
Published in Transactions on Machine Learning Research (04/2025)

When Are Bias-Free ReLU Networks Effectively
Linear Networks?

Yedi Zhang yedi@gatsby.ucl.ac.uk
Gatsby Computational Neuroscience Unit
University College London

Andrew Saxe a.saxe@ucl.ac.uk
Gatsby Computational Neuroscience Unit & Sainsbury Wellcome Centre
University College London

Peter E. Latham pel@gatsby.ucl.ac.uk
Gatsby Computational Neuroscience Unit
University College London

Reviewed on OpenReview: https: // openreview. net/ forum? id= Ucpfdn66k2

Abstract

We investigate the implications of removing bias in ReLU networks regarding their expres-
sivity and learning dynamics. We first show that two-layer bias-free ReLU networks have
limited expressivity: the only odd function two-layer bias-free ReLU networks can express
is a linear one. We then show that, under symmetry conditions on the data, these networks
have the same learning dynamics as linear networks. This enables us to give analytical
time-course solutions to certain two-layer bias-free (leaky) ReLU networks outside the lazy
learning regime. While deep bias-free ReLU networks are more expressive than their two-
layer counterparts, they still share a number of similarities with deep linear networks. These
similarities enable us to leverage insights from linear networks to understand certain ReLU
networks. Overall, our results show that some properties previously established for bias-free
ReLU networks arise due to equivalence to linear networks.

1 Introduction

Theorists make simplifications to real-world models because simplified models are mathematically more
tractable, yet discoveries made in them may hold in general. For instance, linear models have illuminated
benign overfitting (Bartlett et al., 2020) and double descent (Advani et al., 2020) in practical neural networks.
In this paradigm, understanding the consequences of a simplification is critical, since it informs us which
discoveries in simple models extend to complex ones. Here we inspect a specific simplification that is common
in theoretical work on ReLU networks (Zhang et al., 2019; Du et al., 2019; Arora et al., 2019; Lyu & Li, 2020;
Vardi & Shamir, 2021): the removal of the bias terms. The removal of bias not only appears in theoretical
work but also has practical applications. Some real-world models adopt bias removal to introduce scale
invariance, which can be a beneficial property for image denoising (Mohan et al., 2020; Zhang et al., 2022),
image classification (Zarka et al., 2021), and diffusion models (Kadkhodaie et al., 2024). This paper seeks to
illuminate the implications of bias removal in ReLU networks, and so provide insight for theorists on when
bias removal is desirable.

We investigate how removing bias affects the expressivity and the learning dynamics of ReLU networks and
identify scenarios where bias-free ReLU networks are effectively linear networks. For expressivity, we show
that two-layer bias-free (leaky) ReLU networks cannot express odd functions except linear functions. This
was proven for input uniformly distributed on a sphere (Basri et al., 2019, Theorem 2 and 4), but we prove
it for arbitrary input with a simpler approach. We then consider deep bias-free (leaky) ReLU networks and

1

https://openreview.net/forum?id=Ucpfdn66k2

Published in Transactions on Machine Learning Research (04/2025)

show a depth separation result, i.e., deep bias-free ReLU networks can express homogeneous nonlinear odd
functions while two-layer ones cannot. For learning dynamics, we show that two-layer bias-free (leaky) ReLU
networks have the same learning dynamics as a linear network when trained with square loss or logistic loss on
symmetric datasets, whose target function is odd and input distribution is even. Our symmetry Condition 3
on the dataset incorporates the datasets studied in several prior works (Sarussi et al., 2021; Lyu et al.,
2021; Zhang et al., 2024). We also present two cases where two-layer bias-free ReLU networks evolve like
multiple independent linear networks. Finally, we empirically find that when the target function is linear,
deep bias-free ReLU networks form low-rank weights similar to those in deep linear networks.

By revealing regimes where bias-free ReLU networks behave like linear networks, we provide an accessible
way of understanding ReLU networks within these regimes, as well as a cautionary note that studying
nonlinear behaviors generally requires stepping beyond these regimes. This understanding leverages insights
from linear networks, which are simpler and thus enjoy much richer theoretical results than ReLU networks
(Baldi & Hornik, 1989; Fukumizu, 1998; Saxe et al., 2014; 2019; Arora et al., 2018; Ji & Telgarsky, 2019;
Lampinen & Ganguli, 2019; Gidel et al., 2019; Tarmoun et al., 2021; Braun et al., 2022; Ziyin et al., 2022).
For example, we are able to give closed-form time-course solutions to certain two-layer ReLU networks
outside the lazy learning regime in Corollary 9. Our findings suggest that the bias terms in a ReLU network
play an important role in learning nonlinear tasks. Our contributions are the following:

• Section 3 proves the limited expressivity of bias-free (leaky) ReLU networks, and shows a depth
separation result between two-layer and deep bias-free ReLU networks;

• Section 4.1 proves that under symmetry Condition 3 on the dataset, two-layer bias-free (leaky)
ReLU networks trained with square loss or logistic loss evolve the same as linear networks, and gives
analytical time-course solutions for ReLU networks in this regime.

• Section 4.2 shows that bias-free ReLU networks behave similarly to multiple independent linear
networks on orthogonal and XOR datasets;

• Section 5 shows the similarities between deep bias-free ReLU networks and deep linear networks,
and finds specific rank-one and rank-two structure in the weights.

1.1 Related Work

Basri et al. (2019) proved, using harmonic analysis, that two-layer bias-free ReLU networks can neither
learn nor express odd nonlinear functions when input is uniformly distributed on a sphere (Basri et al., 2019,
Theorem 2 and 4). We make a similar argument with a simpler proof. Our Theorem 1 handles arbitrary
input, includes both ReLU and leaky ReLU networks, and the proof only involves rewriting the (leaky) ReLU
activation function as the sum of a linear function and an absolute value function.

Lyu et al. (2021) proved two-layer bias-free leaky ReLU networks trained with logistic loss converge to a
linear, max-margin classifier on linearly separable tasks with a data augmentation procedure. Our Theorem 8
shows that the learning dynamics of leaky ReLU networks in their setup is equivalent to that of a linear
network. In light of this equivalence, their result is guaranteed given that linear networks trained with logistic
loss converge to the max-margin classifier on linearly separable tasks (Soudry et al., 2018). In addition, we
relax the assumption on the task from being linearly separable to being odd, and thus identify a practical
challenge: the data augmentation procedure of Lyu et al. (2021) can cause the ReLU network to fail to learn a
linearly non-separable task — a task the network might have succeeded to learn without data augmentation.

Zhang et al. (2024) found that two-layer bias-free ReLU networks have similar loss and weight norm curves as
linear networks when trained on datasets with zero mean Gaussian input and a linear target. They reported
that training the ReLU networks is about twice as slow as their linear counterpart. Our Theorem 8 explains
their observation: we prove that the dynamics of two-layer bias-free ReLU networks is exactly twice as slow
as their linear counterpart for a general class of datasets, including theirs.

A few other works have alluded to the connections between two-layer ReLU and linear networks. Sarussi
et al. (2021) discovered that two-layer bias-free leaky ReLU networks converge to a decision boundary that
is very close to linear when the teacher model is linear. Their theoretical results assume that the second

2

Published in Transactions on Machine Learning Research (04/2025)

layer is fixed while we train all layers of the network. Saxe et al. (2022) studied gated deep linear networks
and found they closely approximate a two-layer bias-free ReLU network trained on an XOR task. But they
did not generalize the connection between gated linear networks and ReLU networks beyond the XOR case.
Boursier & Flammarion (2024a) gave an example dataset with three scalar input data points, in which two-
layer bias-free (leaky) ReLU networks converge to the linear, ordinary least square estimator. Holzmüller
& Steinwart (2022) studied two-layer leaky ReLU networks with bias and found that they perform linear
regression on certain data distributions with scalar input, because the bias fails to move far away from their
initialization at zero.

While prior works have studied cases where bias-free ReLU networks behave like linear networks, their
connections have not been explicitly highlighted or systematically summarized. This paper aims to bring
the connections between bias-free ReLU and linear networks into focus, offering a comparative perspective
on ReLU networks.

2 Preliminaries

Notations: Non-bold symbols denote scalars. Bold symbols denote vectors and matrices. Double-pipe
brackets ∥ · ∥ denote the L2 norm of a vector or the Frobenius norm of a matrix. Angle brackets ⟨·⟩ denote
the average over the dataset. The circled dot ⊙ denotes the element-wise product.

2.1 Two-Layer Bias-Free (Leaky) ReLU and Linear Networks

A two-layer bias-free (Leaky) ReLU network with H hidden neurons is defined as

f(x; W) = W2σ(W1x) =
H∑

h=1
w2hσ

(
w⊤

1hx
)

, where σ(z) = max(z, αz), α ∈ [0, 1]. (1)

Here x ∈ RD is the input, W1 ∈ RH×D is the first-layer weight, W2 ∈ R1×H is the second-layer weight,
and W denotes all weights collectively. This is a ReLU network when α = 0 and a leaky ReLU network
when α ∈ (0, 1). When α = 1, the network is a linear network, and can be written as f(x) = W2W1x. We
also denote the linear network as f lin (x; W lin) = W lin

2 W lin
1 x when we need to distinguish it from ReLU

networks.

We consider the rich regime (Woodworth et al., 2020) in which the network is initialized with small random
weights. The network is trained with gradient descent on a dataset {xµ, yµ}P

µ=1 consisting of P samples. We
study square loss L =

〈
(y − f(x))2〉 /2 and logistic loss LLG =

〈
ln
(
1 + eyf(x))〉. We focus on square loss

in the main text and provide derivations with logistic loss in the appendix. The learning rate is η and the
inverse of the learning rate is the time constant τ = 1/η. In the limit of small learning rate, the gradient
descent dynamics are well approximated by the gradient flow differential equations

τẆ1 =
〈
σ′(W1x) ⊙ W ⊤

2 (y − W2σ(W1x)) x⊤〉 , (2a)
τẆ2 =

〈
(y − W2σ(W1x)) σ(W1x)⊤〉 , (2b)

where σ′ is the derivative of σ, ⊙ is the element-wise product, and the angle brackets ⟨·⟩ denote taking the
average over the dataset.

For linear networks, σ(z) = z, the gradient flow dynamics can be written as

τẆ lin
1 = W lin

2
⊤ (

β⊤ − W lin
2 W lin

1 Σ
)

, (3a)

τẆ lin
2 =

(
β⊤ − W lin

2 W lin
1 Σ

)
W lin

1
⊤

, (3b)

where Σ denotes the input covariance and β denotes the input-output correlation,

Σ =
〈
xx⊤〉 , β = ⟨yx⟩. (4)

3

Published in Transactions on Machine Learning Research (04/2025)

2.2 Deep Networks

A deep neural network of depth L is f(x) = hL where hL is recursively defined as

hl = Wlσ(hl−1), 2 ≤ l ≤ L,

h1 = W1x.
(5)

Here h1, · · · , hL−1 are vectors and hL is the scalar output. The gradient flow dynamics trained with square
loss is

τẆl =
〈

∂hL

∂hl
(y − hL)σ(hl−1)⊤

〉
. (6)

For deep linear networks, the gradient flow dynamics can be written as

τẆ lin
l =

(
L∏

i=l+1
W lin

i

)⊤(
β⊤ −

L∏
i=1

W lin
i Σ

)(
l−1∏
i=1

W lin
i

)⊤

, (7)

where
∏

i Wi represents the ordered product of matrices with the largest index on the left and smallest on
the right.

3 Network Expressivity

We first examine the expressivity of bias-free ReLU networks. It is well known that standard ReLU networks
with bias are universal approximators (Hornik et al., 1989; Pinkus, 1999) while bias-free ReLU networks are
not since they can only express positively homogeneous functions, i.e., g(ax) = ag(x) ∀a > 0. Moreover,
Section 3.1 shows that two-layer bias-free ReLU networks cannot express any odd function except linear
functions. Section 3.2 shows that deep bias-free ReLU networks are more expressive than two-layer ones,
but are still limited to positively homogeneous functions.

3.1 Two-Layer Bias-Free (Leaky) ReLU Networks

Theorem 1. The set of functions that can be expressed by two-layer bias-free (leaky) ReLU networks is a
subset of the set of functions of the form: f(x) = h(x) + g(x), where h(x) is linear and g(x) is a positively
homogeneous even function, meaning g(x) = g(−x) and g(ax) = ag(x) ∀a > 0.

three-layertwo-layer

without

bias

with

bias

✗

(a) Fan dataset.

three-layertwo-layer

without

bias

with

bias

✗✗

(b) Circle dataset.

Figure 1: The expressivity of two-layer and deep ReLU networks with and without bias. The networks are
trained with logistic loss until the loss stops decreasing. The empty circles are data points with +1 labels;
short lines are data points with −1 labels. The network output is plotted in color. (a) The fan dataset is odd,
homogeneous, and satisfies Condition 3. Two-layer bias-free ReLU networks cannot express it. (b) The circle
dataset is not homogeneous. Two-layer and deep bias-free ReLU networks cannot express it. Experimental
details are provided in Appendix H.

4

Published in Transactions on Machine Learning Research (04/2025)

Proof. Notice that the (leaky) ReLU activation function admits a decomposition1: σ(z) = 1+α
2 z + 1−α

2 |z|.
Thus, any two-layer (leaky) ReLU network can be written as

f(x; W) =
H∑

h=1
w2hσ(w1hx) =

H∑
h=1

w2h

[
1 + α

2 w1hx + 1 − α

2 |w1hx|
]

, (8)

which is a linear function plus a positively homogeneous even function.

Corollary 2. The only odd function that bias-free two-layer (leaky) ReLU networks can express is the linear
function.

Due to this restricted expressivity, two-layer bias-free ReLU networks fail to classify the fan dataset, as
shown in Figure 1a.

3.2 Deep Bias-Free (Leaky) ReLU Networks

1 0 1
x1

1

0

1

x 2

1

0

1

Figure 2: Function g(x)
defined in Equation (9) is
plotted with color.

Similarly to two-layer bias-free ReLU networks, deep bias-free ReLU networks
can express only positively homogeneous functions. Thus, as shown in Fig-
ure 1b, both two-layer and deep bias-free ReLU networks fail to classify the
circle dataset. However, in contrast to two-layer bias-free ReLU networks, deep
bias-free ReLU networks can express some odd nonlinear functions. For instance,
for two-dimensional input x = [x1, x2]⊤, the function below is odd, nonlinear,
and can be implemented by a three-layer bias-free ReLU network,

g(x) = σ(σ(x1) − σ(x2)) − σ(σ(−x1) − σ(−x2)), where σ(z) = max(z, 0). (9)

Thus, we have a depth separation result for bias-free ReLU networks: there exist
odd nonlinear functions, such as g(x) defined in Equation (9) and visualized in
Figure 2, that two-layer bias-free ReLU networks cannot express but deep bias-
free ReLU networks can.

