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Abstract

Modern text classification systems have im-001
pressive capabilities but are infeasible to de-002
ploy and use reliably due to their dependence003
on prompting and billion-parameter language004
models. SetFit (Tunstall et al., 2022) is a re-005
cent, practical approach that fine-tunes a Sen-006
tence Transformer under a contrastive learning007
paradigm and achieves similar results to more008
unwieldy systems. Text classification is impor-009
tant for addressing the problem of domain drift010
in detecting harmful content, which plagues all011
social media platforms. Here, we propose Like012
a Good Nearest Neighbor (LAGONN), an in-013
expensive modification to SetFit that requires014
no additional parameters or hyperparameters015
but modifies input with information about its016
nearest neighbor, for example, the label and017
text, in the training data, making novel data ap-018
pear similar to an instance on which the model019
was optimized. LAGONN is effective at the020
task of detecting harmful content and gener-021
ally improves SetFit’s performance. To demon-022
strate LAGONN’s value, we conduct a thor-023
ough study of text classification systems in the024
context of content moderation under four label025
distributions.1026

1 Introduction027

Text classification is the most important tool for028

NLP practitioners, and there has been substan-029

tial progress in advancing the state-of-the-art, es-030

pecially with the advent of large, pretrained lan-031

guage models (PLM) (Devlin et al., 2019). Modern032

research focuses on in-context learning (Brown033

et al., 2020), pattern exploiting training (Schick034

and Schütze, 2021a,b, 2022), adapter-based fine-035

tuning with learned label embeddings (Karimi Ma-036

habadi et al., 2022), and parameter efficient fine-037

tuning (Liu et al., 2022a). These methods have038

achieved impressive results on the SuperGLUE039

(Wang et al., 2019) and RAFT (Alex et al., 2021)040

1Code and data: https://github.com/[REDACTED]
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Figure 1: We embed training data, retrieve the text, gold
label, and distance for each instance from its second
nearest neighbor (k=2) and modify the original text
with this information. Then we embed the modified
training data and train a classifier. During inference, the
NN from the training data is selected (k=1), the original
text is modified with the text, gold label, and distance
from the NN, and the classifier is called.

few-shot benchmarks, but most are difficult to 041

use because of their reliance on billion-parameter 042

PLMs and prompting. Constructing prompts is not 043

trivial and may require domain expertise. 044

One exception to these cumbersome systems 045

is SetFit. SetFit does not rely on prompting or 046

billion-parameter PLMs, and instead fine-tunes a 047

pretrained Sentence Transformer (ST) (Reimers 048

and Gurevych, 2019) under a contrastive learning 049

paradigm. SetFit has comparable performance to 050

more unwieldy systems while being one to two or- 051

ders of magnitude faster to train and run inference. 052

An important application of text classification 053

is aiding or automating content moderation, which 054

is the task of determining the appropriateness of 055

user-generated content on the Internet (Roberts, 056

2017). From fake news to toxic comments to hate 057

speech, it is difficult to browse social media without 058

being exposed to potentially dangerous posts that 059

may have an effect on our ability to reason (Ecker 060
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et al., 2022). Misinformation spreads at alarming061

rates (Vosoughi et al., 2018), and an ML system062

should be able to quickly aid human moderators.063

While there is work in NLP with this goal (Markov064

et al., 2022; Shido et al., 2022; Ye et al., 2023), a065

general, practical and open-sourced method that066

is effective across multiple domains remains an067

open challenge. Novel fake news topics or racial068

slurs emerge and change constantly. Retraining of069

ML-based systems is required to adapt this concept070

drift, but this is expensive, not only in terms of071

computation, but also in terms of the human effort072

needed to collect and label data.073

SetFit’s performance, speed, and low cost would074

make it ideal for effective content moderation, how-075

ever, this type of text classification poses a chal-076

lenge for even state-of-the-art approaches. For ex-077

ample, detecting hate speech on Twitter (Basile078

et al., 2019), a subtask on the RAFT few-shot079

benchmark, appears to be the most difficult dataset;080

at time of writing, it is the only task where the hu-081

man baseline has not been surpassed, yet SetFit is082

among the top ten most performant systems.2083

Here, we propose a modification to SetFit,084

called Like a Good Nearest Neighbor (LAGONN).085

LAGONN introduces no parameters or hyperpa-086

rameters and instead modifies input text by retriev-087

ing information about the nearest neighbor (NN)088

seen during optimization (see Figure 1). Specifi-089

cally, we append the label, distance, and text of the090

NN in the training data to a new instance and en-091

code this modified version with an ST. By making092

input data appear more similar to instances seen093

during training, we inexpensively exploit the ST’s094

pretrained or fine-tuned knowledge when consid-095

ering a novel example. Our method can also be096

applied to the linear probing of an ST, requiring097

no expensive fine-tuning of the large embedding098

model. Finally, we propose a simple alteration to099

the SetFit training procedure, where we fine-tune100

the ST on a subset of the training data. This results101

in a more efficient and performant text classifier102

that can be used with LAGONN. We summarize103

our contributions as follows:104

1. We propose LAGONN, an inexpensive modi-105

fication to SetFit- or ST-based text classifica-106

tion.107

2. We suggest an alternative training procedure108

2https://huggingface.co/spaces/ought/
raft-leaderboard (see "Tweet Eval Hate").

to the standard fine-tuning of SetFit, that can 109

be used with or without LAGONN, and results 110

in a cheaper system with similar performance 111

to the more expensive SetFit. 112

3. We perform an extensive study of LAGONN, 113

SetFit, and standard transformer fine-tuning 114

in the context of content moderation under 115

different label distributions. 116

2 Related Work 117

There is not much work on using sentence embed- 118

dings as features for classification despite the pio- 119

neering work being roughly five years old (Perone 120

et al., 2018). STs are pretrained with the objective 121

of maximizing the distance between semantically 122

distinct text and minimizing the distance between 123

text that is semantically similar in feature space. 124

They are composed of a Siamese and triplet archi- 125

tecture that encodes text into dense vectors which 126

can be used as features for ML. STs were first used 127

to encode text for classification by Piao (2021), 128

however, the authors relied on pretrained represen- 129

tations. 130

SetFit uses a contrastive learning paradigm 131

(Koch et al., 2015) to optimize the ST embedding 132

model. The ST is fine-tuned with a distance-based 133

loss function, like cosine similarity, such that ex- 134

amples with different labels are separated in fea- 135

ture space. Input text is then encoded with the 136

fine-tuned ST and a classifier, such as logistic re- 137

gression, is trained. This approach creates a strong, 138

few-shot text classification system, transforming 139

the ST from a sentence encoder to a topic encoder. 140

Most related to LAGONN is work done by Xu 141

et al. (2021), who showed that retrieving and con- 142

catenating text from training data and external 143

sources, such as ConceptNet (Speer et al., 2017) 144

and the Wikitionary3 definition, can be viewed as a 145

type of external attention that does not modify the 146

architecture of the Transformer in question answer- 147

ing. Liu et al. (2022b) used PLMs, including STs, 148

and k-NN lookup to prepend examples that are 149

similar to a GPT-3 query sample to aid in prompt 150

engineering for in-context learning. Wang et al. 151

(2022) demonstrated that prepending and append- 152

ing training data can benefit PLMs in the tasks 153

of summarization, language modelling, machine 154

translation, and question answering, using BM25 155

as their retrieval model for speed (Manning et al., 156

2008; Robertson and Zaragoza, 2009). 157

3https://www.wiktionary.org/
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Training Data Test Data
"I love this." [positive 0.0] (0) "So good!" [?] (?)

"This is great!" [positive 0.5] (0) "Just terrible!" [?] (?)
"I hate this." [negative 0.7] (1) "Never again." [?] (?)

"This is awful!" [negative 1.2] (1) "This rocks!" [?] (?)

LAGONN Configuration Train Modified

LABEL "I love this. [SEP] [positive 0.5]" (0)
TEXT "I love this. [SEP] [positive 0.5] This is great!" (0)
BOTH "I love this. [SEP] [positive 0.5] This is great! [SEP] [negative 0.7] I hate this." (0)

Test Modified
LABEL "So good! [SEP] [positive 1.5]" (?)
TEXT "So good! [SEP] [positive 1.5] I love this." (?)
BOTH "So good! [SEP] [positive 1.5] I love this. [SEP] [negative 2.7] This is awful!" (?)

