Pr(T (xw + δ)j = 1− T (xw)j , T (xw)j = 1− Si(xw)j |
Si(xw + δ)j = 1− Si(xw)j)

= Pr(T (xw + δ)j = 1− T (xw)j | T (xw)j = Si(xw)j ,

Si(xw + δ)j = 1− Si(xw)j)

× Pr(T (xw)j = Si(xw)j | Si(xw + δ)j = 1− Si(xw)j)

+ Pr(T (xw + δ)j = 1− T (xw)j | T (xw)j = 1− Si(xw)j ,

Si(xw + δ)j = 1− Si(xw)j)

× Pr(T (xw)j = 1− Si(xw)j | Si(xw + δ)j = 1− Si(xw)j)

= Pr(T (xw + δ)j = 1− T (xw)j | T (xw)j = Si(xw)j ,

Si(xw + δ)j = 1− Si(xw)j)

× Pr(T (xw)j = Si(xw)j | Si(xw + δ)j = 1− Si(xw)j)

+ (1− Pr(T (xw + δ)j = T (xw)j | T (xw)j = 1− Si(xw)j ,

Si(xw + δ)j = 1− Si(xw)j))

× (1− Pr(T (xw)j = Si(xw)j | Si(xw + δ)j = 1− Si(xw)j))

= Pr(T (xw + δ)j = Si(xw + δ)j | T (xw)j = Si(xw)j ,

Si(xw + δ)j = 1− Si(xw)j)

× Pr(T (xw)j = Si(xw)j | Si(xw + δ)j = 1− Si(xw)j)

+ (1− Pr(T (xw + δ)j = Si(xw + δ)j |
T (xw)j = 1− Si(xw)j , Si(xw + δ)j = 1− Si(xw)j))

× (1− Pr(T (xw)j = Si(xw)j | Si(xw + δ)j = 1− Si(xw)j))

= aijkij + (1− a′ij)(1− kij)

= cij .

Similarly, we have the following:

Pr(T (xw + δ)j = 1− T (xw)j | Si(xw + δ)j = Si(xw)j)

= Pr(T (xw + δ)j = 1− T (xw)j , T (xw)j = Si(xw)j |
Si(xw + δ)j = Si(xw)j) + Pr(T (xw + δ)j = 1− T (xw)j ,

T (xw)j = 1− Si(xw)j | Si(xw + δ)j = Si(xw)j)
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= Pr(T (xw + δ)j = 1− T (xw)j | T (xw)j = Si(xw)j ,

Si(xw + δ)j = Si(xw)j)

× Pr(T (xw)j = Si(xw)j | Si(xw + δ)j = Si(xw)j)

+ Pr(T (xw + δ)j = 1− T (xw)j | T (xw)j = 1− Si(xw)j ,

Si(xw + δ)j = Si(xw)j)

× Pr(T (xw)j = 1− Si(xw)j | Si(xw + δ)j = Si(xw)j)

= (1− Pr(T (xw + δ)j = T (xw)j | T (xw)j = Si(xw)j ,

Si(xw + δ)j = Si(xw)j))

× Pr(T (xw)j = Si(xw)j | Si(xw + δ)j = Si(xw)j)

+ Pr(T (xw + δ)j = 1− T (xw)j | T (xw)j = 1− Si(xw)j ,

Si(xw + δ)j = Si(xw)j)

× (1− Pr(T (xw)j = Si(xw)j | Si(xw + δ)j = Si(xw)j))

= (1− Pr(T (xw + δ)j = Si(xw + δ)j | T (xw)j = Si(xw)j ,

Si(xw + δ)j = Si(xw)j))

× Pr(T (xw)j = Si(xw)j | Si(xw + δ)j = Si(xw)j)

+ Pr(T (xw + δ)j = Si(xw + δ)j | T (xw)j = 1− Si(xw)j ,

Si(xw + δ)j = Si(xw)j)

× (1− Pr(T (xw)j = Si(xw)j | Si(xw + δ)j = Si(xw)j))

= (1− b′ij)k
′
ij + bij(1− k′ij)

= c′ij .

