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ABSTRACT

The rapid rise of image generation calls for detection methods that are both in-
terpretable and reliable. Existing approaches, though accurate, act as black boxes
and fail to generalize to out-of-distribution data, while multi-modal large language
models (MLLMs) provide reasoning ability but often hallucinate. To address these
issues, we construct FakeXplained dataset of AI-generated images annotated with
bounding boxes and descriptive captions that highlight synthesis artifacts, forming
the basis for human-aligned, visually grounded reasoning. Leveraging FakeX-
plained, we develop FakeXplainer which fine-tunes MLLMs with a progressive
training pipeline, enabling accurate detection, artifact localization, and coherent
textual explanations. Extensive experiments show that FakeXplainer not only
sets a new state-of-the-art in detection and localization accuracy (98.2% accuracy,
36.0% IoU), but also demonstrates strong robustness and out-of-distribution gen-
eralization, uniquely delivering spatially grounded, human-aligned rationales.

1 INTRODUCTION

The past decade has witnessed rapid progress in text-to-image generation, evolving from Genera-
tive Adversarial Networks to Diffusion Models, which are now capable of producing images nearly
indistinguishable from real photographs (Goodfellow et al., 2014; Peebles & Xie, 2023). These ad-
vances have led to an explosion of highly realistic AI-generated content, raising pressing concerns
about misinformation, authenticity, and trust in digital media. Most existing detection methods cast
this task as a binary classification problem, leveraging convolutional neural networks or vision trans-
formers (Wang et al., 2020; Ojha et al., 2023; Park & Owens, 2024). However, binary labels offer
limited insight into why an image is classified as AI-generated. In real-world applications, especially
those involving legal, journalistic, or ethical implications, explainable detection is essential. An ef-
fective detection system should not only identify whether an image is AI-generated but also pinpoint
the specific visual cues or logical inconsistencies that betray its synthetic origin. Such explainability
promotes user trust, supports verification workflows, and enables more informed decision-making.

The rise of Multi-modal Large Language Models (MLLMs) has enabled cross-modal inference,
allowing models to generate human-readable explanations about AI-generated images. Recent ef-
forts (Li et al., 2024; Zhang et al., 2024; Zhou et al., 2025; Gao et al., 2025; Xu et al., 2024; Liu
et al., 2024; Ji et al., 2025) have advanced interpretable textual reasoning using MLLMs. However,
these methods either depend heavily on prompt engineering, model-generated explanations or plug-
in segmentation modules (Kirillov et al., 2023) to delineate manipulated regions. As illustrated in
Figure 1, existing MLLM-based detectors may hallucinate false claims or provide reasons without
spatial grounding, since their explanations are not validated by human annotations. Without proper
visual grounding or human-aligned supervision, it remains unclear whether the generated rationales
truly reflect the image content or derive from model hallucinations. To improve human alignment,
fine-grained multimodal supervision, such as region-level annotations and captions, is essential. Yet,
the lack of such high-quality datasets poses a major challenge to building reliable and interpretable
MLLM-based detection systems.

In this paper, we present FakeXplained, a dataset of high-quality AI-generated images with fine-
grained, human-grounded annotations, together with FakeXplainer, an RL fine-tuning pipeline for
MLLMs that achieves state-of-the-art detection accuracy and grounding performance. As shown in
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Figure 1: Comparison of our method (FakeXplainer) with traditional classification-based detectors
(without explanations) and other MLLM-based methods (with hallucinated or non-specific reasons).
FakeXplainer is trained to localize flawed regions and explain why the image appears AI-generated.

Figure 1, training on FakeXplained enables FakeXplainer to provide comprehensive rationales for
fake image detection, performing on par with human experts. Our major contributions are threefold:

• The FakeXplained dataset is a curated dataset of 8,772 AI-generated images from diverse state-
of-the-art generative models, annotated with bounding boxes and concise captions that highlight
visual anomalies and illogical details.

• The FakeXplainer detector: By fine-tuning MLLMs on FakeXplained, we build an end-to-
end system that not only detects AI-generated images but also explains them. Fine-tuning on
FakeXplained enables FakeXplainer to perform fine-grained visual reasoning and articulate clear,
human-aligned observations.

• Robust performance with explainability: FakeXplainer answers “where and why does this
image look fake?” with reliable, spatially grounded explanations. Extensive experiments show
that it achieves state-of-the-art detection accuracy, generalizes well to out-of-distribution images,
and remains robust under perturbations while providing human-aligned, interpretable reasoning.

2 RELATED WORKS

Detection of AI-generated and manipulated images. Detecting AI-generated images has gained
prominence with the improving fidelity of synthetic images from GANs (Goodfellow et al., 2014;
Esser et al., 2021), autoregressive transformers (Van Den Oord et al., 2017), diffusion-based mod-
els (Le et al., 2025; Ye et al., 2025; Wang et al., 2025b; Li et al., 2025a; Chadebec et al., 2025; Song
et al., 2020; Ho et al., 2020) and DiTs (Peebles & Xie, 2023; Chen et al., 2023). Deep learning meth-
ods such as ResNets and Vision Transformers trained on real and synthetic data (Wang et al., 2020;
Tan & Le, 2019; Park & Owens, 2024; Chang et al., 2023; Yan et al., 2024) leverage strong feature
extraction to learn discriminative patterns. However, generalization to unseen models remains chal-
lenging (Bi et al., 2023; Yan et al., 2024). As generation techniques evolve, artifact-based cues alone
become increasingly unreliable. A complementary research direction focuses on model explainabil-
ity, as most detectors offer only binary classification without indicating how or where synthetic cues
are found. Recent efforts towards fine-grained or localized detection include using multi-branch
systems for multi-level labels (Bi et al., 2023), computing local intrinsic dimensionalities (Lorenz
et al., 2023), or using gradient visualizations (Selvaraju et al., 2017).

Despite these advances, existing MLLM-based methods still face limitations in providing human-
aligned, grounded explanations and in generalizing across rapidly evolving generative techniques.
While several recent datasets leverage MLLMs to generate rationales or global labels (Zhang et al.,
2024; Zhou et al., 2025; Huang et al., 2025b; Wen et al., 2025; Li et al., 2025b), their reliance on
automatic annotations raises concerns about hallucination and weak visual grounding. Although
FakeBench (Li et al., 2024) incorporates human refinement, its explanations are initially gener-
ated by GPT-4V and remain purely textual, without any region-level grounding; moreover, the full
annotations are not publicly released. LOKI covers multiple modalities but relies on GPT-4o for
fine-grained labels, which weakens its alignment with humans. Other datasets such as So-Fake-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Text Prompt
A realistic image of…

Generated Images

High-Quality Images

Manual selection

FakeXplained
(BBoxes, Captions, Tags)

Annotated by
Trained Experts

ImageNet

FakeXplained Construction

Is this image real or
fake? Why?

Vision
Encoder
LoRA

Vision
Projector
LoRA

Language
Decoder
LoRA

Tokenizer
Embedding

LM Head

FakeXplainer Fine-tuning & Inference

1

2

Hermit crabs should
have 10 legs, but this
one has only 6.

2

The stone has overly
dark shadows

1

Wrong Texture

Art Style

Unrecognizable Objects

Wrong Attributes

Low Quality

<think>
Upon observation, I think
[795,110,995,375] The shadow
is too obvious;
[95,365,810,805] Crab leg
count incorrect
</think>

<tag>
Wrong Attributes
</tag>

<verdict>
Therefore, this image is
likely AI-generated.
</verdict>

SFT pGRPOBase

Is this image real or
fake? Why?