Table 1: Toy training and test data and different LAGONN configurations considering the first training example.
Train and Test Modified are altered instances that are input into the final embedding model for training and inference,
respectively. The input format is "original text [SEP] [NN gold label distance] NN instance text". Input text is in
quotation marks, the NN’s gold label and distance from the training data are in square brackets, and the integer label
is in parenthesis (see Appendix A.4 for examples of LAGONN BOTH modified text).
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Figure 2: LAGONN LABEL uses an ST to encode training data, performs NN lookup, appends the second NN’s
(k=2) gold label and distance, and optionally SetFit to fine-tune the embedding model. We then embed this new
instance and train a classifier. During inference, we use the embedding model to modify the test data with its NN’s
gold label and distance from the training data (k=1), compute the final representation, and call the classifier. Input
text is in quotation marks, the NN’s gold label and distance are in brackets, and the integer label is in parenthesis.

We alter the SetFit training procedure by using158

fewer examples to adapt the embedding model for159

many-shot learning. LAGONN decorates input text160

with its nearest neighbor’s gold label, Euclidean161

distance, and text from the training data to exploit162

the ST’s optimized representations. Compared to163

retrieval-based methods, LAGONN uses the same164

model for both retrieval and encoding, which can165

be fine-tuned via SetFit. We only retrieve informa-166

tion from the training data for text classification.167

3 Like a Good Nearest Neighbor 168

Xu et al. (2021) formulate a type of external atten- 169

tion, where textual information is retrieved from 170

multiple sources and added to text input to give 171

the model stronger reasoning ability without al- 172

tering the internal architecture. Inspired by this 173

approach, LAGONN exploits pretrained and fine- 174

tuned knowledge through external attention, but the 175

information we retrieve comes only from data used 176

during optimization. We consider an embedding 177

function, f , that is called on both training and test 178
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data, f(Xtrain) and f(Xtest). Considering its suc-179

cess and speed on realistic, few-shot data and our180

goal of practical content moderation, we choose181

an ST that can be fine-tuned with SetFit as our182

embedding function.183

Encoding training data and nearest neighbors184

LAGONN first uses a pretrained Sentence Trans-185

former to embed training text in feature space,186

f(Xtrain). We perform NN lookup with scikit-187

learn (Buitinck et al., 2013) on the resulting embed-188

dings and query the second closest NN (k=2). We189

do not use the NN because it is the example itself.190

Nearest neighbor information We extract191

text from the second nearest neighbor and use it to192

decorate the original example. We experimented193

with different text that LAGONN could use. The194

first configuration we consider is the gold label and195

Euclidean distance of the NN, which we call LA-196

BEL. We then considered the gold label, distance,197

and the text of the NN, which we refer to as TEXT.198

Finally, we tried the same format as TEXT but for199

all possible labels, which we call BOTH (see Table200

1 and Figure 2).4 Information from the second NN201

is appended to the text following a separator token202

to indicate this instance is composed of multiple203

sequences. While the BOTH and TEXT configu-204

rations are arguably the most interesting, we find205

LABEL to result in the most performant version206

of LAGONN, and this is the version about which207

we report results.208

Training LAGONN encodes the modified209

training data and optionally fine-tunes the embed-210

ding model via SetFit, f(Xtrainmod). After fine-211

tuning, we train a classifier CLF (f(Xtrainmod)),212

like logistic regression.213

Inference LAGONN uses information from214

the nearest neighbor in the training data to modify215

input text. We compute the embeddings on the test216

data, f(Xtest), and query the NN lookup, selecting217

the NN (k=1) in the training data and extracting218

information from the training text. LAGONN then219

decorates the input instance with information from220

the NN in the training data. Finally, we encode the221

modified data with the embedding model and call222

the classifier, CLF (f(Xtestmod)).223

Intuition As f is the same function, we hy-224

pothesize that LAGONN’s modifications will make225

4LAGONN requires a mapping from the label to the text
the label represents, for example, 0 – positive and 1 – negative.

a novel instance more semantically similar to its 226

NNs in the training data. The resulting representa- 227

tion should be more akin to an instance on which 228

the embedding model and classifier were optimized. 229

Our method also leverages both distance-based 230

(NN lookup) and probabilistic algorithms (logistic 231

regression) for its final prediction. 232

4 Experiments 233

4.1 Data and label distributions 234

In our experiments, we study LAGONN’s perfor- 235

mance on four binary and one ternary classification 236

dataset related to the task of content moderation. 237

Each dataset is composed of a training, validation, 238

and test split. 239

Here, we provide a summary of the five datasets 240

we studied. LIAR was created from Politifact5 for 241

fake news detection and is composed of the data 242

fields context, speaker, and statement, which are 243

labeled with varying levels of truthfulness (Wang, 244

2017). We used a collapsed version of this dataset 245

where a statement can only be true or false. We did 246

not use speaker, but did use context and statement, 247

separated by a separator token. Quora Insincere 248

Questions6 is composed of neutral and toxic ques- 249

tions, where the author is not asking in good faith. 250

Hate Speech Offensive7 has three labels and is 251

composed of tweets that can contain either neutral 252

text, offensive language, or hate speech (Davidson 253

et al., 2017). Amazon Counterfactual8 contains sen- 254

tences from product reviews, and the labels can be 255

"factual" or "counterfactual" (O’Neill et al., 2021). 256

"Counterfactual" indicates that the customer said 257

something that cannot be true. Finally, Toxic Con- 258

versations9 is a dataset of comments where the 259

author wrote a comment with unintended bias10 260

(see Table 2). 261

We study our system by simulating growing 262

training data over ten discrete steps sampled under 263

four different label distributions: extreme, imbal- 264

anced, moderate, and balanced (see Table 3). On 265

5https://www.politifact.com/
6https://www.kaggle.com/c/

quora-insincere-questions-classification
7https://huggingface.co/datasets/hate_speech_

offensive
8https://huggingface.co/datasets/SetFit/

amazon_counterfactual_en
9https://huggingface.co/datasets/SetFit/toxic_

conversations
10https://www.kaggle.com/c/

jigsaw-unintended-bias-in-toxicity-classification/
overview
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Dataset (and Detection Task) Number of Labels

LIAR (Fake News) 2
Insincere Questions (Toxicity) 2

Hate Speech Offensive 3
Amazon Counterfactual (English) 2

Toxic Conversations 2

Table 2: Summary of datasets and number of labels. We
provide the type of task in parenthesis in unclear cases.

each step we add 100 examples (100 on the first,266

200 on the second, etc.) from the training split267

sampled under one of the four ratios.11 On each268

step, we train our method with the sampled data269

and evaluate on the test split. Considering growing270

training data has two benefits: 1) We can simulate a271

streaming data scenario, where new data is labeled272

and added for training and 2) We can investigate273

each method’s sensitivity to the number of training274

examples. We sampled over five seeds, reporting275

the mean and standard deviation.276

Regime Binary Ternary

Extreme 0: 98% 1: 2% 0: 95%, 1: 2%, 2: 3%
Imbalanced 0: 90% 1: 10% 0: 80%, 1: 5%, 2: 15%
Moderate 0: 75% 1: 25% 0: 65%, 1: 10%, 2: 25%
Balanced 0: 50% 1: 50% 0: 33%, 1: 33%, 2: 33%

Table 3: Label distributions for sampling training data.
0 represents neutral while 1 and 2 represent different
types of undesirable text.

4.2 Baselines277

We compare LAGONN against a number of strong278

baselines, detailed below. We used default hyper-279

parameters in all cases unless stated otherwise.280

RoBERTa RoBERTa-base is a pretrained lan-281

guage model (Liu et al., 2019) that we fine-tuned282

with the transformers library (Wolf et al., 2020).283

We select two versions of RoBERTa-base: an ex-284

pensive version, where we perform standard fine-285

tuning on each step (RoBERTafull) and a cheaper286

version, where we freeze the model body after step287

one and update the classification head on subse-288

quent steps (RoBERTafreeze). We set the learning289

rate to 1e−5, train for a maximum of 70 epochs,290

and use early stopping, selecting the best model291

after training. We consider RoBERTafull an upper292

bound as it has the most trainable parameters and293

requires the most time to train of all our methods.294

11For Hate Speech Offensive, 0 and 2 denote undesirable
text and 1 denotes neither.