4 Learning Dynamics in Two-Layer Bias-Free ReLU Networks

4.1 Symmetric Datasets

Section 3.1 has proven that two-layer bias-free ReLU networks cannot express odd functions except linear
functions. We now show that under Condition 3 on the dataset, two-layer bias-free ReLU networks not only
find a linear solution but also have the same learning dynamics as a two-layer linear network.
Condition 3. The dataset satisfies the following two symmetry conditions:

1. The empirical input data distribution is even: p(x) = p(−x);
2. The target function is odd: y(x) = −y(−x).

Remark 4. For infinite data, the first part of Condition 3 includes common distributions, such as any
Gaussian distribution with zero mean. For finite data, the first part of Condition 3 means that if x is
present in the dataset, −x is also present. Condition 3 includes the dataset studied in Lyu et al. (2021).
They considered linearly separable binary classification tasks with a data augmentation procedure in which
(−x, −y) is added to the dataset if (x, y) is in the dataset. We have the same assumption on the input data
distribution but relax the assumption on the target function from being linearly separable to being odd.

The key implication of Condition 3 is that the input covariance matrix and the input-output correlation
averaged over any half space are equal to those averaged over the entire space. We state this in Lemma 5
and prove it in Appendix B.2.

1We note that decomposing the ReLU activation function into a linear and an even function is technically uncomplicated
and has appeared in prior literature before, e.g., Ghorbani et al. (2021, Section 1.3) and Martinelli et al. (2024, page 4).

5

Published in Transactions on Machine Learning Research (04/2025)

Lemma 5. Let set S+ be an arbitrary half space divided by a hyperplane with normal vector r, namely
S+ = {x ∈ RD|r⊤x > 0}. Under Condition 3, we have ∀r〈

xx⊤〉
S+ = Σ, ⟨xy(x)⟩S+ = β. (10)

Recall that Σ and β are averages over the entire space as defined in Equation (4).

Under Condition 3, two-layer bias-free (leaky) ReLU networks initialized with small random weights evolve
approximately according to a linear differential equation in the early phase of learning. We can solve the
approximate linear differential equation and bound the errors of the approximation, leading to the following
lemma.
Lemma 6. We define the initialization scale as winit = max(∥W1(0)∥, ∥W2(0)∥). For time t <

τ
s+Tr Σ ln 1

winit
, the solution to the dynamics of two-layer (leaky) ReLU networks starting from small ini-

tialization exhibits exponential growth along one direction with small errors

W1(t) = e
α+1

2τ str1β̄⊤ + O(winit), W2(t) = e
α+1

2τ str⊤
1 + O(winit). (11)

where s = ∥β∥, β̄ = β/s, and r1 is determined by random initialization r1 =
(

W1(0)β̄ + W2
⊤(0)

)
/2.

The proof for Lemma 6 can be found in Appendix C.1. Lemma 6 indicates that the weights of the ReLU
network and the linear network form the same rank-one structure in the early phase, differing only in the
speed of exponential growth. At the end of the early phase, the weights are aligned and rank-one with
bounded errors, O(winit). For simplicity, we will assume in Assumption 7 that the weights are exactly
aligned and rank-one, which is justified when the initialization is infinitesimal, winit → 0. Assumption 7
further assumes that W2 has equal L2 norms for their positive and negative elements. This assumption is
supported by the fact that W2 is proportional to r1, which follows a zero-mean Gaussian distribution because
the initial weights W1(0), W2(0) are sampled from a zero-mean Gaussian distribution. As the network width
approaches infinity, W2 consists of infinitely many zero-mean Gaussian random samples, which have equal
L2 norms for their positive and negative elements.
Assumption 7. At initialization, there exists an unit vector r such that W1 = W ⊤

2 r⊤, and the L2 norms of
the positive and negative elements in W2 are equal, that is ∥ max(W2, 0)∥ = ∥ max(−W2, 0)∥ where max(·)
is applied element-wise.
Theorem 8. A two-layer (leaky) ReLU network and a linear network are trained with square or logistic loss
starting from weights which differ by a scale factor, W (0) =

√
2/(α + 1) W lin(0). Under Condition 3 on

the dataset and Assumption 7 on the initial weights, the learning dynamics of the two-layer (leaky) ReLU
network reduces to

τẆ1 = α + 1
2 W ⊤

2 β⊤ −
(

α + 1
2

)2
W2

⊤W2W1Σ, (12a)

τẆ2 = α + 1
2 β⊤W ⊤

1 −
(

α + 1
2

)2
W2W1ΣW1

⊤. (12b)

For all t ≥ 0, Assumption 7 remains valid and the following hold:

1. The (leaky) ReLU network implements the same linear function as the linear network with scaled time

f(x; W (t)) = f lin
(

x; W lin
(

α + 1
2 t

))
; (13)

2. The weights in the (leaky) ReLU network are the same as scaled weights in the linear network

W (t) =
√

2
α + 1W lin

(
α + 1

2 t

)
. (14)

6

Published in Transactions on Machine Learning Research (04/2025)

0 5000 10000
t

0.0

0.5

1.0

Lo
ss

Simulation
Theory

(a) Loss.

0 5000 10000
2
+ 1 t

0.0

0.5

1.0

Lo
ss

Loss
Error

0

0.5%

1%

Er
ro

r

= 1.0
= 0.8
= 0.6
= 0.4
= 0.2
= 0.0

(b) Loss & error with rescaled time.

Figure 3: Two-layer bias-free (leaky) ReLU networks can evolve like a linear network. (a) Loss curves with
different leaky ReLU parameters α (note α = 1 is a linear network). The simulations match the theoretical so-
lutions in Equation (15). The loss converges to global minimum, which is not zero due to the restricted expres-
sivity of two-layer bias-free ReLU networks. (b) The simulated loss curves are plotted against a rescaled time
axis; they collapse to one curve, demonstrating the (leaky) ReLU and linear networks are implementing the
same linear function as in Equation (13). The error, defined as

∥∥∥√α+1
2 W

(
2

α+1 t
)

− W lin(t)
∥∥∥ /
∥∥W lin(t)

∥∥,
is less than 0.3%, demonstrating that the weights in the (leaky) ReLU network are close to the weights in the
linear network as in Equation (14). The errors are not exactly zero because the initial weights are sampled
from a zero-mean Gaussian distribution, which does not satisfy Assumption 7 but better reflects practical
initialization schemes. Experimental details are provided in Appendix H.

The proof for Theorem 8 can be found in Appendix C.2. The key step is that the reduced dynamics of the
ReLU network given in Equation (12) is the same as that for the linear network in Equation (3), modulo
the constant coefficients. Hence, apart from the fact that learning is (α + 1)/2 times slower and the weights
are

√
2/(α + 1) times larger, the ReLU network has the same learning dynamics as its linear counterpart.

We validate Theorem 8 and the plausibility of Assumption 7 with numerical simulations in Figure 3. In
Figure 3b, the initialization is small random Gaussian weights and thus does not satisfy Assumption 7,
yet Theorem 8 holds with small errors (less than 0.3%). Furthermore, we provide theoretical proof that
Theorem 8 holds with L2 regularization and empirical evidence that some of Theorem 8 hold with large
initialization and a moderately large learning rate in Appendices C.4 to C.6.

If the input covariance is white, we can further write down the exact time-course solution in closed form
for two-layer bias-free (leaky) ReLU networks by adopting the solutions from linear networks (Braun et al.,
2022, Theorem 3.1). This gives us the following corollary.
Corollary 9. For learning with square loss, if the input covariance is white, Σ = I, the solution to Equa-
tion (13) is f(x; W) = w(t)⊤x with

w(t) =
(

1 + q1

q2
e−2st̃

)[
β̄

(
1 − q1

q2
e−2st̃

)
+ 2

q2

(
I − β̄β̄⊤) re−st̃

]
[

4
q2

2

(
w−2

init +
(

1 −
(
r⊤β̄

)2)
t̃
)

e−2st̃ + 1
s

(
1 + q2

1
q2

2
e−2st̃

)(
1 − e−2st̃

)]−1

, (15)

where t̃ is a shorthand for rescaled time t̃ = α+1
2τ t and the constant quantities are s = ∥β∥, β̄ = β/s, q1 =

1 − r⊤β̄, q2 = 1 + r⊤β̄, winit = ∥W1(0)∥.

The solution given in Equation (15) matches simulations, as shown in Figure 3a.

Since the time evolution of two-layer bias-free (leaky) ReLU networks is the same as that of linear networks
(modulo scale factors), their converged weights will also be the same. For learning with square loss, linear
networks converge to the ordinary least squares solution (Saxe et al., 2014). For linearly separable binary
classification with logistic loss, linear networks converge to the max-margin (hard margin SVM) solution
(Soudry et al., 2018). Thus two-layer bias-free (leaky) ReLU networks also converge to these solutions when
they behave like linear networks; see Appendix C.3.

7

Published in Transactions on Machine Learning Research (04/2025)

2 1 0 1 2
2

1

0

1

2

(a) Orthogonal data

0 10000 20000
t

0.0

0.5

1.0

Lo
ss

ReLU
Lin +1
Lin 1

(b) Loss

4 2 0 2 4
4

2

0

2

4

(c) XOR data

0 10000 20000
t

0.00

0.25

0.50

0.75

1.00

Lo
ss

ReLU
Lin +1
Lin 1
Lin +1
Lin 1

(d) Loss

Figure 4: Two-layer bias-free ReLU networks can evolve like multiple independent linear networks. (a) An
orthogonal input dataset used in (Boursier et al., 2022, Figure 3). The + and − signs represent data points
with +1 and −1 labels respectively. Their different colors are used only to distinguish the loss curves. The
black arrows are the first-layer weights at convergence. (b) The loss curve of the ReLU network overlaps with
two linear networks trained on each of the two data points respectively. (c) An XOR-like dataset. (d) The
loss curve of the ReLU network overlaps with four linear networks trained on each of the four data points
separately. Details: We use summed (instead of averaged) square loss for this figure. The initial losses are
vertically aligned to help illustrate the overlap. More details are in Appendix H.

Corollary 10. Under the same conditions as Theorem 8, the two-layer bias-free (leaky) ReLU network
converges to a linear solution f(x; W (∞)) = w∗⊤x. For square loss, w∗ is the ordinary least squares
solution, w∗ = Σ−1β, which is the global minimum. For linearly separable binary classification with logistic
loss, w∗ aligns with the max-margin solution, w∗/∥w∗∥ = wsvm/∥wsvm∥ where

wsvm = argmin
w

∥w∥2 s.t. yµw⊤xµ ≥ 1, ∀ µ = 1, · · · , P. (16)

4.2 Orthogonal and XOR Datasets

In Section 4.1, we showed that for symmetric datasets satisfying Condition 3, a two-layer bias-free (leaky)
ReLU network evolves like a linear network. For more general datasets, the equivalence no longer holds,
but comparing ReLU with linear networks remains useful for understanding the learning dynamics of ReLU
networks. Specifically, we highlight two cases where a two-layer bias-free ReLU network evolves like multiple
independent linear networks. These cases, i.e., an orthogonal input dataset and an XOR-like dataset, are
commonly considered in theoretical literature on ReLU network learning dynamics, while their connection
to linear network dynamics has not been previously highlighted.

We first look into datasets with orthogonal input, that is ∀µ ̸= ν, x⊤
µ xν = 0, a common setting in the

literature (Boursier et al., 2022; Telgarsky, 2023; Frei et al., 2023b;c; Kou et al., 2023; Dana et al., 2025).
We illustrate with a dataset with two orthogonal data points from Boursier et al. (2022), and handle an
arbitrary number of data points in Proposition 18. We train a two-layer bias-free ReLU network on this
dataset (Figure 4a), and reproduce the loss curve in (Boursier et al., 2022, Figure 3). We then train two
two-layer linear networks on each data point separately. We find that the timing and the amount of the loss
drop overlap with the loss curves of the two linear networks as shown in Figure 4b. To explain this overlap,
we plot the first-layer weights of the ReLU network in black arrows in Figure 4a and find that the weights
align with either one of the two data points. Since the two directions are orthogonal, the learning dynamics
of the two groups of neurons decouple, as derived in Proposition 18. Each group of neurons evolves like a
linear network trained on that single data point. Hence, weights in the ReLU network evolve like a linear
network trained on either one of the two data points separately. For a dataset with an arbitrary number of
orthogonal inputs, the dynamics of the two-layer bias-free ReLU network evolves like two linear networks
trained separately on data points with positive labels and data points with negative labels, as validated in
Figure 9. The same applies to learning with logistic loss, as shown in Figure 8.

We observe similar behaviors in the XOR-like task shown in Figure 4c. XOR-like datasets are also a common
setting in the literature (Refinetti et al., 2021; Saxe et al., 2022; Frei et al., 2023a; Meng et al., 2024; Xu et al.,
2024; Glasgow, 2024). As shown in Figure 4d, we find that the loss curves of a two-layer bias-free ReLU

8

Published in Transactions on Machine Learning Research (04/2025)

network trained on the XOR task overlap with four linear networks trained on each data point separately. In
this case, the dynamics of multiple linear networks well approximate that of a ReLU network, even though
the ReLU network learns a nonlinear function.

In Figures 4b and 4d, the loss curves go through multiple drops, each corresponding to learning a data point.
Similar behaviors were examined by Boursier et al. (2022); Xu et al. (2024) and characterized as saddle-to-
saddle dynamics. The connections we find between ReLU and linear networks may help understand these
behaviors in ReLU networks because saddle-to-saddle dynamics has been well studied for linear networks
(Saxe et al., 2014; 2019; Gissin et al., 2020; Jacot et al., 2022; Berthier, 2023; Pesme & Flammarion, 2023).

5 Learning Dynamics in Deep Bias-Free ReLU Networks

In Section 4, we showed that two-layer bias-free ReLU networks behave like linear networks under symmetry
Condition 3 and small initialization. This does not extend to deep bias-free networks. When trained on
a dataset satisfying Condition 3, deep bias-free ReLU networks can learn nonlinear solutions if the target
function is nonlinear, as shown in Figure 1a (upper right). Nonetheless, we find deep bias-free ReLU networks
can form low-rank weights that are similar to those in deep linear networks. We give an example where the
empirical input distribution is even and the target function is linear.

In a deep linear network, weights form an approximately rank-one structure and adjacent layers are approx-
imately aligned when trained from small initialization (Ji & Telgarsky, 2019; Advani et al., 2020; Atanasov
et al., 2022; Marion & Chizat, 2024). The rank-one weight matrices can be written approximately as outer-
products of two vectors

W lin
1 = ur1r⊤ = u

[
r+

1
r−

1

]
r⊤, (17a)

W lin
l = urlr

⊤
l−1 = u

[
r+

l r+
l−1

⊤
r+

l r−
l−1

⊤

r−
l r+

l−1
⊤

r−
l r−

l−1
⊤

]
, l = 2, · · · , L − 1, (17b)

W lin
L = ur⊤

L−1 = u
[
r+

L−1
⊤

r−
L−1

⊤
]

, (17c)

where u > 0 represents the norm of each layer, and r, r1, r2, · · · , rL are unit norm column vectors. The
vectors r+

l , r−
l denote the positive and negative elements in rl. The equal norm u of all layers is a consequence

of small initialization (Du et al., 2018). Note that the weights can be written in blocks, as Equation (17),
only after permuting the positive and negative elements. We use this permuted notation for the sake of
exposition; no additional assumptions are required.