D PROOF OF THEOREM 2

Based on Lemma 1 and Definition 4, we have the following:

Pr(T (xw + δ)j = 1− T (xw)j)

= Pr(T (xw + δ)j = 1− T (xw)j , Si(xw + δ) = Si(xw))

+ Pr(T (xw + δ)j = 1− T (xw)j , Si(xw + δ) = 1− Si(xw))

= Pr(T (xw + δ)j = 1− T (xw)j | Si(xw + δ) = Si(xw))

× Pr(Si(xw + δ) = Si(xw))

+ Pr(T (xw + δ)j = 1− T (xw)j | Si(xw + δ) = 1− Si(xw))

× Pr(Si(xw + δ) = 1− Si(xw))

= c′ij(1− qij) + cijqij

= ej .

E PROOF OF LEMMA 2

Pr(Si(xw + δ)j = 1− Si(xw)j | T (xw + δ)j = 1− T (xw)j)

=
Pr(Si(xw + δ)j = 1− Si(xw)j , T (xw + δ)j = 1− T (xw)j)

Pr(T (xw + δ)j = 1− T (xw)j)

= Pr(T (xw + δ)j = 1− T (xw)j | Si(xw + δ)j = 1− Si(xw)j)

× Pr(Si(xw + δ)j = 1− Si(xw)j)

Pr(T (xw + δ)j = 1− T (xw)j)
.

Based on Lemma 1 and Theorem 2, we have the following:

Pr(T (xw + δ)j = 1− T (xw)j | Si(xw + δ)j = 1− Si(xw)j)

× Pr(Si(xw + δ)j = 1− Si(xw)j)

Pr(T (xw + δ)j = 1− T (xw)j)
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=
cijqij

cijqij + c′ij(1− qij)
.

F PROOF OF THEOREM 3

Pr(T (xw + δ)j = 1− T (xw)j | S1(xw + δ)j , · · · , Sm(xw + δ)j)

= Pr(S1(xw + δ)j , · · · , Sm(xw + δ)j |
T (xw + δ)j = 1− T (xw)j)

× Pr(T (xw + δ)j = 1− T (xw)j)

Pr(S1(xw + δ)j , · · · , Sm(xw + δ)j)
.

Based on Assumption 2 and 3, we have the following:

Pr(S1(xw + δ)j , · · · , Sm(xw + δ)j | T (xw + δ)j = 1− T (xw)j)

× Pr(T (xw + δ)j = 1− T (xw)j)

Pr(S1(xw + δ)j , · · · , Sm(xw + δ)j)

= Pr(S1(xw + δ)j | T (xw + δ)j = 1− T (xw)j)

· · ·Pr(Sm(xw + δ)j | T (xw + δ)j = 1− T (xw)j)

× Pr(T (xw + δ)j = 1− T (xw)j)

Pr(S1(xw + δ)j) · · ·Pr(Sm(xw + δ)j)
. (15)

Given that Mj1 = {i | Si(xw+δ)j = 1−Si(xw)j}, we have the following according to Lemma 2:

Pr(Si(xw + δ)j | T (xw + δ)j = 1− T (xw)j)

= Pr(Si(xw + δ)j = 1− Si(xw) | T (xw + δ)j = 1− T (xw)j)

=
cijqij

cijqij + c′ij(1− qij)
,∀i ∈Mj1. (16)

Given that Mj2 = {i | Si(xw + δ)j = Si(xw)j}, we have:

Pr(Si(xw + δ)j | T (xw + δ)j = 1− T (xw)j)

= 1− Pr(Si(xw + δ)j = 1− Si(xw) |
T (xw + δ)j = 1− T (xw)j)

= 1− cijqij
cijqij + c′ij(1− qij)