Linear probe We perform linear probing of a 295

pretrained Sentence Transformer by fitting logis- 296

tic regression with default hyperparameters on the 297

training embeddings on each step. We choose this 298

baseline because LAGONN can be applied as a 299

modification in this scenario. We select MPNET 300

(Song et al., 2020) as the ST, for SetFit, and for 301

LAGONN.12 We refer to this method as Probe. 302

Logistic regression Here, we perform stan- 303

dard fine-tuning with SetFit on the first step, and 304

then on subsequent steps, freeze the embedding 305

model and retrain only the classification head. We 306

choose this baseline as LAGONN also uses logis- 307

tic regression as its final classifier and refer to this 308

method as Log Reg. 309

k-nearest neighbors Similar to the above 310

baseline, we fine-tune the embedding model via 311

SetFit, but swap out the classification head for a 312

kNN classifier, where k = 3. We select this base- 313

line as LAGONN also relies on an NN lookup. 314

k = 3 was chosen during our development stage as 315

it yielded the strongest performance. We refer to 316

this method as kNN. 317

SetFit For this baseline we perform standard 318

fine-tuning with SetFit on each step. On the first 319

step, this method is equivalent to Log Reg. 320

LAGONN cheap This method modifies data 321

via LAGONN before fitting a logistic regression 322

classifier. Even without adapting the embedding 323

model, as the training data grow, modifications 324

made to the test data may change. We refit the 325

classification head on each step and refer to this 326

method as LAGONNcheap, which is comparable to 327

Probe. 328

LAGONN On the first step, we use LAGONN 329

to modify our training data and then perform stan- 330

dard fine-tuning with SetFit. On subsequent steps, 331

we freeze the embedding model and use it to mod- 332

ify our data. We fit logistic regression on each 333

step and refer to this method as LAGONN. It is 334

comparable to Log Reg. 335

LAGONN expensive This version is identical 336

to LAGONN, except we fine-tune the embedding 337

model on each step. We refer to this method as 338

LAGONNexp and it is comparable to SetFit. On the 339

first step, this method is equivalent to LAGONN. 340

12https://huggingface.co/sentence-transformers/
paraphrase-mpnet-base-v2
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Method InsincereQs AmazonCF
Extreme 1st 5th 10th Average 1st 5th 10th Average

RoBERTafull 19.98.4 30.97.9 42.07.4 33.56.7 21.86.6 63.910.2 72.33.0 59.616.8
SetFit 24.16.3 29.26.7 36.77.3 31.73.4 22.38.8 64.23.3 68.64.6 56.814.9
LAGONNexp 30.78.9 37.66.1 39.06.1 36.12.3 26.117.5 68.44.4 74.92.9 63.216.7
RoBERTafreeze 19.98.4 34.15.4 37.95.9 32.55.5 21.86.6 41.012.7 51.310.7 40.68.9
kNN 6.80.42 15.93.4 16.94.3 14.43.0 10.30.2 15.34.2 18.43.7 15.62.4
Log Reg 24.16.3 31.74.9 36.15.4 31.83.6 22.38.8 32.411.5 42.38.8 34.55.9
LAGONN 30.78.9 39.34.9 41.24.7 38.43.0 26.117.5 31.119.4 33.019.1 30.92.3

Probe 24.38.4 39.85.6 44.84.2 38.36.2 24.29.0 46.34.4 54.62.0 45.110.3
LAGONNcheap 23.67.8 40.75.9 45.34.4 38.66.6 20.16.9 38.34.9 47.83.4 38.29.5

Balanced
RoBERTafull 47.14.2 52.13.6 55.72.6 52.52.9 73.62.1 78.63.9 82.41.1 78.92.2
SetFit 43.54.2 47.14.6 48.53.9 48.01.7 73.84.4 69.84.0 64.14.6 69.63.6
LAGONNexp 42.85.3 47.62.9 47.01.7 46.22.0 76.03.0 73.42.6 72.32.9 72.53.4

RoBERTafreeze 47.14.2 52.10.4 53.31.7 51.52.1 73.62.1 76.81.6 77.91.0 76.51.3
kNN 22.32.3 30.22.3 30.91.8 29.52.5 41.73.4 57.93.3 58.33.3 56.85.1
Log Reg 43.54.2 53.82.2 55.51.6 52.83.5 73.84.4 79.21.9 80.11.0 78.61.8
LAGONN 42.85.3 54.12.9 56.31.3 53.43.7 76.03.0 80.12.0 81.41.1 79.81.4
Probe 47.51.6 52.41.7 55.31.1 52.22.5 52.43.4 64.72.5 67.50.4 63.44.4
LAGONNcheap 49.32.6 54.41.4 57.60.7 54.22.7 48.13.4 62.02.0 65.30.8 60.55.0

Table 4: Average performance (average precision × 100) on Insincere Questions and Amazon Counterfactual. The
first, fifth, and tenth step are followed by the average over all ten steps. The average gives insight into the overall
strongest performer by aggregating all steps. We group methods with a comparable number of trainable parameters
together. The extreme label distribution results are followed by balanced (see Appendix A.2 for additional results).

Figure 3: Average performance in the imbalanced and balanced regimes relative to comparable methods. We include
RoBERTafull results for reference. The metric is macro-F1 for Hate Speech Offensive, average precision elsewhere.

5 Results341

Table 4 and Figure 3 show our results. In the342

cases of the extreme and imbalanced regimes, Set-343

Fit’s performance steadily increases with the num-344

ber of training examples. As the label distribu-345

tion shifts to the balanced regime, however, Set-346

Fit’s performance quickly saturates or even de-347

grades as the number of training examples grows.348

LAGONN, RoBERTafull, and Log Reg, other fine-349

tuned PLM classifiers, do not exhibit this behavior.350

LAGONNexp, being based on SetFit, exhibits a351

similar trend, but the performance degradation is352

mitigated; on the 10th step of Amazon Counterfac-353

tual in Table 4 SetFit’s performance decreased by 354

9.7, while LAGONNexp only fell by 3.7. 355

LAGONN and LAGONNexp generally outper- 356

form Log Reg and SetFit, respectively, often re- 357

sulting in a more stable model, as reflected in the 358

standard deviation. We find that LAGONN and 359

LAGONNexp exhibit stronger predictive power 360

with fewer examples than RoBERTafull despite 361

having fewer trainable parameters. For example, 362

on the first step of Insincere Questions under the 363

extreme setting, LAGONN’s performance is more 364

than 10 points higher. 365

LAGONNcheap outperforms all other methods 366
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Figure 4: Average performance for all sampling regimes on Toxic Conversations and the moderate and balanced
regimes for Amazon Counterfactual and Hate Speech Offensive. More expensive models, such as LAGONNexp,
SetFit, and RoBERTafull perform best when the label distribution is imbalanced. As the distribution becomes
more balanced, inexpensive models, such as LAGONNlite, show similar or improved performance. The metric is
macro-F1 for Hate Speech Offensive, average precision elsewhere (see Appendix A.3 for additional results).

on the Insincere Questions dataset for all balance367

regimes, despite being the third fastest (see Table368

5) and having the second fewest trainable param-369

eters. We attribute this result to the fact that this370

dataset is composed of questions from Quora13 and371

our ST backbone was pretrained on similar data.372

This intuition is supported by Probe, the cheapest373

method, which despite having the fewest trainable374

parameters, shows comparable performance.375

5.1 SetFit for efficient many-shot learning376

Respectively comparing SetFit to Log Reg and377

LAGONNexp to LAGONN suggests that fine-378

tuning the ST embedding model on moderate or bal-379

anced data hurts model performance as the number380

of training samples grows. We therefore hypoth-381

esize that randomly sampling a subset of training382

data to fine-tune the encoder, freezing, embedding383

the remaining data, and training the classifier will384

result in a stronger model.385

To test our hypothesis, we add two models to our386

experimental setup: SetFitlite and LAGONNlite.387

SetFitlite and LAGONNlite are respectively equiv-388

alent to SetFit and LAGONNexp, except after the389

fourth step (400 samples), we freeze the encoder390

and only retrain the classifier on subsequent steps,391

similar to Log Reg and LAGONN.392

Figure 4 shows our results with these two new393

models. As expected, in the cases of extreme394

and imbalanced distributions, LAGONNexp, SetFit,395

13https://www.quora.com/

and RoBERTaexp, are the strongest performers on 396

Toxic Conversations. We note very different results 397

for both LAGONNlite and SetFitlite compared to 398

LAGONNexp and SetFit on Toxic Conversations 399

and Amazon Counterfactual under the moderate 400

and balanced label distributions. As their expen- 401

sive counterparts start to plateau or degrade on the 402

fourth step, the predictive power of these two new 403

models dramatically increases, showing improved 404

or comparable performance to RoBERTafull, de- 405

spite being optimized on less data; for example, 406

LAGONNlite reaches an average precision of ap- 407

proximately 55 after being optimized on only 500 408

examples. RoBERTafull does not exhibit similar 409

performance until the tenth step. Finally, we point 410

out that LAGONN-based methods generally pro- 411

vide a performance boost for SetFit-based classifi- 412

cation. 413

5.2 LAGONN’s computational expense 414

LAGONN is more computationally expensive than 415

Sentence Transformer- or SetFit-based text classifi- 416

cation. LAGONN introduces additional inference 417

with the encoder, NN-lookup, and string modifi- 418

cation. As the computational complexity of trans- 419

formers increases with sequence length (Vaswani 420

et al., 2017), additional expense is created when 421

LAGONN appends textual information before in- 422

ference with the ST. In Table 5, we provide a speed 423

comparison between Probe, Log Reg, SetFit, and 424

LAGONN classification computed on the same 425
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Method Time in seconds