In a deep ReLU network, we empirically find that when the weights are trained from small initialization and
the target function is linear, the weights exhibit a particular rank-one and rank-two structure, as shown in
Figures 5 and 10. For the first and last layers, the weights in the deep ReLU network have the same rank-one
structure as their linear counterpart. For the intermediate layers, weights in the deep ReLU network are
rank-two. Specifically, positive weights in the ReLU network correspond to positive weights in the linear
network and zero weights in the ReLU network correspond to negative weights in the linear network. Based
on the empirical observation, we propose the following conjecture on the weights of the deep ReLU network.
Conjecture 11. A deep bias-free ReLU network is trained from small initial weights on a dataset where
the empirical input distribution is even, p(x) = p(−x), and the target function is linear, that is the target
output is generated as y = w∗⊤x. We conjecture that the weights at a certain time t0 during training take
the following form:

W1 = ur1r⊤ = u

[
r+

1
r−

1

]
r⊤, (18a)

Wl = u

[√
2r+

l r+
l−1

⊤ 0
0

√
2r−

l r−
l−1

⊤

]
, l = 2, · · · , L − 1, (18b)

WL = ur⊤
L−1 = u

[
r+

L−1
⊤

r−
L−1

⊤
]

, (18c)

9

Published in Transactions on Machine Learning Research (04/2025)

W1

< 0

0

> 0W2

W3

(a) Weights in a 3-layer linear network as Equation (17).

W1

< 0

0

> 0W2

W3

(b) Weights in a 3-layer ReLU network as Equation (18).

Figure 5: Low-rank weights in deep linear and ReLU bias-free networks. A three-layer linear network and
a three-layer ReLU network are trained on the same dataset starting from the same small random weights.
The dataset has a linear target function and an even empirical input data distribution. We plot the weights
when the loss has approached zero. W1, W3, and positive elements in W2 have approximately the same
structure in the linear and ReLU networks. Elements of W2 that are negative in the linear network are
approximately zero in the ReLU network. The neurons are permuted for visualization. Simulations with
deeper networks are presented in Figure 10. Experimental details are provided in Appendix H.

where the notations are consistent with Equation (17). We also conjecture that ∥r+
l ∥ = ∥r−

l ∥, l =
1, 2, · · · , L − 1.
Proposition 12. If Conjecture 11 is true, then for all t ≥ t0, the weights of the deep bias-free ReLU network
will maintain the form in Equation (18) and the network implements a linear function given by

f(x; W) = WLWL−1 · · · W2σ(W1x) = 1
2WL · · · W2W1x. (19)

Moreover, its learning dynamics is described by

τẆl =
(

L∏
l′=l+1

Wl′

)⊤(
1
2β⊤ − 1

4

L∏
l′=1

Wl′Σ
)(

L∏
l′=l−1

Wl′

)⊤

, (20)

which is the same as that of a deep linear network in Equation (7), modulo the constant coefficients.

We provide the proof of Proposition 12 in Appendix E and offer a brief explanation for Equation (19) here.
In the first equality of Equation (19), we dropped the activation functions except for the one between the
first and second layers. This is because the second layer weights, W2, is non-negative as shown in Figure 5b,
and so is the output of a ReLU activation function, σ(W1x). Hence, their product, W2σ(W1x), is also
non-negative. We thus have σ(W2σ(W1x)) = W2σ(W1x). The same applies to all subsequent layers. The
second equality is obtained by substituting the weights defined in Equation (18) into the expression.

While the proof of Conjecture 11 remains an open question, we provide some intuition to interpret it.
Specifically, we notice that in deep linear networks and certain deep ReLU networks, the weights of an
intermediate layer align with the inputs to that layer. For example, the second-layer weight in a deep linear
network is W lin

2 = ur2r⊤
1 as given in Equation (17). Every row of W lin

2 aligns with r⊤
1 , which is parallel

to any input to the second layer, W lin
1 x = ur1r⊤x. The second-layer weight in the deep ReLU network is

given in Equation (18). Some rows of W2 align with
[
r+

1
⊤ 0

]
, which is parallel to some inputs (r⊤x > 0)

to the second layer, σ(W1x) = u

[
r+

1
0

]
r⊤x. Other rows of W2 align with

[
0 r−

1
⊤
]
, which is parallel with

inputs (r⊤x < 0) to the second layer, σ(W1x) = u

[
0

r−
1

]
r⊤x. This alignment phenomenon has been proven

for deep linear networks (Ji & Telgarsky, 2019; Marion & Chizat, 2024), and we here find similar phenomena
empirically in deep ReLU networks.

10

Published in Transactions on Machine Learning Research (04/2025)

10000 100000
t

0.0

0.5

1.0

Lo
ss

ReLU
Linear

= 0 (sym)
= 0.08
= 0.10
= 0.12
= 0.14
= 0.16

(a) Loss

0.0 0.1 0.2
0

2

4

6

1/
t pl

ate
au

×10
5

(b) Plateau duration

1 0 1
1

0

1

(c) t = 10000

1 0 1
1

0

1

(d) t = 100000

Figure 6: Two-layer bias-free linear/ReLU network trained on a dataset that slightly violates the symmetry
Condition 3. The + and − signs represent data points with +1 and − labels respectively. The right middle
data point is slight asymmetric with input coordinates (1, δ). (a) Loss curves of the ReLU network with
different δ and the linear network with δ = 0.1. (b) The duration of the plateau, during which the ReLU
network implements a nearly linear solution, scales approximately with 1/δ. (c,d) The ReLU network output
during and at the end of training. This ReLU network is trained on the dataset with δ = 0.1. Experimental
details are provided in Appendix H.

6 Discussion

6.1 Implication of Bias Removal

We studied the implications of removing bias in ReLU networks in terms of the expressivity and learning
dynamics. Theorem 1 shows that two-layer bias-free (leaky) ReLU networks cannot express any odd functions
except for linear functions. Theorem 8 shows that for datasets with an even input distribution and an odd
target function, two-layer bias-free (leaky) ReLU networks have the same time evolution as a linear network
(modulo scale factors) under initialization Assumption 7. We also presented examples in which the bias-free
ReLU network evolves like multiple independent linear networks, in Section 4.2. In these cases, comparing
a bias-free ReLU network with its linear counterpart provides an intuitive understanding of the behavior of
ReLU networks. On the flip side, the simplicity of bias-free ReLU networks suggests that ReLU networks
with bias may exhibit more complicated behaviors, which are not fully addressed by studies on bias-free
networks, and remain open questions.

One common argument in studies of bias-free ReLU networks is that we can stack the input x with an
additional one, i.e., x̃ = [x, 1]. The behaviors of a biased ReLU network with input x are the same as
those of a bias-free ReLU network with input x̃, suggesting that the implication of bias removal might be
trivial. While this argument is valid in certain settings (Allen-Zhu et al., 2019; Zou et al., 2020), it comes
with important caveats in others. For example, Soudry et al. (2018) showed that two-layer bias-free ReLU
networks trained with logistic loss converge to the max-margin classifier on linearly separable datasets. As
clarified by Soudry et al. (2018), this technical result holds when the inputs are stacked with an additional
one. However, the max-margin solution of the dataset {x̃µ, yµ}P

µ=1 is not the max-margin solution of the
original dataset {xµ, yµ}P

µ=1. Hence, a ReLU network with bias converges to a solution different from the
max-margin solution obtained by the bias-free ReLU network. This distinction highlights that the presence of
bias terms can change the inductive bias of the ReLU network, leading to convergence to different solutions.

6.2 Perturbed Symmetric Dataset

We have shown an exact equivalence between two-layer bias-free (leaky) ReLU networks and linear networks
under symmetry Condition 3 on the dataset in Theorem 8. In practice, no datasets satisfies Condition 3
precisely. However, two-layer bias-free ReLU networks may still struggle to fit a dataset that approximately
satisfies Condition 3. We present a simple example with six data points in Figure 6. The ReLU network
loss curve closely follows the linear network loss curve in the early phase, when it first learns a nearly linear
solution, as shown in Figures 6a and 6c. After a plateau, the ReLU network diverges from the linear network
dynamics and converges to a nonlinear solution. The more symmetric the dataset, the longer the plateau
a two-layer bias-free ReLU network undergoes before learning a nonlinear solution. When the dataset is

11

Published in Transactions on Machine Learning Research (04/2025)

exactly symmetric, the ReLU network never learns a nonlinear solution. As shown in Figure 6b, the inverse
of the plateau duration scales approximately linearly with the deviation of the asymmetric data point, δ.
The scaling becomes less accurate for larger δ because the corresponding dataset more severely violates
symmetric Condition 3, where the ReLU network no longer behaves like a linear network. Furthermore, as
shown in Figure 6d, the decision boundaries at convergence are close to the data points, and thus probably
not robust.

We note a concurrent work (Boursier & Flammarion, 2024b) that considers two-layer bias-free ReLU networks
trained on symmetric datasets with a different form of perturbation. They assume the empirical input
distribution is even and the target output is generated as y = w∗⊤x + ξ, where ξ is the noise sampled
independently from a zero-mean Gaussian distribution. In their setup, the ReLU network converges to the
ordinary least square linear estimator when the number of training samples exceeds a certain threshold. In
their case, the mean of the noise approaches zero as the number of training samples increases, which reduces
the asymmetric perturbation and leads to convergence to a linear solution. By analogy, in our case, a smaller
δ means a smaller asymmetric perturbation, which leads to a longer plateau during which the ReLU network
is stuck at a linear solution.

Acknowledgement

The authors are grateful to Peter Orbanz, Ingo Steinwart, Spencer Frei, Rodrigo Carrasco-Davis, Lukas
Braun, Clémentine Dominé, Zheng He, and William Dorrell for helpful discussions. The authors thank
the following funding sources: Gatsby Charitable Foundation (GAT3850) to YZ, AS, and PEL; Sainsbury
Wellcome Centre Core Grant from Wellcome (219627/Z/19/Z) to AS; Schmidt Science Polymath Award to
AS; Wellcome Trust (110114/Z/15/Z) to PEL.

References
Madhu S. Advani, Andrew M. Saxe, and Haim Sompolinsky. High-dimensional dynamics of generaliza-

tion error in neural networks. Neural Networks, 132:428–446, 2020. ISSN 0893-6080. doi: https://
doi.org/10.1016/j.neunet.2020.08.022. URL https://www.sciencedirect.com/science/article/pii/
S0893608020303117.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pp. 242–252. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.press/v97/allen-zhu19a.html.

Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks: Implicit acceleration
by overparameterization. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp. 244–253.
PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/v80/arora18a.html.

Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of optimization
and generalization for overparameterized two-layer neural networks. In Kamalika Chaudhuri and Ruslan
Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research, pp. 322–332. PMLR, 09–15 Jun 2019. URL https://
proceedings.mlr.press/v97/arora19a.html.

Alexander Atanasov, Blake Bordelon, and Cengiz Pehlevan. Neural networks as kernel learners: The
silent alignment effect. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=1NvflqAdoom.

Pierre Baldi and Kurt Hornik. Neural networks and principal component analysis: Learning from ex-
amples without local minima. Neural Networks, 2(1):53–58, 1989. ISSN 0893-6080. doi: https:
//doi.org/10.1016/0893-6080(89)90014-2. URL https://www.sciencedirect.com/science/article/
pii/0893608089900142.

12

https://www.sciencedirect.com/science/article/pii/S0893608020303117
https://www.sciencedirect.com/science/article/pii/S0893608020303117
https://proceedings.mlr.press/v97/allen-zhu19a.html
https://proceedings.mlr.press/v80/arora18a.html
https://proceedings.mlr.press/v97/arora19a.html
https://proceedings.mlr.press/v97/arora19a.html
https://openreview.net/forum?id=1NvflqAdoom
https://openreview.net/forum?id=1NvflqAdoom
https://www.sciencedirect.com/science/article/pii/0893608089900142
https://www.sciencedirect.com/science/article/pii/0893608089900142

Published in Transactions on Machine Learning Research (04/2025)

Peter L. Bartlett, Philip M. Long, Gábor Lugosi, and Alexander Tsigler. Benign overfitting in lin-
ear regression. Proceedings of the National Academy of Sciences, 117(48):30063–30070, 2020. doi:
10.1073/pnas.1907378117. URL https://www.pnas.org/doi/abs/10.1073/pnas.1907378117.

Ronen Basri, David Jacobs, Yoni Kasten, and Shira Kritchman. The convergence rate of neural networks for
learned functions of different frequencies. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/
5ac8bb8a7d745102a978c5f8ccdb61b8-Paper.pdf.

Raphaël Berthier. Incremental learning in diagonal linear networks. Journal of Machine Learning Research,
24(171):1–26, 2023. URL http://jmlr.org/papers/v24/22-1395.html.

Etienne Boursier and Nicolas Flammarion. Early alignment in two-layer networks training is a two-edged
sword, 2024a. URL https://arxiv.org/abs/2401.10791.

Etienne Boursier and Nicolas Flammarion. Simplicity bias and optimization threshold in two-layer relu
networks, 2024b. URL https://arxiv.org/abs/2410.02348.

Etienne Boursier, Loucas Pillaud-Vivien, and Nicolas Flammarion. Gradient flow dynamics of shallow relu
networks for square loss and orthogonal inputs. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
K. Cho, and A. Oh (eds.), Advances in Neural Information Processing Systems, volume 35, pp. 20105–
20118. Curran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/7eeb9af3eb1f48e29c05e8dd3342b286-Paper-Conference.pdf.

Lukas Braun, Clémentine Dominé, James Fitzgerald, and Andrew Saxe. Exact learning dynamics of deep
linear networks with prior knowledge. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho,
and A. Oh (eds.), Advances in Neural Information Processing Systems, volume 35, pp. 6615–6629. Cur-
ran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
2b3bb2c95195130977a51b3bb251c40a-Paper-Conference.pdf.

Alon Brutzkus, Amir Globerson, Eran Malach, and Shai Shalev-Shwartz. SGD learns over-parameterized
networks that provably generalize on linearly separable data. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=rJ33wwxRb.

Dmitry Chistikov, Matthias Englert, and Ranko Lazic. Learning a neuron by a shallow relu network:
Dynamics and implicit bias for correlated inputs. In A. Oh, T. Naumann, A. Globerson, K. Saenko,
M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing Systems, volume 36, pp.
23748–23760. Curran Associates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/
paper/2023/file/4af24e6ce753c181e703f3f0be3b5e20-Paper-Conference.pdf.

Léo Dana, Francis Bach, and Loucas Pillaud-Vivien. Convergence of shallow relu networks on weakly
interacting data, 2025. URL https://arxiv.org/abs/2502.16977.

Simon S Du, Wei Hu, and Jason D Lee. Algorithmic regularization in learning deep homogeneous models:
Layers are automatically balanced. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Cur-
ran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/
fe131d7f5a6b38b23cc967316c13dae2-Paper.pdf.

Simon S. Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes over-
parameterized neural networks. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=S1eK3i09YQ.

Spencer Frei, Niladri S. Chatterji, and Peter L. Bartlett. Random feature amplification: Feature learning
and generalization in neural networks. Journal of Machine Learning Research, 24(303):1–49, 2023a. URL
http://jmlr.org/papers/v24/22-1132.html.