=
c′ij(1− qij)

cijqij + c′ij(1− qij)
,∀i ∈Mj2. (17)

Then Equation 15 can be reformulated as follows:

Pr(S1(xw + δ)j | T (xw + δ)j = 1− T (xw)j)

· · ·Pr(Sm(xw + δ)j | T (xw + δ)j = 1− T (xw)j)

× Pr(T (xw + δ)j = 1− T (xw)j)

Pr(S1(xw + δ)j) · · ·Pr(Sm(xw + δ)j)

= Pr(T (xw + δ)j = 1− T (xw)j)∏︂
i∈Mj1

Pr(Si(xw + δ)j | T (xw + δ)j = 1− T (xw)j)

Pr(Si(xw + δ)j)∏︂
i∈Mj2

Pr(Si(xw + δ)j | T (xw + δ)j = 1− T (xw)j)

Pr(Si(xw + δ)j)
.

Then, based on Definition 4, Theorem 2, Equation 16, and Equation 17, we have the following:

Pr(T (xw + δ)j = 1− T (xw)j)
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∏︂
i∈Mj1

Pr(Si(xw + δ)j | T (xw + δ)j = 1− T (xw)j)

Pr(Si(xw + δ)j)∏︂
i∈Mj2

Pr(Si(xw + δ)j | T (xw + δ)j = 1− T (xw)j)

Pr(Si(xw + δ)j)

= ej
∏︂

i∈Mj1

cijqij
cijq2ij + c′ij(1− qij)qij∏︂

i∈Mj2

c′ij(1− qij)

cijqij(1− qij) + c′ij(1− qij)2

= min(ej
∏︂

i∈Mj1

cij
cijqij + c′ij(1− qij)∏︂

i∈Mj2

c′ij
cijqij + c′ij(1− qij)

, 1)

= pj .

G PROOF OF THEOREM 1

When 1 ≤ j ≤ n, the conditional expectation of |T (xw + δ)j − T (xw)j | can be represented as:

E(|T (xw + δ)j − T (xw)j | | S1(xw + δ)j , · · · , Sm(xw + δ)j)

= 0× Pr(T (xw + δ)j = T (xw)j |
S1(xw + δ)j , · · · , Sm(xw + δ)j)

+ 1× Pr(T (xw + δ)j = 1− T (xw)j |
S1(xw + δ)j , · · · , Sm(xw + δ)j)

= Pr(T (xw + δ)j = 1− T (xw)j |
S1(xw + δ)j , · · · , Sm(xw + δ)j).

According to Theorem 3, we have:

Pr(T (xw + δ)j = 1− T (xw)j | S1(xw + δ)j , · · · , Sm(xw + δ)j)

= pj .

According to Assumption 3, when 1 ≤ j ≤ n, the conditional expectation of |T (xw)j − wj | can be
represented as:

E(|T (xw)j − wj | | S1(xw + δ)j , · · · , Sm(xw + δ)j)

= 0× Pr(T (xw)j = wj | S1(xw + δ)j , · · · , Sm(xw + δ)j)

+ 1× Pr(T (xw)j = 1− wj |
S1(xw + δ)j , · · · , Sm(xw + δ)j)

= Pr(T (xw)j = 1− wj | S1(xw + δ)j , · · · , Sm(xw + δ)j)

=
Pr(T (xw)j = 1− wj , S1(xw + δ)j , · · · , Sm(xw + δ)j)

Pr(S1(xw + δ)j , · · · , Sm(xw + δ)j)

=
Pr(S1(xw + δ)j , · · · , Sm(xw + δ)j | T (xw)j = 1− wj)

Pr(S1(xw + δ)j , · · · , Sm(xw + δ)j)

× Pr(T (xw)j = 1− wj)

=
Pr(S1(xw + δ)j | T (xw)j = 1− wj)

Pr(S1(xw + δ)j)

· · · Pr(Sm(xw + δ)j | T (xw)j = 1− wj)

Pr(Sm(xw + δ)j)
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× Pr(T (xw)j = 1− wj).