Grounding Accuracy

Output Formatting

Classification Accuracy

(b).(a).

Figure 2: Overview of: (a). FakeXplained: Construction of dataset with human-aligned bounding
boxes and captions, and (b). FakeXplainer: Progressive fine-tuning pipeline of MLLMs, which
integrates SFT and GRPO to achieve accurate detection, grounding, and interpretable reasoning.

Set (Huang et al., 2025b) focus on social-media scenarios and similarly lack region-level annota-
tions, limiting their suitability for training grounded, human-aligned detectors. Methodologically,
recent detectors such as AIGI-Holmes (Zhou et al., 2025) combine NPR with MLLMs to improve
interpretability, whereas localization-focused approaches like FakeShield (Xu et al., 2024) and LE-
GION (Kang et al., 2025) depend on external segmentation modules (e.g., SAM (Kirillov et al.,
2023)), leaving the intrinsic grounding capabilities of MLLMs underutilized. Meanwhile, meth-
ods without additional modules, such as So-Fake (Huang et al., 2025b) and FakeVLM (Wen et al.,
2025), still cannot generate spatially localized explanations. The absence of high-quality datasets
remains a key obstacle to building reliable and interpretable MLLM-based detection systems. With-
out proper grounding or human-aligned supervision, it is unclear whether generated rationales truly
reflect image content or are derived from hallucinations.

Training & fine-tuning reasoning-capable MLLMs. Enhancing the reasoning capabilities of
MLLMs is crucial for tasks requiring nuanced understanding (Wu et al., 2025a;b; Yang et al., 2025a;
Fang et al., 2025; Chen et al., 2024c). Initial strategies involved converting images into formal-
ized textual representations to enable structured, language-driven reasoning (Yang et al., 2025b).
Subsequent research has focused on instilling deeper cognitive abilities, including self-verification,
self-correction, developing “slow thinking” capabilities (Wang et al., 2025a), and managing rea-
soning depth to address phenomena like “overthinking” (Xiao et al., 2025). Efforts also explore
constructing high-quality multi-modal Chain-of-Thought (CoT) datasets (Huang et al., 2025a) to
guide reasoning processes.

Reinforcement Learning (RL) has become pivotal in these advancements, with many sophisticated
reasoning developments relying on RL methodologies. Fine-tuning methods have spurred significant
interest in RL-based multi-modal reasoning (Chen et al., 2025). RL, particularly when combined
with structured reward functions, e.g., using Intersection over Union (IoU) for tasks involving image
grounding (Shen et al., 2025) - markedly improves multi-modal alignment, visual reasoning, and hu-
man interpretable decision making, demonstrating RL’s capability of advancing model performance
in complex vision-language tasks.

3 THE FAKEXPLAINED DATASET

Our objective is trustworthy and interpretable detection of AI-generated images. This requires detec-
tors that generalize to unseen generative models, remain robust to perturbations, and provide human-
understandable explanations. Conventional detectors often lack interpretability, while MLLMs,
though promising, tend to produce unreliable explanations with frequent hallucinations when used
without training (see Table 4). To address this, we require models that not only detect AI-generated
images but also explain their decisions in natural language for reliability. Achieving this demands
a dataset that supports both visual grounding and textual reasoning. Therefore, we introduce the
FakeXplained dataset, as illustrated in Figure 2(a), to train an MLLM to produce trustworthy ex-

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

planations. It consists of high-quality synthetic images paired with fine-grained, human annotations
that indicate the underlying flaws and artifacts responsible for detection as fake.

3.1 AI-GENERATED IMAGES SELECTION

To ensure diversity in image sources, we generated images across the ImageNet-1K classes using 28
text-to-image generation models (details shown in Appendix A.1). All generated images underwent
manual quality screening, removing low-quality samples from the dataset. After screening, 8,772
AI-generated images were selected for subsequent annotation.

3.2 IMAGE ANNOTATION

To support interpretable reasoning and help models understand what constitutes an AI-generated
image, we provide detailed annotations for synthetic images. Real images are not annotated because
they lack synthesis flaws.

Flaw regions and explanations. Precise regional annotations and corresponding textual descrip-
tions are essential for visual grounding and interpretability. We recruited 23 trained annotators to
label the high-quality AI-generated images selected from the previous stage. Their primary task was
to identify and describe all regions within each image that exhibited signs of being fake (detailed
guidelines provided in Appendix A.2). Prior to annotation, all participants underwent standardized
training focused on identifying visual cues of AI-generated content. The training emphasized the
identification of fake regions, which are defined as areas within an image that either violate common
sense or exhibit noticeable AI-generated artifacts. Examples of common sense violations include
anomalies such as “a flamingo with three legs” or “bird feathers with a metallic appearance”. Com-
mon AIGC artifacts include “repetitive patterns on a blanket” or “blurred or illegible text”.

Annotators were also introduced to a structured annotation rubric to ensure consistency and align-
ment with the dataset’s objectives. Each annotation consists of one or more fake regions, where
each region is represented by a tuple (Ri, Ti), where Ri denotes a rectangular bounding box en-
capsulating the region, and Ti provides a textual description of the identified anomaly or artifact.
On average, an annotated image in the dataset contains 5.42 such (Ri, Ti) pairs, which serve as the
foundation for grounding and reasoning in downstream model training.

Image-level tagging. In addition to region-level annotation, annotators were asked to tag images
based on broader perceptual attributes. These attributes include texture quality, overall realism, cor-
rectness of attributes, recognizability of objects, and the presence of other significant defects not
explicitly listed (e.g., the occurrence of multiple sub-images within a single image). These tags Ci

are mutually independent, allowing annotators to assign zero or multiple tags to each image as ap-
propriate. This tagging framework allows the dataset to capture holistic image quality assessments,
particularly in cases where visually realistic AI-generated images may lack distinct localized flaws.

3.3 QUALITY CONTROL

To ensure the reliability of the annotations, we implemented a quality control protocol involving
both manual inspection and algorithmic validation. A subset of annotations was compared against a
reference set of fake region annotations curated by the research team. Given the inherently subjective
nature of visual interpretation, we adopted a tolerant validation criterion to accommodate diverse
perspectives among annotators. Specifically, a minimum Intersection over Union (IoU) threshold of
20.0% was applied for bounding box overlap, and an accuracy threshold of 1

3 was used for image-
level taggings. These metrics were assessed on a validation set comprising 5% of the annotated
images. The IoU metric is used to assess the spatial agreement between annotated and reference
bounding boxes. Let Rv represent the rectangular bounding box annotated by a volunteer, and Rr
represent the corresponding reference bounding box from the reference set. The Intersection over
Union (IoU) is computed as:

IoU(Rv, Rr) =
|Rv ∩Rr|
|Rv ∪Rr|

,

where |Rv ∩ Rr| denotes the area of the intersection between Rv and Rr, and |Rv ∪ Rr| denotes
the area of their union. The IoU value ranges from 0 to 1, with higher values indicating stronger
alignment. This quality control procedure ensures a baseline level of annotation fidelity while pre-
serving the diversity of human interpretations. The resulting dataset, enriched with both region-level
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annotations (R, T ) and image-level tags C, offers a robust foundation for analyzing the semantic in-
consistencies and perceptual flaws of AI-generated images.