13

https://www.pnas.org/doi/abs/10.1073/pnas.1907378117
https://proceedings.neurips.cc/paper_files/paper/2019/file/5ac8bb8a7d745102a978c5f8ccdb61b8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/5ac8bb8a7d745102a978c5f8ccdb61b8-Paper.pdf
http://jmlr.org/papers/v24/22-1395.html
https://arxiv.org/abs/2401.10791
https://arxiv.org/abs/2410.02348
https://proceedings.neurips.cc/paper_files/paper/2022/file/7eeb9af3eb1f48e29c05e8dd3342b286-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/7eeb9af3eb1f48e29c05e8dd3342b286-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/2b3bb2c95195130977a51b3bb251c40a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/2b3bb2c95195130977a51b3bb251c40a-Paper-Conference.pdf
https://openreview.net/forum?id=rJ33wwxRb
https://proceedings.neurips.cc/paper_files/paper/2023/file/4af24e6ce753c181e703f3f0be3b5e20-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/4af24e6ce753c181e703f3f0be3b5e20-Paper-Conference.pdf
https://arxiv.org/abs/2502.16977
https://proceedings.neurips.cc/paper_files/paper/2018/file/fe131d7f5a6b38b23cc967316c13dae2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/fe131d7f5a6b38b23cc967316c13dae2-Paper.pdf
https://openreview.net/forum?id=S1eK3i09YQ
http://jmlr.org/papers/v24/22-1132.html

Published in Transactions on Machine Learning Research (04/2025)

Spencer Frei, Gal Vardi, Peter Bartlett, and Nathan Srebro. Benign overfitting in linear classifiers and
leaky relu networks from kkt conditions for margin maximization. In Gergely Neu and Lorenzo Rosasco
(eds.), Proceedings of Thirty Sixth Conference on Learning Theory, volume 195 of Proceedings of Machine
Learning Research, pp. 3173–3228. PMLR, 12–15 Jul 2023b. URL https://proceedings.mlr.press/
v195/frei23a.html.

Spencer Frei, Gal Vardi, Peter Bartlett, Nathan Srebro, and Wei Hu. Implicit bias in leaky reLU networks
trained on high-dimensional data. In The Eleventh International Conference on Learning Representations,
2023c. URL https://openreview.net/forum?id=JpbLyEI5EwW.

Spencer Frei, Gal Vardi, Peter Bartlett, and Nati Srebro. The double-edged sword of implicit bias: Gener-
alization vs. robustness in relu networks. In A. Oh, T. Neumann, A. Globerson, K. Saenko, M. Hardt,
and S. Levine (eds.), Advances in Neural Information Processing Systems, volume 36, pp. 8885–8897. Cur-
ran Associates, Inc., 2023d. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
1c26c389d60ec419fd24b5fee5b35796-Paper-Conference.pdf.

Kenji Fukumizu. Effect of batch learning in multilayer neural networks. Gen, 1(04):1E–03, 1998.

Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Linearized two-layers neural
networks in high dimension. The Annals of Statistics, 49(2):1029 – 1054, 2021. doi: 10.1214/20-AOS1990.
URL https://doi.org/10.1214/20-AOS1990.

Gauthier Gidel, Francis Bach, and Simon Lacoste-Julien. Implicit regularization of discrete gradient
dynamics in linear neural networks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/
f39ae9ff3a81f499230c4126e01f421b-Paper.pdf.

Daniel Gissin, Shai Shalev-Shwartz, and Amit Daniely. The implicit bias of depth: How incremental learning
drives generalization. In International Conference on Learning Representations, 2020. URL https://
openreview.net/forum?id=H1lj0nNFwB.

Margalit Glasgow. SGD finds then tunes features in two-layer neural networks with near-optimal sample
complexity: A case study in the XOR problem. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=HgOJlxzB16.

T. H. Grönwall. Note on the derivatives with respect to a parameter of the solutions of a system of differential
equations. Annals of Mathematics, 20(4):292–296, 1919. ISSN 0003486X. URL http://www.jstor.org/
stable/1967124.

David Holzmüller and Ingo Steinwart. Training two-layer relu networks with gradient descent is inconsistent.
Journal of Machine Learning Research, 23(181):1–82, 2022. URL http://jmlr.org/papers/v23/20-830.
html.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
versal approximators. Neural Networks, 2(5):359–366, 1989. ISSN 0893-6080. doi: https://doi.
org/10.1016/0893-6080(89)90020-8. URL https://www.sciencedirect.com/science/article/pii/
0893608089900208.

Arthur Jacot, François Ged, Berfin Şimşek, Clément Hongler, and Franck Gabriel. Saddle-to-saddle dynamics
in deep linear networks: Small initialization training, symmetry, and sparsity, 2022. URL https://arxiv.
org/abs/2106.15933.

Ziwei Ji and Matus Telgarsky. Gradient descent aligns the layers of deep linear networks. In International
Conference on Learning Representations, 2019. URL https://openreview.net/forum?id=HJflg30qKX.

Zahra Kadkhodaie, Florentin Guth, Eero P Simoncelli, and Stéphane Mallat. Generalization in diffusion
models arises from geometry-adaptive harmonic representations. In The Twelfth International Conference
on Learning Representations, 2024. URL https://openreview.net/forum?id=ANvmVS2Yr0.

14

https://proceedings.mlr.press/v195/frei23a.html
https://proceedings.mlr.press/v195/frei23a.html
https://openreview.net/forum?id=JpbLyEI5EwW
https://proceedings.neurips.cc/paper_files/paper/2023/file/1c26c389d60ec419fd24b5fee5b35796-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1c26c389d60ec419fd24b5fee5b35796-Paper-Conference.pdf
https://doi.org/10.1214/20-AOS1990
https://proceedings.neurips.cc/paper_files/paper/2019/file/f39ae9ff3a81f499230c4126e01f421b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/f39ae9ff3a81f499230c4126e01f421b-Paper.pdf
https://openreview.net/forum?id=H1lj0nNFwB
https://openreview.net/forum?id=H1lj0nNFwB
https://openreview.net/forum?id=HgOJlxzB16
http://www.jstor.org/stable/1967124
http://www.jstor.org/stable/1967124
http://jmlr.org/papers/v23/20-830.html
http://jmlr.org/papers/v23/20-830.html
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://arxiv.org/abs/2106.15933
https://arxiv.org/abs/2106.15933
https://openreview.net/forum?id=HJflg30qKX
https://openreview.net/forum?id=ANvmVS2Yr0

Published in Transactions on Machine Learning Research (04/2025)

Yiwen Kou, Zixiang Chen, and Quanquan Gu. Implicit bias of gradient descent for two-layer relu and leaky
relu networks on nearly-orthogonal data. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and
S. Levine (eds.), Advances in Neural Information Processing Systems, volume 36, pp. 30167–30221. Cur-
ran Associates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
602f5c1b803c53b2aaf0b3864bf3383a-Paper-Conference.pdf.

Andrew K. Lampinen and Surya Ganguli. An analytic theory of generalization dynamics and transfer
learning in deep linear networks. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=ryfMLoCqtQ.

Thien Le and Stefanie Jegelka. Training invariances and the low-rank phenomenon: beyond linear networks.
In International Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=XEW8CQgArno.

Tao Luo, Zhi-Qin John Xu, Zheng Ma, and Yaoyu Zhang. Phase diagram for two-layer relu neural networks
at infinite-width limit. Journal of Machine Learning Research, 22(71):1–47, 2021. URL http://jmlr.
org/papers/v22/20-1123.html.

Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural networks. In
International Conference on Learning Representations, 2020. URL https://openreview.net/forum?id=
SJeLIgBKPS.

Kaifeng Lyu, Zhiyuan Li, Runzhe Wang, and Sanjeev Arora. Gradient descent on two-layer nets: Margin
maximization and simplicity bias. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34, pp. 12978–12991. Cur-
ran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/
6c351da15b5e8a743a21ee96a86e25df-Paper.pdf.

Hartmut Maennel, Olivier Bousquet, and Sylvain Gelly. Gradient descent quantizes relu network features,
2018. URL https://arxiv.org/abs/1803.08367.

Pierre Marion and Lénaïc Chizat. Deep linear networks for regression are implicitly regularized to-
wards flat minima. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and
C. Zhang (eds.), Advances in Neural Information Processing Systems, volume 37, pp. 76848–76900. Cur-
ran Associates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/
8c976a95df6a229551cd28c76627edc9-Paper-Conference.pdf.

Flavio Martinelli, Berfin Simsek, Wulfram Gerstner, and Johanni Brea. Expand-and-cluster: Parameter
recovery of neural networks. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria
Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st International Conference
on Machine Learning, volume 235 of Proceedings of Machine Learning Research, pp. 34895–34919. PMLR,
21–27 Jul 2024. URL https://proceedings.mlr.press/v235/martinelli24a.html.

Xuran Meng, Difan Zou, and Yuan Cao. Benign overfitting in two-layer relu convolutional neural networks
for XOR data. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver,
Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st International Conference on
Machine Learning, volume 235 of Proceedings of Machine Learning Research, pp. 35404–35469. PMLR,
21–27 Jul 2024. URL https://proceedings.mlr.press/v235/meng24c.html.

Hancheng Min, Enrique Mallada, and Rene Vidal. Early neuron alignment in two-layer relu networks with
small initialization. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=QibPzdVrRu.

Sreyas Mohan, Zahra Kadkhodaie, Eero P. Simoncelli, and Carlos Fernandez-Granda. Robust and inter-
pretable blind image denoising via bias-free convolutional neural networks. In International Conference
on Learning Representations, 2020. URL https://openreview.net/forum?id=HJlSmC4FPS.

15

https://proceedings.neurips.cc/paper_files/paper/2023/file/602f5c1b803c53b2aaf0b3864bf3383a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/602f5c1b803c53b2aaf0b3864bf3383a-Paper-Conference.pdf
https://openreview.net/forum?id=ryfMLoCqtQ
https://openreview.net/forum?id=XEW8CQgArno
https://openreview.net/forum?id=XEW8CQgArno
http://jmlr.org/papers/v22/20-1123.html
http://jmlr.org/papers/v22/20-1123.html
https://openreview.net/forum?id=SJeLIgBKPS
https://openreview.net/forum?id=SJeLIgBKPS
https://proceedings.neurips.cc/paper_files/paper/2021/file/6c351da15b5e8a743a21ee96a86e25df-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/6c351da15b5e8a743a21ee96a86e25df-Paper.pdf
https://arxiv.org/abs/1803.08367
https://proceedings.neurips.cc/paper_files/paper/2024/file/8c976a95df6a229551cd28c76627edc9-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/8c976a95df6a229551cd28c76627edc9-Paper-Conference.pdf
https://proceedings.mlr.press/v235/martinelli24a.html
https://proceedings.mlr.press/v235/meng24c.html
https://openreview.net/forum?id=QibPzdVrRu
https://openreview.net/forum?id=HJlSmC4FPS

Published in Transactions on Machine Learning Research (04/2025)

Mor Shpigel Nacson, Rotem Mulayoff, Greg Ongie, Tomer Michaeli, and Daniel Soudry. The implicit bias
of minima stability in multivariate shallow reLU networks. In The Eleventh International Conference on
Learning Representations, 2023. URL https://openreview.net/forum?id=xtbog7cfsr.

Greg Ongie, Rebecca Willett, Daniel Soudry, and Nathan Srebro. A function space view of bounded norm
infinite width relu nets: The multivariate case. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=H1lNPxHKDH.

Scott Pesme and Nicolas Flammarion. Saddle-to-saddle dynamics in diagonal linear networks.
In A. Oh, T. Neumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Ad-
vances in Neural Information Processing Systems, volume 36, pp. 7475–7505. Curran As-
sociates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
17a9ab4190289f0e1504bbb98d1d111a-Paper-Conference.pdf.

Leonardo Petrini, Francesco Cagnetta, Eric Vanden-Eijnden, and Matthieu Wyart. Learning sparse features
can lead to overfitting in neural networks. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho,
and A. Oh (eds.), Advances in Neural Information Processing Systems, volume 35, pp. 9403–9416. Cur-
ran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
3d3a9e085540c65dd3e5731361f9320e-Paper-Conference.pdf.

Leonardo Petrini, Francesco Cagnetta, Eric Vanden-Eijnden, and Matthieu Wyart. Learning sparse fea-
tures can lead to overfitting in neural networks. Journal of Statistical Mechanics: Theory and Experi-
ment, 2023(11):114003, nov 2023. doi: 10.1088/1742-5468/ad01b9. URL https://dx.doi.org/10.1088/
1742-5468/ad01b9.

Mary Phuong and Christoph H Lampert. The inductive bias of relu networks on orthogonally separable
data. In International Conference on Learning Representations, 2021. URL https://openreview.net/
forum?id=krz7T0xU9Z_.

Allan Pinkus. Approximation theory of the mlp model in neural networks. Acta Numerica, 8:143–195, 1999.
doi: 10.1017/S0962492900002919.

Maria Refinetti, Sebastian Goldt, Florent Krzakala, and Lenka Zdeborova. Classifying high-dimensional
gaussian mixtures: Where kernel methods fail and neural networks succeed. In Marina Meila and
Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning, volume 139
of Proceedings of Machine Learning Research, pp. 8936–8947. PMLR, 18–24 Jul 2021. URL https:
//proceedings.mlr.press/v139/refinetti21b.html.

Roei Sarussi, Alon Brutzkus, and Amir Globerson. Towards understanding learning in neural networks with
linear teachers. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp. 9313–9322. PMLR,
18–24 Jul 2021. URL https://proceedings.mlr.press/v139/sarussi21a.html.

Andrew Saxe, Shagun Sodhani, and Sam Jay Lewallen. The neural race reduction: Dynamics of abstraction
in gated networks. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and
Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine Learning, volume 162
of Proceedings of Machine Learning Research, pp. 19287–19309. PMLR, 17–23 Jul 2022. URL https:
//proceedings.mlr.press/v162/saxe22a.html.

Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynamics of
learning in deep linear neural networks. In International Conference on Learning Representations, 2014.
URL https://arxiv.org/abs/1312.6120.

Andrew M. Saxe, James L. McClelland, and Surya Ganguli. A mathematical theory of semantic development
in deep neural networks. Proceedings of the National Academy of Sciences, 116(23):11537–11546, 2019.
doi: 10.1073/pnas.1820226116. URL https://www.pnas.org/doi/abs/10.1073/pnas.1820226116.

