

000 A^2R^2 : ADVANCING IMG2LATEX CONVERSION VIA 001 VISUAL REASONING WITH ATTENTION-GUIDED 002 REFINEMENT 003

004 **Anonymous authors**
005
006

007 Paper under double-blind review
008
009

010 ABSTRACT 011

012
013 Img2LaTeX is a practically important task that involves translating mathematical
014 expressions and structured visual content from images into LaTeX code. In recent
015 years, vision-language models (VLMs) have achieved remarkable progress across
016 a range of visual understanding tasks, largely due to their strong generalization
017 capabilities. However, despite initial efforts to apply VLMs to the Img2LaTeX task,
018 their performance remains suboptimal. Empirical evidence shows that VLMs can
019 be challenged by fine-grained visual elements, such as subscripts and superscripts
020 in mathematical expressions, which results in inaccurate LaTeX generation. To
021 address this challenge, we propose A^2R^2 : Advancing Img2LaTeX Conversion via
022 Visual Reasoning with Attention-Guided Refinement, a framework that effectively
023 integrates attention localization and iterative refinement within a visual reasoning
024 framework, enabling VLMs to perform self-correction and progressively improve
025 LaTeX generation quality. For effective evaluation, we introduce a new dataset,
026 *Img2LaTeX-Hard-1K*, consisting of 1,100 carefully curated and challenging ex-
027 amples designed to rigorously evaluate the capabilities of VLMs within this task
028 domain. Extensive experimental results demonstrate that: (1) A^2R^2 significantly
029 improves model performance across various evaluation metrics spanning both
030 textual and visual levels; (2) Increasing the number of inference rounds yields
031 notable performance gains, underscoring the potential of A^2R^2 in test-time scaling
032 scenarios; (3) Ablation studies and further evaluations confirm the effectiveness of
033 our approach and the synergy of its core components during inference.

034 1 INTRODUCTION 035

036 In modern applications, users frequently interact with chat agents and consume research content
037 where mathematical expressions and structured information must be represented in LaTeX format.
038 This demand highlights the need for models that can accurately convert screenshots or images into
039 their corresponding LaTeX source code. Existing approaches primarily rely on convolutional neural
040 networks (CNNs) or Vision Transformer (ViT)-based architectures, which are fine-tuned on large-
041 scale datasets specifically curated for this task (Jiang et al., 2025; Wang et al., 2019b; Dosovitskiy
042 et al., 2021; Wang & Liu, 2021; Wang et al., 2019a). However, these models typically rely heavily on
043 large-scale training data and lack the capacity for human-like reasoning and self-correction when
044 faced with mismatches or prediction errors.

045 Recently, vision-language models (VLMs) have demonstrated strong potential in multimodal under-
046 standing, particularly in tasks that require reasoning over image-text interactions (Zhang et al., 2024b;
047 Du et al., 2022; Ghosh et al., 2024; Caffagni et al., 2024; Zhang et al., 2024a; Yin et al., 2024). With
048 the increasing availability of such models, VLMs are emerging as promising candidates for tackling
049 the Img2LaTeX task. Nonetheless, prior studies evaluating their performance on this task reveal
050 notable limitations, indicating that there remains substantial room for improvement (Roberts et al.,
051 2024). One possible explanation is the reliance on direct evaluation of VLMs, which may overlook
052 the potential advantages of leveraging their visual reasoning capabilities during inference.

053 To address the aforementioned limitations, we construct a more challenging subset from the
054 Im2LaTeX-100K dataset (Deng et al., 2017), selecting approximately 1,100 difficult examples using

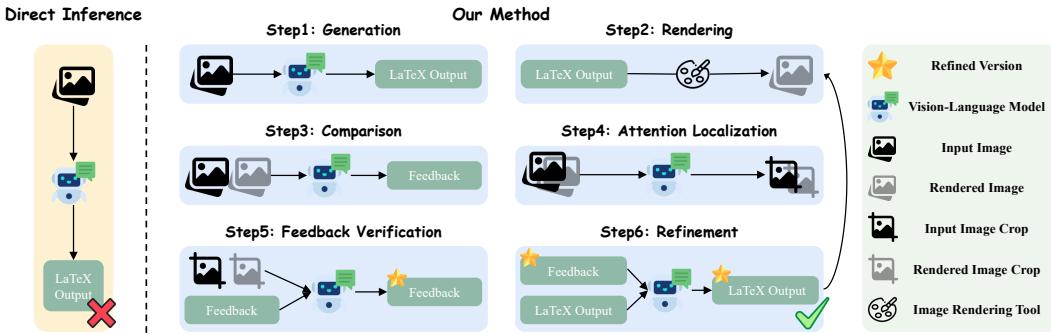


Figure 1: An illustration of the A^2R^2 framework applied to the Img2LaTeX task. Unlike direct inference, which yields an incorrect result, A^2R^2 incorporates multiple reasoning steps into the inference process. By leveraging iterative refinement, the framework progressively enhances the output, ultimately generating the correct LaTeX expression.

a combination of metric-based filtering and evaluations conducted by multi-modal large language models (MLLMs). This new dataset, *Img2LaTeX-Hard-1K*, is specifically designed to stress-test the capabilities of current VLMs under more demanding conditions.

Inspired by how visual reasoning emulates human-like thinking through self-correction and iterative refinement (Tan et al., 2025; Bi et al., 2025; Chen et al., 2024a; Zhang et al., 2025; OpenAI, 2025; Google, 2024; Xu et al., 2025; Wang et al., 2025), we propose a novel training-free plug-in framework, A^2R^2 : Advancing Img2LaTeX Conversion via Visual Reasoning with Attention-Guided Refinement. Our proposed framework enhances VLM performance on the Img2LaTeX task by integrating attention-based localization with iterative refinement guided by visual feedback. As illustrated in Figure 1, A^2R^2 consists of four core stages: (1) Generation: the VLM generates an initial LaTeX hypothesis from the input image; (2) Rendering and Comparison: the predicted LaTeX is rendered into an image and visually compared against the input to identify discrepancies, which are then used to elicit feedback; (3) Attention Localization and Feedback Verification: attention mechanisms guide the model to focus on the mismatched regions, while the system assesses the reliability of the feedback; (4) Refinement: the LaTeX output is updated based on the verified feedback, and the process iterates from stage (2), allowing the model to perform self-correction through visual reasoning.

In summary, our key contributions are as follows:

- (1) We propose A^2R^2 , a novel visual reasoning framework that integrates attention-based localization and iterative self-refinement to enhance VLM performance on the Img2LaTeX task, all within a training-free paradigm.
- (2) Extensive experiments demonstrate that A^2R^2 consistently outperforms other baselines. Moreover, increasing the number of inference steps yields notable improvements, supporting the effectiveness of test-time scaling.
- (3) Ablation studies and human evaluations provide further evidence of the practical benefits of the proposed framework, revealing strong synergy among its core components during inference.
- (4) We introduce *Img2LaTeX-Hard-1K*, a dataset of 1,100 challenging samples curated to rigorously benchmark modern VLMs, which exhibit substantially greater capabilities than prior generations.