4 METHODOLOGY: FAKEXPLAINER

We propose a training methodology named FakeXplainer for MLLMs designed to detect AI-
generated imagery, localize relevant artifacts, and articulate the rationale for their predictions. The
training and inference pipeline is shown in Figure 2(b). Inspired by DeepSeek-Math (Shao et al.,
2024), the training pipeline begins with Supervised Fine-Tuning (SFT) (Ouyang et al., 2022) to
provide basic reasoning ability and ensure structured outputs. This initial phase is succeeded by
Reinforcement Learning from Human Feedback (RLHF), which is implemented using progressive
GRPO (pGRPO), leveraging our proposed FakeXplained dataset.

Before training, each image’s annotations are reformatted into a dialogue between a user and an
assistant, using a prompt structure designed for localization-aware fine-tuning. Region-level anno-
tations (Ri, Ti) are enclosed within <think>markers, image-level tags Ci within <tag>markers,
and the final verdict is wrapped in <verdict> markers.

4.1 COLD START WITH SUPERVISED FINE-TUNING

The cold start phase of FakeXplainer uses SFT to establish a stable foundation before proceeding
to RL. During this phase, all linear layers of the vision encoder, projector, and language model
components in the MLLM are fine-tuned based on the supervision signals from the data. This initial
fine-tuning is crucial for stabilizing the model prior to full-scale reinforcement learning training,
preventing instabilities that might arise from pure RL-based updates (Guo et al., 2025).

The SFT process focuses on teaching the model to produce coherent reasoning patterns with a
clear structure. The training emphasizes the consistent use of the designated marker format with
<think>, <tag>, and <verdict> fields, ensuring format clarity in the model’s reasoning out-
puts. This structured Chain-of-Thought (CoT) format reduces errors and improves explainability,
providing a solid foundation for subsequent GRPO stages that will refine the model’s performance
on specific metrics.

4.2 DESIGN OF REWARD FUNCTIONS

Reward design is a critical component of RLHF, guiding the MLLMs to learn not only how to detect
fake images, but also how to localize relevant regions and provide coherent reasoning. We define
three core reward functions for this purpose.

Classification accuracy (Label). To ensure the model produces the correct verdict, we extract the
classification decision from within the verdictmarker and compare it with the ground-truth label.
Let o denote the textual output of the MLLM, we have:

RC(o) =

{
1, if V (o) = y,

0, o.w.

where V (o) is a regex match for the verdict, and y is the ground-truth label of whether the image is
real or generated.

Grounding accuracy (IoU). To reward alignment between model-predicted and human-annotated
regions, we use a relaxed version of the Intersection over Union (IoU):

RG(o) = IoU×η = min (1, η IOU(R(o), Ry))

where R(o) is the region extraction function that parses textual output o to bounding boxes, Ry

is the annotated region, and η is a relaxing constant. The relaxation is based on the observation
that human annotators have slight discrepancies regarding the border of annotated regions. This
relaxation reward ensures full credit to the model when the regions annotated by models are in good
correlation with human-annotated ones.

Output format validity (Format). To ensure the model understands the structural requirements of
the task, we introduce a format reward that encourages outputs conforming to the expected syntax.
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A valid output must include correctly structured <think>, <tag> and <verdict> markers, as
well as bounding boxes and captions that are syntactically well-formed and can be parsed using
regular expressions. Formally, the reward is defined as:

RF (o) =

{
1, if {V,R, T, C}(o) are parsable
0, o.w.

where T (o) and C(o) extract the regional captions and image-level tags from o, respectively.

4.3 RLHF WITH GROUP RELATIVE POLICY OPTIMIZATION

Following SFT, we employ Group Relative Policy Optimization (GRPO) Shao et al. (2024) to pro-
gressively align the MLLM with our objectives of interpretable and reliable fake image detection.
GRPO combines structured supervision from the dataset with targeted reward signals through a
carefully designed training process. The reward function is formulated as:

R = ωG(t)RG + ωCRC + ωFRF , (1)

where weights ωC = ωF = 1.0 remain constant throughout training, while ωG(t) increases linearly
from 0.5 to 1.0 over the training process.

Our approach employs a continuous linear interpolation for the localization weight:

ωG(t) = 0.5 + 0.5 · (t/T ), (2)

where t represents the current training step and T denotes the total number of training steps.

The linear weighting strategy addresses challenges observed in preliminary experiments and offers
three benefits. First, without IoU weight adjustment, models trained with equal weights from the
start tend to over-optimize localization rewards, producing many small fragmented bounding boxes
that achieve high IoU scores but fail to capture meaningful regions. Down-weighting the localiza-
tion reward in early training prevents this issue. Second, the progressive scheme enables a natural
curriculum learning. With reduced localization weight at the beginning, the model first learns out-
put formatting and classification accuracy. As these skills stabilize, the gradually increasing IoU
reward improves localization on top of this foundation. Third, continuous weight adjustment avoids
reward spikes and stabilizes training, allowing smooth adaptation of optimization objectives. Exper-
iments show that linear reward weighting outperforms static schemes, confirming the effectiveness
of gradual reward shaping for training MLLMs in complex visual understanding tasks.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We adopt Qwen2.5-VL-Instruct (Qwen Team, 2025) as the base model of our FakeXplainer for its
strong pre-trained grounding capabilities. We trained FakeXplainer on eight NVIDIA A100 GPUs.
Both the SFT and GRPO stages last for three epochs, with a batch size of 1. We use η = 1.1 and
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Table 1: Experimental result for current AI-generated image detectors and our FakeXplainer across
different image generation methods.

FakeXplainer ObjectFormer SegFormer NPR DMD. ComFor. AfPr. AEROB. DIRE FakeVLM
Generators Acc. IoU Acc. IoU Acc. IoU Acc. Acc. Acc. Acc. Acc. Acc. Acc.

DALL·E 2 2022 0.986 0.360 0.957 0.251 0.942 0.285 0.907 0.934 0.877 0.892 0.823 0.916 0.908
DALL·E 3 2023 0.991 0.365 0.949 0.258 0.950 0.292 0.912 0.942 0.872 0.907 0.821 0.923 0.915

DDIM 2020 0.974 0.345 0.954 0.285 0.945 0.280 0.917 0.928 0.879 0.915 0.839 0.912 0.902
DDPM 2020 0.979 0.350 0.951 0.293 0.947 0.288 0.903 0.931 0.876 0.898 0.836 0.917 0.906

FLUX.1-dev 2024 0.988 0.362 0.958 0.299 0.940 0.295 0.922 0.937 0.874 0.779 0.843 0.919 0.938
FLUX.1-schnell 0.972 0.343 0.953 0.287 0.943 0.283 0.926 0.929 0.882 0.805 0.827 0.913 0.941

GLIDE 2021 0.970 0.340 0.950 0.289 0.946 0.286 0.913 0.935 0.873 0.661 0.822 0.922 0.897
Midjourney v4 2023 0.990 0.364 0.956 0.296 0.949 0.294 0.908 0.939 0.869 0.878 0.814 0.925 0.926

Midjourney v5 0.992 0.366 0.959 0.273 0.941 0.297 0.902 0.943 0.871 0.851 0.718 0.927 0.932
SD 1.4 2022a 0.968 0.338 0.952 0.286 0.944 0.282 0.921 0.970 0.880 0.852 0.951 0.909 0.918

SD 1.5 0.975 0.347 0.955 0.294 0.948 0.290 0.916 0.949 0.875 0.866 0.966 0.915 0.921
SD 2.1 2022b 0.980 0.352 0.951 0.291 0.942 0.287 0.911 0.938 0.872 0.881 0.833 0.918 0.913