16

https://openreview.net/forum?id=xtbog7cfsr
https://openreview.net/forum?id=H1lNPxHKDH
https://proceedings.neurips.cc/paper_files/paper/2023/file/17a9ab4190289f0e1504bbb98d1d111a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/17a9ab4190289f0e1504bbb98d1d111a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/3d3a9e085540c65dd3e5731361f9320e-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/3d3a9e085540c65dd3e5731361f9320e-Paper-Conference.pdf
https://dx.doi.org/10.1088/1742-5468/ad01b9
https://dx.doi.org/10.1088/1742-5468/ad01b9
https://openreview.net/forum?id=krz7T0xU9Z_
https://openreview.net/forum?id=krz7T0xU9Z_
https://proceedings.mlr.press/v139/refinetti21b.html
https://proceedings.mlr.press/v139/refinetti21b.html
https://proceedings.mlr.press/v139/sarussi21a.html
https://proceedings.mlr.press/v162/saxe22a.html
https://proceedings.mlr.press/v162/saxe22a.html
https://arxiv.org/abs/1312.6120
https://www.pnas.org/doi/abs/10.1073/pnas.1820226116

Published in Transactions on Machine Learning Research (04/2025)

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The implicit bias
of gradient descent on separable data. Journal of Machine Learning Research, 19(70):1–57, 2018. URL
http://jmlr.org/papers/v19/18-188.html.

Salma Tarmoun, Guilherme Franca, Benjamin D Haeffele, and Rene Vidal. Understanding the dynamics of
gradient flow in overparameterized linear models. In Marina Meila and Tong Zhang (eds.), Proceedings
of the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine Learn-
ing Research, pp. 10153–10161. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/
tarmoun21a.html.

Matus Telgarsky. Feature selection and low test error in shallow low-rotation relu networks. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.net/forum?id=
swEskiem99.

Nadav Timor, Gal Vardi, and Ohad Shamir. Implicit regularization towards rank minimization in relu net-
works. In Shipra Agrawal and Francesco Orabona (eds.), Proceedings of The 34th International Conference
on Algorithmic Learning Theory, volume 201 of Proceedings of Machine Learning Research, pp. 1429–1459.
PMLR, 20 Feb–23 Feb 2023. URL https://proceedings.mlr.press/v201/timor23a.html.

Gal Vardi and Ohad Shamir. Implicit regularization in relu networks with the square loss. In Mikhail
Belkin and Samory Kpotufe (eds.), Proceedings of Thirty Fourth Conference on Learning Theory, volume
134 of Proceedings of Machine Learning Research, pp. 4224–4258. PMLR, 15–19 Aug 2021. URL https:
//proceedings.mlr.press/v134/vardi21b.html.

Gal Vardi, Gilad Yehudai, and Ohad Shamir. Gradient methods provably converge to non-
robust networks. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh
(eds.), Advances in Neural Information Processing Systems, volume 35, pp. 20921–20932. Curran
Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
83e6913572ba09b0ab53c64c016c7d1a-Paper-Conference.pdf.

Gang Wang, Georgios B. Giannakis, and Jie Chen. Learning relu networks on linearly separable data:
Algorithm, optimality, and generalization. IEEE Transactions on Signal Processing, 67(9):2357–2370,
2019. doi: 10.1109/TSP.2019.2904921.

Mingze Wang and Chao Ma. Understanding multi-phase optimization dynamics and rich nonlinear behaviors
of reLU networks. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=konBXvt2iS.

Yifei Wang and Mert Pilanci. The convex geometry of backpropagation: Neural network gradient flows
converge to extreme points of the dual convex program. In International Conference on Learning Repre-
sentations, 2022. URL https://openreview.net/forum?id=5QhUE1qiVC6.

Yifei Wang, Yixuan Hua, Emmanuel J. Candès, and Mert Pilanci. Overparameterized relu neural networks
learn the simplest model: Neural isometry and phase transitions. IEEE Transactions on Information
Theory, 71(3):1926–1977, 2025. doi: 10.1109/TIT.2025.3530355.

Blake Woodworth, Suriya Gunasekar, Jason D. Lee, Edward Moroshko, Pedro Savarese, Itay Golan, Daniel
Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models. In Jacob Abernethy
and Shivani Agarwal (eds.), Proceedings of Thirty Third Conference on Learning Theory, volume 125
of Proceedings of Machine Learning Research, pp. 3635–3673. PMLR, 09–12 Jul 2020. URL https:
//proceedings.mlr.press/v125/woodworth20a.html.

Zhiwei Xu, Yutong Wang, Spencer Frei, Gal Vardi, and Wei Hu. Benign overfitting and grokking in relu
networks for xor cluster data. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=BxHgpC6FNv.

John Zarka, Florentin Guth, and Stéphane Mallat. Separation and concentration in deep networks. In
International Conference on Learning Representations, 2021. URL https://openreview.net/forum?id=
8HhkbjrWLdE.

17

http://jmlr.org/papers/v19/18-188.html
https://proceedings.mlr.press/v139/tarmoun21a.html
https://proceedings.mlr.press/v139/tarmoun21a.html
https://openreview.net/forum?id=swEskiem99
https://openreview.net/forum?id=swEskiem99
https://proceedings.mlr.press/v201/timor23a.html
https://proceedings.mlr.press/v134/vardi21b.html
https://proceedings.mlr.press/v134/vardi21b.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/83e6913572ba09b0ab53c64c016c7d1a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/83e6913572ba09b0ab53c64c016c7d1a-Paper-Conference.pdf
https://openreview.net/forum?id=konBXvt2iS
https://openreview.net/forum?id=5QhUE1qiVC6
https://proceedings.mlr.press/v125/woodworth20a.html
https://proceedings.mlr.press/v125/woodworth20a.html
https://openreview.net/forum?id=BxHgpC6FNv
https://openreview.net/forum?id=8HhkbjrWLdE
https://openreview.net/forum?id=8HhkbjrWLdE

Published in Transactions on Machine Learning Research (04/2025)

Kai Zhang, Yawei Li, Wangmeng Zuo, Lei Zhang, Luc Van Gool, and Radu Timofte. Plug-and-play image
restoration with deep denoiser prior. IEEE Transactions on Pattern Analysis and Machine Intelligence,
44(10):6360–6376, 2022. doi: 10.1109/TPAMI.2021.3088914.

Xiao Zhang, Yaodong Yu, Lingxiao Wang, and Quanquan Gu. Learning one-hidden-layer relu networks via
gradient descent. In Kamalika Chaudhuri and Masashi Sugiyama (eds.), Proceedings of the Twenty-Second
International Conference on Artificial Intelligence and Statistics, volume 89 of Proceedings of Machine
Learning Research, pp. 1524–1534. PMLR, 16–18 Apr 2019. URL https://proceedings.mlr.press/
v89/zhang19g.html.

Yedi Zhang, Peter E. Latham, and Andrew M Saxe. Understanding unimodal bias in multimodal deep
linear networks. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver,
Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st International Conference on
Machine Learning, volume 235 of Proceedings of Machine Learning Research, pp. 59100–59125. PMLR,
21–27 Jul 2024. URL https://proceedings.mlr.press/v235/zhang24aa.html.

Liu Ziyin, Botao Li, and Xiangming Meng. Exact solutions of a deep linear network.
In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Ad-
vances in Neural Information Processing Systems, volume 35, pp. 24446–24458. Curran As-
sociates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
9a940e858b17f01c402e164835140c4a-Paper-Conference.pdf.

Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Gradient descent optimizes over-parameterized
deep relu networks. Machine learning, 109:467–492, 2020.

18

https://proceedings.mlr.press/v89/zhang19g.html
https://proceedings.mlr.press/v89/zhang19g.html
https://proceedings.mlr.press/v235/zhang24aa.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/9a940e858b17f01c402e164835140c4a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9a940e858b17f01c402e164835140c4a-Paper-Conference.pdf

Published in Transactions on Machine Learning Research (04/2025)

A Additional Related Work

Implicit / Simplicity Bias. Many works have studied the implicit bias or simplicity bias of two-layer bias-
free ReLU networks under various assumptions on the dataset. Brutzkus et al. (2018); Wang et al. (2019);
Lyu et al. (2021); Sarussi et al. (2021); Wang & Ma (2023) considered linearly separable binary classification
tasks. Phuong & Lampert (2021); Wang & Pilanci (2022); Min et al. (2024) studied orthogonally separable
classification (i.e., where for every pair of labeled examples (xi, yi), (xj , yj) we have x⊤

i xj > 0 if yi = yj

and x⊤
i xj ≤ 0 if otherwise). Boursier et al. (2022); Frei et al. (2023b;c); Kou et al. (2023); Dana et al.

(2025) studied binary classification with exactly or nearly orthogonal input (i.e., where x⊤
i xj = 0 if i ̸= j).

Orthogonal input is a sufficient condition for linear separability for binary classification tasks. Refinetti
et al. (2021); Frei et al. (2023a); Meng et al. (2024); Xu et al. (2024) studied XOR-like datasets. Vardi
et al. (2022); Frei et al. (2023d) studied datasets with adversarial noise. We add to this line of research by
studying a case with extreme simplicity bias, i.e., behaving like linear networks.

Low-Rank Weights. Maennel et al. (2018) is the seminal work on the low-rank weights in two-layer ReLU
networks trained from small initialization. They described the phenomenon as “quantizing", where the first
layer weight vectors align with a small number of directions in the early phase of training. Luo et al. (2021)
identified when two-layer bias-free ReLU networks form low-rank weights in terms of the initialization and
the network width. Timor et al. (2023) provided cases where gradient flow on two-layer and deep ReLU
networks provably minimize or not minimize the ranks of weight matrices. Frei et al. (2023c); Kou et al.
(2023) computed the numerical rank of the converged weights of two-layer bias-free ReLU networks for
nearly orthogonal datasets, and found that weights in leaky ReLU networks have rank at most two and
weights in ReLU networks have a numerical rank upper bounded by a constant. Chistikov et al. (2023)
showed two-layer bias-free ReLU networks are implicitly biased to learn the network of minimal rank under
the assumption that training points are correlated with the teacher neuron. Min et al. (2024); Boursier
& Flammarion (2024a) studied the early phase learning dynamics to understand how the low-rank weights
form. Petrini et al. (2022; 2023) conducted experiments on practical datasets to show that two-layer bias-free
ReLU networks learn sparse features, which can be detrimental and lead to overfitting. Le & Jegelka (2022)
generalize the low-rank phenomenon in linear and ReLU networks to arbitrary non-homogeneous networks
whose last few layers contain linear fully-connected and linear ResNet blocks.

B Useful Lemmas

B.1 Grönwall’s Inequality

Grönwall’s Inequality (Grönwall, 1919) is a common tool to obtain error bounds when considering approxi-
mate differential equations.
Lemma 13 (Grönwall’s Inequality). Let I denote an interval of the real line of the form [a, ∞) or [a, b] or
[a, b) with a < b. Let α, β and u be real-valued functions defined on I. Assume that β and u are continuous
and that the negative part of α is integrable on every closed and bounded subinterval of I. If β is non-negative
and u satisfies the integral inequality

u(t) ≤ α(t) +
∫ t

a

β(s)u(s)ds, ∀t ∈ I,

then

u(t) ≤ α(t) +
∫ t

a

α(s)β(s)e
∫ t

s
β(r)dr

ds, t ∈ I. (21)

B.2 Data Statistics

We here prove Lemma 5, which states the input covariance matrix and the input-output correlation averaged
over any half space are equal to those averaged over the entire space, under Condition 3.

19

Published in Transactions on Machine Learning Research (04/2025)

Proof of Lemma 5. Define S− = {x ∈ RD|r⊤x < 0}. Because Condition 3 states that p(x) is even, we have∫
S+

p(x)dx =
∫
S−

p(x)dx = 1
2 .

By the definition of the conditional expectation, we have that

〈
xx⊤〉

S+ ≡
∫
S+ xx⊤p(x)dx∫

S+ p(x)dx
= 2

∫
S+

xx⊤p(x)dx,

⟨xy(x)⟩S+ ≡
∫
S+ xy(x)p(x)dx∫

S+ p(x)dx
= 2

∫
S+

xy(x)p(x)dx.

Because xx⊤p(x) is an even function about x, the integral of xx⊤p(x) over S+ or S− is the same∫
S+

xx⊤p(x)dx =
∫
S−

xx⊤p(x)dx.

Thus, the average of xx⊤ over S+ is equal to the average in the entire space,

Σ =
∫
S+

xx⊤p(x)dx +
∫
S−

xx⊤p(x)dx = 2
∫
S+

xx⊤p(x)dx =
〈
xx⊤〉

S+ . (22)

Because xy(x) is also an even function about x under Condition 3, the same argument holds

β =
∫
S+

xy(x)p(x)dx +
∫
S−

xy(x)p(x)dx = 2
∫
S+

xy(x)p(x)dx = ⟨xy(x)⟩S+ . (23)

Note that Equation (23) needs both conditions in Condition 3, that are p(x) = p(−x) and y(x) = −y(−x).
However, Equation (22) only needs the first condition, that is p(x) = p(−x).

Lemma 14. Under Condition 3, the first terms in the differential Equation (2) reduce to〈
σ′(W1x) ⊙ W ⊤

2 yx⊤〉 = α + 1
2 W ⊤

2 β⊤, (24a)〈
yσ(W1x)⊤〉 = α + 1

2 β⊤W ⊤
1 . (24b)

Proof. Let us consider the h-th row of the matrix
〈
σ′(W1x) ⊙ W ⊤

2 yx⊤〉, which is

〈
σ′(w1hx)w2hyx⊤〉 = 1

2
〈
αw2hyx⊤〉

w1hx<0 + 1
2
〈
w2hyx⊤〉

w1hx>0 = α + 1
2 w2hβ⊤,

where the first equality is the law of total expectation and the second equality uses Lemma 5. Because the
same holds for all rows, Equation (24a) is true.

Let us consider the h-th element of the row vector
〈
yσ(W1x)⊤〉, which is

⟨yσ(w1hx)⟩ = 1
2 ⟨αyw1hx⟩w1hx<0 + 1

2 ⟨yw1hx⟩w1hx>0 = α + 1
2 w1hβ,

where the first equality is the law of total expectation and the second equality uses Lemma 5. Because the
same holds for all elements, Equation (24b) is true.

Lemma 15. The second terms in the differential Equation (2) can be bounded by the norm of the weights
and the trace of the input covariance matrix.

1.
∥∥〈σ(W1x)σ(W1x)⊤〉∥∥ ≤ ∥W1∥2 Tr Σ.

2.
∥∥〈σ′(W1x) ⊙ W ⊤

2 W2σ(W1x)x⊤〉∥∥ ≤ ∥W2∥2∥W1∥ Tr Σ.

20

Published in Transactions on Machine Learning Research (04/2025)

Proof. For the first inequality, ∥∥〈σ(W1x)σ(W1x)⊤〉∥∥ ≤
〈
∥σ(W1x)∥2〉

≤
〈
∥W1x∥2〉

≤
〈
∥W1∥2∥x∥2〉

= ∥W1∥2 Tr Σ.

For the second inequality,∥∥〈σ′(W1x) ⊙ W ⊤
2 W2σ(W1x)x⊤〉∥∥ ≤

∥∥〈W ⊤
2 W2σ(W1x)x⊤〉∥∥

≤ ∥W2∥2 ⟨∥W1x∥∥x∥⟩
≤ ∥W2∥2 〈∥W1∥∥x∥2〉
= ∥W2∥2∥W1∥ Tr Σ.

