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Abstract
The Quantum Alternating Operator Ansatz
(QAOA) is a hybrid quantum-classical variational
algorithm for approximately solving combinato-
rial optimization problems on Noisy Intermediate-
Scale Quantum (NISQ) devices. Although it has
been successfully applied to a variety of problems,
there is only limited work on correlation cluster-
ing due to the difficulty of modelling the problem
constraints with the ansatz. Motivated by this, we
present a generalization of QAOA that is more
suitable for this problem. In particular, we mod-
ify QAOA in two ways: Firstly, we use nucleus
sampling for the computation of the expected cost.
Secondly, we split the problem into sub-problems,
solving each individually with QAOA. We call
this generalization the Sub-Problem Quantum Al-
ternating Operator Ansatz (SQAOA) and show
theoretically that optimal solutions to correlation
clustering instances can be obtained with certainty
when the depth of the ansatz tends to infinity.
Further, we show experimentally that SQAOA
achieves better approximation ratios than QAOA
for correlation clustering, while using only one
qubit per node of the respective problem instance
and reducing the runtime (of simulations).

1. Introduction
The term “quantum supremacy” (Preskill, 2012) refers to
the ability of quantum computers to perform tasks efficiently
that classical computers cannot. From a theoretical point
of view, algorithms achieving this supremacy for problems
of practical interest have long been established. However,
applying these algorithms to problem instances of classi-
cally intractable sizes is not possible on current quantum
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computers, as these are limited both by their number of
qubits and the number of operations that can be performed
on a qubit before its state is too corrupted by noise (circuit
depth). These current quantum computers are also referred
to as Noisy Intermediate-Scale Quantum (NISQ) devices
(Preskill, 2018).

Variational quantum algorithms (Cerezo et al., 2021) have
emerged as a promising paradigm to achieve quantum
supremacy for practical problems on NISQ devices. These
algorithms combine quantum and classical computing by
using parameterized quantum circuits with few qubits and
low depth, whose parameters are learned in a classical opti-
mization loop. The Quantum Alternating Operator Ansatz
(QAOA) (Hadfield et al., 2019) is such a variational algo-
rithm designed for approximately solving combinatorial
optimization problems. In particular, it alternately applies
a parameterized phase-separation operator, which changes
the phase of states depending on their cost, and a mixing
operator, which enables transitions between states and thus
constructive or destructive interference based on their phase
difference. The number of times p these operators are ap-
plied alternately is called the ansatz depth. For p→ ∞, and
under the conditions given by Binkowski et al. (2024), there
exist parameters for each problem instance such that QAOA
returns an optimal solution with certainty. QAOA has been
applied to a variety of problems (Cook et al., 2020; Saleem,
2020; Tabi et al., 2020; Fuchs et al., 2021), including cor-
relation clustering (Weggemans, 2020; Weggemans et al.,
2022).

Correlation clustering (Bansal et al., 2004) is a special clus-
tering formulation in which objects are represented by the
nodes of a graph, (dis-)similarities between them by edges
with corresponding costs, and the goal is to cluster the nodes
of the graph such that a cost function is optimized. In promi-
nent difference to other formulations, the number of clusters
is not fixed in advance, but learned from the data. This
unsupervised clustering of objects based solely on pairwise
(dis-)similarities finds application in various domains, such
as computational biology (D’haeseleer, 2005; Erola et al.,
2020), data analysis (Benjelloun et al., 2009; Abbas & Swo-
boda, 2023) and image segmentation (Yarkony et al., 2012;
Beier et al., 2015; Keuper et al., 2015).
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There are different variants of correlation clustering with
respect to the associated costs and the cost function. In
this article, we consider unweighted ({+1,−1} costs) max-
imum agreement correlation clustering and will assume that,
unless otherwise specified, the term “correlation clustering”
refers to this variant. However, our approach can easily be
adapted to weighted correlation clustering and other cost
functions.

We introduce the Sub-Problem Quantum Alternating Opera-
tor Ansatz (SQAOA), a generalization of QAOA motivated
by the application to correlation clustering and based on the
idea of nucleus sampling (Holtzman et al., 2020) and the
concept of splitting a problem into several dependent sub-
problems. For a specific SQAOA formulation of correlation
clustering we show that:

• For each instance, there exist parameters such that an
optimal solution is obtained with certainty for p→ ∞.

• Only as many qubits are required to solve an instance
as there are elements to cluster.

• It experimentally outperforms existing approaches in
terms of approximation ratios and runtimes on com-
plete and Erdős-Rényi graphs with up to 10 nodes.

2. Related Work
Unweighted maximum agreement correlation clustering on
general graphs is known to be APX-hard. In particular, it is
NP-hard for every ϵ > 0 to approximate the problem within
a factor of 80/79 − ϵ (Tan, 2008). The best known clas-
sical algorithm for approximating unweighted maximum
agreement correlation clustering is given by Swamy (2004)
and achieves an approximation ratio of 0.7666 (Swamy
bound). However, there exists a polynomial time approxi-
mation scheme when restricting the considered graphs to be
complete (Bansal et al., 2004).

The only other work applying QAOA to a correlation cluster-
ing variant is by Weggemans (2020) and Weggemans et al.
(2022). Weggemans (2020) reviews different QAOA formu-
lations for correlation clustering with respect to the number
of used qubits, circuit complexities and approximation ra-
tios obtained by simulations. Furthermore, improvement
strategies for the standard QAOA algorithm are evaluated,
like the choice of the classical optimizer, the choice of initial
parameters and the number of restarts. Most importantly,
it is found that the achieved approximation ratios can be
significantly increased by looping over the cluster number,
i.e., by applying QAOA repeatedly, varying the number of
allowed clusters from 1 to the number of nodes in the graph
and returning only the best result.

From these studies, a “multi-level” formulation emerges as
the best approach, in which each element to be clustered

is associated with a qudit and the cluster of that element is
given by the state of the qudit. We will use this formulation
as a reference to benchmark SQAOA against. Using tech-
niques from Farhi et al. (2014) and Wurtz & Love (2021),
it is further shown for this multi-level QAOA formulation
(including looping over the cluster number) that, for p = 1,
there exist parameters achieving an approximation ratio of
at least 0.6367 on all 3-regular graphs. Weggemans et al.
(2022) build on this work by extending the evaluation of the
multi-level formulation and describing how to realize it on
a Rydberg system. However, the described implementation
is restricted to 4-level qudits, i.e., qudits with four states,
such that only solutions involving at most 4 clusters can be
considered.