SD 3.5 Large 2024 0.991 0.365 0.954 0.294 0.945 0.293 0.904 0.944 0.870 0.934 0.830 0.924 0.929
SD 3.5 Large Turbo 0.993 0.368 0.957 0.312 0.950 0.296 0.906 0.947 0.868 0.927 0.837 0.928 0.935

VQDM 2022 0.973 0.342 0.953 0.288 0.943 0.284 0.927 0.932 0.877 0.938 0.932 0.914 0.909
Diffusion 0.983 0.356 0.954 0.287 0.945 0.290 0.913 0.941 0.874 0.864 0.842 0.920 0.919

BigGAN 2018 0.965 0.335 0.950 0.280 0.941 0.278 0.918 0.892 0.903 0.933 0.861 0.887 0.894
GALIP 2023 0.882 0.353 0.941 0.279 0.941 0.289 0.882 0.882 0.941 0.353 0.706 0.882 0.876

VQGAN 2021 0.967 0.337 0.954 0.282 0.943 0.280 0.907 0.889 0.908 0.921 0.932 0.885 0.858
StyleGAN-XL 2018 0.960 0.330 0.951 0.278 0.940 0.275 0.914 0.884 0.980 0.928 0.939 0.879 0.680

GAN 0.955 0.337 0.950 0.280 0.941 0.279 0.912 0.890 0.916 0.866 0.860 0.885 0.827

PixArtAlpha 2023 0.987 0.357 0.956 0.295 0.947 0.291 0.908 0.912 0.891 0.934 0.927 0.903 0.861
PixArtDelta 2024b 0.984 0.354 0.953 0.292 0.943 0.289 0.921 0.909 0.893 0.939 0.922 0.899 0.896
PixArtSigma 2024a 0.989 0.360 0.957 0.296 0.949 0.293 0.919 0.915 0.889 0.924 0.931 0.905 0.904

DiT 2023 0.978 0.349 0.952 0.290 0.942 0.287 0.913 0.907 0.896 0.928 0.938 0.897 0.892
DiT 0.983 0.354 0.954 0.293 0.945 0.289 0.914 0.910 0.893 0.931 0.931 0.900 0.889

VAR 2024 0.976 0.346 0.954 0.287 0.945 0.283 0.928 0.893 0.901 0.934 0.927 0.889 0.886
Infinity 2024 0.974 0.344 0.951 0.289 0.941 0.286 0.914 0.897 0.899 0.938 0.924 0.883 0.872

MaskGIT 2022 0.972 0.342 0.955 0.288 0.948 0.284 0.909 0.895 0.904 0.923 0.933 0.886 0.854
LlamaGen 2024 0.980 0.351 0.953 0.429 0.944 0.289 0.923 0.899 0.897 0.929 0.938 0.892 0.867

Others 0.978 0.348 0.953 0.369 0.944 0.287 0.920 0.898 0.898 0.931 0.933 0.889 0.870

Real Images 2009 0.985 - 0.956 - 0.946 - 0.918 0.903 0.882 0.934 0.854 0.896 0.763

Overall 0.982 0.360 0.954 0.299 0.945 0.289 0.914 0.928 0.882 0.887 0.873 0.911 0.828

set the number of samples to G = 4 during the GRPO stage. All baseline methods are trained on
one NVIDIA A100 GPU. More experimental details are provided in the Appendix B. For baseline
comparisons, we use the same training data as the FakeXplainer setup. We train SegFormer (Xie
et al., 2021) and ObjectFormer (Wang et al., 2022) under a segmentation + classification setting
on the FakeXplained dataset by converting bounding boxes to binary masks. For classification-
only methods, including NPR (Ojha et al., 2023), DMD (Corvi et al., 2023), ComFor (Park &
Owens, 2024), AfPr (Chang et al., 2023), and DIRE (Wang et al., 2023), only image-level labels are
used during training. We additionally evaluated state-of-the-art MLLM-based detection methods,
specifically FakeShield (Xu et al., 2024), LEGION (Kang et al., 2025), and FakeVLM (Wen et al.,
2025). For FakeShield, we utilized the pre-trained weights provided by the authors without further
fine-tuning. For LEGION, we adhered to the training protocol specified in the original paper, training
the model on the SynthScars dataset with identical hyperparameters and experimental configurations
as reported.

5.2 OVERALL PERFORMANCE

To ensure robustness and mitigate dataset bias, all models are evaluated using four-fold cross-
validation. During training, the detection model is exposed to 75% of images from the FakeXplained
dataset along with an equal number of real samples. Evaluation is conducted on the remaining 25%
of synthetic images, again paired with the same number of real images. We report both classification
accuracy and localization performance using the IoU metric on AI-generated images. Robustness
tests against perturbations are provided in Appendix C.

Comparing to other methods. Quantitative results are reported in Table 1, comparing FakeX-
plainer with traditional detectors. For MLLMs, Table 2 presents post-finetuning performance of
LEGION (Kang et al., 2025) and FakeShield (Xu et al., 2024) across different pre-trained models.
Our best-performing model achieves an overall classification accuracy of 98.2%, demonstrating
strong robustness and consistent performance across different image generators. For localization,
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Table 2: Performance comparison of FakeXplainer across different base MLLMs and against other
MLLM-based methods. Post-finetuning results are underlined.

Method FakeXplainer FakeShield LEGION
Backbone InternVL3-8B InternVL3-14B Ovis2.5-9B MiMo-VL-7B-RL Qwen-2.5-VL-32B

Acc. 0.584 0.928 0.568 0.951 0.624 0.909 0.515 0.920 0.734 0.982 0.801 0.583
IoU. 0.039 0.134 0.043 0.289 - - - - 0.044 0.360 0.028 0.098

BLEU-2 0.061 0.232 0.098 0.235 0.058 0.203 0.083 0.249 0.080 0.267 0.004 0.072
ROUGE-L 0.059 0.225 0.092 0.219 0.050 0.184 0.076 0.239 0.076 0.251 0.003 0.055

Table 3: Accuracy on external datasets for out-of-distribution generalization testing.

Sources FXP. ObjFormer. SegFormer NPR DMD. ComFor. AfPr. AEROB. DIRE FakeShield LEGION

FakeClue 2025 0.852 0.462 0.485 0.833 0.734 0.766 0.849 0.239 0.727 0.550 0.172
Chameleon 2024 0.843 0.485 0.508 0.794 0.721 0.757 0.803 0.291 0.752 0.587 0.197

GPT-Image-1 2025 0.801 0.513 0.538 0.790 0.735 0.636 0.597 0.458 0.793 0.752 0.238
FaceForensics++ 2019 0.864 0.598 0.716 0.861 0.562 0.429 0.746 0.681 0.850 0.773 0.395
MMFR-Dataset 2025 0.874 0.653 0.657 0.569 0.619 0.595 0.786 0.685 0.624 0.710 0.193

the model achieves an IoU score of 36.0%, outperforming all segmentation-based baselines. This
indicates that FakeXplainer identifies fake regions more consistently with human annotations than
competing approaches.

Reasoning Quality. Table 2 shows the BLEU-2 and ROUGE-L (Li et al., 2024) of model responses
against the FakeXplained dataset. The results verify the training effectiveness of FakeXplainer, con-
siderably outperforming the base model in explanation generation, indicating that both the regions
and their reasons are generated accurately.