C Two-Layer Networks on Symmetric Datasets

C.1 Learning Dynamics: Early Phase

In the early phase of learning, the network output is small compared to the target output because the
initialization is small. Lemma 16 specifies how small the norm of the weights is.
Lemma 16. Denote the larger L2 norm of the weights in a two-layer network as u(t) =
max{∥W1(t)∥, ∥W2(t)∥}. The initial weights are small, that is winit ≡ u(0) ≪ 1. For two-layer linear,
ReLU, or leaky ReLU networks trained with square loss from small initialization, u(t) is bounded by

u(t) ≤ u(0)e(s+Tr Σ)t/τ , (25)

for time t < τ
s+Tr Σ ln 1

winit
.

Proof. For two-layer linear, ReLU, or leaky ReLU networks, the learning dynamics are given in general in
Equation (2). Using the equality in Lemma 14 and the inequality in Lemma 15, we can bound the dynamics
of u2 as

τ
d

dt
u2 = τ

d

dt
∥W2∥2 = (α + 1)β⊤W ⊤

1 W ⊤
2 − 2W2

〈
σ(W1x)σ(W1x)⊤〉W ⊤

2

≤
∣∣(α + 1)β⊤W ⊤

1 W ⊤
2
∣∣+
∣∣2W2

〈
σ(W1x)σ(W1x)⊤〉W ⊤

2
∣∣

≤ 2∥β∥∥W1∥∥W2∥ + 2∥W2∥2∥W1∥2 Tr Σ
≤ 2su2 + 2u4 Tr Σ.

where s = ∥β∥. For u < 1, we have

τ
d

dt
u2 ≤ 2su2 + 2u4 Tr Σ < 2 (s + Tr Σ) u2.

Via Lemma 13 Grönwall’s Inequality, we obtain

u2 ≤ w2
inite

2(s+Tr Σ)t/τ ⇒ u(t) ≤ winite
(s+Tr Σ)t/τ .

This holds for

t <
τ

s + Tr Σ ln 1
winit

.

21

Published in Transactions on Machine Learning Research (04/2025)

Since the weights are small in the early phase, we can approximate the early phase dynamics with only the
first terms in Equation (2), that is

τẆ1 ≈
〈
σ′(W1x) ⊙ W ⊤

2 yx⊤〉 = α + 1
2 W ⊤

2 β⊤, (26)

τẆ2 ≈
〈
yσ(W1x)⊤〉 = α + 1

2 β⊤W ⊤
1 , (27)

where the equalities hold under Condition 3 as proven by Lemma 14. For Lemma 6, we solve the approximate
early phase dynamics and show that the errors introduced by the approximation are bounded. We presented
Lemma 6 in the main text and now prove it.

Proof of Lemma 6. We first consider the approximate learning dynamics:

τ
˙̃

W1 = α + 1
2 W̃ ⊤

2 β⊤, τ
˙̃

W2 = α + 1
2 β⊤W̃ ⊤

1 . (28)

This is a linear dynamical system with an analytical solution available. We re-write it as:

τ
d

dt
W̃ = α + 1

2 MW̃ , where M =
[

0 β
β⊤ 0

]
, W̃ =

[
W̃ ⊤

1
W̃2

]
. (29)

Since matrix M only has two nonzero eigenvalues ±s, the solution to Equation (29) is

W̃ (t) = 1
2e

α+1
2τ st

[
β̄
1

] (
β̄⊤W ⊤

1 (0) + W2(0)
)

+ 1
2e− α+1

2τ st

[
β̄

−1

] (
β̄⊤W ⊤

1 (0) − W2(0)
)

+
[(

I − β̄β̄⊤)W ⊤
1 (0)

0

]
.

(30)

Note that only the first term in Equation (30) is growing.

We then consider the exact learning dynamics given by Equation (2) and prove its solution is close to W̃ (t).
The dynamics of the difference between the exact and approximate dynamics are

τ
d

dt

(
W̃1 − W1

)
= α + 1

2

(
W̃2 − W2

)⊤
β⊤ +

〈
σ′(W1x) ⊙ W ⊤

2 W2σ(W1x)x⊤〉 (31a)

τ
d

dt

(
W̃2 − W2

)
= α + 1

2 β⊤
(

W̃1 − W1

)⊤
+ W2

〈
σ(W1x)σ(W1x)⊤〉 . (31b)

We re-write Equation (31) as

τ
d

dt
δW = α + 1

2 MδW + ϵ, (32)

The norm of the two components of ϵ can be bounded via Lemma 15∥∥〈σ′(W1x) ⊙ W ⊤
2 W2σ(W1x)x⊤〉∥∥ ≤ u3 Tr Σ,

∥W2
〈
σ(W1x)σ(W1x)⊤〉 ∥ ≤ u3 Tr Σ.

We can then substitute in Equation (25) and obtain

∥ϵ∥ ≤
√

2u3 Tr Σ <
√

2u3
0e3(s+Tr Σ)t/τ Tr Σ.

22

Published in Transactions on Machine Learning Research (04/2025)

We now bound the norm of W − W̃∥∥∥W − W̃
∥∥∥ =

∥∥∥∥∫ t

0

α + 1
2 M

(
W − W̃

)
+ ϵdt

∥∥∥∥
≤
∫ t

0
∥M∥

∥∥∥W − W̃
∥∥∥+ ∥ϵ∥dt

≤
∫ t

0

(√
2s
∥∥∥W − W̃

∥∥∥+
√

2u3
0e3(s+Tr Σ)t/τ Tr Σ

)
dt

≤
√

2u3
0 Tr Σ

3(s + Tr Σ)

(
e3(s+Tr Σ)t/τ − 1

)
+

√
2s

∫ t

0

∥∥∥W − W̃
∥∥∥ dt.

Via Lemma 13 Grönwall’s Inequality, we obtain∥∥∥W − W̃
∥∥∥ ≤

√
2 Tr Σu3

0
3(s + Tr Σ)

[
e3(s+Tr Σ)t/τ − 1 +

∫ t

0

(
e3(s+Tr Σ)t′/τ − 1

)√
2se

√
2st′

dt′
]

=
√

2 Tr Σu3
0

3(s + Tr Σ)

e3(s+Tr Σ)t/τ +

√
2s
(

e[3(s+Tr Σ)+
√

2s]t/τ − 1
)

3(s + Tr Σ) +
√

2s
− e

√
2st

 .

When t < τ
s+Tr Σ ln 1

u0
, we have

∥∥∥W − W̃
∥∥∥ < C1u2

0 for some constant C1.

We are now ready to bound the difference between the exact solution and an exponential function along one
direction

W − e
α+1

2τ st

[
β̄
1

]
r⊤

1

=
(

W − W̃
)

+
(

W̃ − e− α+1
2τ st

[
β̄
1

]
r⊤

1

)
=
(

W − W̃
)

+ 1
2e− α+1

2τ st

[
β̄

−1

] (
β̄⊤W ⊤

1 (0) − W2(0)
)

+
[(

I − β̄β̄⊤)W ⊤
1 (0)

0

]
.

The first term arises from our approximation of dropping the cubic terms in the dynamics. Its norm is
bounded by C1w2

init. The second term arises from initialization, which is O(winit). Via triangle inequality,
the norm of the total error is of order O(winit).∥∥∥∥W − e

α+1
2τ st

[
β̄
1

]
r⊤

1

∥∥∥∥ < C1w2
init + C2winit < Cwinit.

Lemma 6 implies two messages. Firstly, the (leaky) ReLU network has the same time-course solution as its
linear counterpart except a scale factor determined by α, which is consistent with Theorem 8. Secondly, the
(leaky) ReLU and linear networks form rank-one weights with small errors in the early phase. We exploit
the rank-one weights to reduce the learning dynamics to Equation (12).

C.2 Learning Dynamics: Late Phase

Proof of Theorem 8 (square loss). Theorem 8 relies on Condition 3 and Assumption 7 and arrives at three
statements: implementing the same function as in Equation (13), having the same weights as in Equa-
tion (14), and retaining rank-one weights as Assumption 7. We prove them one by one.

Part 1: We first prove that the (leaky) ReLU network and the linear network implement the same linear
function except scaling when their weights satisfy Assumption 7. Denote W2 = [W +

2 , W −
2] where W +

2 are

23

Published in Transactions on Machine Learning Research (04/2025)

the positive elements in W2 and W −
2 are the negative elements in W2. For a (leaky) ReLU network with

rank-one weights satisfying Assumption 7, we have

f(x; W) = W2σ(W1x) = W2σ
(
W ⊤

2 r⊤x
)

.

Notate the positive and negative half-space as

S+ =
{

x ∈ RD
∣∣r⊤x ≥ 0

}
, S− =

{
x ∈ RD

∣∣r⊤x < 0
}

. (33)

For x ∈ S+, we have

f(x; W) = r⊤xW2σ(W ⊤
2) = r⊤x

[
W +

2 W −
2
] [W +

2
⊤

αW −
2

⊤

]
= r⊤x

(
∥W +

2 ∥2 + α∥W −
2 ∥2) .

For x ∈ S−, we have

f(x; W) = −r⊤xW2σ(−W ⊤
2) = r⊤x

[
W +

2 W −
2
] [αW +

2
⊤

W −
2

⊤

]
= r⊤x

(
α∥W +

2 ∥2 + ∥W −
2 ∥2) .

Under Assumption 7, we have ∥W +
2 ∥ = ∥W −

2 ∥. Hence, the (leaky) ReLU network implements

∀r, f(x; W) = W2σ(W1x) = α + 1
2 r⊤x∥W2∥2. (34)

Under Assumption 7, the linear network implements

f lin(x; W) = W2W1x = W2W ⊤
2 r⊤x = r⊤x∥W2∥2. (35)

Comparing Equations (34) and (35), we find that when the weights satisfy Assumption 7, the (leaky) ReLU
network implements the same function as the linear network except a scale factor

W2σ(W1x) = α + 1
2 W2W1x. (36)

Part 2: We then look into the learning dynamics to prove that the weights in the (leaky) ReLU and the
linear network are the same except scaling. Substituting Equation (36) into the dynamics, we get

τẆ1 = α + 1
2 W ⊤

2 β⊤ −
〈
σ′(W1x) ⊙ W ⊤

2 W2σ(W1x)x⊤〉
= α + 1

2 W ⊤
2 β⊤ − α + 1

2
〈
σ′(W1x) ⊙ W ⊤

2 W2W1xx⊤〉 , (37a)

τẆ2 = α + 1
2 β⊤W ⊤

1 − W2
〈
σ(W1x)σ(W1x)⊤〉

= α + 1
2 β⊤W ⊤

1 − α + 1
2 W2W1

〈
xσ(W1x)⊤〉 . (37b)

We compute the second terms in the dynamics under Condition 3 and Assumption 7〈
σ′(W1x) ⊙ W ⊤

2 W2W1xx⊤〉 = 1
2
〈
σ′(W1x) ⊙ W ⊤

2 W2W1xx⊤〉
S+ + 1

2
〈
σ′(W1x) ⊙ W ⊤

2 W2W1xx⊤〉
S−

= 1
2

[
1

α1

]
⊙ W ⊤

2 W2W1
〈
xx⊤〉

S+ + 1
2

[
α1
1

]
⊙ W ⊤

2 W2W1
〈
xx⊤〉

S−

= 1
2

[
W +

2
⊤

αW −
2

⊤

]
W2W1Σ + 1

2

[
αW +

2
⊤

W −
2

⊤

]
W2W1Σ

= α + 1
2 W ⊤

2 W2W1Σ, (38)

24

Published in Transactions on Machine Learning Research (04/2025)

and 〈
xσ(W1x)⊤〉 = 1

2
〈
xσ(W1x)⊤〉

S+ + 1
2
〈
xσ(W1x)⊤〉

S−

= 1
2
〈
xx⊤〉

S+ r
[
W +

2 αW −
2
]

+ 1
2
〈
xx⊤〉

S− r
[
αW +

2 W −
2
]

= α + 1
2 ΣrW2

= α + 1
2 ΣW ⊤

1 . (39)

Substituting Equations (38) and (39) into Equation (37), we reduce the dynamics to

τẆ1 = α + 1
2 W ⊤

2 β⊤ −
(

α + 1
2

)2
W2

⊤W2W1Σ,

τẆ2 = α + 1
2 β⊤W ⊤

1 −
(

α + 1
2

)2
W2W1ΣW1

⊤.

This is the same expression as Equation (12) in the main text. If we scale the weights

W 1 =
√

α + 1
2 W1, W 2 =

√
α + 1

2 W2, (40)

the scaled (leaky) ReLU network dynamics W (t) is the same as that of a linear network given in Equation (3)
except for a different time constant

2τ

α + 1Ẇ 1 = W
⊤
2
(
β⊤ − W 2W 1Σ

)
,

2τ

α + 1Ẇ 2 =
(
β⊤ − W 2W 1Σ

)
W

⊤
1 .

Because Theorem 8 defines the initial condition W (0) =
√

α+1
2 W (0) = W lin(0), the weights in the linear

network and the scaled weights in the (leaky) ReLU network start from the same initialization, obey the
same dynamics, and consequently stay the same ∀ t ≥ 0

W (t) = W lin
(

α + 1
2 t

)
⇔ W (t) =

√
2

α + 1W lin
(

α + 1
2 t

)
.

This proves Equation (14). Substituting Equation (14) into Equation (36) proves Equation (13)

f(x; W (t)) = α + 1
2 W (t)W (t)x = W lin

2

(
α + 1

2 t

)
W lin

1

(
α + 1

2 t

)
x

≡ f lin
(

x; W lin
(

α + 1
2 t

))
.

Part 3: We show that Assumption 7 made at time t = 0 remains valid for t > 0, meaning that weights
which start with rank-one structure remain rank-one. With Assumption 7 at time t = 0, the dynamics of
the (leaky) ReLU network is described by Equation (12). This dynamics is the same as scaled dynamics in a
linear network and thus satisfies the balancing property of linear networks (Ji & Telgarsky, 2019; Du et al.,
2018)

d

dt

(
W1W ⊤

1 − W ⊤
2 W2

)
= 0. (41)

Under Assumption 7 at time t = 0, this quantity is zero at time t = 0 and will stay zero

∀ t ≥ 0 : W1(t)W1(t)⊤ − W2(t)⊤W2(t) = W1(0)W1(0)⊤ − W2(0)⊤W2(0) = 0.

25

Published in Transactions on Machine Learning Research (04/2025)

Because rank(W1W ⊤
1) = rank(W1), the balancing property enforces that W1 and W2 have equal rank.

Since W2 is a vector, W1 must also have rank one. We can write a rank-one matrix as the outer-product of
two vectors W1 = vr⊤. We can assume ∥r∥ = 1 for convenience and get

W1W ⊤
1 = vr⊤rv⊤ = vv⊤ = W ⊤

2 W2 ⇒ v = ±W ⊤
2 .

Because Assumption 7 specifies W1 = W ⊤
2 r⊤, then v = W ⊤

2 . To summarize, Assumption 7 at time t = 0
reduces the learning dynamics of the ReLU network to be similar to that of a linear network. The reduced
dynamics satisfies the balancing property which enforces that the weights remain rank-one, thus satisfying
Assumption 7 for all t ≥ 0.

Proof of Theorem 8 (logistic loss). We prove Theorem 8 for logistic loss LLG = ⟨ln(1 + e−yŷ)⟩.