2 RELATED WORKS

2.1 IMG2LATEX

Img2LaTeX is a well-established task involving the conversion of an image containing LaTeX-rendered content into its corresponding textual LaTeX source. This task is crucial in academic and educational contexts, where accurate transcription of mathematical and scientific notation is essential (Peng et al., 2021; Kayal et al., 2023; Wang & Shan, 2020). Prior work primarily adopts computer vision-based architectures for LaTeX recognition (Jiang et al., 2025; Wang et al., 2019a;

108 Wang & Liu, 2021). While these models are effective, they typically rely on large-scale annotated
 109 datasets and often struggle with visually complex inputs. More recently, vision-language models
 110 have been applied to this task, but findings indicate that their performance remains limited in this
 111 domain-specific setting (Roberts et al., 2024). Motivated by these challenges, we propose a novel
 112 approach that incorporates visual reasoning to enhance VLM performance on the Img2LaTeX task.
 113

114 2.2 VISUAL REASONING

115
 116 With the emergence of the test-time scaling paradigm, researchers increasingly adopt training strate-
 117 gies such as supervised fine-tuning (SFT) and group relative policy optimization (GRPO) to enhance
 118 the reasoning capabilities of large language models (LLMs) (Shao et al., 2024b; Yeo et al., 2025;
 119 Muennighoff et al., 2025). These methods support extended chain-of-thought reasoning and self-
 120 correction during inference, showing promise in domains like mathematical problem solving and code
 121 generation (DeepSeek-AI et al., 2025; Mei et al., 2025; OpenAI et al., 2024a; OpenAI, 2025; Google,
 122 2024). Similar efforts in vision-language models (VLMs) aim to enable long-form multimodal
 123 reasoning. Recent work leverages image-text training to support extended reasoning chains (Shen
 124 et al., 2025; Dong et al., 2025; Xu et al., 2025; Thawakar et al., 2025; Wang et al., 2025), while others
 125 incorporate object localization to ground attention in evidence-rich image regions (Gao et al., 2025;
 126 Shao et al., 2024a). Additional approaches explore multi-agent self-correction (Li et al., 2025a).
 127 These advancements motivate our integration of visual reasoning to improve VLM performance on
 128 the Img2LaTeX task.

129 3 IMG2LATEX-HARD-1K

130
 131 The Im2LaTeX-100k dataset introduced by Deng et al. (2017) remains a foundational benchmark for
 132 LaTeX recognition. However, our preliminary analysis shows that state-of-the-art vision-language
 133 models (VLMs) exceed 90% accuracy on roughly 75% of instances, suggesting that much of the
 134 dataset lacks sufficient difficulty for meaningful evaluation. This saturation limits the ability to assess
 135 model capabilities and differentiate performance in more challenging scenarios.
 136

137 To address this limitation and enable more discriminative evaluation of current VLMs, we introduce
 138 *Img2LaTeX-Hard-1K*, a curated subset designed to stress-test contemporary models. The curation
 139 combines quantitative performance-based filtering with qualitative assessments of visual complexity,
 140 targeting instances that reveal weaknesses in mathematical reasoning and fine-grained visual under-
 141 standing. *Img2LaTeX-Hard-1K* serves two main goals: offering a more rigorous benchmark for model
 142 comparison and facilitating the analysis of failure modes to guide future research.

143 We construct the *Img2LaTeX-Hard-1K* benchmark by evaluating diverse open-weight VLMs across
 144 multiple scales and architectures, combining textual similarity metrics (m-ROUGE, BLEU-4, Edit
 145 Distance) with visual fidelity scores from GPT-4O-MINI, and aggregating them into weighted
 146 instance-level difficulty scores to guide final data selection. The detailed construction pipeline is fully
 147 presented in Appendix C.

148 4 METHODOLOGY

149
 150 Traditional vision-language models (VLMs) often struggle to capture fine-grained visual details
 151 in LaTeX expressions, resulting in subtle yet critical errors during LaTeX generation. To address
 152 this limitation, we propose the A^2R^2 framework, which introduces an iterative visual reasoning
 153 process. By rendering predictions and comparing them against input images, the model autonomously
 154 detects and corrects errors through attention-guided localization and targeted refinement. The A^2R^2
 155 framework operates in five stages: (1) Generation, (2) Rendering, (3) Comparison, (4) Attention
 156 Localization and Feedback Verification, and (5) Refinement. Each stage is described in detail below.
 157

158 4.1 GENERATION

159
 160 In the initial stage, a vision-language model (VLM) is employed to produce an initial LaTeX
 161 prediction. Given an input image I and a generation prompt $P_{\text{generation}}$, the model analyzes the visual

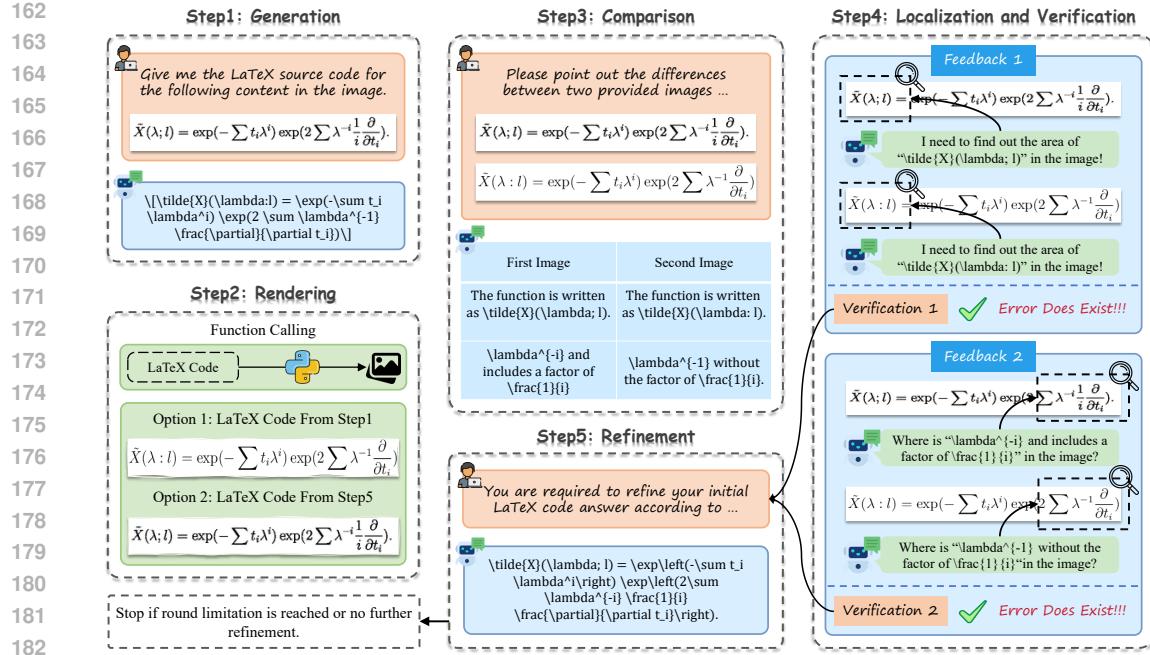


Figure 2: A detailed illustration of how the A^2R^2 framework solves the Img2LaTeX task. The process consists of multiple stages: generation, rendering, comparison, attention localization, feedback verification, and refinement. These stages form a recurrent structure that enables iterative improvement. This extended reasoning mechanism supports test-time scaling and effectively corrects initial errors, ultimately producing the correct output.

content and generates the corresponding LaTeX sequence. This process is formalized as:

$$L = \text{VLM}(I, P_{\text{generation}}),$$

where L denotes the LaTeX output generated by the model.

4.2 RENDERING

Once the initial LaTeX output is generated, it is rendered into an image I' using external tools such as *pdflatex* in conjunction with *ImageMagick*. For the first round of inference, the input LaTeX code corresponds to the output from the *Generation* stage. In subsequent rounds, the input is taken from the output of the *Refinement* stage.

4.3 COMPARISON

In the *Comparison* stage, the rendered image I' is paired with the original input image I , and both are fed back into the model. The vision-language model now acts as a visual difference evaluator, identifying discrepancies between the original and generated images. This process is formalized as:

$$D = \text{VLM}(I, I', P_{\text{comparison}}),$$

where $P_{\text{comparison}}$ denotes a prompt specifically designed to guide the model in identifying and describing differences between I and I' in a structured format. The resulting output D represents the model-generated feedback, which is subsequently used for verification and refinement.

4.4 ATTENTION LOCALIZATION AND FEEDBACK VERIFICATION

Although vision-language models possess the ability to identify differences between two images, they remain prone to hallucinations, particularly when their performance on Img2LaTeX conversion is limited. Therefore, after detecting discrepancies between the original image I and its rendered counterpart I' , we employ an attention-based localization mechanism to highlight regions with high

attention. These regions are assumed to capture potential semantic or structural mismatches. We then extract two focused subregions from both I and I' to enable more fine-grained verification.