Generalizability of FakeXplainer on other MLLMs. To assess generalizability beyond Qwen-2.5-
VL, we further evaluated it on several state-of-the-art MLLMs with diverse architectures and capa-
bilities in Table 2. The consistent performance gain of FakeXplainer across architectures, whether
with grounding capabilities (InternVL3 (Zhu et al., 2025)) or without (Ovis2.5 (Lu et al., 2024),
MiMo (Xiaomi, 2025)), validates the model-agnostic nature of our pipeline.

Out-of-distribution (OoD) evaluation. We also evaluated the models on five OoD datasets, Fake-
Clue (Wen et al., 2025), Chameleon (Yan et al., 2024), FaceForensics++ (Rössler et al., 2019),
images generated by GPT-Image-1 (OpenAI, 2025; Rapidata, 2025) and MMFR-Dataset (eval) pro-
posed by FakeReasoning (Gao et al., 2025). As shown in Table 3, our model consistently outper-
forms all other methods across OoD datasets, demonstrating considerable generalization to unseen
image domains.

Qualitative evaluation. Figure 5 shows two samples from the FakeXplained test set. We found
that our model prefers outlining smaller regions than human annotators, demonstrating fine-grained
localization capability. Compared with LEGION and FakeShield, FakeXplainer not only provides
correct predictions but also delivers reliable, grounded explanations. More qualitative examples will
be provided in the Appendix A.3.

Human preference evaluation. While IoU and classification accuracy provide objective metrics for
detection performance, they do not fully capture the qualitative aspects of region-caption alignment.
In fact, the model may, in some instances, generate annotations that surpass those of the original
human annotators. To comprehensively assess the quality and relevance of the generated explana-
tions, we conducted a human preference study involving an independent group of evaluators. In this
study, participants were shown pairs of outputs for the same image, each with different bounding
box annotations and associated captions. With no metadata given, evaluators were asked to choose
the annotation that demonstrated better alignment between the region and caption, as well as higher
overall quality. If no clear preference emerged, a neutral option was available.

We received 1,525 non-neutral preference votes. In Figure 3, the “Humans” category represents
annotations from the FakeXplained dataset. When compared with FakeXplainer, human annota-
tions were preferred in 52.9% of cases, indicating that FakeXplainer achieves near-parity with hu-
man annotators in producing region-grounded explanations, demonstrating the effectiveness of our
framework in generating high-quality visual-textual reasoning.
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Original Image FakeXplained FakeXplainer LEGION FakeShield

(no mask)

Real Natural reflection 

and shadows, no 

blurring or jaggedness, 

the text on the shoe, 

Running ATT, is clear.

Fake …To elaborate,

I have found that:

Left shoe lace:

The left shoe lace is 

missing a section.

Fake 1. The shoelaces 

blend into each other.

Fake 1. The laces don't 

cross over each other, 

but blend into the shoe 

material.

(AI-Generated)

(AI-Generated)
Fake There might be 

unnatural blending or 

unclear edges where 

fabric textures overlap 

around the pocket.

Fake The man's right 

ear is missing. Men's 

left ear: The outer ear 

rim and earlobe of the 

ear are fused together.

Fake 1. Blurry nametag.

2. The buttons are 

missing, and the flap is 

unnatural.

3. Pocket too large.

Fake 1. Text and 

Insignia looks blurry.

2. The pocket is long 

and asymmetrical.

Figure 5: Comparison of responses visualized from the FakeXplainer method, the ground truth
from the FakeXplained dataset, and LEGION (Kang et al., 2025) and FakeShield (Xu et al., 2024).

Table 4: Performance comparison of FakeXplainer under different training configurations.

Metric FakeXplainer No-FT Training Strategy (32B) Partial Data (32B)

3B 7B 32B 32B SFT GRPOωG=1 GRPOωG=0.5 no-bbox no-caption no-tags label-only

Acc. 0.842 0.958 0.982 0.734 0.893 0.937 0.974 0.952 0.942 0.962 0.937
IoU. 0.185 0.255 0.360 0.044 0.043 0.265 0.223 - 0.265 0.358 -

BLEU-2 0.195 0.246 0.267 0.080 0.183 0.257 0.261 0.164 - 0.243 -
ROUGE-L 0.121 0.218 0.251 0.076 0.174 0.239 0.242 0.160 - 0.237 -

5.3 ABLATION STUDIES

We ablate each training component, including each data component and each training segment, and
report the results in Table 4. Additional ablation results are provided in Appendix D.

Model size of MLLM. Model size has a clear impact on the performance of FakeXplainer. With
the same training pipeline, the 7B variants can identify the authenticity of the image in 95.8% of
the cases, but the 3B variant fails to surpass most traditional methods in detection accuracy and
cannot effectively localize fake regions. The 7B variant also outputs a good rationale according to
the BLEU and ROUGE-L metrics, making it a good balance between performance and speed.

Effects of different training stages. To analyze the impact of each training stage, we report both
accuracy and IoU metrics across the entire training process in Figure 4. Without GRPO, SFT alone
yields marginal improvements over the base model, especially in localization. The GRPO stage with
a constant ωG = 1 has a higher IoU than the linear scheme, but struggles to train effectively in later
steps, demonstrating the cumulative benefit of the progressive reward design. By the completion of
the RLHF stage, the model reaches an accuracy of 98.2% and an IoU of 36.0%.

Fine-tuning impact. Without fine-tuning, Qwen-2.5-VL-32B-Instruct achieves only 73.4% accu-
racy. SFT improves this to 89.3%, and adding GRPO further increases the performance to 98.2%,
demonstrating the critical role of our two-stage pipeline and the FakeXplained dataset.

Data components. We evaluate three data components: image tags, region annotations (bounding
boxes + captions), and binary labels. Using only binary labels yields 93.7% accuracy—the lowest
among partial variants but still exceeding DMD’s 92.8%. Removing bounding boxes or captions
reduces accuracy by 3.5%, with caption removal severely impacting IoU (-9.5%). While tag removal
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has a minimal effect on both metrics. These results confirm that structured reasoning information,
particularly region-level annotations, substantially improves detection performance.

Training strategies. Fixed reward weighting (GRPOωG=1 and GRPOωG=0.5) underperforms our
progressive GRPO approach across all metrics. Notably, the localization-prioritized GRPOωG=1

also shows inferior IoU, validating the necessity of textual explanations and dynamic reward weight-
ing for the step-by-step acquisition of classification, localization skills, and overall interpretability.

6 CONCLUSION

Our research presents FakeXplainer, an explainable AI-generated image detection approach uti-
lizing MLLMs that provides grounded, human-interpretable explanations alongside detection re-
sults. The system achieves strong performance metrics (98.2% accuracy, 36.0% IoU) through a
progressive training pipeline, establishing a foundation for transparent visual media authentica-
tion. Although grounded explainability improves FakeXplainer’s generalization, its dependence
on human-perceptible artifacts reflects an inherent limitation shared by all current explainable AIGI
detectors. Fully realistic synthetic images without semantically describable flaws represent a fun-
damentally different detection problem and fall outside the scope of this work. At the same time,
our results show that grounded, human-aligned reasoning provides clear advantages over black-box
classifiers: models that output only a binary label exhibit substantial degradation under distribu-
tion shift, whereas FakeXplainer maintains strong performance across multiple out-of-distribution
benchmarks. These findings suggest that explicit localization and human-aligned supervision offer
a more robust and verifiable signal than classification alone.
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A APPENDIX FOR FAKEXPLAINED

The FakeXplained dataset contains 8,772 high-quality AI-generated images annotated with fine-
grained bounding boxes and descriptive captions that highlight synthesis artifacts and logical incon-
sistencies. This dataset addresses the critical gap in explainable and spatially grounded AI-generated
image detection.