There is a variety of generalizations and variations of
QAOA; a recent survey is by Blekos et al. (2024). However,
to our knowledge, there exists no work on using different
sampling strategies to compute the expected cost. And
although there are approaches that apply QAOA to sub-
problems (Tomesh et al., 2022; Esposito & Danzig, 2024),
these split a problem instance into smaller instances of the
same problem that are solved independently. In contrast, we
solve instances of dependent sub-problems that are different
from the original problem.

3. Preliminaries
We begin this section with a brief review of the notation and
the fundamentals of quantum computing to the extent neces-
sary for understanding the article. A thorough introduction
can be found, e.g., in Nielsen & Chuang (2010). We then
formally describe the Quantum Alternating Operator Ansatz
and the correlation clustering problem before introducing
our SQAOA formulation for correlation clustering in the
next section.

Notation and Fundamentals of Quantum Computing
We use the Dirac notation, i.e., we denote elements of Cn

by |·⟩, their conjugate transpose by ⟨·| and write ⟨x|y⟩ :=
⟨x| |y⟩ = |x⟩† |y⟩ for the inner product of |x⟩ , |y⟩ ∈ Cn.

We denote the standard unit vectors of C2 by

|0⟩ =
[
1
0

]
and |1⟩ =

[
0
1

]
.

Consequently, the standard unit vectors of C2n =
⊗n

j=1 C2

are given by

n⊗
j=1

|x⟩ where |x⟩ ∈ {|0⟩ , |1⟩} ,

for which we introduce the abbreviation

|x⟩ where x ∈ {0, 1}n .
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The state of an n-qubit system is given by a normalized
vector (statevector) in the Hilbert space C2n =

⊗n
j=1 C2,

which can be written as

|ψ⟩ =
∑

x∈{0,1}n

ax |x⟩ with ||ψ⟩|2 =
∑

x∈{0,1}n

|ax|2 = 1 .

When measuring such a system (with respect to the compu-
tational basis), it collapses to one of the computational basis
states |x⟩. The coefficients ax are called probability ampli-
tudes and their squared absolutes |ax|2 give the probability
of collapsing into state |x⟩.

In gate-based quantum computing, algorithms are realized
by manipulating qubits with quantum gates. Quantum gates
acting on n qubits can be represented by unitary matrices of
size 2n. Another way of characterizing quantum gates is by
Hermitian matrices. For any unitary matrix U , there exists a
Hermitian matrix H such that U = e−iH , and vice versa. In
the remainder of this article, we will assume that matrices
denoted by U are unitary and that matrices denoted by H
are Hermitian. An overview of the gates used in this article
is given in Appendix A. We use the following notation for
applying a unitary U operating on a single qubit to the j-th
qubit of an n-qubit system:

Uj :=
( j−1⊗

k=1

I
)
⊗ U ⊗

( n⊗
k=j+1

I
)
.

Quantum states differ from probability distributions as their
probability amplitudes can take complex values. This means
that, in addition to their absolute value, quantum states
have a phase. This fact enables constructive and destructive
interference between them, i.e., applying an operation to a
quantum state is different from just applying it to all of its
basis states separately.

Quantum Alternating Operator Ansatz The Quantum
Alternating Operator Ansatz (QAOA) (Hadfield et al., 2019)
is a variational algorithm for approximately solving combi-
natorial optimization problems. It generalizes the Quantum
Approximate Optimization Algorithm (Farhi et al., 2014)
which is, on the other hand, a translation of the Quantum
Adiabatic Algorithm (Farhi et al., 2001) from adiabatic quan-
tum computing to gate-based quantum computing.

A generic combinatorial optimization problem of size nwith
feasible space S ⊆ {0, 1}n and cost function C : S → R
can be written as

min
x∈S

C(x) .

Applying QAOA of depth p for solving this problem, we
first compute

|β,γ⟩QAOA :=
( p∏
j=1

UM (βj)UC(γj)
)
|s⟩ , (1)

where

• |s⟩ is an initial state in the feasible space S, which
is given by the set of all superpositions of classically
feasible states, i.e., by

S :=

{∑
i

λi |x⟩

∣∣∣∣∣ ∑
i

|λi|2 = 1, λi ∈ C, x ∈ S

}
;

• UC(γ) = e−iγHC is a phase-separation operator such
that

HC |x⟩ = C(x) |x⟩ , (2)

and HC is called cost Hamiltonian;

• UM (β) = e−iβHM is a mixing operator that preserves
feasible states

∀ |ψ⟩ ∈ S ∀β ∈ R : UM (β) |ψ⟩ ∈ S , (3)

and allows for full mixing of solutions

∀x, y ∈ S ∃β ∈ R ∃r ∈ N :

⟨y|Ur
M (β) |x⟩ > 0 ; (4)

The parameters β,γ are learned in a classical optimization
loop such that the expectation value of the cost function is
minimized

⟨β,γ|QAOA
HC |β,γ⟩QAOA

. (5)

The intuition behind this ansatz is that the phase-separation
operator modifies the phase of basis states (which corre-
spond to feasible solutions) depending on their cost, while
the mixing operator realizes transitions between feasible
states, resulting in constructive and destructive interference.
Since the parameters of the operators are optimized with
respect to the expectation value of the cost function, states
with low cost are amplified by constructive interference,
while states with high cost are erased by destructive inter-
ference.

In order to apply QAOA to a specific problem, the operators
and the initial state need to be defined and implemented. The
main challenge lies in constructing the initial state and the
mixing operator. Conversely, the phase-separation operator
is easy to construct. If the problem is formulated as an
integer program with binary variables, it is sufficient to
choose the cost HamiltonianHC such that variables xi in the
cost function C(x) are replaced by the term (1−Zi)

2 . This is
due to the fact that if xi = 0, then (1−Zi)

2 |xi⟩ = 0 |xi⟩, and
if xi = 1, then (1−Zi)

2 |xi⟩ = 1 |xi⟩. Thus, (2) is fulfilled for
the Hamiltonian constructed in this way. Implementing the
corresponding unitary operator only requires the application
of RZ gates to individual qubits.
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QAOA is considered a promising variational quantum algo-
rithm for the following reasons:

• For p → ∞ and under the conditions given in
(Binkowski et al., 2024), there exist parameters for
each problem instance such that an optimal solution is
obtained with certainty.

• Under reasonable complexity theoretic conjectures, it
is not possible to efficiently sample from the gener-
ated distributions classically, even for p = 1 (Farhi &
Harrow, 2019).

• The parameters are concentrated for different instances
of the same problem (Brandao et al., 2018; Akshay
et al., 2021), allowing us to learn them for one instance
and reuse them, or use them as an initial point for
others.