Let the textual prompt fed to the model be a sequence $\tau = (\tau_1, \tau_2, \dots, \tau_n)$ of n tokens that describe the mathematical content to be verified. For each token τ_i , we extract attention weights from a specified range of cross-attention layers, spanning from l_{start} to l_{end} , inclusive. Each layer comprises H_{head} attention heads. The attention map corresponding to token τ_i at layer l and head h is represented as $W_i^{(l,h)} \in \mathbb{R}^{H \times W}$.

We first average across all heads and all selected layers to compute a unified attention map for each token τ_i :

$$\tilde{W}_i = \frac{1}{(l_{\text{end}} - l_{\text{start}} + 1) \cdot H_{\text{head}}} \sum_{l=l_{\text{start}}}^{l_{\text{end}}} \sum_{h=1}^{H_{\text{head}}} W_i^{(l,h)}. \quad (1)$$

Subsequently, we average over all n tokens to obtain the final attention matrix:

$$A = \frac{1}{n} \sum_{i=1}^n \tilde{W}_i, \quad A_{u,v} = \frac{1}{n} \sum_{i=1}^n \tilde{w}_{i,(u,v)}, \quad u = 1, \dots, H, \quad v = 1, \dots, W. \quad (2)$$

This yields $A \in \mathbb{R}^{H \times W}$, where H and W denote the spatial dimensions (in patch units) of the image feature map. Each entry in A represents the average attention across the selected layers, heads, and tokens, thereby highlighting how the model aligns the textual prompt with different image regions.

Since the values in the attention matrix typically do not reach 1, we normalize them into an 8-bit grayscale image to prepare the matrix for contour detection:

$$A_{\text{norm}} = 255 \cdot \frac{A - \min(A)}{\max(A) - \min(A)}. \quad (3)$$

We threshold the normalized attention matrix at the 75th percentile to isolate top-attention regions:

$$B(i,j) = \begin{cases} 255 & \text{if } A_{\text{norm}}(i,j) \geq \tau, \\ 0 & \text{otherwise} \end{cases} \quad \text{where } \tau = \text{Percentile}(A_{\text{norm}}, 75), \quad \forall(i,j). \quad (4)$$

This produces a binary map $B \in \{0, 255\}^{H \times W}$, where pixels with high attention are white and others are black. We then extract the contours $\mathcal{C} = \{\mathcal{C}_1, \dots, \mathcal{C}_k\}$ from B using standard external contour detection and select the largest contour based on area:

$$\mathcal{C} = \text{Contours}(B), \quad \mathcal{C}^* = \arg \max_{\mathcal{C}_i \in \mathcal{C}} \text{Area}(\mathcal{C}_i). \quad (5)$$

To obtain the final region, we first dilate the largest contour \mathcal{C}^* with a rectangular structuring element K of size 3×3 :

$$\mathcal{C}_{\text{dil}} = \mathcal{C}^* \oplus K. \quad (6)$$

We then compute the bounding box of \mathcal{C}_{dil} to extract the corresponding subregion R :

$$(x, y, w, h) = \text{Bounding}(\mathcal{C}_{\text{dil}}), \quad R = \{(i, j) \in I \mid x \leq j < x + w, \quad y \leq i < y + h\}. \quad (7)$$

Through this process, we obtain two regions cropped from the original input image and the rendered image, denoted as R and R' . These regions are then fed into the model for self-verification:

$$D' = \text{VLM}(D, R, R', P_{\text{verification}}).$$

This attention-guided localization and verification step enables the model to focus on high-attention regions, enhancing its robustness in filtering out hallucinated or incorrect feedback.

4.5 REFINEMENT

In the final step, we utilize the cropped regions from the original image R and the rendered image R' , together with the previously identified correct difference description D' , to guide the model in revising the current LaTeX generation L .

A refinement prompt $P_{\text{refinement}}$ is designed to ensure that the model modifies only the erroneous part of L while preserving its correct components:

$$L^{\text{updated}} = \text{VLM}(L, R, R', D', P_{\text{refinement}}).$$

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289	270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289	270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289	270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289	270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289		270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289		270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289			
				270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289		270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289		270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289			
				ROUGE-1↑	ROUGE-2↑	ROUGE-L↑	BLEU-4↑	Edit Distance↓	Match↑	CW-SSIM↑	
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289	270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289	270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289	270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289	Direct Prompting	84.14	68.59	83.69	64.83	27.45	89.66	87.00
				Chain-of-Thought Prompting	78.11	61.30	77.30	50.75	41.28	89.52	86.97
				Best-of-N (N = 2)	84.51	68.74	83.92	64.98	27.10	89.92	87.18
				Best-of-N (N = 4)	84.76	68.87	84.04	65.13	26.84	90.17	87.26
				Best-of-N (N = 8)	84.98	69.01	84.11	65.23	26.63	90.24	87.38
				A^2R^2 (Ours)	90.87	73.13	89.21	70.41	20.12	93.75	93.46
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289	270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289	270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289	270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289	Direct Prompting	79.47	60.59	77.94	55.21	31.35	90.86	89.00
				Chain-of-Thought Prompting	75.62	57.59	74.45	51.32	46.08	89.80	87.61
				Best-of-N (N = 2)	79.72	60.81	78.12	55.36	30.95	91.07	89.23
				Best-of-N (N = 4)	79.92	61.05	78.28	55.50	30.37	91.24	89.39
				Best-of-N (N = 8)	80.04	61.19	78.39	55.61	30.02	91.33	89.52
				A^2R^2 (Ours)	86.92	66.17	83.45	62.32	22.87	94.16	94.58

Table 1: Performance of two vision-language models on the filtered *Img2LaTeX-Hard-1K* dataset, evaluated across seven metrics spanning both textual and visual dimensions. The best score for each model under each metric is highlighted in bold red.

Here, L^{updated} denotes the updated LaTeX code after correcting the identified error. Following this refinement, the process returns to step (2) to verify whether additional discrepancies remain. If so, the model repeats steps (2) to (5) iteratively:

$$L^{(t+1)} = \text{REFINE}(L^{(t)}, I, I').$$

This self-refinement loop continues until no new differences are detected or a predefined iteration limit T_{\max} is reached. The final output is given by:

$$L^* = L^{(T)}, \text{ where } T = T_{\max} \text{ or } \text{diff}(I, I')^{(T)} = \emptyset.$$

5 EXPERIMENTS SETUP

5.1 DATASET

We use our curated *Img2LaTeX-Hard-1K* dataset, which comprises 1,100 images containing LaTeX content.

5.2 VISION-LANGUAGE MODELS

Our proposed method relies on identifying salient regions across image pairs by accessing attention weights during inference. To facilitate this, we adopt open-weight vision-language models that expose internal attention mechanisms. For our main experiments, we select two models with distinct architectural designs and parameter scales:

- QWEN2.5-VL-32B-INSTRUCT (Bai et al., 2025): A 32-billion-parameter model from the QWEN2.5 family, representing a large-scale transformer-based architecture.
- LLAMA-3.2-11B-VISION-INSTRUCT (Meta AI, 2024): An 11-billion-parameter model from the LLAMA3.2 family, chosen to evaluate the effect of reduced model capacity.

5.3 METRICS

We evaluate the similarity between the generated LaTeX source code and the ground-truth label from both textual and visual perspectives.