Since the flipping behavior of surrogate models is irrelevant to Definition 5, then we have the fol-
lowing:

E(|T (xw)j − wj | | S1(xw + δ)j , · · · , Sm(xw + δ)j)

= Pr(T (xw)j = 1− wj).

Based on Definition 5, we have:
E(|T (xw)j − wj | | S1(xw + δ)j , · · · , Sm(xw + δ)j)

= 1− βj .

Furthermore, the conditional expectation of |T (xw + δ)j − wj | can be represented as:
E(|T (xw + δ)j − wj | | S1(xw + δ)j , · · · , Sm(xw + δ)j)

= 0× Pr(T (xw + δ)j = wj | S1(xw + δ)j , · · · , Sm(xw + δ)j)

+ 1× Pr(T (xw + δ)j = 1− wj |
S1(xw + δ)j , · · · , Sm(xw + δ)j)

= Pr(T (xw + δ)j = 1− wj | S1(xw + δ)j , · · · , Sm(xw + δ)j). (18)

Based on the triangle inequality, we have the following:
E(|T (xw + δ)j − wj | | S1(xw + δ)j , · · · , Sm(xw + δ)j)

≤ min(E(|T (xw + δ)j − T (xw)j |+ |T (xw)j − wj | |
S1(xw + δ)j , · · · , Sm(xw + δ)j), 1)

= min(1− βj + pj , 1),

and the following:
E(|T (xw + δ)j − wj | | S1(xw + δ)j , · · · , Sm(xw + δ)j)

≥ E(||T (xw + δ)j − T (xw)j | − |T (xw)j − wj || |
S1(xw + δ)j , · · · , Sm(xw + δ)j)

= |pj + βj − 1|.

Therefore, based on Equation 18, when 1 ≤ j ≤ n, we have the following:
Pr(T (xw + δ)j = wj | S1(xw + δ)j , · · · , Sm(xw + δ)j)

= 1− Pr(T (xw + δ)j = 1− wj |
S1(xw + δ)j , · · · , Sm(xw + δ)j)

≥ 1−min(1− βj + pj , 1)

= max(βj − pj , 0),

and the following:
Pr(T (xw + δ)j = wj | S1(xw + δ)j , · · · , Sm(xw + δ)j)

≤ 1− |pj + βj − 1|.

If nt > n, when n < j ≤ nt, we have the following:
0 ≤ Pr(T (xw + δ)j = wj | S1(xw + δ)j , · · · , Sm(xw + δ)j) ≤ 1.

Therefore, we have the following:
Pr(T (xw + δ)j = wj | S1(xw + δ)j , · · · , Sm(xw + δ)j)

≥
{︃
max(βj − pj , 0), 1 ≤ j ≤ n,

0, n < j ≤ nt.

P r(T (xw + δ)j = wj | S1(xw + δ)j , · · · , Sm(xw + δ)j)

≤
{︃
1− |pj + βj − 1|, 1 ≤ j ≤ n,

1, n < j ≤ nt.
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H DETAILS OF DATASETS

For the target watermarking models, we use two public datasets (Wang et al., 2023; Turc & Ne-
made, 2022) generated by Stable Diffusion and Midjourney respectively. Following HiDDeN (Zhu
et al., 2018), we randomly select 10,000 images from each dataset to train the target watermarking
encoders and decoders. For testing, we randomly sample 1,000 images from the testing set of each
dataset, embed the ground-truth watermark into each of them using a target encoder, and then find
the perturbation to each watermarked image using different methods. To train the surrogate water-
marking models, we sample 10,000 images from another public dataset (Images, 2023) generated
by DALL-E 2, i.e., the surrogate dataset consists of these 10,000 images. The input image size of
the watermarking models is 128× 128 pixels.