Part 1: Same as the square loss case because proving Equation (36) does not involve the loss function.

Part 2: The gradient flow dynamics of a two-layer linear network trained with logistic loss are

τẆ lin
1 = W lin

2
⊤

W lin
2 W lin

1

〈
xx⊤

eyW lin
2 W lin

1 x + 1

〉
, (42a)

τẆ lin
2 = W lin

2 W lin
1

〈
xx⊤

eyW lin
2 W lin

1 x + 1

〉
W lin

1
⊤

. (42b)

The gradient flow dynamics of a two-layer (leaky) ReLU network trained with logistic loss are

τẆ1 =
〈

σ′(W1x) ⊙ W ⊤
2 W2σ(W1x)x⊤

eyW2σ(W1x) + 1

〉
(43a)

τẆ2 = W2

〈
σ(W1x)σ(W1x)⊤

eyW2σ(W1x) + 1

〉
(43b)

Substituting Equation (36) into Equation (43), we get

τẆ1 = α + 1
2

〈
σ′(W1x) ⊙ W ⊤

2 W2W1xx⊤

e
α+1

2 yW2W1x + 1

〉
(44a)

τẆ2 = α + 1
2 W2W1

〈
xσ(W1x)⊤

e
α+1

2 yW2W1x + 1

〉
(44b)

Under Condition 3 and Assumption 7, Equation (44) can be simplified〈
σ′(W1x) ⊙ W ⊤

2 W2W1xx⊤

e
α+1

2 yW2W1x + 1

〉
=1

2

〈
σ′(W1x) ⊙ W ⊤

2 W2W1xx⊤

e
α+1

2 yW2W1x + 1

〉
S+

+ 1
2

〈
σ′(W1x) ⊙ W ⊤

2 W2W1xx⊤

e
α+1

2 yW2W1x + 1

〉
S−

=1
2

[
αW +

2
⊤

W −
2

⊤

]
W2W1

〈
xx⊤

e
α+1

2 yW2W1x + 1

〉
S+

+ 1
2

[
W +

2
⊤

αW −
2

⊤

]
W2W1

〈
xx⊤

e
α+1

2 yW2W1x + 1

〉
S−

=α + 1
2 W2

⊤W2W1

〈
xx⊤

e
α+1

2 yW2W1x + 1

〉
,

and 〈
xσ(W1x)⊤

e
α+1

2 yW2W1x + 1

〉
=1

2

〈
xσ(W1x)⊤

e
α+1

2 yW2W1x + 1

〉
S+

+ 1
2

〈
xσ(W1x)⊤

e
α+1

2 yW2W1x + 1

〉
S−

=1
2

〈
xx⊤

e
α+1

2 yW2W1x + 1

〉
S+

r
[
αW +

2 W −
2
]

+ 1
2

〈
xx⊤

e
α+1

2 yW2W1x + 1

〉
S−

r
[
W +

2 αW −
2
]

=α + 1
2

〈
xx⊤

e
α+1

2 yW2W1x + 1

〉
W1

⊤.

26

Published in Transactions on Machine Learning Research (04/2025)

Thus, the reduced dynamics of the two-layer (leaky) ReLU network are

τẆ1 =
(

α + 1
2

)2
W2

⊤W2W1

〈
xx⊤

e
α+1

2 yW2W1x + 1

〉
,

τẆ2 =
(

α + 1
2

)2
W2W1

〈
xx⊤

e
α+1

2 yW2W1x + 1

〉
W1

⊤.

If we scale the weights as Equation (40), the (leaky) ReLU network dynamics is the same as that of a linear
network given in Equation (42) except for a different time constant

2τ

α + 1Ẇ 1 = W 2
⊤

W 2W 1

〈
xx⊤

eyW 2W 1x + 1

〉
,

2τ

α + 1Ẇ 2 = W 2W 1

〈
xx⊤

eyW 2W 1x + 1

〉
W 1

⊤
.

Through the same reasoning as the square loss case, Equations (13) and (14) are proven.

Part 3: Same as the square loss case.

C.3 Global Minimum

Proof of Corollary 10. The converged solution w∗ is a direct consequence of the equivalence we showed in
Theorem 8 and prior results of linear networks (Saxe et al., 2014; Soudry et al., 2018).

We now show that for symmetric datasets satisfying Condition 3, the global minimum solution of a two-layer
bias-free (leaky) ReLU network trained with square loss is linear.

Based on Theorem 1, we can write a two-layer bias-free (leaky) ReLU network as a linear function plus an
even function f(x) = x⊤w∗+fe(x) where fe(·) denotes an even function. For datasets satisfying Condition 3,
the square loss is

L = 1
2

〈(
y − x⊤w∗ − fe(x)

)2〉
p(x)

= 1
2

〈(
y − x⊤w∗)2 − 2(y − Ax)fe(x) + fe(x)2

〉
p(x)

= 1
2

〈(
y − x⊤w∗)2〉

p(x)
+ 1

2
〈
fe(x)2〉

p(x) .

The square loss attains its minimum when both
〈(

y − x⊤w∗)2
〉

p(x)
and

〈
fe(x)2〉

p(x) are minimized. The

former is minimized when w∗ = Σ−1β. The latter is minimized when fe(x) = 0. Hence, for symmetric
datasets satisfying Condition 3, the two-layer bias-free (leaky) ReLU network achieves globally minimum
square loss with the linear, ordinary least squares solution f(x) = x⊤w∗ = x⊤Σ−1β.

C.4 Effect of Regularization

Theorem 8 still holds when L2 regularization is applied. Specifically, Theorem 8 holds if L2 regularization is
added with hyperparameter λα = α+1

2 λ, i.e., the loss is Lreg = L + α+1
2 λ∥W ∥2

2. With similar calculations,
we find that the regularized dynamics of the two-layer bias-free (leaky) ReLU network is

τẆ1 = α + 1
2 W ⊤

2 β⊤ −
(

α + 1
2

)2
W2

⊤W2W1Σ − α + 1
2 λW1, (45a)

τẆ2 = α + 1
2 β⊤W ⊤

1 −
(

α + 1
2

)2
W2W1ΣW1

⊤ − α + 1
2 λW2. (45b)

27

Published in Transactions on Machine Learning Research (04/2025)

If we scale the weights as Equation (40), the regularized (leaky) ReLU network dynamics is again the same
as that of a regularized linear network except for a different time constant

2τ

α + 1Ẇ 1 = W
⊤
2
(
β⊤ − W 2W 1Σ

)
− λW 1,

2τ

α + 1Ẇ 2 =
(
β⊤ − W 2W 1Σ

)
W

⊤
1 − λW 2.

We validate this with simulations in Figure 7a. As in the unregularized case, we find that the loss curves
with different leaky ReLU slopes collapse to one curve after rescaling time and the differences between weight
matrices are small.

We note a concurrent work (Wang et al., 2025) that considers two-layer bias-free ReLU networks with L2
regularization.

C.5 Effect of Learning Rate

We empirically find that with a moderately large learning rate, the behaviors of two-layer bias-free (leaky)
ReLU networks are consistent with Theorem 8. For simulations in Figure 7b, we use a learning rate of 0.6,
which is 150 times larger than the learning rate used in Figure 3, 0.004. Due to the larger learning rate, the
loss curves in Figure 7b is less smooth than those in Figures 3, 7a and 7c. Nonetheless, the loss curves with
different leaky ReLU slopes collapse to one curve after rescaling time and the differences between weight
matrices are small.

If the learning rate is further increased, oscillations in the loss curves occur, suggesting unstable training. In
such cases, the equivalence described in Theorem 8 no longer holds. However, the learning rate is typically
chosen to avoid such oscillations in training.

C.6 Effect of Initialization

We empirically find that under large initialization, two-layer bias-free (leaky) ReLU networks still have
similar learning dynamics as its linear counterpart. As in the small initialization case, the loss curves in
Figure 7c with different leaky ReLU slopes collapse to one curve after rescaling time. The differences between
weight matrices are larger than those in the case of small initialization but are still less than 3%. With large
initialization and a moderately large learning rate, the behavior remains consistent, as shown in Figure 7d.

This is related to the limited expressivity of bias-free ReLU networks. Within the expressivity of two-layer
bias-free ReLU networks, the linear solution is the global minimum for symmetric datasets. The two-layer
bias-free ReLU network learns the linear solution starting from either small or large initialization.

28

Published in Transactions on Machine Learning Research (04/2025)

0 7500 15000
t

0.0

0.5

1.0

Lo
ss

0 7500 15000
2
+ 1 t

0.0

0.5

1.0

Lo
ss

Loss
Error

0

0.5%

1%

Er
ro

r

= 1.0
= 0.8
= 0.6
= 0.4
= 0.2
= 0.0

(a) Loss and error curves with L2 regularization with hyperparameter λα = 0.2(α + 1).

0 35 70
t

0.0

0.5

1.0

Lo
ss

0 35 70
2
+ 1 t

0.0

0.5

1.0
Lo

ss
Loss
Error

0

0.5%

1%

Er
ro

r

= 1.0
= 0.8
= 0.6
= 0.4
= 0.2
= 0.0

(b) Loss and error curves with a moderately large learning rate, 0.6.

0 500 1000
t

0.0

0.5

1.0

Lo
ss

0 500 1000
2
+ 1 t

0.0

0.5

1.0

Lo
ss

Loss
Error

0

5%

10%

Er
ro
r

= 1.0
= 0.8
= 0.6
= 0.4
= 0.2
= 0.0

(c) Loss and error curves with large initialization, winit = 0.5.

0 5 10
t

0.0

0.5

1.0

Lo
ss

0 5 10
2
+ 1 t

0.0

0.5

1.0

Lo
ss

Loss
Error

0

5%

10%

Er
ro

r

= 1.0
= 0.8
= 0.6
= 0.4
= 0.2
= 0.0

(d) Loss and error curves with large initialization, winit = 0.5, and a moderately large learning rate, 0.6.

Figure 7: Two-layer bias-free (leaky) ReLU networks evolve like a linear network even when some of the
assumptions in Theorem 8 are lifted. The setup is the same as Figure 3 except for the condition(s) specified in
each individual subcaption. In (b,c,d), the time rescaling is implemented by inversely rescaling the learning
rate. This avoids the inaccuracy induced by rounding the rescaled time to an integer number of epoch, which
becomes non-negligible in the case of a small total number of epochs. In (c,d), with large initialization, the
errors between weight matrices are larger than those in the case of small initialization but are still less than
3%.

29

Published in Transactions on Machine Learning Research (04/2025)

2 1 0 1 2
2

1

0

1

2

(a) Orthogonal data

0 10000 20000
t

0.0

0.2

0.4

0.6

Lo
ss

ReLU
Lin +1
Lin 1

(b) Loss

4 2 0 2 4
4

2

0

2

4

(c) XOR data

0 1000 2000
t

0.0

0.2

0.4

0.6

Lo
ss

ReLU
Lin +1
Lin 1
Lin +1
Lin 1

(d) Loss

Figure 8: The same as Figure 4 but with logistic loss.

0 10000 20000
t

0.0

0.5

1.0

Lo
ss

ReLU
Lin 1
Lin -1

(a) MSE loss

0 10000 20000
t

0.0

0.2

0.4

0.6

Lo
ss

ReLU
Lin 1
Lin -1

(b) Logistic loss

Figure 9: Two-layer bias-free ReLU networks evolve like two linear networks when trained on a dataset with
pairwise orthogonal input, that is ∀µ ̸= ν, x⊤

µ xν = 0. The dataset has 20 samples, with 10 samples labeled
+1 and 10 samples labeled −1. The input points with +1 label have a larger L2 norm than those with −1
label. The black curve is the loss of a two-layer bias-free ReLU network trained on all 20 samples. The
blue dashed curve is the loss of a two-layer linear network trained on the ten data points with +1 label;
and the red dashed curve is that trained on the ten data points with −1 label. The loss curve of the ReLU
network overlaps with those of the two linear networks. (a) Mean square error loss trajectory. (b) Logistic
loss trajectory.

D Two-Layer Networks Learning Dynamics on Orthogonal Datasets

Assumption 17. A two-layer bias-free ReLU network is trained from small initialization on a dataset with
orthonormal input, that is x⊤

µ xν = 0 if µ ̸= ν, and x⊤
µ xµ = 1. We assume that the weights at time t0 during

training have the following form:

W1 =
[
W A

1
W B

1

]
=
[
uArAβ̄⊤

A
uBrBβ̄⊤

B

]
, W2 =

[
W A

2 W B
2
]

=
[
uAr⊤

A −uBr⊤
B
]

, (46)

where u > 0, ∥rA∥ = ∥rB∥ = 1 and all entries in rA, rB are non-negative. The vectors βA, βB are defined as

β̄A =
∑

µ∈SA
yµxµ∥∥∥∑µ∈SA
yµxµ

∥∥∥ , SA = {µ|yµ > 0}, (47a)

β̄B = −
∑

µ∈SB
yµxµ∥∥∥∑µ∈SB
yµxµ

∥∥∥ , SB = {µ|yµ < 0}. (47b)

Here the set SA denotes the indices of the data points with positive target output, and SB denotes those
with negative target output.
Proposition 18. Under Assumption 17, for all t ≥ t0, the weights of the two-layer bias-free ReLU network
will maintain the form in Equation (46) and its learning dynamics is described by

τẆ C
1 = W C

2
⊤ (

β⊤
C − W C

2 W C
1 ΣC

)
, τẆ C

2 =
(
β⊤

C − W C
2 W C

1 ΣC
)

W C
1

⊤
, (48)

30

Published in Transactions on Machine Learning Research (04/2025)

where C represents either A or B, and

βC = 1
P

∑
µ∈SC

yµxµ, ΣC = 1
P

∑
µ∈SC

xµx⊤
µ . (49)

The dynamics of W C
1 , W C

2 is the same as that of a two-layer linear network trained with data points in SC,
as given by Equation (3).

Proof. Because the weights satisfy Equation (46) and the data points are orthonormal, we have

∀µ ∈ SA, σ
(
W A

1 xµ

)
= W A

1 xµ, σ
(
W B

1 xµ

)
= 0;

∀µ ∈ SB, σ
(
W B

1 xµ

)
= W B

1 xµ, σ
(
W A

1 xµ

)
= 0.

For data points in the dataset, the network computes

∀µ ∈ SA, f(xµ; W) ≡ W2σ(W1xµ) = W A
2 σ
(
W A

1 xµ

)
+ W B

2 σ
(
W B

1 xµ

)
= W A

2 W A
1 xµ,

∀µ ∈ SB, f(xµ; W) ≡ W2σ(W1xµ) = W A
2 σ
(
W A

1 xµ

)
+ W B

2 σ
(
W B

1 xµ

)
= W B

2 W B
1 xµ.

The learning dynamics of W A
1 , W A

2 can be calculated as

τẆ A
1 = 1

P

P∑
µ=1

σ′ (W A
1 xµ

)
⊙ W A

2
⊤ (yµ − W2σ(W1xµ)) x⊤

µ

= 1
P

P∑
µ∈SA

W A
2

⊤ (
yµ − W A

2 W A
1 xµ

)
x⊤

µ

= W A
2

⊤ (
β⊤

A − W A
2 W A

1 ΣA
)

,

τẆ A
2 =

P∑
µ=1

(yµ − W2σ(W1xµ)) σ
(
W A

1 xµ

)⊤

=
P∑

µ∈SA

(yµ − W2σ(W1xµ)) σ
(
W A

1 xµ

)⊤

=
(
β⊤

A − W A
2 W A

1 ΣA
)

W A
1

⊤
.