Probe 22.9
LAGONNcheap 44.2

Log Reg 42.9
LAGONN 63.4

SetFit 207.3
LAGONNexp 238.0

RoBERTafull 446.9

Table 5: Speed comparison between LAGONN and
comparable methods. Time includes training each
method on 1, 000 examples and performing inference
on 51, 000 examples.

hardware.14 On average, LAGONN introduced426

24.2 additional seconds of computation compared427

to its relative counterpart.428

6 Discussion429

Modern research has achieved impressive results on430

a variety of text classification tasks and with limited431

training data. SetFit is one such example and can be432

used practically, but based on our results, the task of433

text classification for content moderation presents434

a challenge even for state-of-the-art approaches.435

It is imperative that we develop reliable methods436

that can be feasibly and quickly applied. These437

methods should be as inexpensive as possible such438

that we can re-tune them for novel forms of hate439

speech, toxicity, and fake news.440

Our results suggest that LAGONNexp or SetFit,441

relatively expensive techniques, can detect harmful442

content when dealing with imbalanced label distri-443

butions, as is common with realistic datasets. This444

finding is intuitive from the perspective that less445

common instances are more difficult to learn and446

require more effort. The exception to this would447

be our examination of Insincere Questions, where448

LAGONNcheap excelled. This highlights the fact449

that we can inexpensively extract pretrained knowl-450

edge if PLMs are chosen with care for related tasks.451

Standard fine-tuning with SetFit does not help452

performance on more balanced datasets that are453

not few-shot. SetFit was developed for few-shot454

learning, but we have observed that it should not455

be applied "out of the box" to balanced, non-few-456

shot data. This can be detrimental to performance457

and has a direct effect on our approach. However,458

we have observed that LAGONN can stabilize Set-459

14We used a 40 GB NVIDIA A100 Tensor Core GPU.

Fit’s predictions and reduce its performance drop. 460

Figures 3 and 4 show that when the label distri- 461

bution is moderate or balanced (see Table 3), Set- 462

Fit plateaus, yet less expensive systems, such as 463

LAGONN, continue to learn. We believe this is 464

due to SetFit’s fine-tuning objective, which opti- 465

mizes a Sentence Transformer using cosine similar- 466

ity loss to separate examples belonging to different 467

labels in feature space by assuming independence 468

between labels. This may be too strong an assump- 469

tion as we optimize with more examples, which 470

is counter-intuitive for data-hungry transformers. 471

RoBERTafull, optimized with cross-entropy loss, 472

generally showed improved performance as we 473

added training data. 474

When dealing with balanced data, it is sufficient 475

to fine-tune the Sentence Transformer via SetFit 476

with 50 to 100 examples per label, while 150 to 200 477

instances appear to be sufficient when the training 478

data are moderately balanced. The encoder can 479

then be frozen and all available data embedded 480

to train a classifier. This improves performance 481

and is more efficient than full-model fine-tuning. 482

LAGONN is directly applicable to this case, boost- 483

ing the performance of SetFitlite without introduc- 484

ing trainable parameters. In this setup, all models 485

fine-tuned on Hate Speech Offensive exhibited sim- 486

ilar, upward-trending learning curves, but we note 487

the speed of LAGONN relative to RoBERTafull or 488

SetFit (see Figure 4 and Table 5). 489

7 Conclusion 490

We have proposed LAGONN, a simple and inex- 491

pensive modification to Sentence Transformer- or 492

SetFit-based text classification. LAGONN does not 493

introduce any trainable parameters or new hyper- 494

parameters, but typically improves SetFit’s perfor- 495

mance. To demonstrate the merit of LAGONN, we 496

examined text classification systems in the context 497

of content moderation under four label distributions 498

on five datasets and with growing training data. To 499

our knowledge, this is the first work to examine 500

SetFit in this way. When the training labels are im- 501

balanced, expensive systems, such as LAGONNexp 502

are performant. However, when the distribution is 503

balanced, standard fine-tuning with SetFit can ac- 504

tually hurt model performance. We have therefore 505

proposed an alternative fine-tuning procedure to 506

which LAGONN can be easily utilized, resulting 507

in a powerful, but inexpensive system capable of 508

detecting harmful content. 509
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8 Limitations510

In the current work, we have only considered text511

data, but social media content can of course consist512

of text, images, and videos. As LAGONN depends513

only on an embedding model, an obvious extension514

to our approach would be examining the modifica-515

tions we suggest, but on multimodal data. This is516

an interesting direction that we leave for future re-517

search. We have also considered English data, but518

harmful content can appear in any language. The519

authors demonstrated that SetFit is performant on520

multilingual data, the only necessary modification521

being the underlying pretrained ST. We therefore522

suspect that LAGONN would behave similarly on523

non-English data, but this is not something we have524

tested ourselves. In order to examine our system’s525

performance under different label-balance distribu-526

tions, we restricted ourselves to binary and ternary527

text classification tasks, and LAGONN therefore528

remains untested when there are more than three529

labels. We did not study our method when there530

are fewer than 100 examples, and investigating531

LAGONN in a few-shot learning setting is fasci-532

nating topic for future study. Finally, we note that533

our system could be misused to detect undesirable534

content that is not necessarily harmful. For exam-535

ple, a social media website could detect and silence536

users who complain about the platform. This is not537

our intended use case, but could result from any538

classifier, and potential misuse is an unfortunate539

drawback of all technology.540

9 Ethics Statement541

It is our sincere goal that our work contributes to542

the social good in multiple ways. We first hope to543

have furthered research on text classification that544

can be feasibly applied to combat undesirable con-545

tent, such as misinformation, on the Internet, which546

could potentially cause someone harm. To this end,547

we have tried to describe our approach as accurately548

as possible and released our code and data, such549

that our work is transparent and can be easily repro-550

duced and expanded upon. We hope that we have551

also created a useful but efficient system which552

reduces the need to expend energy in the form ex-553

pensive computation. For example, LAGONN does554

not rely on billion-parameter language models that555

demand thousand-dollar GPUs to use. LAGONN556

makes use of GPUs no more than SetFit, despite557

being more computationally expensive. We have558

additionally proposed a simple method to make559

SetFit, an already relatively inexpensive method, 560

even more efficient. 561
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A Appendix 782

A.1 Observations about LAGONN 783

Our original goal was to construct a system that 784

did not need to be updated after step one and could 785

simply perform inference on subsequent steps, an 786

active learning setup. While the performance of 787

this version of LAGONN did not degrade, it also 788

did not appear to learn anything and we found it 789

necessary to update parameters on each step. We 790

additionally tried fine-tuning the embedding model 791

via SetFit first before modifying data, however, 792

this hurt performance in all cases. We include this 793

information for transparency and because we find 794

it interesting. 795

A.2 Additional results for initial experiments 796

Here we provide additional results from our initial 797

experimental setup that, due to space limitations, 798

could not be included in the main text. We note that 799

a version of LAGONN outperforms or has the same 800

performance of all methods, including our upper 801

bound RoBERTafull, on 54% of all displayed re- 802

sults, and is the best performer relative to Sentence 803

Transformer-based methods on 72%. This excludes 804

LAGONNcheap. This method showed strong per- 805

formance on the Insincere Questions dataset, but 806

hurts performance in other cases. In cases, when 807

SetFit-based methods do outperform our system, 808

the performances are comparable, yet they can be 809

quite dramatic when LAGONN-based methods are 810

the strongest. Below, we report the mean average 811

precision ×100 for all methods over five seeds with 812

the standard deviation, except in the case of Hate 813

Speech Offensive, where the evaluation metric is 814

the macro-F1. Each table shows the results for a 815

given dataset and a given label-balance distribution 816

on the first, fifth, and tenth step followed by the 817

average for all ten steps. The Liar dataset seems 818

to be the most difficult for all methods. This is 819

expected because it likely does not include enough 820

context to determine the truth of a statement. 821

11

https://doi.org/10.48550/ARXIV.2209.11055
https://doi.org/10.48550/ARXIV.2209.11055
https://doi.org/10.48550/ARXIV.2209.11055
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1126/science.aap9559
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://doi.org/10.18653/v1/2022.acl-long.226
https://doi.org/10.18653/v1/2022.acl-long.226
https://doi.org/10.18653/v1/2022.acl-long.226
https://doi.org/10.18653/v1/2022.acl-long.226
https://doi.org/10.18653/v1/2022.acl-long.226
https://doi.org/10.18653/v1/P17-2067
https://doi.org/10.18653/v1/P17-2067
https://doi.org/10.18653/v1/P17-2067
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
http://arxiv.org/abs/2112.03254
http://arxiv.org/abs/2112.03254
http://arxiv.org/abs/2112.03254
https://doi.org/10.48550/ARXIV.2302.09618
https://doi.org/10.48550/ARXIV.2302.09618
https://doi.org/10.48550/ARXIV.2302.09618