The approximation ratios are expected to increase with
larger ansatz depth p and are guaranteed to improve with
optimal parameters. However, the depth is limited for two
reasons. Firstly, the number of applied operators increases,
resulting in problems with computational resources for the
simulation on classical computers and the introduction of
noise for the execution on quantum computers. Secondly,
the number of learnable parameters increases with p, and
gradients cannot be easily computed on quantum computers.

Correlation Clustering Let G = (V,E) be an undirected
graph, let n = |V | be the number of nodes in G and let
c ∈ {+1,−1}E be costs associated with the edges of the
graph. The problem of unweighted maximum agreement
correlation clustering consists in finding a clustering (or
partition) of the node set V such that the number of pairs of
nodes connected by edges with cost +1 that are in the same
cluster, and the number of pairs of nodes connected by edges
with cost −1 that are in different clusters, is maximized.
Figure 1 shows an example of a problem instance.

We can formulate unweighted maximum agreement corre-
lation clustering as an integer quadratic program in which
binary variables x ∈ {0, 1}n×n indicate if a node v is as-
signed to cluster i, xv,i = 1, or not, xv,i = 0 :

max
x

∑
uv∈E : cuv=1

∑
i∈K

xu,i xv,i +∑
uv∈E : cuv=−1

∑
i,j∈K : i ̸=j

xu,i xv,j

subject to
∑
i∈K

xu,i = 1 for all u ∈ V ,

(6)

where K = {1, . . . , n} and we use uv, vu for denoting an
edge {u, v} ∈ E.

−1

1

1

1 −1 1

Figure 1. Depicted above is an example of an instance of the un-
weighted maximum agreement correlation clustering problem,
along with a corresponding optimal solution. The problem in-
stance is given by the graph and the costs written along its edges.
The clustering indicated by the coloring of the nodes has 5 agree-
ments and is optimal.

In this formulation, the variable assignment xu,1 = 1 and
xv,2 = 1 for nodes u and v indicates that node u is in
Cluster 1 and that node v is in Cluster 2. Thus, the nodes are
in different clusters. In this case, a value of 1 is contributed
to the cost if and only if cuv = −1.

Note that when using QAOA for maximum agreement cor-
relation clustering, we need to take the negative of the above
cost function, since the expected cost (5) is minimized.

4. Sub-Problem Quantum Alternating
Operator Ansatz

In this section, we introduce the Sub-Problem Quantum Al-
ternating Operator Ansatz, a generalization of QAOA that,
as we will show in Section 5, leads to better results when
solving the correlation clustering problem regarding both
the approximation ratio and the used resources while main-
taining the optimality guarantee for p→ ∞. In comparison
to QAOA, we make two significant changes: Firstly, we
employ nucleus sampling (Holtzman et al., 2020) for the
computation of the expected cost. Secondly, we alter the
ansatz itself by splitting the problem into sub-problems and
applying QAOA to each of them.

Nucleus Sampling As is typical for variational algorithms,
QAOA minimizes the expectation value of the classical cost
function, which is represented by a cost Hamiltonian (5).
Since the expectation value acts as an upper bound on the
ground state energy, i.e., the optimal cost, this minimization
approximates ground states of the cost Hamiltonian, and
thus optimal solutions.

The upper diagram of Figure 2 shows the agreements of
the basis states of the multi-level QAOA formulation of
Weggemans et al. (2022) with p = 1 for a correlation clus-
tering problem instance and the corresponding probabilities
of these basis states. As expected, the algorithm shifts prob-
ability mass to solutions of low cost (i.e., high agreement).
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Figure 2. Depicted are two diagrams showing the probability of
measuring basis states when applying the multi-level QAOA for-
mulation of Weggemans et al. (2022) with p = 1 to the correlation
clustering problem instance given in Figure 1. Shown in addition
are the agreements of these basis states, i.e., the value of the cost
function in (6). The probabilities of the diagram at the top are
obtained directly from the QAOA results. The probabilities of the
diagram at the bottom are obtained by nucleus sampling with a
threshold of t = 0.5.

However, solutions of high cost are not completely erased
and, due to their number, increase the expectation value sig-
nificantly. The problem of this “unreliable tail” also occurs
in decoding strategies for large language models and was
approached by Holtzman et al. (2020) using a technique
called nucleus sampling (sometimes called top-p sampling).

The main idea of nucleus sampling is that, instead of sam-
pling directly from a given probability distribution, we sam-
ple from the most probable states whose cumulative proba-
bility surpasses a previously defined threshold. The set of
those states is called the nucleus. Hence, in our case, we do
not compute the expected cost with respect to the n-qubit
state |ψ⟩ obtained from the quantum algorithm, but with
respect to |ψ′⟩ obtained in the following way. Firstly, we set
a threshold t ∈ (0, 1] and compute a nucleus, i.e., a smallest
set X(t) ⊆ {0, 1}n such that∑

x∈X(t)

|⟨x |ψ⟩|2 ≥ t .

Secondly, we set the probability amplitudes of the basis
states not in X(t) to zero and use

t′ =

√ ∑
x∈X(t)

|⟨x |ψ⟩|2

to rescale the remaining states accordingly, i.e., we set |ψ′⟩
such that

⟨x |ψ′⟩ =

{
⟨x |ψ⟩ / t′ if x ∈ X(t)

0 otherwise
.

For the case t = 1, it holds |ψ′⟩ = |ψ⟩, and our approach
specializes to regular sampling. Moreover, since |ψ′⟩ is also
a normalized quantum state, the obtained cost function still
acts as an upper bound on the ground state energy.

The lower diagram of Figure 2 shows the probabilities ob-
tained when using multi-level QAOA with nucleus sampling
and a threshold of t = 0.5 for training parameters and infer-
ence. Clearly, reducing the threshold from 1 leads to better
solutions.

Sub-Problems Instead of solving the whole correlation
clustering problem at once by applying QAOA (1), we split
it into l sub-problems, solving each with QAOA, and intro-
duce transition operators UTi

for i ∈ {1, . . . , l}, preparing
their initial state:

|β,γ⟩SQAOA :=

l∏
i=1

( p∏
j=1

UMi
(βi,j)UCi

(γi,j)
)
UTi

|0⟩ .

(7)

Clearly, for l = 1, UT1
|0⟩ = |s⟩ and operators UM1

, UC1

satisfying properties (2-4), this specializes to QAOA, so we
are again considering a proper generalization.