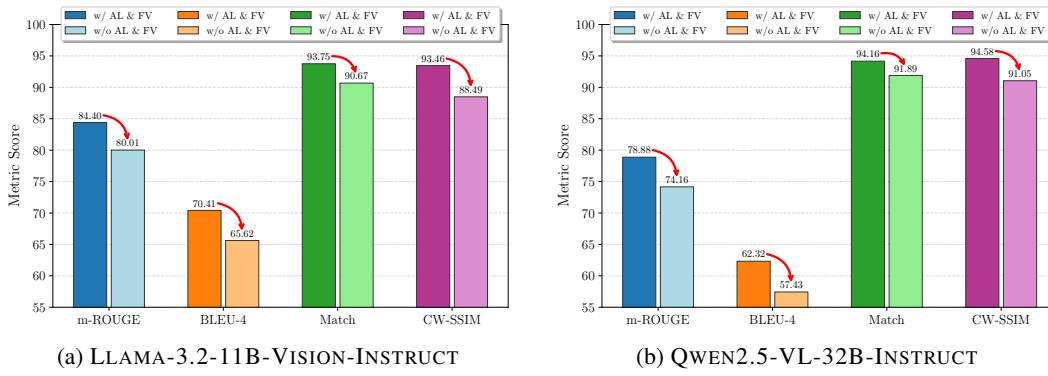


Figure 3: Ablation results for two vision-language models across four metrics demonstrate the impact of Attention Localization and Feedback Verification (AL & FV) on overall performance. Darker bars indicate the full model, while lighter bars represent variants with AL and FV removed. *m-ROUGE* denotes the mean of *ROUGE-1*, *ROUGE-2*, and *ROUGE-L* scores.

Textual Metrics. To assess the fidelity of the generated LaTeX sequences at the token and character levels, we employ the following standard text generation metrics:

- *ROUGE* (Lin, 2004): A recall-oriented metric that measures n-gram overlap between the generated sequence and the reference.
- *BLEU-4* (Papineni et al., 2002): A precision-oriented metric that evaluates the overlap of up to 4-grams.
- *Edit Distance* (Ristad & Yianilos, 1998): Computes the minimum number of edits needed to match the ground-truth sequence.

Visual Metrics. To evaluate the visual fidelity of the rendered LaTeX outputs, we compare the predicted and ground-truth images using the following image-level metrics:

- *Match*: Measures the proportion of identical pixels between the predicted and ground-truth renderings.
- *CW-SSIM* (Sampat et al., 2009): Evaluates structural similarity in the complex wavelet domain, robust to minor distortions.

5.4 IMPLEMENTATION DETAILS

We obtain all model weights from the official repositories hosted on HuggingFace. All experiments are conducted on a machine equipped with four NVIDIA A100 80GB GPUs. To ensure consistency and reproducibility, we use the default inference settings provided by each model. Further details and an introduction to the baseline are provided in Appendix D and Appendix E, respectively.

6 EXPERIMENT RESULTS

For the main experiments, we evaluate 160 test instances using two models, comparing our method against three baselines. To ensure fairness, we cap our method at two inference rounds, keeping the average token count comparable to Best-of-N ($N = 8$). As shown in Table 1, A^2R^2 consistently outperforms other baselines across both models and all textual and visual metrics.

Under the LLAMA-3.2-11B-VISION-INSTRUCT model, CoT prompting introduces interpretability but consistently degrades performance across all metrics, suggesting that verbose reasoning may hinder generation quality in multimodal settings. Best-of-N sampling yields slight gains as N increases from 2 to 8, but improvements remain modest, indicating limited textual diversity despite increased computational cost.

In contrast, our framework delivers substantial improvements. *ROUGE* increases by approximately 6 points, *Edit Distance* decreases to 20.12, and visual metrics improve significantly, with *Match*

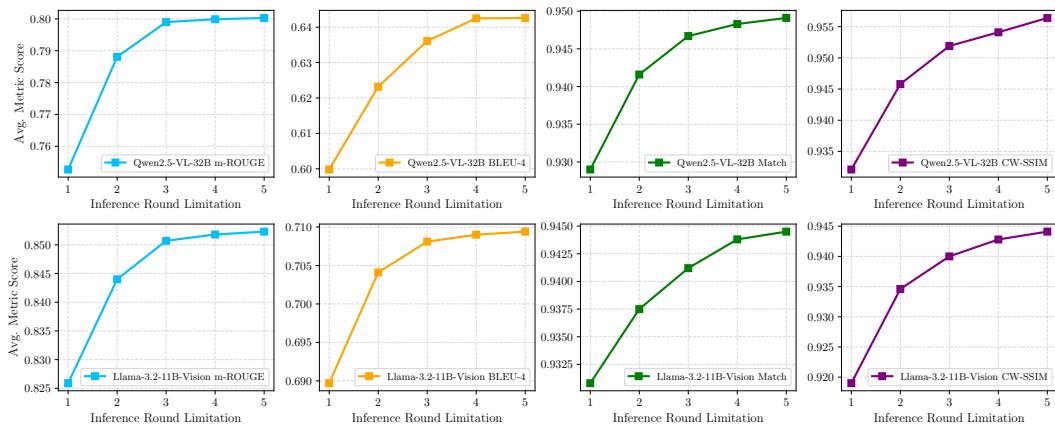


Figure 4: Performance of two vision-language models under four evaluation metrics using the proposed method with an expanded inference limitation round. Results demonstrate that extending test-time execution leads to improved performance across both models.

rising from 89.66 to 93.75 and *CW-SSIM* from 87.00 to 93.46. These results highlight A^2R^2 ’s ability to maintain structural fidelity and cross-modal coherence. Similar patterns are observed with the QWEN2.5-VL-32B-INSTRUCT model. CoT again leads to performance degradation, while our method achieves consistent gains across all metrics. *BLEU-4* improves from 55.21 to 62.32, and visual alignment strengthens further, with *Match* reaching 94.16 and *CW-SSIM* 94.58, the highest across all settings.

Overall, these results validate the effectiveness and robustness of our proposed framework. In contrast to simple prompt engineering or sampling heuristics, A^2R^2 fundamentally enhances the model’s ability to interpret, align, and verbalize visual information. The improvements span both text-level and image-level evaluations across different models, demonstrating the generalizability of our framework.

7 ABLATION STUDY

Our framework introduces attention-based visual reasoning, which localizes crucial regions and integrates feedback verification during refinement. This design mitigates hallucinated differences incorrectly identified by the model, thereby improving both accuracy and reliability. This raises the central question: *How much do attention localization and feedback verification help mitigate the negative effects of visual hallucination?* To answer this, we conduct ablation experiments with both models, comparing refinement with and without these components.

As shown in Figure 3, relying only on textual feedback without attention localization and cropped verification leads to a clear performance drop across four metrics. Both models show declines of over 4 points in *m-ROUGE* and *BLEU-4*, while *Match* and *CW-SSIM* fall by 2.5–3.5 points. These results indicate that direct refinement based solely on textual feedback provides limited benefit. The degradation stems from the base models’ limited comparison abilities, where unverified feedback often introduces errors by altering correct content into incorrect predictions.

Table 2 further supports this finding by reporting hallucination rates during the first three refinement rounds, measured using the more reliable GPT-4O model (OpenAI et al., 2024c). The results confirm the ablation analysis and highlight the necessity of structured verification to guard against errors introduced by hallucinated feedback.

432 8 TEST-TIME SCALING

434 Our framework employs iterative refinement, where feedback is generated over multiple rounds
 435 by identifying differences between two input images. This process embodies the idea of test-time
 436 scaling: allowing more refinement rounds increases inference time but enhances the model’s ability
 437 to detect discrepancies and improve outputs.

438 We evaluate two vision-language models under different round limits using four metrics, with results
 439 shown in Figure 4. Performance consistently improves as the number of rounds increases, though
 440 gains diminish beyond three rounds. For instance, the improvement from three to five rounds is
 441 notably smaller than that from one to two, suggesting that models gradually reach their reasoning
 442 capacity and fewer errors remain for correction.

443 Overall, the upward trends validate the test-time scaling property of our method and highlight the
 444 effectiveness of iterative visual reasoning. These results also suggest that stronger base models could
 445 provide more accurate feedback, enabling further improvements through refinement.

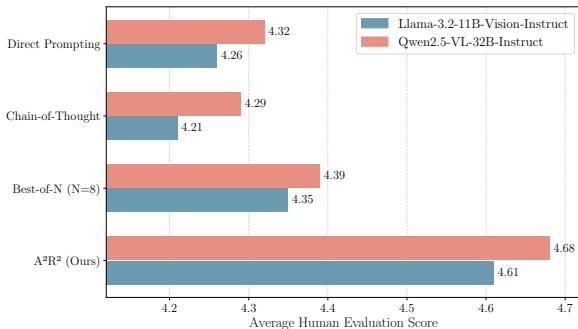
448 9 HUMAN EVALUATION

450 Evaluating Img2LaTeX is inherently complex, as both textual and visual fidelity must be considered.
 451 The metrics in Table 1 ensure fair comparisons by using the same base models, but they are sensitive
 452 to stylistic variations in LaTeX expressions.