Method Insincere-Questions
Imbalanced 1st 5th 10th Average

RoBERTafull 39.85.5 53.14.6 55.71.2 50.64.4
SetFit 43.72.7 52.21.9 53.80.9 51.42.9
LAGONNexp 44.54.5 52.72.4 55.42.0 51.83.0
RoBERTafreeze 39.85.5 44.13.6 46.32.4 44.02.0
kNN 23.92.2 30.33.0 31.62.4 30.02.1
Log Reg 43.72.7 47.61.6 50.12.1 47.61.8
LAGONN 44.54.5 48.12.2 50.31.7 48.11.9

Probe 40.44.2 49.42.3 52.31.7 49.03.3
LAGONNcheap 40.84.3 51.12.4 54.51.4 50.44.0

Table 6

Method Insincere Questions
Moderate 1st 5th 10th Average

RoBERTafull 48.12.3 54.71.9 57.51.5 53.92.9
SetFit 48.91.7 53.90.7 54.21.5 52.31.6
LAGONNexp 49.81.6 52.21.9 53.23.3 52.01.4

RoBERTafreeze 48.12.3 50.22.2 52.01.4 50.21.4
kNN 28.02.4 33.92.8 33.62.0 33.51.9
Log Reg 48.91.7 53.61.9 55.81.7 53.32.2
LAGONN 49.81.6 54.41.3 56.90.5 54.22.2
Probe 45.72.1 52.31.8 54.41.1 51.42.5
LAGONNcheap 45.72.2 54.41.6 56.40.6 53.23.2

Table 7

Method Amazon Counterfactual
Imbalanced 1st 5th 10th Average

RoBERTafull 68.24.5 81.01.7 82.21.0 79.23.9
SetFit 72.02.1 78.42.8 78.81.2 78.02.1
LAGONNexp 74.33.8 80.11.4 79.01.6 79.51.9
RoBERTafreeze 68.24.5 75.02.2 77.02.4 74.22.6
kNN 51.04.1 60.03.1 61.32.1 59.73.0
Log Reg 72.02.1 74.42.3 76.71.8 74.81.4
LAGONN 74.33.8 76.13.6 77.33.2 76.11.0

Probe 46.62.8 60.31.4 64.21.2 59.25.2
LAGONNcheap 38.23.2 55.31.8 61.01.2 54.46.7

Table 8

Method Amazon Counterfactual
Moderate 1st 5th 10th Average

RoBERTafull 73.92.5 80.01.0 80.12.3 79.12.1
SetFit 76.51.6 77.02.4 74.70.5 76.51.0
LAGONNexp 78.62.2 78.02.1 76.34.9 78.21.0

RoBERTafreeze 73.92.5 76.61.4 78.50.7 76.41.7
kNN 54.53.1 64.21.9 66.61.3 64.73.5
Log Reg 76.51.6 80.60.5 81.20.3 80.01.4
LAGONN 78.62.2 81.21.4 81.61.1 80.80.9
Probe 52.32.0 64.11.8 67.21.4 63.14.3
LAGONNcheap 47.33.4 60.71.5 65.21.4 59.55.2

Table 9

Method Toxic Conversations
Extreme 1st 5th 10th Average

RoBERTafull 7.90.5 21.23.7 33.85.5 21.99.3
SetFit 8.81.2 18.13.4 24.74.1 17.65.5
LAGONNexp 8.91.7 17.46.6 26.45.2 17.96.0

RoBERTafreeze 7.90.5 12.82.4 19.13.2 13.53.5
kNN 7.90.0 8.70.4 8.70.2 8.50.3
Log Reg 8.81.2 13.12.5 16.33.0 13.02.6
LAGONN 8.91.7 13.83.9 17.14.8 13.42.6

Probe 13.12.8 24.62.6 30.12.1 23.95.6
LAGONNcheap 11.32.2 21.72.7 27.42.3 21.35.3

Table 10

Method Toxic Conversations
Imbalanced 1st 5th 10th Average

RoBERTafull 24.15.6 43.13.4 52.12.5 42.48.2
SetFit 21.86.6 44.54.1 51.41.9 42.19.3
LAGONNexp 22.79.8 49.15.6 53.42.3 45.69.8
RoBERTafreeze 24.15.6 31.24.4 34.04.0 30.53.1
kNN 11.52.5 14.74.0 15.33.2 14.61.1
Log Reg 21.86.6 26.75.3 30.24.0 26.62.7
LAGONN 22.79.8 27.68.9 30.38.7 27.42.4

Probe 23.32.7 33.02.8 37.11.8 32.54.2
LAGONNcheap 20.53.2 31.13.2 35.61.8 30.54.6

Table 11

Method Toxic Conversations
Moderate 1st 5th 10th Average

RoBERTafull 34.23.4 45.51.9 52.43.3 45.75.6
SetFit 33.62.9 47.22.2 46.63.3 44.34.3
LAGONNexp 36.64.2 48.22.7 49.93.7 48.04.4
RoBERTafreeze 34.23.4 38.42.1 39.51.8 38.01.5
kNN 19.41.9 21.53.4 22.42.9 21.60.8
Log Reg 33.62.9 39.22.9 41.62.7 38.62.4
LAGONN 36.64.2 42.73.7 45.03.5 42.02.5

Probe 29.02.7 36.11.2 39.11.5 35.53.3
LAGONNcheap 26.12.7 34.31.3 37.51.8 33.63.6

Table 12

Method Toxic Conversations
Balanced 1st 5th 10th Average

RoBERTafull 32.31.1 42.71.8 54.13.4 43.86.3
SetFit 35.73.4 32.66.2 37.42.7 36.51.9
LAGONNexp 40.44.4 40.26.6 39.87.5 40.01.2

RoBERTafreeze 32.31.1 39.21.5 41.00.6 38.52.4
kNN 17.40.8 23.72.6 24.32.7 23.12.0
Log Reg 35.73.4 44.52.9 46.12.8 43.62.9
LAGONN 40.44.4 46.62.7 48.12.2 46.12.2
Probe 29.52.4 35.90.9 40.20.9 36.13.5
LAGONNcheap 26.82.7 34.51.3 38.50.8 34.43.7

Table 13
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Method Hate Speech Offensive
Extreme 1st 5th 10th Average

RoBERTafull 30.21.4 43.52.5 51.22.2 44.37.4
SetFit 30.30.8 44.01.3 51.12.0 43.86.5
LAGONNexp 30.30.7 40.72.9 49.14.4 42.26.2

RoBERTafreeze 30.21.4 33.53.1 34.43.4 33.11.4
kNN 31.51.2 35.92.7 37.42.0 35.81.7
Log Reg 30.30.8 38.42.5 41.11.5 37.83.3
LAGONN 30.30.7 35.72.6 39.12.4 35.62.7

Probe 29.00.2 34.71.5 40.12.1 35.13.8
LAGONNcheap 29.00.1 36.91.8 40.52.1 36.23.7

Table 14

Method Hate Speech Offensive
Imbalanced 1st 5th 10th Average

RoBERTafull 50.63.0 65.23.9 70.31.2 64.25.3
SetFit 54.44.3 66.31.8 68.92.0 64.34.5
LAGONNexp 57.05.2 67.04.4 69.82.1 64.94.6
RoBERTafreeze 50.63.0 54.11.6 55.32.3 54.11.3
kNN 55.64.8 57.32.3 58.83.6 57.41.1
Log Reg 54.44.3 57.03.9 58.23.8 57.21.1
LAGONN 57.05.2 58.24.1 58.33.4 58.30.6