In order to apply this ansatz to an instance of the (un-
weighted maximum agreement) correlation clustering prob-
lem given by an undirected graph G = (V,E) with n = |V |
nodes and costs c ∈ {+1,−1}E , we need to choose the
number of sub-problems l and the corresponding operators
appropriately. We do so by modelling correlation clustering
as an iterated application of max-cut. In each of l = n− 1
iterations, we solve a max-cut problem restricted to those
nodes that have not been assigned to a cluster in a previous
iteration. The nodes that are labeled 0 by the solution to the
max-cut problem are assigned to a new cluster. The nodes
labeled 1 remain unassigned (or are assigned to a “final”
cluster if it is the last iteration).

Realizing this directly within the framework of (7) is pos-
sible but requires complicated operators and, since at least
one qubit per node is needed for the decision in each sub-
problem, Ω(n2) qubits which is worse than the approaches
presented by Weggemans (2020) and Weggemans et al.
(2022). However, since the qubits associated with a sub-
problem are only manipulated by its operators, there is no
interference between states that differ in one of those qubits
once the sub-problem is processed. Consequently, we can
measure all qubits of a sub-problem after applying its op-
erators and evaluate the following sub-problem only on
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the classical probability distribution estimated from these
measurements instead of further performing operations on
the whole quantum system. This fact allows for a more
efficient implementation described in the following and in
more detail in Algorithm 1.

We choose l = n− 1. For any sub-problem i ∈ {1, . . . , l}
and any solution |x⟩ of the previous sub-problem, we com-
pute

|β,γ⟩SQAOA
i,x :=

( p∏
j=1

UMi,x
(βi,j)UCi,x

(γi,j)
)
UTi,x

|0⟩ ,

(8)

where

UTi,x =
⊗

u∈Vi,x

Hu , (9)

UMi,x(β) = e
−iβ

∑
u∈Vi,x

Xu , (10)

UCi,x(γ1, γ2) = e
−iγ1

∑
uv∈Ei,x

cuvZuZv

e
−iγ2

∑
u∈Vi,x

wuZu ,
(11)

Gi,x = (Vi,x, Ei,x) is the graph obtained from G by re-
moving nodes decided, i.e., labeled 0, in solution |x⟩ of
the previous sub-problem and w ∈ RV are weights ful-
filling w2

u ̸= w2
v for all distinct nodes u, v ∈ V . For the

first sub-problem we need to consider the whole graph G;
therefore, we set |x⟩ to |1⟩, i.e., all nodes are yet undecided.
After preparing the state |β,γ⟩SQAOA

i,x , we estimate the cor-
responding probability distribution by sampling repeatedly
from it and continue evaluating the next sub-problem on
all states with non-zero probability. Once all sub-problems
are processed, the expected costs are computed from the
measured probability distributions. Figure 3 illustrates the
described procedure compared to the multi-level approach
of Weggemans et al. (2022).

The transition operator UTi,x uses Hadamard gates to con-
struct an equal superposition of all feasible states of the sub-
problem. The mixing operator UMi,x enables transitions
between the feasible states of a sub-problem by flipping
qubits, i.e., by changing if the corresponding nodes remain
in the current cluster, or are assigned to a new cluster that is
further split in the next sub-problem. The phase-separation
operator UCi,x incorporates the cost function into the first
exponent, as described in Section 3, but drops constant
terms since they affect all states in the same way and can
be neglected. Additionally, the Hamiltonian given by the
second exponent allows a cost-independent separation of
phases based on individual nodes. The motivation behind
introducing this second term with weights w, as well as the
reason for restricting those, will be discussed in Section 5.

As described, we evaluate each sub-problem with respect to
all solutions having a non-zero probability in the previous

UM

UM1

UM2

UM3

Figure 3. Depicted is are basis state of the multi-level QAOA for-
mulation of Weggemans et al. (2022) (left) and SQAOA (right)
corresponding to the same solution of a correlation clustering prob-
lem instance with four nodes. In the presented solution, the first
node is assigned to the first cluster, the second node to the fourth
cluster, and the remaining nodes to the second cluster. For QAOA,
each column represents a qudit and each node a qudit state. For
SQAOA, each node represents a qubit. Nodes colored black corre-
spond to qudit states or qubits set to |1⟩, and white nodes to qudit
states or qubits set to |0⟩. The arrows indicate transitions realized
by the mixing operator. For SQAOA, the colors indicate the three
sub-problems where, due to the measurements, the same physical
qubits can be used for all sub-problems.

sub-problem. Since there can be exponentially many of
these for dense probability distributions, this may constitute
a performance bottleneck. However, since we apply nucleus
sampling, as discussed previously, we only need to evaluate
the next problem on the states in the nucleus. Although this
does not guarantee a sub-exponential number of evaluations,
we show experimentally in Section 5 that this number re-
mains almost constant for the considered problem sizes and
low nucleus sampling thresholds.

Note that, besides the sum over Vi,x in UCi,x
, the ansatz

for a sub-problem corresponds to the one used for solving
max-cut with the Quantum Approximate Optimization Al-
gorithm (Farhi et al., 2014). Without this second term in
the phase-separation operator, only pairwise interactions
between nodes weighted by the costs would be considered
for the phase-separation. Including it allows to also take
individual nodes with weights w into account. Note further
that, while all other terms are permutation invariant, and we
thus expect the parameters β and γ1 to be reusable across
instances as for QAOA, the newly introduced term with
parameter γ2 is not, leading to the necessity of relearning it
for different problem instances, or even the same instance
when permuting nodes.

As shown by Weggemans (2020), operators (9-11) can be
implemented using only Hadamard, RX, RZ and CX gates
without requiring additional ancilla qubits. Moreover, since
we measure after processing a sub-problem, qubits can be
reused, and thus only a total of n qubits are needed for the
whole algorithm.
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Algorithm 1 SQAOA - Correlation Clustering

probabilities = empty dictionary
current states = empty set
add 1 to current states
for i = 1 to l do
next states = empty set
for x in current states do

for shot = 1 to 1000 do
|ψ⟩ = UTi,x

|0⟩
for j = 1 to p do
|ψ⟩ = UMi,x

(βi,j)UCi,x
(γi,j) |ψ⟩

measure |ψ⟩ and update probabilities[i][x]
add nucleus of probabilities[i][x] to next states

current states = next states

costs = empty dictionary
for i = l to 1 do

for y in probabilities[i] do
costs[i][y] = 0
for p, x in nucleus of probabilities[i][y] do

for u, v in Ei,y do
if cuv == 1 then
costs[i][y] += p (1− xu) (1− xv)
if i == l then
costs[i][y] += p xu xv

if cuv == −1 then
costs[i][y] += p (1− xu)xv

+ p xu (1− xv)
if i ̸= l then
costs[i][y] += p cost[i+ 1][x]

return costs[1][1]

5. Evaluation
In this section, we evaluate our SQAOA formulation for
correlation clustering. Firstly, we show that for p → ∞,
there exist parameters for each problem instance such that
an optimal solution is obtained with certainty. Secondly, we
experimentally compare our approach to the one of Wegge-
mans et al. (2022) in terms of approximation ratios and
runtimes.