453 For example, syntactic differences such as
 454 using “*text*” may alter token-based scores
 455 without affecting the rendered image.

456 To better capture human preferences, we
 457 conduct a human evaluation with three
 458 computer science graduate students profi-
 459 cient in LaTeX. We randomly sample 100
 460 outputs from two models under different
 461 inference methods. Each annotator assigns
 462 a score from 0 to 5 (with 0.5 increments)
 463 based on visual similarity to the ground
 464 truth, with 5 indicating indistinguishable
 465 outputs aside from padding or minor for-
 466 matting differences. Scores are averaged
 467 across annotators for each method, and re-
 468 sults are shown in Figure 5.

469 Our method consistently achieves the high-
 470 est average scores across both base models, demonstrating superior visual fidelity. These results
 471 confirm that, beyond improving textual metrics, our approach delivers the strongest real-world
 472 performance for Img2LaTeX by effectively handling stylistic variations in LaTeX code.



473 Figure 5: Human evaluation scores of different inference
 474 methods with two tested vision-language models, our
 475 method achieves the highest scores among all inference
 476 methods.

474 10 CONCLUSION

476 In this work, we introduce A^2R^2 , a framework that integrates visual reasoning with attention
 477 localization and iterative refinement to enhance the performance of vision-language models (VLMs)
 478 on the Img2LaTeX task. However, several limitations remain: (1) Due to the closed-source nature
 479 of models such as GPT-4O and CLAUDE-3.5-SONNET (OpenAI et al., 2024c; Anthropic, 2024),
 480 we are unable to access their internal attention weights, which limits our ability to fully assess the
 481 effectiveness of the proposed method on these platforms. (2) Computational constraints prevent us
 482 from incorporating larger models such as LLAMA-3.2-90B-VISION-INSTRUCT in our experiments.
 483 We leave the exploration of scaling our approach to such models for future work. (3) Our current
 484 approach depends on manually crafted prompts to effectively guide model behavior. This suggests
 485 that future research could focus on developing prompt-free or prompt-agnostic methods to improve
 486 generalizability and ease of deployment.

486 ETHICS STATEMENT
487

488 Ethical considerations are of utmost importance in our research. In this paper, we strictly adhere to
489 ethical principles by exclusively utilizing open-source datasets and employing models that are either
490 open-source or widely recognized within the scientific community. Our findings highlight the strong
491 potential for improving vision–language models on the Img2LaTeX task. We remain committed to
492 upholding ethical standards throughout the research process, prioritizing transparency, and promoting
493 the responsible use of technology for the betterment of society.

494
495 REFERENCES
496

497 Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
498 Lenc, Arthur Mensch, Katie Millican, Malcolm Reynolds, Roman Ring, Eliza Rutherford, Serkan
499 Cabi, Tengda Han, Zhitao Gong, Sina Samangooei, Marianne Monteiro, Jacob Menick, Sebastian
500 Borgeaud, Andrew Brock, Aida Nematzadeh, Sahand Sharifzadeh, Mikolaj Binkowski, Ricardo
501 Barreira, Oriol Vinyals, Andrew Zisserman, and Karen Simonyan. Flamingo: a visual language
502 model for few-shot learning, 2022. URL <https://arxiv.org/abs/2204.14198>.

503 Anthropic. Claude 3.5 sonnet. <https://www.anthropic.com/news/clause-3-5-sonnet>, June
504 2024. Accessed Jun 20, 2024.

505 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
506 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
507 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
508 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-v1 technical report, 2025. URL
509 <https://arxiv.org/abs/2502.13923>.

510 Jing Bi, Susan Liang, Xiaofei Zhou, Pinxin Liu, Junjia Guo, Yunlong Tang, Luchuan Song, Chao
511 Huang, Guangyu Sun, Jinxi He, et al. Why reasoning matters? a survey of advancements in
512 multimodal reasoning (v1). *arXiv preprint arXiv:2504.03151*, 2025.

513 Florian Bordes, Richard Yuanzhe Pang, Anurag Ajay, Alexander C. Li, Adrien Bardes, Suzanne
514 Petryk, Oscar Mañas, Zhiqiu Lin, Anas Mahmoud, Bargav Jayaraman, Mark Ibrahim, Melissa
515 Hall, Yunyang Xiong, Jonathan Lebensold, Candace Ross, Srihari Jayakumar, Chuan Guo, Diane
516 Bouchacourt, Haider Al-Tahan, Karthik Padthe, Vasu Sharma, Hu Xu, Xiaoqing Ellen Tan, Megan
517 Richards, Samuel Lavoie, Pietro Astolfi, Reyhane Askari Hemmat, Jun Chen, Kushal Tirumala,
518 Rim Assouel, Mazda Moayeri, Arjang Talatof, Kamalika Chaudhuri, Zechun Liu, Xilun Chen,
519 Quentin Garrido, Karen Ullrich, Aishwarya Agrawal, Kate Saenko, Asli Celikyilmaz, and Vikas
520 Chandra. An introduction to vision-language modeling, 2024. URL <https://arxiv.org/abs/2405.17247>.

521 Davide Caffagni, Federico Cocchi, Luca Barsellotti, Nicholas Moratelli, Sara Sarto, Lorenzo Baraldi,
522 Lorenzo Baraldi, Marcella Cornia, and Rita Cucchiara. The revolution of multimodal large
523 language models: A survey, 2024. URL <https://arxiv.org/abs/2402.12451>.

524 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
525 contrastive learning of visual representations, 2020. URL <https://arxiv.org/abs/2002.05709>.

526 Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong
527 Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source multimodal
528 models with model, data, and test-time scaling. *arXiv preprint arXiv:2412.05271*, 2024a.

529 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
530 Zhang, Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo, Tong Lu, Yu Qiao, and Jifeng Dai. Internvl:
531 Scaling up vision foundation models and aligning for generic visual-linguistic tasks, 2024b. URL
532 <https://arxiv.org/abs/2312.14238>.

533 Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong
534 Ye, Hao Tian, Zhaoyang Liu, Lixin Gu, Xuehui Wang, Qingyun Li, Yimin Ren, Zixuan Chen,
535 Jiapeng Luo, Jiahao Wang, Tan Jiang, Bo Wang, Conghui He, Botian Shi, Xingcheng Zhang,
536 Han Lv, Yi Wang, Wenqi Shao, Pei Chu, Zhongying Tu, Tong He, Zhiyong Wu, Huipeng Deng,

540 Jiaye Ge, Kai Chen, Kaipeng Zhang, Limin Wang, Min Dou, Lewei Lu, Xizhou Zhu, Tong
 541 Lu, Dahua Lin, Yu Qiao, Jifeng Dai, and Wenhui Wang. Expanding performance boundaries
 542 of open-source multimodal models with model, data, and test-time scaling, 2025. URL <https://arxiv.org/abs/2412.05271>.
 543

544 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
 545 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F.
 546 Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang,
 547 Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, et al. Deepseek-r1: Incentivizing reasoning
 548 capability in llms via reinforcement learning, 2025. URL <https://arxiv.org/abs/2501.12948>.
 549

550 Yuntian Deng, Anssi Kanervisto, Jeffrey Ling, and Alexander M. Rush. Image-to-markup generation
 551 with coarse-to-fine attention, 2017. URL <https://arxiv.org/abs/1609.04938>.
 552

553 Yuhao Dong, Zuyan Liu, Hai-Long Sun, Jingkang Yang, Winston Hu, Yongming Rao, and Ziwei Liu.
 554 Insight-v: Exploring long-chain visual reasoning with multimodal large language models, 2025.
 555 URL <https://arxiv.org/abs/2411.14432>.