I DETAILS OF TARGET WATERMARKING MODELS AND WATERMARK
LENGTHS

For HiDDeN, we consider two architectures for the target watermarking model: CNN and ResNet.
For the CNN architecture, the encoder consists of 4 convolutional blocks, while the decoder consists
of 7 convolutional blocks. Each block integrates a Convolution layer, Batch Normalization, and
ReLU activation. For the ResNet architecture, the encoder consists of 7 convolutional blocks and
the decoder is the ResNet-18.

For StegaStamp, we use model architecture introduced by Tancik et al. (2020). For Stable Signature,
we use the public watermarking model provided by Fernandez et al. (2023) as the target watermark-
ing model. Smoothed HiDDeN and Smoothed StegaStamp are certifiably robust against bounded
adversarial perturbations. For them, we adopt the regression smoothing (Jiang et al., 2024) to obtain
the smoothed versions of the corresponding HiDDeN and StegaStamp watermarking models.

Additionally, we also employ different watermark lengths for the target watermarking models.
Specifically, we evaluate our transfer attack on the target watermarking models with watermark
lengths of 20 bits, 30 bits, and 64 bits. These variations include watermark lengths that are shorter
than, equal to, and longer than those used by the surrogate watermarking models, offering a thor-
ough analysis of our transfer attack’s performance across different watermark lengths in the target
watermarking model.

J DETAILS OF COMMON POST-PROCESSING METHODS

Specifically, we consider the following common post-processing methods.

JPEG. It is a commonly used compression method in digital imaging, which can reduce image file
sizes while preserving a reasonable level of image quality. The quality of images processed through
JPEG is governed by a quality factor Q. As the quality factor decreases, detecting the watermark
in the post-processed images becomes more challenging, although this also results in a lower image
quality.

Gaussian noise. This method involves adding statistical noise that follows a Gaussian distribution
with a zero mean and a standard deviation of σ, which effectively simulates various environmental
noise effects encountered in real-world scenarios. A larger σ value leads to increased difficulty in
watermark detection, but also results in lower image quality.

Gaussian blur. This method smooths the image by averaging pixel values with their neighbors. It
applies a Gaussian filter with kernel size of k × k to an image, characterized by a bell-shaped curve
with a zero mean and a standard deviation of σ. A larger σ causes more pronounced blurring, which
results in lower watermark detection rate and image quality. Following Jiang et al. (2023), we set
k = 5 and vary σ.

Brightness/Contrast. This method modifies the brightness and contrast of an image by adjusting
pixel values throughout the image. Specifically, it operates by either increasing or decreasing these
values to make the image brighter or darker. The process is regulated by two factors: a brightness
factor B and a contrast factor C. Formally, for each pixel value v, the method transforms it to
Cv +B. Following Jiang et al. (2023), we set B = 0.2 and vary C.
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K DETAILS OF TRANSFER ATTACKS

For the former 5 transfer attacks, WEvade-B-S is watermark-based, while the other four are
classifier-based. In particular, MI-CWA leverages the state-of-the-art multiple surrogate classifiers
based transfer adversarial examples.

WEvade-B-S (Jiang et al., 2023). This method trains one surrogate watermarking model. A wa-
termarked image is perturbed such that the watermark decoded by the surrogate decoder for the
perturbed image matches with a preset random watermark. In our experiments, we train the surro-
gate watermarking model on 10,000 images generated by DALL-E 2. To give advantages to this
transfer attack, we assume the attacker knows the architecture of the target watermarking model and
uses it for the surrogate watermarking model.

AdvEmb-RN18 (An et al., 2024). This method uses a ResNet-18 pretrained on ImageNet to gener-
ate a feature embedding for a watermarked image. Then it perturbs the image such that its embed-
ding lies far from the one of the watermarked image.