Theoretical Analysis QAOA yields an optimal solution
under the conditions given by Binkowski et al. (2024), con-
taining especially p→ ∞ and that the optimal solution is an
eigenvector of the phase-separation operator with the small-
est eigenvalue. Although the given operators fulfill these
conditions, this argument only guarantees to reach optimal
solutions on the individual sub-problems, but not a globally
optimal solution. Considering only pairwise interactions
for the mixing operator, we have not been able to prove
or disprove that there exist parameters such that (8) yields

a globally optimal solution for p → ∞. However, when
including the term for individual nodes, we have been able
to show this by adapting the universality proof for the Quan-
tum Approximate Optimization Algorithm from Morales
et al. (2020) as shown in the following. The proofs of the
upcoming lemmata are deferred to Appendix B.

Definition 5.1. Given a set of Hamiltonians P =
{H1, H2, . . . ,Hq}, we call the smallest real Lie algebra
L with the commutator as the Lie bracket containing the
elements of P the generated Lie algebra of P .

Proposition 5.2. (D’Alessandro, 2021) Let P be a set of
Hamiltonians and let L be the generated Lie algebra of P .
The set of unitaries that can be approximated to arbitrary
precision by iterated application of the elements in P is
given by

{e−iA | A ∈ L} .

Lemma 5.3. Let G = (V,E) be an undirected graph, let
c ∈ RE and w ∈ RV . Let further

HM =
∑
u∈V

Xu , HC =
∑
uv∈E

cuvZuZv +
∑
u∈V

wuZu

and let L be the generated Lie algebra of {HM , HC}. It
holds that

HC′ :=
∑
u∈V

wuZu ∈ L .

Lemma 5.4. Let G = (V,E) be an undirected graph and
let w ∈ RV . Let further

HM =
∑
u∈V

Xu , HC′ =
∑
u∈V

wuZu

and let L be the generated Lie algebra of {HM , HC′}. If
wu

2 ̸= wv
2 for all distinct u, v ∈ V , it holds for all u′ ∈ V

that

Hu′ , Xu′ ∈ L .

Theorem 5.5. Let G = (V,E) be an undirected graph,
let c ∈ RE and w ∈ RV with wu

2 ̸= wv
2 for all distinct

u, v ∈ V . Let further

UT =
⊗
u∈V

Hu ,

UM (β) = e−iβ
∑

u∈V Xu and

UC(γ1, γ2) = e−i(γ1

∑
uv∈E cuvZuZv+γ2

∑
u∈V wuZu) .

For any basis state |x⟩ with x ∈ {0, 1}|V |, there exist pa-
rameters βj , γj ∈ R for j ∈ {1, . . . , p} and a phase shift
θ ∈ R such that it holds for p→ ∞:

e−iθ |x⟩ =
( p∏
j=1

UM (βj)UC(γ1,j , γ2,j)
)
UT |0⟩ .

7
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Proof. Let L be the generated Lie algebra of {HM , HC}.
After applying UT , the qubits are in state UT |0⟩. Since
Hu ∈ L by Lemma 5.3 and Lemma 5.4, we can revert this
state to |0⟩ (modulo a phase shift of (−i)|V |) by applying∏

u∈V e
−iπ/2Hu = (−i)|V | ⊗

u∈V Hu. Next, we can (mod-
ulo a phase shift of −i) flip individual qubits associated
with nodes u ∈ V by applying e−iπ/2Xu = −iXu, since
Xu ∈ L by Lemma 5.3 and Lemma 5.4. This allows to con-
struct arbitrary basis states |x⟩ (modulo a potential phase
shift e−iθ) .

According to Theorem 5.5, arbitrary basis states can be
constructed in each sub-problem when p approaches infin-
ity. Therefore, for each instance of the correlation cluster-
ing problem, there clearly exist parameters such that our
SQAOA formulation (8) obtains optimal solutions with cer-
tainty.

Empirical Analysis To demonstrate the advancements
of SQAOA and nucleus sampling in general, we conduct
experiments on instances of the correlation clustering prob-
lem involving complete graphs and Erdös-Rényi graphs
where the probability of an edge being present is 0.5.
We then compare these results with those of the multi-
level QAOA formulation presented by Weggemans et al.
(2022). The code for the SQAOA experiments is available
at https://github.com/fabian-na/SQAOA.

For the experimental setup, we mainly follow Weggemans
et al. (2022). In particular, for a fixed graph size, we eval-
uate the performance on datasets consisting of 50 problem
instances with edge weights {+1,−1}, where the probabil-
ity of an edge having weight +1 is uniformly increased from
0 to 1 to represent all weight configurations. Mean values
and standard deviations given in this section always refer to
the results obtained for a dataset, i.e., a mean approximation
ratio of 1.0 with a standard deviation of 0.0 indicates that
all 50 instances are solved to optimality.

For the classical optimization procedure, we use the Pow-
ell optimizer, which has proven to be efficient for solving
other problems with QAOA (Pellow-Jarman et al., 2021;
Fernández-Pendás et al., 2022). Further, for each dataset,
we first learn parameters for the instance with all edges hav-
ing weight −1 and then use these parameters as an initial
point for the remaining instances in that dataset. The only
exception are the parameters γ2 used in the phase-separation
operator of SQAOA. Those are, due to their permutation
dependence, always initialized to 0. The corresponding
weights w are chosen by enumerating all nodes by integers
ranging from 1 to n. With this choice, the phase-separation
operator remains 2π-periodic with respect to each of its
parameters. We set the number of shots used to estimate
probability distributions to 1000 and restart each optimiza-
tion procedure 5 times, taking only the best overall result.

Table 1. Mean approximation ratios and runtimes for solving 50
correlation clustering problem instances on Erdős-Rényi Graph
graphs with n = 3, 4, 5 nodes using the multi-level QAOA formu-
lation of Weggemans et al. (2022) and SQAOA with a depth of
p = 1 and thresholds for nucleus sampling of t = 1, 0.1.