556 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 557 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
 558 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale,
 559 2021. URL <https://arxiv.org/abs/2010.11929>.
 560

561 Yifan Du, Zikang Liu, Junyi Li, and Wayne Xin Zhao. A survey of vision-language pre-trained
 562 models. *arXiv preprint arXiv:2202.10936*, 2022.
 563

564 Jun Gao, Yongqi Li, Ziqiang Cao, and Wenjie Li. Interleaved-modal chain-of-thought, 2025. URL
 565 <https://arxiv.org/abs/2411.19488>.
 566

567 Akash Ghosh, Arkadeep Acharya, Sriparna Saha, Vinija Jain, and Aman Chadha. Exploring the
 568 frontier of vision-language models: A survey of current methodologies and future directions. *arXiv
 569 preprint arXiv:2404.07214*, 2024.

570 Google. Introducing gemini 2.0: our new ai model for the agentic era. <https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/>, De-
 571 cember 2024. Accessed Dec. 11, 2024.
 572

573 Nan Jiang, Shanchao Liang, Chengxiao Wang, Jiannan Wang, and Lin Tan. Latte: Improving latex
 574 recognition for tables and formulae with iterative refinement, 2025. URL <https://arxiv.org/abs/2409.14201>.
 575

576 Pratik Kayal, Mrinal Anand, Harsh Desai, and Mayank Singh. Tables to latex: structure and content
 577 extraction from scientific tables. *International Journal on Document Analysis and Recognition
 578 (IJDAR)*, 26(2):121–130, 2023.
 579

580 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
 581 language models are zero-shot reasoners, 2023. URL <https://arxiv.org/abs/2205.11916>.
 582

583 Bingxuan Li, Yiwei Wang, Jiuxiang Gu, Kai-Wei Chang, and Nanyun Peng. Metal: A multi-agent
 584 framework for chart generation with test-time scaling. *arXiv preprint arXiv:2502.17651*, 2025a.
 585

586 Jian Li, Weiheng Lu, Hao Fei, Meng Luo, Ming Dai, Min Xia, Yizhang Jin, Zhenye Gan, Ding Qi,
 587 Chaoyou Fu, et al. A survey on benchmarks of multimodal large language models. *arXiv preprint
 588 arXiv:2408.08632*, 2024.
 589

590 Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
 591 training for unified vision-language understanding and generation, 2022. URL <https://arxiv.org/abs/2201.12086>.
 592

593 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
 594 pre-training with frozen image encoders and large language models, 2023. URL <https://arxiv.org/abs/2301.12597>.

594 Zhecheng Li, Guoxian Song, Yujun Cai, Zhen Xiong, Junsong Yuan, and Yiwei Wang. Texture or
 595 semantics? vision-language models get lost in font recognition, 2025b. URL <https://arxiv.org/abs/2503.23768>.

596

597 Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In *Text Summarization
 598 Branches Out*, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational Linguistics.
 599 URL <https://aclanthology.org/W04-1013/>.

600

601 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023. URL
 602 <https://arxiv.org/abs/2304.08485>.

603

604 Lingrui Mei, Shenghua Liu, Yiwei Wang, Baolong Bi, Yuyao Ge, Jun Wan, Yurong Wu, and Xueqi
 605 Cheng. a1: Steep test-time scaling law via environment augmented generation, 2025. URL
 606 <https://arxiv.org/abs/2504.14597>.

607

608 Meta AI. Llama 3.2: Revolutionizing edge ai and vision with open, cus-
 609 tomizable models. *Meta AI Blog*, 2024. URL <https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/>.

610

611 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
 612 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
 613 scaling, 2025. URL <https://arxiv.org/abs/2501.19393>.

614

615 OpenAI. Gpt-4o-mini. <https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/>,
 July 2024. Accessed JUL. 18, 2024.

616

617 OpenAI. Introducing openai o3 and o4-mini. <https://openai.com/index/introducing-o3-and-o4-mini/>, April 2025. Accessed Apr. 16, 2025.

618

619 OpenAI, :, Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden
 620 Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko,
 621 Alex Tachard Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam, Ally
 622 Bennett, Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew Duberstein, Andrew Kondrich,
 623 Andrey Mishchenko, Andy Applebaum, Angela Jiang, Ashvin Nair, Barret Zoph, Behrooz Ghor-
 624 bani, Ben Rossen, Benjamin Sokolowsky, Boaz Barak, Bob McGrew, Borys Minaiev, Botao Hao,
 625 Bowen Baker, Brandon Houghton, Brandon McKinzie, Brydon Eastman, Camillo Lugaresi, Cary
 626 Bassin, Cary Hudson, Chak Ming Li, Charles de Bourcy, Chelsea Voss, Chen Shen, Chong Zhang,
 627 Chris Koch, Chris Orsinger, Christopher Hesse, Claudia Fischer, et al. Openai o1 system card,
 628 2024a. URL <https://arxiv.org/abs/2412.16720>.

629

630 OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
 631 Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor
 632 Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian,
 633 Jeff Belgum, Irwan Bello, Jake Berdine, et al. Gpt-4 technical report, 2024b. URL <https://arxiv.org/abs/2303.08774>.

634

635 OpenAI, Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark,
 636 AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Madry, Alex Baker-Whitcomb,
 637 Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex Nichol, Alex Paino,
 638 Alex Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi Christakis, Alexis Conneau, Ali
 639 Kamali, Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin Tootoonchian, Ananya
 640 Kumar, Andrea Vallone, Andrej Karpathy, Andrew Braunstein, Andrew Cann, Andrew Codispoti,
 641 Andrew Galu, Andrew Kondrich, Andrew Tulloch, Andrey Mishchenko, Angela Baek, Angela
 642 Jiang, Antoine Pelisse, Antonia Woodford, Anuj Gosalia, Arka Dhar, Ashley Pantuliano, Avi Nayak,
 643 Avital Oliver, Barret Zoph, Behrooz Ghorbani, Ben Leimberger, Ben Rossen, Ben Sokolowsky,
 644 Ben Wang, Benjamin Zweig, Beth Hoover, Blake Samic, Bob McGrew, Bobby Spero, et al.
 645 Gpt-4o system card. *arXiv preprint*, August 2024c. URL <https://arxiv.org/abs/2410.21276>.
 646 Accessed June 22, 2025.

647

648 Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
 649 evaluation of machine translation. In *Proceedings of the 40th Annual Meeting on Association for
 650 Computational Linguistics, ACL '02*, pp. 311–318, USA, 2002. Association for Computational Lin-
 651 guistics. doi: 10.3115/1073083.1073135. URL <https://doi.org/10.3115/1073083.1073135>.

648 Shuai Peng, Liangcai Gao, Ke Yuan, and Zhi Tang. Image to latex with graph neural network
 649 for mathematical formula recognition. In *International Conference on Document Analysis and*
 650 *Recognition*, pp. 648–663. Springer, 2021.

651 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 652 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
 653 Learning transferable visual models from natural language supervision, 2021. URL <https://arxiv.org/abs/2103.00020>.

654 E.S. Ristad and P.N. Yianilos. Learning string-edit distance. *IEEE Transactions on Pattern Analysis*
 655 and *Machine Intelligence*, 20(5):522–532, 1998. doi: 10.1109/34.682181.

656 Josselin S Roberts, Tony Lee, Chi H Wong, Michihiro Yasunaga, Yifan Mai, and Percy Liang.
 657 Image2struct: Benchmarking structure extraction for vision-language models. *Advances in Neural*
 658 *Information Processing Systems*, 37:115058–115097, 2024.

659 Mehul P. Sampat, Zhou Wang, Shalini Gupta, Alan Conrad Bovik, and Mia K. Markey. Complex
 660 wavelet structural similarity: A new image similarity index. *IEEE Transactions on Image*
 661 *Processing*, 18(11):2385–2401, 2009. doi: 10.1109/TIP.2009.2025923.

662 Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
 663 Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
 664 open large-scale dataset for training next generation image-text models. *Advances in neural*
 665 *information processing systems*, 35:25278–25294, 2022.