Probe 46.52.2 57.81.7 60.31.2 56.54.5
LAGONNcheap 47.11.3 56.52.2 59.52.5 55.63.8

Table 15

Method Hate Speech Offensive
Moderate 1st 5th 10th Average

RoBERTafull 61.93.4 70.81.0 72.51.4 69.93.2
SetFit 64.34.2 70.62.4 72.40.5 69.82.8
LAGONNexp 63.84.9 71.02.1 72.31.0 70.03.0
RoBERTafreeze 61.93.4 63.24.1 64.14.5 63.20.6
kNN 64.34.0 63.32.9 63.92.5 63.70.4
Log Reg 64.34.2 67.33.2 67.62.3 66.91.1
LAGONN 63.84.9 65.05.3 66.75.9 65.30.9

Probe 55.61.7 63.80.8 66.10.3 63.23.0
LAGONNcheap 56.03.6 62.21.4 66.00.9 62.32.9

Table 16

Method Hate Speech Offensive
Balanced 1st 5th 10th Average

RoBERTafull 59.73.5 66.91.2 69.21.8 66.42.7
SetFit 60.71.3 66.31.6 67.50.9 65.92.2
LAGONNexp 61.51.7 66.41.4 67.70.9 66.11.8

RoBERTafreeze 59.73.5 60.42.7 63.12.3 61.01.3
kNN 60.71.3 59.62.8 59.52.5 59.50.5
Log Reg 60.71.3 62.50.7 63.41.0 62.31.0
LAGONN 61.51.7 62.81.5 64.21.0 63.00.9

Probe 54.91.4 58.50.9 60.90.4 58.71.7
LAGONNcheap 54.22.3 58.60.6 60.60.5 58.51.8

Table 17

Method Liar
Extreme 1st 5th 10th Average

RoBERTafull 32.02.7 34.72.9 35.14.3 33.71.0
SetFit 31.23.8 30.43.1 31.82.9 31.50.7
LAGONNexp 30.64.7 30.32.0 31.32.0 31.10.6

RoBERTafreeze 32.02.7 32.84.5 34.25.0 33.20.7
kNN 27.00.5 27.30.8 27.90.8 27.40.3
Log Reg 31.23.8 33.75.1 35.75.1 34.31.6
LAGONN 30.64.7 32.04.6 33.75.4 32.60.9

Probe 30.72.0 30.63.9 31.72.9 31.10.4
LAGONNcheap 30.72.0 30.53.8 31.42.6 31.00.4

Table 18

Method Liar
Imbalanced 1st 5th 10th Average

RoBERTafull 31.43.2 35.82.6 40.04.3 36.22.4
SetFit 32.34.5 35.93.1 36.42.2 35.21.1
LAGONNexp 32.34.6 35.73.4 36.52.3 35.71.4

RoBERTafreeze 31.43.2 34.12.6 35.63.2 34.01.4
kNN 27.00.2 28.51.0 29.01.0 28.70.7
Log Reg 32.34.5 36.53.1 38.53.4 36.32.0
LAGONN 32.34.6 34.92.2 36.92.5 35.31.4

Probe 30.73.0 32.81.8 35.01.6 33.51.5
LAGONNcheap 30.43.0 32.91.8 35.41.7 33.51.7

Table 19

Method Liar
Moderate 1st 5th 10th Average

RoBERTafull 33.93.1 38.42.7 43.92.2 39.53.0
SetFit 33.02.6 37.21.8 38.71.5 37.41.6
LAGONNexp 34.13.4 38.72.3 39.01.8 37.81.5

RoBERTafreeze 33.93.1 35.32.6 36.82.2 35.41.0
kNN 29.20.8 29.71.5 30.00.6 29.80.3
Log Reg 33.02.6 37.23.9 39.43.5 37.01.8
LAGONN 34.13.4 37.03.1 38.63.0 36.81.3

Probe 31.61.1 34.72.5 37.02.5 34.91.7
LAGONNcheap 31.40.9 35.32.3 37.62.0 35.31.9

Table 20
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Method Liar
Balanced 1st 5th 10th Average

RoBERTafull 33.82.1 39.42.4 43.51.7 40.23.2
SetFit 34.42.3 36.71.7 37.01.3 36.51.1
LAGONNexp 33.81.8 34.22.7 37.21.9 36.21.4

RoBERTafreeze 33.82.1 36.61.6 38.61.5 36.71.5
kNN 30.10.4 31.32.1 30.61.1 30.90.4
Log Reg 34.42.3 38.32.5 40.02.0 37.91.6
LAGONN 33.81.8 38.31.3 40.60.6 38.12.0

Probe 32.11.9 35.21.4 37.22.5 35.21.7
LAGONNcheap 31.91.9 36.01.0 37.52.5 35.71.8

Table 21

A.3 Additional results for second experiment822

Here we provide additional results from our second823

set of experiments that, due to space limitations,824

could not be included in the main text. We note that825

a version of LAGONN outperforms or has the same826

performance of all methods, including our upper827

bound RoBERTafull, on 60% of all displayed re-828

sults, and is the best performer relative to Sentence829

Transformer-based methods on 65%. This excludes830

LAGONNcheap. This method showed strong per-831

formance on the Insincere Questions dataset, but832

hurts performance in other cases. In cases when833

SetFit-based methods do outperform our system,834

the performances are comparable, yet they can be835

quite different when LAGONN-based methods are836

the strongest. Below, we report the mean average837

precision ×100 for all methods over five seeds with838

the standard deviation, except in the case of Hate839

Speech Offensive, where the evaluation metric is840

the macro-F1. Each table shows the results for841

given dataset and a given label-balance distribution842

on the first, fifth, and tenth step followed by the av-843

erage for all ten steps. Liar appears to be the most844

difficult dataset for all methods. This is expected845

because it likely does not include enough context846

to determine the truth of a statement.847

Method Insincere Questions
Extreme 1st 5th 10th Average

RoBERTafull 19.98.4 30.97.9 42.07.4 33.56.7
SetFit 24.16.3 29.26.7 36.77.3 31.73.4
LAGONNexp 30.78.9 37.66.1 39.06.1 36.12.3

SetFitlite 24.16.3 38.16.3 41.16.5 35.65.5
LAGONNlite 30.78.9 41.88.3 43.48.5 39.34.4
RoBERTafreeze 19.98.4 34.15.4 37.95.2 32.55.4
kNN 6.80.4 15.93.4 16.94.3 14.43.0
Log Reg 24.16.3 31.74.9 36.15.4 31.83.6
LAGONN 30.78.9 39.34.9 41.24.7 38.43.0

Probe 24.38.4 39.85.6 44.84.2 38.36.2
LAGONNcheap 23.67.8 40.75.9 45.34.4 38.66.6

Table 22

Method Insincere Questions
Imbalanced 1st 5th 10th Average

RoBERTafull 39.85.5 53.14.6 55.71.2 50.64.4
SetFit 43.72.7 52.21.9 53.80.9 51.42.9
LAGONNexp 44.54.5 52.72.4 55.42.0 51.83.0

SetFitlite 43.72.7 52.92.6 55.81.8 52.23.4
LAGONNlite 44.54.5 53.52.7 55.92.4 52.63.5
RoBERTafreeze 39.85.5 44.13.6 46.32.4 44.02.0
kNN 23.92.2 30.33.0 31.62.4 30.02.1
Log Reg 43.72.7 47.61.6 50.12.1 47.61.8
LAGONN 44.54.5 48.12.2 50.31.7 48.11.9

Probe 40.44.2 49.42.3 52.31.7 49.03.3
LAGONNcheap 40.84.3 51.12.4 54.51.4 50.44.0

Table 23

Method Insincere Questions
Moderate 1st 5th 10th Average

RoBERTafull 48.12.3 54.71.9 57.51.5 53.92.9
SetFit 48.91.7 53.90.7 54.21.5 52.31.6
LAGONNexp 49.81.6 52.21.9 53.23.3 52.01.4

SetFitlite 48.91.7 56.51.4 58.70.6 55.03.5
LAGONNlite 49.81.6 56.12.8 58.31.5 54.63.5

RoBERTafreeze 48.12.3 50.22.2 52.01.4 50.21.4
kNN 28.02.4 33.92.8 33.62.0 33.51.9
Log Reg 48.91.7 53.61.9 55.81.7 53.32.2
LAGONN 49.81.6 54.41.3 56.90.5 54.22.2

Probe 45.72.1 52.31.8 54.41.1 51.42.5
LAGONNcheap 45.72.2 54.41.6 56.40.6 53.23.2

Table 24
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Method Insincere Questions
Balanced 1st 5th 10th Average