A.1 SOURCE OF IMAGES

To ensure content diversity, we generated images across 1,000 ImageNet categories using 28 differ-
ent text-to-image generation models, one image per class per model. The prompt used is:

“A realistic image of {class name}”

The models used are listed as follows:

Diffusion-Based Generators: Midjourney Midjourney (2023), Stable Diffusion models Rom-
bach et al. (2022b); Esser et al. (2024), DDIM Song et al. (2020), DDPM Ho et al. (2020), DALLE
OpenAI (2023), GLIDE Nichol et al. (2021), and VQDM Gu et al. (2022).

GAN-Based Generators: GALIP Tao et al. (2023), StyleGAN Karras et al. (2018), VQGAN
Esser et al. (2021), and BigGAN Brock et al. (2018).

DiT-Based Generators: PixArt Chen et al. (2023; 2024b;a) and DiT Peebles & Xie (2023).

Other Generators: VAR Tian et al. (2024), Infinity Han et al. (2024), MaskGIT Chang et al.
(2022), and LlamaGen Sun et al. (2024).

Most generated images are at a resolution of 512×512. For methods that do not natively support this
resolution, the 1024× 1024 resolution is used, and the images are downscaled to 512× 512 before
entering annotation stage. Generated images went through manual screening to remove images
that can be easily identified as AI-generated. The filter process is conducted manually to filter out
low-quality images that depict non-identifiable objects or if no part of the image is real.

A.2 ANNOTATION PROCESS

We recruited a team of experts who are trained to identify fake regions accurately. All of them
have prior experience in photography, have seen AI-generated images before, possess a fundamental
photographic literacy understanding, and are familiar with related concepts such as “saturation,”
“shadow,” “perspective,” and “noise.” During the training process, we provide all annotators with a
detailed instruction handout with examples. The handout contains positive and negative examples
for each global tag, a detailed bounding box annotation guideline, along with quality control metrics.
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Instructions on fake regions. The rule for annotating fake regions is, if through observation of
the selected regions of interest, humans should be able to clearly determine that the image is not an
authentic photograph. Fake regions primarily show objects that do not follow the natural physics
laws or contradict common sense. Common image generation artifacts are also encouraged to be
annotated. After selecting a local area in the image, it is necessary to describe the reason for identi-
fying it as a generated image. The descriptive sentence must start with a noun, followed by one or
several adjective phrases or short clauses, and must exclusively describe content that appears in the
region.

Definition of tags. We refer to the most prominent depicted object in the non-background portion
of the image as the image subject. There are exactly five different tags that annotators can attach to
an image. Their definitions are listed as follows:

• Perspective errors: Indicates that the image has an unnatural viewing angle, or errors
in perspective, vanishing points. Incorrect occlusion and shadow errors do not constitute
perspective errors, but can be considered as fake regions instead.

• Artistic styles: If the overall image presents any artistic style, including but not limited
to oil painting, ink painting, or manga style, then select the “Artistic Style” tag. If only a
certain part of the image contains content in an artistic style, this tag should not be selected.

• Unknown objects: Indicates that the subject of the image does not exist in the world,
or is obviously unreasonable. There may be unusual insects and furniture with strong
design elements. Judgment should be based on intuition; unfamiliar or rare subjects do not
necessarily indicate unreasonable or non-existent objects.

• Structure/attribute errors: Indicates that the subject of the image has a structure that is
inconsistent with common knowledge, or has attributes inconsistent with common knowl-
edge. Examples include green flower petals, pink elephants, bent iron spoon handles, hu-
mans with more than two legs, and asymmetrical shapes. For erroneous attributes that only
occupy a small portion of the image subject, such as an incorrect number of fingers on a
human hand, fake regions should be marked as well.

• Texture errors: If obvious texture errors appear in the image, this tag needs to be selected.
For example, the texture of the entire image is blurry, or a portion of an object has a repet-
itive, tilted, or distorted texture. Unreadable text does not qualify as a texture error and
should be labeled as a fake region instead. If “Artistic Style” has already been marked, this
tag is usually omitted.

• Other anomalies: If there are very obvious global errors in the image that do not belong
to any of the above categories, check this item. This tag can also be marked even if other
tags have already been chosen.

Keywords in Annotations We analyze the captions of the bounding boxes to find the most fre-
quent phrases. Their occurrences are shown in Figure 6. Since we filter for the highest-quality im-
ages, it is hard to find a deciding bounding box for some cases. The contours and depth of field are
more likely to give the image away, leading to a high frequency of related captions. FakeXplainer
manages to align with most of the FakeXplained traits, with a higher detection rate for abnormal
object textures.

Quality Check To ensure quality, we cross-referenced the annotators’ proposals against control
samples we marked ourselves. We enforced a rejection policy where an average IoU under 20%
or a tag agreement lower than 1

3 will result in the exclusion of all previous data provided by the
annotator.

Figure 7 qualitatively demonstrates the 20% IoU criteria of the screening process. The criteria
is selected to accommodate individual understandings over AI-generated images while preventing
obvious fake regions from being omitted without notice. When the annotation process finishes, the
annotations and QC samples reached an IoU of 42.35% and the tag-agreement rate was 79.67%.
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8% 6% 4% 2% 0% 2% 4% 6% 8%
Percentage (%)

unrealistic textures

physics inconsistencies

text inconsistencies

unknown objects

color inconsistencies

lighting or shadow issues

blurred contours

Comparison of Visual Artifact Attribution

FakeXplained

FakeXplainer

Figure 6: Keyword analysis for FakeXplained and the FakeXplainer responses.

IoU = 38.1% acceptedQC Sample IoU = 25.7% acceptedQC Sample

IoU = 18.4% rejectedQC Sample IoU = 17.9% rejectedQC Sample

Figure 7: Samples from the quality check process. When our regional annotation has a lower than
20% IoU with the annotation proposal, we reject the annotation.

A.3 MORE SAMPLES

Figure 9 presents more annotated AI-generated images from FakeXplained. The left column dis-
plays the human annotations of FakeXplained. The right column shows the inference results of our
best model, FakeXplainer. The center bar indicates the proportion of human preference votes from
our user study. Note that since the “neutral” option was allowed, although the third annotated image
received 46.2% of the votes, the human annotator is still rated higher than our model response. Our
model demonstrates the ability to generate clearer, more descriptive captions for fake regions and
reliably identifies content that contradicts common sense. For instance, in the lock-and-keyhole ex-
ample (row 5), the model successfully detects that the key is not inserted into the correct keyhole. In
the volcano example (row 2), in addition to identifying the “broken mountain body” as in the human
annotation, the model also detects a subtle issue: the disconnection of the lava flow, highlighting its
fine-grained visual reasoning capabilities.
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Gen’d

Template #1 Template #2

You are an AIGC detection expert. When the user provides an
image, inspect it carefully and pay attention to defects within the
image. Provide reasons after thinking.

The user will provide an image. You need to determine whether
this image is AI-generated or real. Please pay attention to the
naturalness and details of objects in the scene and give reasons
after thinking.

<image>Please inspect this image. Focus on local details, find
logical errors or AI-generation artifacts. Point out regions with
any irrational occurrences and provide a short caption for each of
these regions. If you are not able to find any, please answer "No
obvious errors in local parts. After inspection, this image may be
real."