This proves Equation (48). We now prove that the weights will maintain the form in Equation (46) for
t ≥ t0. We first calculate a term that we will need:

β̄⊤
AΣA =

∑
µ∈SA

yµx⊤
µ∥∥∥∑µ∈SA

yµxµ

∥∥∥
∑

µ′∈SA
xµ′x⊤

µ′

P

=
∑

µ,µ′∈SA
yµx⊤

µ xµ′x⊤
µ′∥∥∥∑µ∈SA

yµxµ

∥∥∥P

=
∑

µ∈SA
yµx⊤

µ∥∥∥∑µ∈SA
yµxµ

∥∥∥P

= 1
P

β̄⊤
A . (50)

By substituting Equation (46) into Equation (48) and using Equation (50), we obtain

τẆ A
1 = τ

d

dt
uArAβ̄⊤

A = uArA
(
β⊤

A − uAr⊤
AuArAβ̄⊤

AΣA
)

= uArAβ̄⊤
A

(
∥βA∥ − 1

P
u2

A

)
, (51a)

τẆ A
2 = τ

d

dt
uAr⊤

A =
(
β⊤

A − uAr⊤
AuArAβ̄⊤

AΣA
)

uAβ̄Ar⊤
A = uA

(
∥βA∥ − 1

P
u2

A

)
r⊤

A . (51b)

31

Published in Transactions on Machine Learning Research (04/2025)

Equating the coefficients in Equation (51) yields a one-dimensional ordinary differential equation about uA:

τ u̇A = uA

(
∥βA∥ − 1

P
u2

A

)
. (52)

Hence, for the W A
1 , W A

2 blocks in Equation (46), only the scalar variable uA evolves while the vectors rA, β̄A
stay unchanged.

With the same approach, we can calculate the learning dynamics of W B
1 , W B

2

τẆ B
1 = W B

2
⊤ (

β⊤
B − W B

2 W B
1 ΣB

)
,

τẆ B
2 =

(
β⊤

B − W B
2 W B

1 ΣB
)

W B
1

⊤
.

Substituting in Equation (46), we obtain

τẆ B
1 = τ

d

dt
uBrBβ̄⊤

B = −uBrB
(
β⊤

B + uBr⊤
B uBrBβ̄⊤

B ΣB
)

= uBrBβ̄⊤
B

(
∥βB∥ − 1

P
u2

B

)
, (53a)

τẆ B
2 = −τ

d

dt
uBr⊤

B =
(
β⊤

B + uBr⊤
B uBrBβ̄⊤

B ΣB
)

uBβ̄Br⊤
B = uB

(
−∥βB∥ + 1

P
u2

B

)
r⊤

B . (53b)

Equating the coefficients in Equation (53) yields a one-dimensional ordinary differential equation about uB:

τ u̇B = uB

(
∥βB∥ − 1

P
u2

B

)
. (54)

Hence, for the W B
1 , W B

2 blocks in Equation (46), only the scalar variable uB evolves while the vectors rB, β̄B
stay unchanged. Consequently, if the weights satisfy Equation (46) at time t0, Equation (46) will hold for
all t ≥ t0.

E Deep ReLU Network Learning Dynamics

Proof of Proposition 12. According to Equation (18), all weight elements in the intermediate layers
(WL−1, · · · , W3, W2) are non-negative numbers. According to the definition of the ReLU activation func-
tion, σ(W1x) yields a vector with non-negative numbers. Thus W2σ(W1x) yields a vector with non-negative
numbers and we have σ(W2σ(W1x)) = W2σ(W1x). Similarly, all subsequent ReLU activation functions
can be ignored2. With weights satisfying Equation (18), a deep bias-free ReLU network implements

f(x; W) ≡ WLσ(· · · σ(W2σ(W1x))) = WL · · · W2σ(W1x).

We stick to the notation for the positive and negative half-space defined in Equation (33). For x ∈ S+, we
have

f(x; W) = uWL · · · W2

[
r+

1
0

]
r⊤x = uL−1

(
√

2)L−2
WL

[
r+

L−1
0

]
r⊤x =

(
u√
2

)L

r⊤x.

For x ∈ S−, we have

f(x; W) = uWL · · · W2

[
0

r−
1

]
r⊤x = uL−1

(
√

2)L−2
WL

[
0

r−
L−1

]
r⊤x =

(
u√
2

)L

r⊤x.

Hence, the deep bias-free ReLU network implements a linear function f(x; W) =
(

u√
2

)L

r⊤x. Notice that
a deep linear network with such weights implement

WL · · · W2W1x = uWL · · · W2

[
r+

1
r−

1

]
r⊤x = · · · = uL−1

(
√

2)L−2
WLrL−1r⊤x = uL

(
√

2)L−2
r⊤x.

2The activation functions can be ignored when calculating the network output but cannot be ignored when calculating the
gradients. This is because for a ReLU function σ(z) = max(z, 0) and a linear function ϕ(z) = z, the function values are equal
at zero σ(0) = ϕ(0) but the derivatives are not equal at zero σ′(0) ̸= ϕ′(0).

32

Published in Transactions on Machine Learning Research (04/2025)

W1

0.1

0.0

0.1

W2W3

W4

W1

0.1

0.0

0.1

W2W3

W4

(a) Weights in a 4-layer linear (top) and ReLU (bottom) network as Equations (17) and (18).

W1

0.1

0.0

0.1

W2W3W4

W5

W1

0.1

0.0

0.1

W2W3W4

W5

(b) Weights in a 5-layer linear (top) and ReLU (bottom) network as Equations (17) and (18).

Figure 10: Same as Figure 5 but with deeper networks.

33

Published in Transactions on Machine Learning Research (04/2025)

Equation (19) is thus proven.

We now prove that under Equation (18) on the weights at time t = t0, we have that ∀ t ≥ t0, Equation (18)
remains valid. We assume that σ′(0) = 0. We substitute the low-rank weights defined in Equation (18) into
the learning dynamics of deep bias-free ReLU networks and make simplifications. For the first layer,

τẆ1 =
〈
σ′(W1x) ⊙ W ⊤

2 · · · W ⊤
L (y − f(x))x⊤〉

= uL−1

(
√

2)L−2

〈
σ′(W1x) ⊙ r1

(
y −

(
u√
2

)L

r⊤x

)
x⊤

〉

= uL−1

(
√

2)L

[
r+

1
0

]〈(
y −

(
u√
2

)L

r⊤x

)
x⊤

〉
S+

+ uL−1

(
√

2)L

[
0

r−
1

]〈(
y −

(
u√
2

)L

r⊤x

)
x⊤

〉
S−

= uL−1

(
√

2)L
r1

(
β⊤ −

(
u√
2

)L

r⊤Σ
)

. (55)

For intermediate layers 1 < l < L,

τẆl =
〈
σ′(hl) ⊙ W ⊤

l+1 · · · W ⊤
L (y − f(x))σ(hl−1)⊤〉

=
(

u√
2

)L−1 [1
0

]
⊙
[
r+

l

r−
l

]〈(
y −

(
u√
2

)L

r⊤x

)
x⊤

〉
S+

r
[
r+

l−1
⊤ 0

]
+
(

u√
2

)L−1 [0
1

]
⊙
[
r+

l

r−
l

]〈(
y −

(
u√
2

)L

r⊤x

)
x⊤

〉
S−

r
[
0 r−

l−1
⊤
]

=
(

u√
2

)L−1
[

r+
l r+

l−1
⊤ 0

0 0

](
β⊤ −

(
u√
2

)L

r⊤Σ
)

r

+
(

u√
2

)L−1
[

0 0
0 r−

l r−
l−1

⊤

](
β⊤ −

(
u√
2

)L

r⊤Σ
)

r

= uL−1

(
√

2)L

[√
2r+

l r+
l−1

⊤ 0
0

√
2r−

l r−
l−1

⊤

](
β⊤ −

(
u√
2

)L

r⊤Σ
)

r. (56)

For the last layer,

τẆL =
〈
(y − f(x))σ(hL−1)⊤〉

= uL−1

(
√

2)L

〈(
y −

(
u√
2

)L

r⊤x

)
x⊤

〉
S+

r
[
r+

L−1
⊤ 0

]
+ uL−1

(
√

2)L

〈(
y −

(
u√
2

)L

r⊤x

)
x⊤

〉
S−

r
[
0 r−

L−1
⊤
]

= uL−1

(
√

2)L

(
β⊤ −

(
u√
2

)L

r⊤Σ
)

rr⊤
L−1. (57)

Equations (55) to (57) can be rewritten as Equation (20) if we substitute the weights back in. The dynamics
of the deep ReLU network as in Equation (20) is the same as a deep linear network as in Equation (7) except
for constant coefficients.

34

Published in Transactions on Machine Learning Research (04/2025)

We now prove that the low-rank weights remain low-rank once formed. We substitute the low-rank weights
defined in Equation (18) into the left-hand side of Equations (55) to (57) and get

τ
d

dt
ur1r⊤ = uL−1

(
√

2)L
r1

(
β⊤ −

(
u√
2

)L

r⊤Σ
)

,

τ
d

dt
u

[√
2r+

l r+
l−1

⊤ 0
0

√
2r−

l r−
l−1

⊤

]
= uL−1

(
√

2)L

[√
2r+

l r+
l−1

⊤ 0
0

√
2r−

l r−
l−1

⊤

](
β⊤ −

(
u√
2

)L

r⊤Σ
)

r,

τ
d

dt
ur⊤

L−1 = uL−1

(
√

2)L

(
β⊤ −

(
u√
2

)L

r⊤Σ
)

rr⊤
L−1.

We cancel out the nonzero common terms on both sides and reduce the dynamics to two differential equations.
The first one is about the norm of a layer u. The second one is about the rank-one direction in the first layer
ur.

τ
d

dt
u = uL−1

(
√

2)L

(
β⊤ −

(
u√
2

)L

r⊤Σ
)

r,

τ
d

dt
ur⊤ = uL−1

(
√

2)L

(
β⊤ −

(
u√
2

)L

r⊤Σ
)

.

After the weights have formed the low-rank structure specified in Equation (18), the norm of each layer
u and the rank-one direction of the first layer r evolve while r1, r2, · · · , rL−1 stay fixed. Hence, under
Equation (18) on the weights at time t = t0, we have that ∀ t ≥ t0, Equation (18) remains valid.

We complement Figure 5 in the main text with Figure 10, which shows the converged weights in deeper
bias-free linear and ReLU networks. Figures 5 and 10 are the empirical results that motivate us to make
Conjecture 11.

F Depth Separation

A clarification on Section 3.2 is that deep bias-free ReLU networks are not more expressive than their two-
layer counterparts if the input is scalar. For scalar input functions, the only positively homogeneous odd
function is the linear function. Neither two-layer nor deep bias-free ReLU networks can express nonlinear
odd functions with scalar input.

Another relevant fact is that there is also depth separation between two-layer and deep ReLU networks with
bias. One example is the pyramid function, σ(1−∥x∥1), which was studied in (Ongie et al., 2020, Example 4)
and (Nacson et al., 2023, Proposition 2).

35

Published in Transactions on Machine Learning Research (04/2025)

G Additional Figure

0 200 400 600 800 1000
t

0.4

0.5

0.6

0.7

Lo
ss

(a) Loss

1 0 1
1

0

1

(b) Dataset and solution

Figure 11: Two-layer bias-free ReLU network trained on a linearly separable binary classification task with
label flipping noise. Since the dataset satisfies symmetric Condition 3, the network follows linear network
dynamics and converges to a linear decision boundary, which is a presumably robust solution here as it
avoids overfitting the two noisy labels. (a) Loss curve. Logistic loss is used here. (b) The dataset is plotted
with empty circles and short lines, representing data points with +1 labels and −1 labels respectively. The
network output at the end of training is plotted in color.

H Implementation Details

All networks are initialized with small random weights. Specifically, the initial weights in the l-th layer are
sampled i.i.d. from a normal distribution N (0, w2

init/Nl) where Nl is the number of weight parameters in the
l-th layer. The initialization scale winit is specified below.

Figure 1. The networks have width 100. The initialization scale winit = 10−2. The learning rate is 0.2.
The two-layer networks are trained 10000 epochs. The three-layer networks are trained 80000 epochs. The
dataset is plotted in the figure. The size of the datasets is 120.

Figure 3. The networks have width 500. The initialization scale is winit = 10−8. The learning rate is 0.004.
The input is 20-dimensional, x ∈ R20. We sample 1000 i.i.d. vectors xn ∼ N (0, I) and include both xn

and −xn in the dataset, resulting in 2000 data points. The output is generated as y = w⊤x + sin
(
4w⊤x

)
where elements of w are randomly sampled from a uniform distribution U [−0.5, 0.5]. This dataset satisfy
Condition 3 since the empirical input distribution is even and the output is generated by an odd function.

Figures 4 and 8. We use the same hyperparameters as Boursier et al. (2022). The network width is 60.
The initialization scale winit = 10−6. The learning rate is 0.001 for square loss and 0.004 for logistic loss.
The orthogonal input dataset contains two data points, i.e., [−0.5, 1], [2, 1]. The XOR input dataset contains
four data points, i.e., [0, 1], [2, 0], [0, −3], [−4, 0].

Figure 5. The networks have width 100. The initialization scale winit = 10−2. The learning rate is 0.1.
The networks are trained 20000 epochs. The dataset is generated in the same way as Figure 3 except that
the output is generated as y = w⊤x.

Figure 6. The network width is 100. The initialization scale winit = 10−3. The learning rate is 0.025. The
dataset contains six data points: [1, 1], [−1, −1], [1, −1], [−1, 1], [−1, 0], [1, δ].

36

	Introduction
	Related Work

	Preliminaries
	Two-Layer Bias-Free (Leaky) ReLU and Linear Networks
	Deep Networks

	Network Expressivity
	Two-Layer Bias-Free (Leaky) ReLU Networks
	Deep Bias-Free (Leaky) ReLU Networks

	Learning Dynamics in Two-Layer Bias-Free ReLU Networks
	Symmetric Datasets
	Orthogonal and XOR Datasets

	Learning Dynamics in Deep Bias-Free ReLU Networks
	Discussion
	Implication of Bias Removal
	Perturbed Symmetric Dataset

	Additional Related Work
	Useful Lemmas
	Grönwall’s Inequality
	Data Statistics

	Two-Layer Networks on Symmetric Datasets
	Learning Dynamics: Early Phase
	Learning Dynamics: Late Phase
	Global Minimum
	Effect of Regularization
	Effect of Learning Rate
	Effect of Initialization

	Two-Layer Networks Learning Dynamics on Orthogonal Datasets
	Deep ReLU Network Learning Dynamics
	Depth Separation
	Additional Figure
	Implementation Details