AdvCls-Real&WM (An et al., 2024). This method trains a surrogate classifier using watermarked
and non-watermarked images. The watermarked images are generated by the target GenAI and are
watermarked by the target watermarking model, and the non-watermarked images are drawn from
a distribution different from the one of the images generated by the target GenAI. A watermarked
image is perturbed such that it is misclassified by the surrogate classifier as a non-watermarked im-
age. In our experiments, we utilize images generated by DALL-E 2 as the non-watermarked images.
More specifically, the training set for the surrogate classifier comprises 8,000 images generated by
Stable Diffusion (or Midjourney) and watermarked by the target watermarking model, and 8,000
non-watermarked images generated by DALL-E 2. The surrogate classifier is based on the ResNet-
18 architecture.

AdvCls-Enc-WM1&WM2. This method is the same as AdvCls-Real&WM except for the training
data used for the surrogate classifier. It assumes that the attacker has access to the target water-
marking encoder and can use it to embed any watermark into an image. The surrogate classifier is
trained to distinguish the images embedded with the ground-truth watermark and those embedded
with an attacker-chosen watermark. In our experiments, the training set for the surrogate classifier
comprises 8,000 images generated by the target GenAI and watermarked by the target watermark-
ing model with one watermark, and 8,000 images generated by DALL-E 2 and watermarked by the
target watermarking model with another watermark, where both watermarks are randomly picked.

MI-CWA (Chen et al., 2024). Existing classifier-based transfer attacks (i.e., the above three) only
leverage one surrogate classifier. We extend state-of-the-art multiple surrogate classifiers based
transfer adversarial examples (Chen et al., 2024) to watermarks. Given the same training dataset as
AdvCls-Real&WM, we train 100 surrogate classifiers, each of which has the ResNet-18 architec-
ture. Given a watermarked image, this transfer attack perturbs it such that it is misclassified by the
surrogate classifiers as non-watermarked.

DiffPure (Nie et al., 2022). This method uses diffusion model to purify adversarial examples. We
extend it to remove watermark. Specifically, DiffPure first adds Gaussian noise gradually to turn a
watermarked image into a noised image. Then diffusion model is used to predict the noise step by
step to get the denoised image. We use its public code.

L DETAILS OF PARAMETER SETTINGS

Specifically, for common post-processing methods, we consider the following range of parameters
during adversarial training for a target watermarking model: Q ∈ [10, 99] for JPEG, σ ∈ [0, 0.1]
for Gaussian noise, σ ∈ [0, 2.0] for Gaussian blur, and C ∈ [1, 3] for Brightness/Contrast. For
surrogate watermarking models, we adopt a smaller range of parameters for some common post-
processing methods during adversarial training to achieve weaker robustness than the target water-
marking model as follows: Q ∈ [50, 99] for JPEG, σ ∈ [0, 0.1] for Gaussian noise, σ ∈ [0, 1.0] for
Gaussian blur, and C ∈ [1, 3] for Brightness/Contrast.

By default, we set maximum number of iterations max iter = 5, 000, perturbation budget r = 0.25,
sensitivity ϵ = 0.2, and learning rate α = 0.1 for our transfer attack. Unless otherwise men-
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tioned, we use Inverse-Decode to select a target watermark for a surrogate decoder, and Ensemble-
Optimization to find the perturbation. α is increased when the number of surrogate watermarking
models increases in order to satisfy the constraints of our optimization problem within 5, 000 itera-
tions. The detailed settings for α for different number of surrogate models are shown in Table 1 in
Appendix. Moreover, we use ℓ2-distance as the distance metric l(·, ·) for two watermarks.

For the detection threshold τ , we set it based on the watermark length of the target watermarking
model. Specifically, we set τ to be a value such that the false positive rate of the watermark-based
detector is no larger than 10−4 when the double-tail detector is employed. Specifically, τ is set to be
0.9, 0.83, and 0.73 for the target watermarking models with watermark lengths of 20 bits, 30 bits,
and 64 bits, respectively.
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