<image>Is this image AI-generated or real? Please think
carefully and focus on local details. If there are any obvious
errors in the image, please point out their location and
corresponding reasons, and give a final conclusion. Otherwise,
please answer "No obvious errors in local parts. After inspection,
this image may be real."

<think>
<ref-object><bbox>;
<ref-object><bbox>;
Associated tags: <tag>structure/property errors</tag>.
</think>
<verdict>After careful inspection, I believe this image is AI-
generated.</verdict>

<think>
<ref-object><bbox>;
<ref-object><bbox>;
Overall, this image has <tag>structure/property errors</tag>.
</think>
<verdict>After careful inspection, I believe this image is AI-
generated.</verdict>

from FakeXplained

System
Prom

pt
U
ser

Prom
pt

M
odel

R
esponse

<ref-object>, <bbox> tags will be replaced with actual data from
FakeXplained during training.

Figure 8: An example showing two different chat templates branched from one annotation entry.

A.4 ETHICAL CONSIDERATIONS

All generated images are synthetic with no real individuals. Annotators provided informed consent
to this annotation job, allowing us to use the annotated dataset for training. We explicitly ask the
annotators not to leave any personal or sensitive information in annotations.

A.5 KNOWN LIMITATIONS

Language. Currently, all annotations are in one language. It is hard to translate the short annota-
tion sentences to other languages without a manual check for language inconsistencies.

No Real Images. FakeXplained does not contain real images for the time being, as defining re-
gions for real images can be more subjective than AI-generated images.

B ADDITIONAL TRAINING DETAILS

B.1 TWO-STAGE TRAINING

We use ms-swift Zhao et al. (2025) for fine-tuning Qwen-2.5-VL models.

In the LoRA SFT stage, we noticed that freezing either the projector or the vision encoder leads to
marginal improvement over the base model without training. To achieve optimal SFT performance,
both modules must be fine-tuned jointly.

After the SFT stage, we use GRPO instead of PPO. As noted in Shao et al. (2024), GRPO obviates
the need for additional value function approximation as in PPO, and instead uses the average reward
of multiple sampled outputs. For each query q, GRPO samples G outputs {o1, o2, . . . , oG} from the
old policy model πθold , and uses the relative advantage to optimize the MLLM, making it particu-
larly well-suited for multi-modal reasoning tasks where absolute reward calibration is challenging.

We set the initial learning rate to 10−4 for the SFT stage and 10−5 for the RLHF stage. Reward
signals fluctuated at the beginning of GRPO but quickly converged as the model is generating more
human-aligned explanations, confirming the effectiveness of our reward design and training strategy.

B.2 COMPUTATIONAL RESOURCES

The full training procedure took 41.0 hours on 8x NVIDIA A100 (80G) GPUs.
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Table 5: Comparative performance analysis under compression artifacts, spatial transformations,
and resolution changes.

Degradation & Metric FakeXplainer ObjFormer. SegFormer FakeShield LEGION NPR DMD. ComFor. AfPr. AEROB. DIRE

JPEG Compression
(80% Quality)

Acc. 0.979 0.940 0.927 0.782 0.544 0.820 0.908 0.840 0.871 0.842 0.884
IoU 0.353 0.284 0.231 0.092 0.061 - - - - - -

JPEG Compression
(30% Quality)

Acc. 0.977 0.926 0.915 0.735 0.535 0.781 0.897 0.784 0.856 0.814 0.879
IoU 0.339 0.267 0.198 0.078 0.059 - - - - - -

Random Cropping Acc. 0.962 0.943 0.934 0.756 0.519 0.903 0.915 0.829 0.879 0.858 0.891
IoU 0.314 0.217 0.176 0.067 0.061 - - - - - -

Downsampling
(0.5x)

Acc. 0.980 0.929 0.931 0.748 0.591 0.899 0.912 0.853 0.875 0.841 0.894
IoU 0.362 0.259 0.254 0.092 0.076 - - - - - -

Original
Images

Acc. 0.982 0.954 0.945 0.801 0.583 0.914 0.928 0.882 0.887 0.873 0.911
IoU 0.360 0.299 0.289 0.028 0.098 - - - - - -

Table 6: Out-of-distribution performance evaluation across different datasets when trained with
various configurations mentioned in the paper.

Sources FakeXplainer No-FT Partial Data Training Strategy

no-bbox no-caption no-tags label-only SFT GRPOωG=1 GRPOωG=0.5

GPT-Image-1 Rapidata (2025) 0.801 0.421 0.691 0.760 0.774 0.603 0.591 0.788 0.768
FaceForensics++ Rössler et al. (2019) 0.864 0.519 0.715 0.796 0.817 0.640 0.680 0.826 0.832

MMFR-Dataset Gao et al. (2025) 0.874 0.593 0.859 0.708 0.843 0.612 0.671 0.794 0.773

At inference time, the end-to-end pipeline that takes an image as input to generate the verdict and
grounding (if the image is deemed AI-generated) takes an average of 7.8 seconds on 2x NVIDIA
A100 (80G) GPUs.

C ROBUSTNESS AGAINST IMAGE PERTURBATIONS

To evaluate the practical applicability of our approach, we conduct a comprehensive robustness eval-
uation under common image degradations that are frequently encountered in real-world scenarios.
Table 5 presents a comparative performance analysis across three perturbation categories: JPEG
compression, random cropping, and downsampling.

Our method demonstrates exceptional resilience to JPEG compression artifacts, achieving low per-
formance degradations of merely 0.3% and 0.8% from the uncompressed baseline, significantly
outperforming current state-of-the-art methods. All of which experience at least a 3% degradation.
Notably, SegFormer and ObjectFormer show more stability than image-only classification models,
indicating that grounding enhances robustness, although they still fall short of our method. For
downsampling, we scaled the input images to 50% of their original width and height. In random
cropping and downsampling experiments, our approach achieves the accuracy of 96.2 and 98.0, re-
spectively, indicating robust performance across different resolution scales. Meanwhile, downsam-
pling does not severely affect the IoU score, which suggests that our grounded reasoning approach
effectively captures semantic-level artifacts that remain detectable even at reduced resolutions, un-
like methods that may rely on pixel-level features more susceptible to resolution changes. Since ran-
dom cropping modifies the overall image layout, this action can remove certain fake regions from an
image entirely, leading to lower IoU across all methods. Interestingly, we observe a slight increase
in IoU after downsampling. We hypothesize that this is because our grounding model focuses on
the dominant artifact region, which remains visible at lower resolutions, while noisy fine details
are suppressed, leading to more precise and focused localization. Overall, the consistent perfor-
mance across perturbation types demonstrates that our model captures underlying semantic artifacts
in AI-generated content, enabling robust detection even under challenging image conditions.

D ADDITIONAL ABLATION STUDIES

D.1 OUT-OF-DISTRIBUTION PERFORMANCE

We evaluate the generalization capabilities of the ablation models in Section 5.2 (Table 2) of the main
paper on three OoD datasets: images generated by GPT-Image-1 Rapidata (2025), FaceForensics++
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1. The animal has 
distorted beak
2. The animal has 
distorted legs

1. The upper beak is 
distorted, too long and looks 
blurry.
2. The fur has a wrong 
texture and material.
3. Legs twisted and 
deformed, paws partially 
blurred with bifurcations, 
overall texture resembling 
bamboo.