Erdős-Rényi Graphs - Approximation Ratio

n = 3 n = 4 n = 5

QAOA t = 1 0.97± 0.04 0.92± 0.07 0.92± 0.07

QAOA t = 0.1 1.00± 0.00 1.00± 0.00 1.00± 0.00

SQAOA t = 1 0.94± 0.08 0.88± 0.09 0.85± 0.10

SQAOA t = 0.1 1.00± 0.00 1.00± 0.02 1.00± 0.02

Erdős-Rényi Graphs - Runtime [s]

n = 3 n = 4 n = 5

QAOA t = 1 121± 40 221± 30 316± 44

QAOA t = 0.1 5± 0 15± 2 109± 32

SQAOA t = 1 23± 12 161± 45 799± 256

SQAOA t = 0.1 2± 1 6± 2 10± 5

Table 1 shows approximation ratios and runtimes obtained
for multi-level QAOA and SQAOA with depth p = 1 on
correlation clustering instances of Erdős-Rényi graphs with
n = 3, 4, 5 nodes and two thresholds t = 1 and t = 0.1
for nucleus sampling. An extended version of this table
containing results for complete graphs, depths p = 2, 3 and
threshold t = 0.5 is given in Appendix C. As can be seen
from the table, both QAOA and SQAOA perform, even for
t = 1, significantly better than the Swamy bound of 0.7666
(Swamy, 2004) with SQAOA achieving slightly worse ap-
proximation ratios. Setting the threshold to t = 0.1 greatly
improves the approximation ratios, leading to optimal re-
sults for QAOA and near optimal results for SQAOA. While
improving the approximation ratios, reducing the threshold
also leads to an overall reduction of the runtime for the given
experiments. However, this does not hold in general. As
shown in the appendix, solving QAOA with t = 0.5 takes
significantly longer than solving QAOA with t = 1 for the
dataset with 5 nodes. For SQAOA, we do not observe such
a behavior; in fact, the runtimes seem to scale much better
than for the QAOA approach when using a low threshold
for nucleus sampling.

Since the threshold alters only the computation of the cost
function for QAOA and not the quantum algorithm itself,
the difference in runtimes must be caused by an increased
number of function evaluations during the optimization pro-
cedure. This might be due to the fact that discontinuities get
introduced to the cost function when states enter or leave
the nucleus. For SQAOA on the other hand, reducing t has
always resulted in lower runtimes for the experiments we
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Figure 4. Depicted is a diagram showing the mean nucleus size
and the mean number of function evaluations when solving the
dataset of Erdős-Rényi graphs with 5 nodes using SQAOA with
depth p = 1 for nucleus sampling thresholds of t = 1, 0.5, 0.1.
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Figure 5. Depicted is a diagram showing the mean approximation
ratios and runtimes of SQAOA (t = 0.1) and the multi-level
QAOA approach of Weggemans et al. (2022) (t = 1) with ansatz
depth p = 1 when applied to datasets of Erdős-Rényi graphs with
up to 10 nodes for SQAOA and 7 nodes for QAOA.

have conducted. This is due to the fact that, even as the num-
ber of function evaluations increases, each evaluation takes
less time since fewer elements are in the nucleus. This is
illustrated in Figure 4 for the dataset of Erdős-Rényi graphs
with 5 nodes and p = 1. In particular, one can see that the
number of elements in the nucleus is almost constant for the
considered problem sizes and low thresholds.

Weggemans et al. (2022) consider instances of the correla-
tion clustering problem with up to 7 nodes. In Figure 5, we
give approximation ratios and runtimes for SQAOA with
t = 0.1 and p = 1 on instances with up to 10 nodes. As
can be seen from the figure, the runtime increases expo-
nentially, as expected, although slower than for the QAOA
formulation. The approximation ratio, however, seems to
remain almost constant, further corroborating the potential
of SQAOA and variational algorithms in general.

6. Conclusion
We introduce the Sub-Problem Quantum Alternating Opera-
tor Ansatz (SQAOA), a generalization of the Quantum Alter-
nating Operator Ansatz (QAOA) based on nucleus sampling
and splitting problems into sub-problems. In a theoretical
analysis, we show that for each instance of the correlation
clustering problem, there exist parameters such that a spe-
cific SQAOA formulation of the problem obtains an optimal
solution with certainty. Further, we show experimentally
that this SQAOA formulation outperforms existing QAOA
approaches for correlation clustering in terms of approxima-
tion ratios and runtime while using only as many qubits as
there are elements to cluster.

We see two possible directions for future research: Further
analyzing SQAOA for correlation clustering and extending
its application to other problems. Regarding the first direc-
tion, we have not yet given a lower bound on the achieved
approximation ratio, as it is done by Weggemans (2020) for
the multi-level formulation. One could also consider mod-
elling correlation clustering with different sub-problems
since we do not exploit the full expressiveness of SQAOA
with the current formulation, which uses the same operators
for each sub-problem. Regarding the second direction, split-
ting a problem into sub-problems is a universal approach,
and similar improvements may be possible for problems
beyond correlation clustering. Of particular interest are
thereby problems in which elements are assigned one of
multiple labels. For example, one could consider the Max-
imum k-Colorable Subgraph Problem with sub-problems
coloring parts of the graph that have not yet been considered
using a fixed number of colors smaller than k.

Acknowledgements
We thank Jordi Weggemans for providing the source code
of Weggemans et al. (2022), which we use to perform the
QAOA experiments. This work is partly supported by the
Federal Ministry of Education and Research of Germany
through DAAD Project 57616814 (SECAI) and Project
16KIS2332K (AI.Auto-Immune).

Impact Statement
This theoretical article presents work whose goal is to ad-
vance the field of machine learning, more specifically clus-
tering. As for all advances in this field, there are many
potential societal consequences of our work. However, we
do not feel that the implications of this article differ from
those of other contributions to that field and must be specifi-
cally highlighted here.

9

https://secai.org/
https://www.forschung-it-sicherheit-kommunikationssysteme.de/projekte/ai-auto-immune


A Sub-Problem Quantum Alternating Operator Ansatz for Correlation Clustering

References
Abbas, A. and Swoboda, P. ClusterFuG: Cluster-

ing Fully connected Graphs by Multicut. In ICML,
2023. URL https://proceedings.mlr.press/
v202/abbas23a.

Akshay, V., Rabinovich, D., Campos, E., and Biamonte,
J. Parameter concentrations in quantum approximate
optimization. Phys. Rev. A, 104:L010401, 2021. doi:
10.1103/PhysRevA.104.L010401.

Bansal, N., Blum, A., and Chawla, S. Correlation clustering.
Machine Learning, 56(1):89–113, 2004. doi: 10.1023/B:
MACH.0000033116.57574.95.

Beier, T., Hamprecht, F. A., and Kappes, J. H. Fusion
moves for correlation clustering. In CVPR, 2015. doi:
10.1109/CVPR.2015.7298973.

Benjelloun, O., Garcia-Molina, H., Menestrina, D., Su, Q.,
Whang, S. E., and Widom, J. Swoosh: a generic approach
to entity resolution. The VLDB Journal, 18(1):255–276,
2009. doi: 10.1007/s00778-008-0098-x.