666 Hao Shao, Shengju Qian, Han Xiao, Guanglu Song, Zhuofan Zong, Letian Wang, Yu Liu, and
 667 Hongsheng Li. Visual cot: Advancing multi-modal language models with a comprehensive dataset
 668 and benchmark for chain-of-thought reasoning, 2024a. URL <https://arxiv.org/abs/2403.16999>.

669 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 670 Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
 671 matical reasoning in open language models, 2024b. URL <https://arxiv.org/abs/2402.03300>.

672 Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun
 673 Zhang, Kangjia Zhao, Qianqian Zhang, Ruochen Xu, and Tiancheng Zhao. Vlm-r1: A stable and
 674 generalizable r1-style large vision-language model, 2025. URL <https://arxiv.org/abs/2504.07615>.

675 Huajie Tan, Yuheng Ji, Xiaoshuai Hao, Minglan Lin, Pengwei Wang, Zhongyuan Wang, and
 676 Shanghang Zhang. Reason-rft: Reinforcement fine-tuning for visual reasoning, 2025. URL
 677 <https://arxiv.org/abs/2503.20752>.

678 Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
 679 Damien Vincent, Zhufeng Pan, Shibo Wang, Soroosh Mariooryad, Yifan Ding, Xinyang Geng,
 680 Fred Alcober, Roy Frostig, Mark Omernick, Lexi Walker, Cosmin Paduraru, Christina Sorokin,
 681 Andrea Tacchetti, Colin Gaffney, et al. Gemini 1.5: Unlocking multimodal understanding across
 682 millions of tokens of context, 2024. URL <https://arxiv.org/abs/2403.05530>.

683 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
 684 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, Louis Rouillard, Thomas
 685 Mesnard, Geoffrey Cideron, Jean bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Casbon,
 686 Etienne Pot, Ivo Penchev, Gaël Liu, Francesco Visin, Kathleen Kenealy, Lucas Beyer, Xiaohai
 687 Zhai, Anton Tsitsulin, Robert Busa-Fekete, Alex Feng, Noveen Sachdeva, Benjamin Coleman,
 688 Yi Gao, Basil Mustafa, Iain Barr, Emilio Parisotto, David Tian, Matan Eyal, Colin Cherry, Jan-
 689 Thorsten Peter, Danila Sinopalnikov, Surya Bhupatiraju, Rishabh Agarwal, Mehran Kazemi, Dan
 690 Malkin, Ravin Kumar, David Vilar, Idan Brusilovsky, Jiaming Luo, Andreas Steiner, Abe Friesen,
 691 Abhanshu Sharma, Abheesht Sharma, Adi Mayrav Gilady, et al. Gemma 3 technical report, 2025.
 692 URL <https://arxiv.org/abs/2503.19786>.

693 Omkar Thawakar, Dinura Dissanayake, Ketan More, Ritesh Thawkar, Ahmed Heakl, Noor Ahsan,
 694 Yuhao Li, Mohammed Zumri, Jean Lahoud, Rao Muhammad Anwer, Hisham Cholakkal, Ivan
 695 Laptev, Mubarak Shah, Fahad Shahbaz Khan, and Salman Khan. Llamav-o1: Rethinking step-by-
 696 step visual reasoning in llms, 2025. URL <https://arxiv.org/abs/2501.06186>.

702 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
 703 Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL <https://arxiv.org/abs/1706.03762>.

704

705 Hongyu Wang and Guangcun Shan. Recognizing handwritten mathematical expressions as latex
 706 sequences using a multiscale robust neural network. *arXiv preprint arXiv:2003.00817*, 2020.

707

708 Jian Wang, Yunchuan Sun, and Shenling Wang. Image to latex with densenet encoder and joint
 709 attention. *Procedia Computer Science*, 147:374–380, 2019a. ISSN 1877-0509. doi: <https://doi.org/10.1016/j.procs.2019.01.246>. URL <https://www.sciencedirect.com/science/article/pii/S1877050919302686>. 2018 International Conference on Identification, Information and
 710 Knowledge in the Internet of Things.

711

712 Jian Wang, Yunchuan Sun, and Shenling Wang. Image to latex with densenet encoder and joint
 713 attention. *Procedia computer science*, 147:374–380, 2019b.

714

715 Yaoting Wang, Shengqiong Wu, Yuecheng Zhang, Shuicheng Yan, Ziwei Liu, Jiebo Luo, and Hao
 716 Fei. Multimodal chain-of-thought reasoning: A comprehensive survey, 2025. URL <https://arxiv.org/abs/2503.12605>.

717

718 Zelun Wang and Jyh-Charn Liu. Translating math formula images to latex sequences using deep
 719 neural networks with sequence-level training. *International Journal on Document Analysis and
 720 Recognition (IJDAR)*, 24(1):63–75, 2021.

721

722 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
 723 and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.
 724 URL <https://arxiv.org/abs/2201.11903>.

725

726 Guowei Xu, Peng Jin, Ziang Wu, Hao Li, Yibing Song, Lichao Sun, and Li Yuan. Llava-cot: Let
 727 vision language models reason step-by-step, 2025. URL <https://arxiv.org/abs/2411.10440>.

728

729 Jiayu Yao, Shenghua Liu, Yiwei Wang, Lingrui Mei, Baolong Bi, Yuyao Ge, Zhecheng Li, and Xueqi
 730 Cheng. Who is in the spotlight: The hidden bias undermining multimodal retrieval-augmented
 731 generation, 2025. URL <https://arxiv.org/abs/2506.11063>.

732

733 Edward Yeo, Yuxuan Tong, Morry Niu, Graham Neubig, and Xiang Yue. Demystifying long
 734 chain-of-thought reasoning in llms. *arXiv preprint arXiv:2502.03373*, 2025.

735

736 Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing Sun, Tong Xu, and Enhong Chen. A survey
 737 on multimodal large language models. *National Science Review*, 11(12), November 2024. ISSN
 2053-714X. doi: 10.1093/nsr/nwae403. URL <http://dx.doi.org/10.1093/nsr/nwae403>.

738

739 Duzhen Zhang, Yahan Yu, Jiahua Dong, Chenxing Li, Dan Su, Chenhui Chu, and Dong Yu. Mm-llms:
 740 Recent advances in multimodal large language models, 2024a. URL <https://arxiv.org/abs/2401.13601>.

741

742 Jingyi Zhang, Jiaxing Huang, Sheng Jin, and Shijian Lu. Vision-language models for vision tasks: A
 743 survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2024b.

744

745 Jingyi Zhang, Jiaxing Huang, Sheng Jin, and Shijian Lu. Vision-language models for vision tasks: A
 746 survey, 2024c. URL <https://arxiv.org/abs/2304.00685>.

747

748 Qiyuan Zhang, Fuyuan Lyu, Zexu Sun, Lei Wang, Weixu Zhang, Wenyue Hua, Haolun Wu, Zhihan
 749 Guo, Yufei Wang, Niklas Muennighoff, et al. A survey on test-time scaling in large language
 750 models: What, how, where, and how well? *arXiv preprint arXiv:2503.24235*, 2025.