RoBERTafull 47.14.2 52.13.6 55.72.6 52.52.9
SetFit 43.54.2 47.14.6 48.53.9 48.01.7
LAGONNexp 42.85.3 47.62.9 47.01.7 46.22.0

SetFitlite 43.54.2 54.62.4 59.60.9 53.65.8
LAGONNlite 42.85.3 53.53.7 58.62.5 52.26.4

RoBERTafreeze 47.14.2 52.10.4 53.31.1 51.52.1
kNN 22.32.3 30.22.3 30.91.8 29.52.5
Log Reg 43.54.2 53.82.2 55.51.6 52.83.5
LAGONN 42.85.3 54.12.9 56.31.3 53.43.7

Probe 47.51.6 52.41.7 55.31.1 52.22.5
LAGONNcheap 49.32.6 54.41.4 57.60.7 54.22.7

Table 25

Method Amazon Counterfactual
Extreme 1st 5th 10th Average

RoBERTafull 21.86.6 63.910.2 72.33.0 59.616.8
SetFit 22.38.8 64.23.3 68.64.6 56.814.9
LAGONNexp 26.117.5 68.44.4 74.92.9 63.216.7
SetFitlite 22.38.8 62.45.1 67.55.2 56.514.7
LAGONNlite 26.117.5 68.34.3 68.94.3 60.615.1

RoBERTafreeze 21.86.6 41.012.7 51.310.7 40.68.9
kNN 10.30.2 15.34.2 18.43.7 15.62.4
Log Reg 22.38.8 32.411.5 42.38.8 34.55.9
LAGONN 26.117.5 31.119.4 33.019.1 30.92.3

Probe 24.29.0 46.34.4 54.62.0 45.110.3
LAGONNcheap 20.16.9 38.34.9 47.83.4 38.29.5

Table 26

Method Amazon Counterfactual
Imbalanced 1st 5th 10th Average

RoBERTafull 68.24.5 81.01.7 82.21.0 79.23.9
SetFit 72.02.1 78.42.8 78.81.2 78.02.1
LAGONNexp 74.33.8 80.11.4 79.01.6 79.51.9

SetFitlite 72.02.1 79.11.4 81.61.3 79.12.7
LAGONNlite 74.33.8 79.21.7 81.91.1 80.22.2
RoBERTafreeze 68.24.5 75.02.2 77.02.4 74.22.6
kNN 51.04.1 60.03.1 61.32.1 59.73.0
Log Reg 72.02.1 74.42.3 76.71.8 74.81.4
LAGONN 74.33.8 76.13.6 77.33.2 76.11.0

Probe 46.62.8 60.31.4 64.21.2 59.25.2
LAGONNcheap 38.23.2 55.31.8 61.01.2 54.46.7

Table 27

Method Amazon Counterfactual
Moderate 1st 5th 10th Average

RoBERTafull 73.92.5 80.01.0 80.12.3 79.12.1
SetFit 76.51.6 77.02.4 74.70.5 76.51.0
LAGONNexp 78.62.2 78.02.1 76.34.9 78.21.0

SetFitlite 76.51.6 80.43.8 83.50.8 80.32.8
LAGONNlite 78.62.2 80.81.9 83.10.7 81.01.7
RoBERTafreeze 73.92.5 76.61.4 78.50.7 76.41.7
kNN 54.53.1 64.21.9 66.61.3 64.73.5
Log Reg 76.51.6 80.60.5 81.20.3 80.01.4
LAGONN 78.62.2 81.21.4 81.61.1 80.80.9

Probe 52.32.0 64.11.8 67.21.4 63.14.3
LAGONNcheap 47.33.4 60.71.5 65.21.4 59.55.2

Table 28

Method Amazon Counterfactual
Balanced 1st 5th 10th Average

RoBERTafull 73.62.1 78.63.9 82.41.1 78.92.2
SetFit 73.84.4 69.84.0 64.14.6 69.63.6
LAGONNexp 76.03.0 73.42.6 72.32.9 72.53.4

SetFitlite 73.84.4 80.41.8 82.40.8 78.34.3
LAGONNlite 76.03.0 80.01.3 82.50.9 79.23.2

RoBERTafreeze 73.62.1 76.81.6 77.91.0 76.51.3
kNN 41.73.4 57.93.3 58.33.3 56.85.1
Log Reg 73.84.4 79.21.9 80.11.0 78.61.8
LAGONN 76.03.0 80.12.0 81.41.1 79.81.4
Probe 52.43.4 64.72.5 67.50.4 63.44.4
LAGONNcheap 48.13.4 62.02.0 65.30.8 60.55.0

Table 29

Method Toxic Conversations
Extreme 1st 5th 10th Average

RoBERTafull 7.90.5 21.23.7 33.85.5 21.99.3
SetFit 8.81.2 18.13.4 24.74.1 17.65.5
LAGONNexp 8.91.7 17.46.6 26.45.2 17.96.0

SetFitlite 8.81.2 15.94.8 18.03.9 14.93.2
LAGONNlite 8.91.7 16.15.9 19.86.0 15.53.7

RoBERTafreeze 7.90.5 12.82.4 19.13.2 13.53.5
kNN 7.90.0 8.70.4 8.70.2 8.50.3
Log Reg 8.81.2 13.12.5 16.33.0 13.02.6
LAGONN 8.91.7 13.83.9 17.14.8 13.42.6

Probe 13.12.8 24.62.6 30.12.1 23.95.6
LAGONNcheap 11.32.2 21.72.7 27.42.3 21.35.3

Table 30

Method Toxic Conversations
Imbalanced 1st 5th 10th Average

RoBERTafull 24.15.6 43.13.4 52.12.5 42.48.2
SetFit 21.86.6 44.54.1 51.41.9 42.19.3
LAGONNexp 22.79.8 49.15.6 53.42.3 45.69.8
SetFitlite 21.86.6 41.44.4 44.83.1 39.07.0
LAGONNlite 22.79.8 47.06.3 50.25.4 43.78.6

RoBERTafreeze 24.15.6 31.24.4 34.04.0 30.53.1
kNN 11.52.5 14.74.0 15.33.2 14.61.1
Log Reg 21.86.6 26.75.3 30.24.0 26.62.7
LAGONN 22.79.8 27.68.9 30.38.7 27.42.4

Probe 23.32.7 33.02.8 37.11.8 32.54.2
LAGONNcheap 20.53.2 31.13.2 35.61.8 30.54.6

Table 31
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Method Toxic Conversations
Moderate 1st 5th 10th Average

RoBERTafull 34.23.4 45.51.9 52.43.3 45.75.6
SetFit 33.62.9 47.22.2 46.63.3 44.34.3
LAGONNexp 36.64.2 48.22.7 49.93.7 48.04.4

SetFitlite 33.62.9 52.62.0 55.11.6 48.87.3
LAGONNlite 36.64.2 56.11.5 57.71.4 52.36.8
RoBERTafreeze 34.23.4 38.42.1 39.51.8 38.01.5
kNN 19.41.9 21.53.4 22.42.9 21.60.8
Log Reg 33.62.9 39.22.9 41.62.7 38.62.4
LAGONN 36.64.2 42.73.7 45.03.5 42.02.5

Probe 29.02.7 36.11.2 39.11.5 35.53.3
LAGONNcheap 26.12.7 34.31.3 37.51.8 33.63.6

Table 32

Method Toxic Conversations
Balanced 1st 5th 10th Average

RoBERTafull 32.31.1 42.71.8 54.13.4 43.86.3
SetFit 35.73.4 32.66.2 37.42.7 36.51.9
LAGONNexp 40.44.4 40.26.6 39.87.5 40.01.2

SetFitlite 35.73.4 52.72.5 53.92.2 46.87.8
LAGONNlite 40.44.4 52.92.6 54.02.3 48.36.4
RoBERTafreeze 32.31.1 39.21.5 41.00.6 38.52.4
kNN 17.40.8 23.72.6 24.32.7 23.12.0
Log Reg 35.73.4 44.52.9 46.12.8 43.62.9
LAGONN 40.44.4 46.62.7 48.12.2 46.12.2

Probe 29.52.4 35.90.9 40.20.9 36.13.5
LAGONNcheap 26.82.7 34.51.3 38.50.8 34.43.7

Table 33

Method Hate Speech Offensive
Extreme 1st 5th 10th Average

RoBERTafull 30.21.4 43.52.5 51.22.2 44.37.4
SetFit 30.30.8 44.01.3 51.12.0 43.86.5
LAGONNexp 30.30.7 40.72.9 49.14.4 42.26.2