Binkowski, L., Koßmann, G., Ziegler, T., and Schwonnek, R.
Elementary proof of QAOA convergence. New Journal of
Physics, 26(7):073001, 2024. doi: 10.1088/1367-2630/
ad59bb.

Blekos, K., Brand, D., Ceschini, A., Chou, C.-H., Li, R.-
H., Pandya, K., and Summer, A. A review on quan-
tum approximate optimization algorithm and its vari-
ants. Physics Reports, 1068:1–66, 2024. doi: 10.1016/j.
physrep.2024.03.002.

Brandao, F. G. S. L., Broughton, M., Farhi, E., Gutmann,
S., and Neven, H. For fixed control parameters the quan-
tum approximate optimization algorithm’s objective func-
tion value concentrates for typical instances, 2018. URL
https://arxiv.org/abs/1812.04170.

Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S. C.,
Endo, S., Fujii, K., McClean, J. R., Mitarai, K., Yuan,
X., Cincio, L., and Coles, P. J. Variational quantum
algorithms. Nature Reviews Physics, 3(9):625–644, 2021.
doi: 10.1038/s42254-021-00348-9.

Cook, J., Eidenbenz, S., and Bärtschi, A. The quantum al-
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Ranilla, J., and Rúa, I. F. A study of the perfor-
mance of classical minimizers in the quantum approx-
imate optimization algorithm. Journal of Computa-
tional and Applied Mathematics, 404:113388, 2022. doi:
10.1016/j.cam.2021.113388.

Fuchs, F. G., Kolden, H. Ø., Aase, N. H., and Sartor, G. Ef-
ficient encoding of the weighted max k-cut on a quantum
computer using QAOA. SN Computer Science, 2(2):89,
2021. doi: 10.1007/s42979-020-00437-z.

Hadfield, S., Wang, Z., O’Gorman, B., Rieffel, E. G.,
Venturelli, D., and Biswas, R. From the quantum ap-
proximate optimization algorithm to a quantum alter-
nating operator ansatz. Algorithms, 12(2), 2019. doi:
10.3390/a12020034.

Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.
The curious case of neural text degeneration. In ICLR,
2020. URL https://openreview.net/forum?
id=rygGQyrFvH.

Keuper, M., Levinkov, E., Bonneel, N., Lavoué, G., Brox,
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A. Quantum Gates

Pauli-X: X :=

[
0 1

1 0

]
X |0⟩ = |1⟩

Rotational X: RX(θ) := e−iθX = cos(θ)I − i sin(θ)X

Pauli-Z: Z :=

[
1 0

0 −1

]
Z |1⟩ = − |1⟩

Rotational Z: RZ(θ) := e−iθZ = cos(θ)I − i sin(θ)Z

Hadamard: H :=
1√
2

[
1 1

1 −1

]
H |0⟩ = 1√

2
(|0⟩+ |1⟩)

Conditional X: CX :=


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


|00⟩
|01⟩
|10⟩
|11⟩
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B. Additional Proofs
Proof of Lemma 5.3. We want to show that HC′ =

∑
u∈V wuZu is in the generated lie algebra L of {HM , HC},

where HM =
∑

u∈V Xu and HC =
∑

uv∈E cuvZuZv +
∑

u∈V wuZu. For notational convenience, we define
HC1

:=
∑

uv∈E cuvZuZv .

In analogy to Morales et al. (2020), we define a series of commutators in L, showing finally that HC′ ∈ L:

HY Z :=
1

2i
[HC , HM ] =

1

2i

(
[HC1

, HM ] + [HC′ , HM ]
)

=
∑
uv∈E

cuv(ZuYv + YuZv) +
∑
u∈V

wuYu ∈ L ,

1

2i
[HY Z , HM ] =

∑
uv∈E

cuv
[
ZuYv + YuZv,

∑
u′∈V

Xu′
]
+

∑
u∈V

wu

[
Yu,

∑
u′∈V

Xu′
]

=
∑
uv∈E

cuv
(
YuYv − ZuZv − ZuZv + YuYv

)
−

∑
u∈V

wuZu

= 2
∑
uv∈E

cuv
(
YuYv − ZuZv

)
−

∑
u∈V

wuZu ∈ L ,

H(1) :=
1

2i
[HY Z , HM ] +HC =

∑
uv∈E

cuv
(
2YuYv − ZuZv

)
∈ L ,

H(2) :=
1

2i
[H(1), HM ] =

1

2i
[H(1), HM ] =

1

2i

∑
uv∈E

cuv
(
2
[
YuYv,

∑
u′∈V

Xu′
]
−

[
ZuZv,

∑
u′∈V

Xu′
])

=
∑
uv∈E

cuv
(
2
(
−ZuYv − YuZv

)
−
(
YuZv + ZuYv

))
= −3

∑
uv∈E

cuv
(
ZuYv + YuZv

)
∈ L ,

1

2i
[HY Z +

1

3
H(2), HM ] =

1

2i

(
[HY Z , HM ] + [

1

3
H(2), HM ]

)
= −

∑
u∈V

wuZu + 2
∑
uv∈E

cuv(YuYv − ZuZv)

−
∑
uv∈E

cuv
(
YuYv − ZuZv − ZvZu + YvYu

)
= −

∑
u∈V

wuZu

= −HC′ ∈ L .

It follows directly from −HC′ ∈ L that HC′ ∈ L.
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Proof of Lemma 5.4. We want to show that Hu′ and Xu′ are for all u′ ∈ V in the generated lie algebra L of {HM , HC′},
where HM =

∑
u∈V Xu and HC′ =

∑
u∈V wuZu with wu

2 ̸= wv
2 for all u, v ∈ V .

Assume we have already shown Xu′ ∈ L. It follows directly that Yu′ = 1
2i [

1
wu′

HC′ , Xu′ ] ∈ L, further Zu′ = 1
2i [Xu′Yu′ ] ∈

L and thus Hu′ = 1√
2
(Z +X) ∈ L. Consequently, it only remains to show Xu′ ∈ L.

Define n = |V |. For proving Xu′ ∈ L, we first show that if HM ′ =
∑

u∈V ′ w′
uXu ∈ L with V ′ ⊆ V , and w′ 2

u ̸= w′ 2
v for

all u, v ∈ V ′, we can for any x ∈ V ′ construct
∑

u∈V ′\{x} w
′′
uXu ∈ L such that w′′ 2

u ̸= w′′ 2
v for all u, v ∈ V ′ \ {x}.