751

752

753

754

755

756 A THE USE OF LARGE LANGUAGE MODELS (LLMs)
757758 We used LLMs to assist with the phrasing and grammar of the manuscript. The LLMs were used
759 strictly as a writing aid and did not contribute to the scientific ideation, methodology, or results
760 presented in this paper.
761762 B FURTHER RELATED WORK
763764 Here, we further discuss related work on the potential of vision–language models (VLMs) in the
765 Img2LaTeX task.
766767 B.1 VISION LANGUAGE MODELS
768769 Vision–language models (VLMs) aim to unify visual perception with linguistic understanding.
770 Their development has been primarily driven by the emergence of Transformer architectures and
771 contrastive learning techniques, which align visual and textual representations within a shared
772 semantic space (Vaswani et al., 2023; Chen et al., 2020; Radford et al., 2021). VLMs are explicitly
773 designed to process and integrate multimodal inputs, enabling strong performance across a broad
774 range of tasks, including image captioning, visual question answering, and related vision–language
775 understanding tasks (Liu et al., 2023; OpenAI et al., 2024b; Caffagni et al., 2024; Zhang et al., 2024a;
776 Yin et al., 2024; Li et al., 2023; Bordes et al., 2024; Li et al., 2022; Alayrac et al., 2022). Recent
777 advances in scaling strategies, including increases in model capacity and data volume, combined
778 with the availability of large-scale multimodal datasets, substantially improve generalization and
779 task-specific accuracy (Bai et al., 2025; Team et al., 2024; Li et al., 2024; Schuhmann et al., 2022;
780 Team et al., 2025; Chen et al., 2024b; 2025; Zhang et al., 2024c). State-of-the-art models now
781 demonstrate robust performance across diverse benchmarks, highlighting the rapid progress and
782 increasing potential of VLMs in addressing complex multimodal tasks. However, the potential of
783 VLMs in the Img2LaTeX task remains underexplored. While prior work has evaluated the capabilities
784 of recent high-performing models in this domain, experimental results indicate that their performance
785 falls short of human expectations.
786787 C IMG2LATEX-HARD-1K: CONSTRUCTION PIPELINE
788789 We present the full pipeline for constructing the *Img2LaTeX-Hard-1K* dataset, which consists of three
790 stages described below:
791792 C.1 MODEL GENERATION
793794 Our filtering methodology requires comprehensive evaluation across diverse architectural paradigms
795 and model scales. To this end, we select three representative open-weight VLMs that span the current
796 performance spectrum:
797798

- 799 • QWEN2.5-VL-7B-INSTRUCT and QWEN2.5-VL-32B-INSTRUCT (Bai et al., 2025): Representing
800 the QWEN2.5 family, these models enable controlled scale comparisons within a
801 consistent architecture.
- 802 • LLAMA-3.2-11B-VISION-INSTRUCT (Meta AI, 2024): A member of the LLAMA3.2 family,
803 this model introduces architectural diversity and serves as a cross-family reference point.

804 This selection strategy ensures that our difficulty assessment reflects performance variations due to
805 both architectural diversity and model scale, mitigating biases toward any single design paradigm.
806807 We conduct inference with each model on approximately 7,000 instances from our dataset. For every
808 prediction, we compute three evaluation metrics: m-ROUGE, BLEU-4, and Edit Distance. As a
809 result, each instance is associated with nine evaluation scores, corresponding to the three metrics
computed across the three models, which facilitates a comprehensive analysis of model behavior.

Let each instance in the dataset be denoted as x_i , where $i = 1, 2, \dots, N$. We evaluate each instance using three models, M_1, M_2, M_3 , corresponding to the previously described systems. For each model M_j ($j = 1, 2, 3$), we compute the following evaluation metrics:

- R_{ij} : the m-ROUGE score for instance x_i under model M_j .
- B_{ij} : the BLEU-4 score for instance x_i under model M_j .
- D_{ij} : the raw Edit Distance for instance x_i under model M_j .

To ensure comparability across metrics, we apply min-max normalization to the Edit Distance values:

$$\tilde{D}_{ij} = \frac{D_{ij} - \min(D)}{\max(D) - \min(D)},$$

where $\min(D)$ and $\max(D)$ denote the minimum and maximum Edit Distance values computed over all instances and all models.

We define a composite score S_{ij} for each instance-model pair as a weighted average of the three metrics, where the normalized inverse Edit Distance $(1 - \tilde{D}_{ij})$ is treated as a positive indicator of similarity:

$$S_{ij} = \alpha \cdot R_{ij} + \beta \cdot B_{ij} + \gamma \cdot (1 - \tilde{D}_{ij})$$

We set the weights to $\alpha = 0.4$, $\beta = 0.4$, and $\gamma = 0.2$. This formulation yields a unified measure of model performance that balances lexical similarity and character-level accuracy.

C.2 GPT EVALUATION

While textual metrics capture semantic similarity, they may fail to reflect visual rendering similarities that impact practical usability. For example, two LaTeX expressions may differ semantically yet produce visually similar outputs due to variations in generation patterns. To account for this visual dimension, we employ GPT-4O-MINI (OpenAI, 2024) as an image-level comparator, selected for its strong visual reasoning capabilities and cost-effectiveness in large-scale evaluation.

For each instance x_i , we generate three LaTeX code predictions L_{ij} from the models M_j ($j = 1, 2, 3$). Each LaTeX string is compiled into a rendered image I_{ij}^{gen} using tools such as *pdflatex* and *ImageMagick*. These generated images are then compared to the ground-truth rendering I_i^{gt} to assess visual fidelity.

To evaluate reproduction accuracy, we employ the GPT-4O-MINI model as an image comparator. For each pair $(I_i^{\text{gt}}, I_{ij}^{\text{gen}})$, we prompt GPT-4O-MINI to assign a similarity score $G_{ij} \in [0, 10]$, indicating how faithfully the generated LaTeX output reproduces the visual content of the original image.

To align this visual fidelity score with the other evaluation metrics, which lie in the range $[0, 1]$, we apply linear normalization:

$$\tilde{G}_{ij} = \frac{G_{ij}}{10},$$

where $\tilde{G}_{ij} \in [0, 1]$ denotes the normalized visual reproduction score for instance x_i under model M_j . This normalization enables fair integration of visual fidelity into the unified evaluation framework.

C.3 DATA SELECTION

After computing four evaluation scores for each model’s output on each input instance, we assign weights to the models based on their parameter scales and empirical performance. Specifically, we set the model weights as follows:

$$\begin{aligned} w_1 &= 0.30 & (\text{QWEN2.5-VL-7B-INSTRUCT}) \\ w_2 &= 0.40 & (\text{QWEN2.5-VL-32B-INSTRUCT}) \\ w_3 &= 0.30 & (\text{LLAMA-3.2-11B-VISION-INSTRUCT}) \end{aligned}$$

Following the metric and visual fidelity computations described above, we define the final score for instance x_i under model M_j as:

$$S_{ij}^{\text{final}} = S_{ij} + 0.5 \cdot \tilde{G}_{ij},$$

864 where S_{ij} is the composite textual metric score and \tilde{G}_{ij} is the normalized GPT-4O-MINI visual
 865 fidelity score. To aggregate model-specific evaluations into a single score per instance, we compute a
 866 weighted sum:

$$867 \quad S_i^{\text{final}} = \sum_{j=1}^3 w_j \cdot S_{ij}^{\text{final}}$$

$$868$$

$$869$$

870 We then rank all instances by S_i^{final} in descending order and select the top 1,100 examples to construct
 871 the *Img2LaTex-Hard-1K* benchmark. This subset is intended to better reflect the evaluation demands
 872 of modern, high-capacity models.

874 D IMPLEMENTATION DETAILS

$$875$$

876 We follow established methodologies for attention-based localization as proposed in prior work (Yao
 877 et al., 2025; Li et al., 2025b). For LLAMA-3.2-11B-VISION-INSTRUCT, we extract attention maps
 878 from the 13th cross-attention layer, as cross-attention is applied every five layers between the 3rd and
 879 38th layers. This layer has been shown to effectively capture cross-modal interactions, particularly in
 880 OCR-focused tasks. For QWEN2.5-VL-32B-INSTRUCT, we compute the mean attention across the
 881 central one-eighth of all layers, which serves as a representative proxy for identifying salient regions
 882 relevant to our localization objective.

884 E BASELINE INTRODUCTION

$$885$$

886 In the main experiments, we compare our proposed method against three baseline approaches, which
 887 are briefly described below:

- 889 • *Direct Prompting*: Generates LaTeX code directly from the input prompt and image without
 890 any auxiliary reasoning or guidance.
- 891 • *Chain-of-Thought (CoT) Prompting*: Implements zero-shot CoT prompting by appending the
 892 phrase “*Let’s think step by step*” to the input prompt, encouraging the model to decompose the
 893 problem into intermediate reasoning steps (Kojima et al., 2023; Wei et al., 2023).
- 894 • *Best-of-N*: Generates N candidate LaTeX sequences in parallel and selects the one that best
 895 satisfies a predefined verification metric.

897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917