SetFitlite 30.30.8 43.42.5 45.53.4 41.64.6
LAGONNlite 30.30.7 40.93.4 41.54.8 39.13.6

RoBERTafreeze 30.21.4 33.53.1 34.43.4 33.11.4
kNN 31.51.2 35.92.7 37.42.0 35.81.7
Log Reg 30.30.8 38.42.5 41.11.5 37.83.3
LAGONN 30.30.7 35.72.6 39.12.4 35.62.7

Probe 29.00.2 34.71.5 40.12.1 35.13.8
LAGONNcheap 29.00.1 36.91.8 40.52.1 36.23.7

Table 34

Method Hate Speech Offensive
Imbalanced 1st 5th 10th Average

RoBERTafull 50.63.0 65.23.9 70.31.2 64.25.3
SetFit 54.44.3 66.31.8 68.92.0 64.34.5
LAGONNexp 57.05.2 67.04.4 69.82.1 64.94.6
SetFitlite 54.44.3 65.53.0 65.93.5 63.53.9
LAGONNlite 57.05.2 66.62.6 66.61.9 64.34.1

RoBERTafreeze 50.63.0 54.11.6 55.32.3 54.11.3
kNN 55.64.8 57.32.3 58.83.6 57.41.1
Log Reg 54.44.3 57.03.9 58.23.8 57.21.1
LAGONN 57.05.2 58.24.1 58.33.4 58.30.6

Probe 46.52.2 57.81.7 60.31.2 56.54.5
LAGONNcheap 47.11.3 56.52.2 59.52.5 55.63.8

Table 35

Method Hate Speech Offensive
Moderate 1st 5th 10th Average

RoBERTafull 61.93.4 70.81.0 72.51.4 69.93.2
SetFit 64.34.2 70.62.4 72.40.5 69.82.8
LAGONNexp 63.84.9 71.02.1 72.31.0 70.03.0
SetFitlite 64.34.2 70.32.2 71.22.1 69.32.3
LAGONNlite 63.84.9 70.71.4 71.41.0 69.42.5

RoBERTafreeze 61.93.4 63.24.1 64.14.5 63.20.6
kNN 64.34.0 63.32.9 63.92.5 63.70.4
Log Reg 64.34.2 67.33.2 67.62.3 66.91.1
LAGONN 63.84.9 65.05.3 66.75.9 65.30.9

Probe 55.61.7 63.80.8 66.10.3 63.23.0
LAGONNcheap 56.03.6 62.21.4 66.00.9 62.32.9

Table 36

Method Hate Speech Offensive
Balanced 1st 5th 10th Average

RoBERTafull 59.73.5 66.91.2 69.21.8 66.42.7
SetFit 60.71.3 66.31.6 67.50.9 65.92.2
LAGONNexp 61.51.7 66.41.4 67.70.9 66.11.8

SetFitlite 60.71.3 66.32.0 66.50.9 65.11.7
LAGONNlite 61.51.7 67.11.1 67.30.8 66.01.7

RoBERTafreeze 59.73.5 60.42.7 63.12.3 61.01.3
kNN 60.71.3 59.62.8 59.52.5 59.50.5
Log Reg 60.71.3 62.50.7 63.41.0 62.31.0
LAGONN 61.51.7 62.81.5 64.21.0 63.00.9

Probe 54.91.4 58.50.9 60.90.4 58.71.7
LAGONNcheap 54.22.3 58.60.6 60.60.5 58.51.8

Table 37
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Method Liar
Extreme 1st 5th 10th Average

RoBERTafull 32.02.7 34.72.9 35.14.3 33.71.0
SetFit 31.23.8 30.43.1 31.82.9 31.50.7
LAGONNexp 30.64.7 30.32.0 31.32.0 31.10.6

SetFitlite 31.23.8 32.73.8 33.54.2 32.70.8
LAGONNlite 30.64.7 31.83.9 32.42.7 31.60.6

RoBERTafreeze 32.02.7 32.84.5 34.25.0 33.20.7
kNN 27.00.5 27.30.8 27.90.8 27.40.3
Log Reg 31.23.8 33.75.1 35.75.1 34.31.6
LAGONN 30.64.7 32.04.6 33.75.4 32.60.9

Probe 30.72.0 30.63.9 31.72.9 31.10.4
LAGONNcheap 30.72.0 30.53.8 31.42.6 31.00.4

Table 38

Method Liar
Imbalanced 1st 5th 10th Average

RoBERTafull 31.43.2 35.82.6 40.04.3 36.22.4
SetFit 32.34.5 35.93.1 36.42.2 35.21.1
LAGONNexp 32.34.6 35.73.4 36.52.3 35.71.4

SetFitlite 32.34.5 35.62.7 37.42.6 35.81.6
LAGONNlite 32.34.6 35.22.4 36.62.7 35.51.3

RoBERTafreeze 31.43.2 34.12.6 35.63.2 34.01.4
kNN 27.00.2 28.51.0 29.01.0 28.70.7
Log Reg 32.34.5 36.53.1 38.53.4 36.32.0
LAGONN 32.34.6 34.92.2 36.92.5 35.31.4

Probe 30.73.0 32.81.8 35.01.6 33.51.5
LAGONNcheap 30.43.0 32.91.8 35.41.7 33.51.7

Table 39

Method Liar
Moderate 1st 5th 10th Average

RoBERTafull 33.93.1 38.42.7 43.92.2 39.53.0
SetFit 33.02.6 37.21.8 38.71.5 37.41.6
LAGONNexp 34.13.4 38.72.3 39.01.8 37.81.5

SetFitlite 33.02.6 38.51.3 40.42.0 38.22.1
LAGONNlite 34.13.4 38.42.0 39.61.5 37.91.6

RoBERTafreeze 33.93.1 35.32.6 36.82.2 35.41.0
kNN 29.20.8 29.71.5 30.00.6 29.80.3
Log Reg 33.02.6 37.23.9 39.43.5 37.01.8
LAGONN 34.13.4 37.03.1 38.63.0 36.81.3

Probe 31.61.1 34.72.5 37.02.5 34.91.7
LAGONNcheap 31.40.9 35.32.3 37.62.0 35.31.9

Table 40

Method Liar
Balanced 1st 5th 10th Average

RoBERTafull 33.82.1 39.42.4 43.51.7 40.23.2
SetFit 34.42.3 36.71.7 37.01.3 36.51.1
LAGONNexp 33.81.8 34.22.7 37.21.9 36.21.4

SetFitlite 34.42.3 38.72.3 40.32.8 38.02.1
LAGONNlite 33.81.8 37.62.0 39.42.8 37.21.9

RoBERTafreeze 33.82.1 36.61.6 38.61.5 36.71.5
kNN 30.10.4 31.32.1 30.61.1 30.90.4
Log Reg 34.42.3 38.32.5 40.02.0 37.91.6
LAGONN 33.81.8 38.31.3 40.60.6 38.12.0

Probe 32.11.9 35.21.4 37.22.5 35.21.7
LAGONNcheap 31.91.9 36.01.0 37.52.5 35.71.8

Table 41

A.4 Examples of LAGONN modified text 848

WARNING: Some of the examples below are of 849

an offensive nature. Please view with caution. 850

In this section, we provide examples of how 851

LAGONNexp modifies test text from the datasets 852

we studied under the BOTH configuration. We 853

choose this configuration because the information 854

it appends from a NN in the training data to a test 855

instance encapsulates both the LABEL and the 856

TEXT configuration. LAGONNexp was trained 857

under a balanced distribution and five examples 858

per label were chosen randomly on the first, fifth, 859

and tenth step to demonstrate how the same test 860

instance might be decorated with different training 861

examples as the training data grow. We recognize 862

that some the images below are difficult to see and 863

have made the .csv files available with our code 864

and data files. Note that MPNET’s separator token 865

is </s>, not [SEP]. 866
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Figure 5: Insincere Questions, step 1.

Figure 6: Insincere Questions, step 5.

Figure 7: Insincere Questions, step 10.

Figure 8: Amazon Counterfactual, step 1.

Figure 9: Amazon Counterfactual, step 5.
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Figure 10: Amazon Counterfactual, step 10.

Figure 11: Toxic Conversations, step 1.

Figure 12: Toxic Conversations, step 5.
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Figure 13: Toxic Conversations, step 10.

Figure 14: LIAR, step 1.

Figure 15: LIAR, step 5

Figure 16: LIAR, step 10
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Figure 17: Hate Speech Offensive, step 1

Figure 18: Hate Speech Offensive, step 5

Figure 19: Hate Speech Offensive, step 10.
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