FakeXplained FakeXplainer
by human annotators by fine-tuned Qwen-2.5-VL-32B-Instruct model

GLIDE GLIDE

1. Volcanic crater shape 
abnormal.

1. Mountain body partially 
missing.
2. Lava flow lacks 
connection, broken 
everywhere, lava flow 
texture incorrect, layering 
effect too pronounced.
3. Lava flow lacks 
connection.
4. Lava flow texture 
incorrect, layering effect too 
pronounced.

PixArtSigma PixArtSigma

FLUX.1-Schnell FLUX.1-Schnell

1. Text blurry.
2. Screen lines broken and 
disconnected.
3. Knob twisted and 
deformed.
4. Knob twisted and 
deformed.
5. Three knobs of different 
sizes.

1. Text blurry.
2. The text on buttons are 
not identifiable.
3. Text blurry.
4. Text blurry.
5. Text blurry.

1. The patch on the socks 
merge with the wooden 
floor.

1. Socks different in size 
and color, two socks 
asymmetrical, socks 
merged with floor.
2. Sock has different 
colors at both ends.
3. Wrinkles in toe area of 
sock.
4. Crack appearing in the 
floor.

LlamaGen LlamaGen

BigGAN BigGAN

1. Font blurry.
2. Object twisted and 
deformed.
3. Object twisted and 
deformed.
4. Inner circle width 
inconsistent between top and 
bottom.
5. Shape asymmetrical.

1. The keyhole does not 
match the key insertion 
position.
2. Key is deformed.

Sample 346.2%

Sample 2 71.4%

Sample 1 80.0%

Sample 4 100.0%

Sample 5 85.0%
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Has 1) Perspective errors; 2) Artistic styles; 3) Unknown objects; 4) Structure/attribute errors; 5) Texture errors; 6) Other anomalies.
Tags:

Does not apply.

Figure 9: More annotation examples from FakeXplained and model response visualized from Fak-
eXplainer. The ratio in the center shows the human preference score.
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Table 7: Performance analysis of
FakeXplainer-32B across different im-
age tags. The table shows the percentage
of samples containing each tag, and the
classification accuracy for images with (Acc
on X) and without (Acc on non-X) that
specific tag.

Tag (X) With X Without X Samples
Structure/Attribute Error 98.39% 97.43% 80.52%
Wrong Texture 98.53% 97.95% 42.65%
Artistic Style 100.00% 97.95% 12.18%
Other Anomalies 94.08% 98.45% 5.78%
Unrecognizable Objects 96.72% 98.25% 3.12%
Perspective Errors 100.00% 98.18% 1.16%

Structure/Attribute Texture
Art Style

Other Anomalies
Unrecognizable

Perspective

92%
93%
94%
95%
96%
97%
98%
99%

100%

A
cc

ur
ac

y 
(%

)

98.4 98.5

100.0

94.1

96.7

100.0

97.4
98.0 97.9

98.5 98.2 98.2

Acc on X
Acc on non-X

Figure 10: Visual representation of detection accuracy
across different tag categories.

Rössler et al. (2019) and MMFR-Dataset (eval) proposed by FakeReasoning Gao et al. (2025). Ta-
ble 6 shows that our complete pipeline achieves accuracies of 80.1, 86.4 and 87.4 respectively,
compared to 42.1, 51.9 and 59.3 for the base model without fine-tuning.

Among partial data ablations, the label-only configuration performs the worst among all partial data
category entries, yielding near no-finetuning performance. This OoD evaluation further confirms
that both spatial grounding and textual reasoning are essential for generalization.

The SFT stage alone yields moderate performance (59.1 on GPT-Image-1, 68.0 on FF++, 67.1 on
MMFR). Further into the GRPO training, we see a better overall performance. This result is con-
sistent with findings discussed in our main paper, as the RLHF stages give more performance boost
than the SFT stage. The consistent improvements across both datasets suggest our approach learns
generalizable features for AI-generated content detection rather than dataset-specific patterns.

D.2 DISABLING LORA

We employ LoRA during training to reduce computational cost and memory usage. While full-
parameter fine-tuning is technically possible, our results show that it does not improve accuracy
or IoU (Accuracy: 98.2% → 97.9%, IoU: 36.0% → 35.4%), likely due to the limited amount of
annotated data. This suggests that LoRA provides a more efficient and suitable training strategy
under current data constraints. With significantly more training data, full fine-tuning may yield
better results.

E DISCUSSIONS ON TAG-WISE PERFORMANCE

To assess the impact of different artifact types on detection performance, we analyzed the accuracy
of FakeXplainer-32B on the FakeXplained dataset across the six distinct image-level tags defined in
Section 3. Table 7 details the prevalence of each tag within the dataset and compares the model’s
accuracy on images containing a specific tag versus those without it.

Notably, the model achieves 100% accuracy on images tagged with Artistic Style and Perspective
Errors. While Perspective Errors are rare (1.16%), the perfect detection rate implies that vanish-
ing point inconsistencies are distinct features that the MLLM can easily leverage for classification.
Meanwhile, the model exhibits a slight performance drop on images labeled with the Other Anoma-
lies tag, which is typically assigned to images with global inconsistencies or subtle defects that are
difficult to categorize into specific localized regions. This decrease in performance suggests that
localized flaws are powerful cues to draw the conclusion that an image is AI-generated. This can
potentially be improved with a global explanation to images in the FakeXplained dataset. Similarly,
Unrecognizable Objects (96.72%) presents a moderate challenge, likely because defining “recog-
nizability” can be subjective and occasionally overlaps with abstract artistic intent.
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F LIMITATIONS

Despite promising results, our approach still has limitations. The Qwen-2.5-VL-32B-Instruct model
incurs substantial computational costs, which may limit its deployment in resource-constrained en-
vironments. Our evaluation does not sufficiently cover domain-specific or real-world image types,
such as medical, industrial, or artistic imagery. As generated media becomes more and more realis-
tic and cross-modal, FakeXplainer, designed to detect visible, human-interpretable artifacts that can
be localized and explained, may not be able to produce explainable responses. This scope is inher-
ent to all explainable AIGI detectors: grounded, human-aligned reasoning is only feasible when the
underlying cues are perceptible to humans. However, as long as visible artifacts are still present,
FakeXplainer can effectively detect and explain. Nonetheless, as long as perceptible cues remain,
FakeXplainer provides significantly more robust and verifiable predictions than black-box classi-
fiers, especially under distribution shift, due to its grounded and human-aligned reasoning process.

G BROADER IMPACT

While our system improves interpretability in detecting AI-generated content, it may also intro-
duce risks. The detailed explanations of detection rationale could inadvertently assist malicious
adversaries in developing more sophisticated evasion techniques, potentially contributing to an ad-
versarial “arms race.” The deployment of such systems without careful consideration could lead
to over-censorship of legitimate content, particularly affecting artists and creators who use AI tools
ethically. To mitigate these risks, we recommend responsible deployment frameworks, ongoing
monitoring for bias and fairness, and collaborative development with stakeholders to ensure the
technology serves the public interest while preserving legitimate creative expression.

H THE USE OF LARGE LANGUAGE MODELS

During manuscript preparation, we employed LLMs only for language polishing and grammar re-
finement. All research ideas, methods, and results were conceived, implemented, and validated
entirely by the authors. Since our work studies MLLMs in the context of forgery detection, we
necessarily employed LLMs as research subjects. Specifically, MLLMs were used to generate or
assist in generating annotations within our dataset and to serve as baseline models in our experi-
ments. These usages are intrinsic to the research problem itself and should not be interpreted as
LLMs contributing to the ideation or authorship of this paper.
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