In particular, it follows from

HY ′ :=
1

2i
[HC , HM ′ ] =

∑
u∈V ′

wuw
′ 2
u Yu ∈ L

and

HX′ :=
1

2i
[HY ′ , HC ] =

∑
u∈V (i)

w2
uw

′ 2
u Xu ∈ L ,

that it holds for every x ∈ V ′ that

w2
xHM ′ −HX′ =

∑
u∈V ′\{x}

(w2
x − w2

u)w
′ 2
u Xu ∈ L .

Setting w′′ 2
u = (w2

x − w2
u)w

′ 2
u yields the desired result.

It only remains to show that we can initially construct such an HM ′ . Therefore, consider first

HY :=
1

2i
[HC , HM ] =

∑
u∈V

wuYu .

We then get

1

2i
[HY , HC ] =

∑
u∈V

w2
uXu = HM ′

with V ′ = V and w′ = w.
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C. Additional Tables

Table 2. Mean approximation ratios and runtimes with standard deviations for solving 50 correlation clustering problem instances on
complete and Erdős-Rényi graphs with n = 3, 4, 5 nodes using the multi-level QAOA formulation of Weggemans et al. (2022) and
SQAOA, ansatz depths of p = 1, 2, 3 and thresholds for nucleus sampling of t = 1, 0.5, 0.1.

Complete Graphs - Approximation Ratio

QAOA t = 1 QAOA t = 0.5 QAOA t = 0.1 SQAOA t = 1 SQAOA t = 0.5 SQAOA t = 0.1

n = 3

0.97 ± 0.04

1.00 ± 0.00

1.00 ± 0.00

1.00 ± 0.00

1.00 ± 0.00

1.00 ± 0.00

1.00 ± 0.00

1.00 ± 0.00

0.96 ± 0.05

0.97 ± 0.05

1.00 ± 0.00

1.00 ± 0.00

1.00 ± 0.00

1.00 ± 0.00

1.00 ± 0.00

1.00 ± 0.00

n = 4

0.91 ± 0.07

0.98 ± 0.02

0.99 ± 0.02

1.00 ± 0.00

1.00 ± 0.00

1.00 ± 0.00

1.00 ± 0.00

1.00 ± 0.00

0.83 ± 0.06

0.83 ± 0.06

0.98 ± 0.02

1.00 ± 0.00

0.99 ± 0.03

1.00 ± 0.02

1.00 ± 0.00

0.99 ± 0.04

n = 5

0.90 ± 0.08

0.95 ± 0.00

0.97 ± 0.04

0.98 ± 0.04

0.98 ± 0.04

0.98 ± 0.04

0.98 ± 0.05

0.98 ± 0.05

0.86 ± 0.07

0.86 ± 0.08

0.97 ± 0.03

0.98 ± 0.03

0.99 ± 0.03

0.99 ± 0.03

0.99 ± 0.03

0.99 ± 0.03

Complete Graphs - Runtime [s]

QAOA t = 1 QAOA t = 0.5 QAOA t = 0.1 SQAOA t = 1 SQAOA t = 0.5 SQAOA t = 0.1

n = 3

173 ± 33

315 ± 59

6 ± 1

16 ± 2

30 ± 4

5 ± 0

15 ± 2

21 ± 5

44 ± 9

100 ± 21

14 ± 5

15 ± 7

27 ± 1

2 ± 1

4 ± 2

7 ± 4

n = 4

272 ± 23

691 ± 58

40 ± 8

85 ± 17

102 ± 36

15 ± 2

35 ± 7

55 ± 16

207 ± 50

422 ± 77

41 ± 15

78 ± 27

85 ± 22

9 ± 2

15 ± 4

18 ± 4

n = 5

488 ± 60

1012 ± 101

716 ± 302

1140 ± 190

2361 ± 641

109 ± 32

216 ± 35

349 ± 73

1268 ± 450

2438 ± 836

155 ± 78

265 ± 118

384 ± 175

15 ± 4

26 ± 9

50 ± 15

Erdős-Rényi Graphs - Approximation Ratio

QAOA t = 1 QAOA t = 0.5 QAOA t = 0.1 SQAOA t = 1 SQAOA t = 0.5 SQAOA t = 0.1

n = 3

0.97 ± 0.04

1.00 ± 0.01

1.00 ± 0.00

1.00 ± 0.00

1.00 ± 0.00

1.00 ± 0.00

1.00 ± 0.00

1.00 ± 0.00

0.94 ± 0.08

0.94 ± 0.08

1.00 ± 0.00

1.00 ± 0.00

1.00 ± 0.00

1.00 ± 0.00

1.00 ± 0.00

1.00 ± 0.00

n = 4

0.92 ± 0.07

0.97 ± 0.03

1.00 ± 0.01

1.00 ± 0.00

1.00 ± 0.00

1.00 ± 0.00

1.00 ± 0.00

1.00 ± 0.00

0.88 ± 0.09

0.88 ± 0.09

0.99 ± 0.03

1.00 ± 0.02

1.00 ± 0.00

1.00 ± 0.02

1.00 ± 0.00

1.00 ± 0.00

n = 5

0.92 ± 0.07

0.96 ± 0.04

0.98 ± 0.03

1.00 ± 0.01

1.00 ± 0.01

1.00 ± 0.00

1.00 ± 0.00

1.00 ± 0.00

0.85 ± 0.10

0.85 ± 0.10

0.98 ± 0.03

0.99 ± 0.03

1.00 ± 0.01

1.00 ± 0.02

1.00 ± 0.00

1.00 ± 0.00
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Table 2. (Continuation)

Erdős-Rényi Graphs - Runtime [s]

QAOA t = 1 QAOA t = 0.5 QAOA t = 0.1 SQAOA t = 1 SQAOA t = 0.5 SQAOA t = 0.1

n = 3

121 ± 40

272 ± 84

6 ± 1

12 ± 2

26 ± 3

5 ± 0

15 ± 2

21 ± 5

23 ± 12

53 ± 27

8 ± 4

15 ± 8

23 ± 12

2 ± 1

4 ± 2

7 ± 3

n = 4

221 ± 30

501 ± 98

38 ± 9

54 ± 9

139 ± 26

15 ± 2

35 ± 7

55 ± 16

161 ± 45

338 ± 102

38 ± 18

52 ± 25

97 ± 37

6 ± 2

12 ± 4

19 ± 7

n = 5

316 ± 44

748 ± 125

809 ± 148

1285 ± 304

1860 ± 386

109 ± 32

216 ± 35

349 ± 73

799 ± 256

2155 ± 789

127 ± 61

193 ± 94

256 ± 116

10 ± 5

22 ± 7

28 ± 9
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