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ABSTRACT

Img2LaTeX is a practically important task that involves translating mathematical
expressions and structured visual content from images into LaTeX code. In recent
years, vision-language models (VLMs) have achieved remarkable progress across
a range of visual understanding tasks, largely due to their strong generalization
capabilities. However, despite initial efforts to apply VLMs to the Img2LaTeX task,
their performance remains suboptimal. Empirical evidence shows that VLMs can
be challenged by fine-grained visual elements, such as subscripts and superscripts
in mathematical expressions, which results in inaccurate LaTeX generation. To
address this challenge, we propose A2R2: Advancing Img2LaTeX Conversion via
Visual Reasoning with Attention-Guided Refinement, a framework that effectively
integrates attention localization and iterative refinement within a visual reasoning
framework, enabling VLMs to perform self-correction and progressively improve
LaTeX generation quality. For effective evaluation, we introduce a new dataset,
Img2LaTex-Hard-1K, consisting of 1,100 carefully curated and challenging ex-
amples designed to rigorously evaluate the capabilities of VLMs within this task
domain. Extensive experimental results demonstrate that: (1) A2R2 significantly
improves model performance across various evaluation metrics spanning both
textual and visual levels; (2) Increasing the number of inference rounds yields
notable performance gains, underscoring the potential of A2R2 in test-time scaling
scenarios; (3) Ablation studies and further evaluations confirm the effectiveness of
our approach and the synergy of its core components during inference.

1 INTRODUCTION

In modern applications, users frequently interact with chat agents and consume research content
where mathematical expressions and structured information must be represented in LaTeX format.
This demand highlights the need for models that can accurately convert screenshots or images into
their corresponding LaTeX source code. Existing approaches primarily rely on convolutional neural
networks (CNNs) or Vision Transformer (ViT)-based architectures, which are fine-tuned on large-
scale datasets specifically curated for this task (Jiang et al., 2025; Wang et al., 2019b; Dosovitskiy
et al., 2021; Wang & Liu, 2021; Wang et al., 2019a). However, these models typically rely heavily on
large-scale training data and lack the capacity for human-like reasoning and self-correction when
faced with mismatches or prediction errors.

Recently, vision-language models (VLMs) have demonstrated strong potential in multimodal under-
standing, particularly in tasks that require reasoning over image-text interactions (Zhang et al., 2024b;
Du et al., 2022; Ghosh et al., 2024; Caffagni et al., 2024; Zhang et al., 2024a; Yin et al., 2024). With
the increasing availability of such models, VLMs are emerging as promising candidates for tackling
the Img2LaTeX task. Nonetheless, prior studies evaluating their performance on this task reveal
notable limitations, indicating that there remains substantial room for improvement (Roberts et al.,
2024). One possible explanation is the reliance on direct evaluation of VLMs, which may overlook
the potential advantages of leveraging their visual reasoning capabilities during inference.

To address the aforementioned limitations, we construct a more challenging subset from the
Im2LaTeX-100K dataset (Deng et al., 2017), selecting approximately 1,100 difficult examples using
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Figure 1: An illustration of the A2R2 framework applied to the Img2LaTeX task. Unlike direct
inference, which yields an incorrect result, A2R2 incorporates multiple reasoning steps into the
inference process. By leveraging iterative refinement, the framework progressively enhances the
output, ultimately generating the correct LaTeX expression.

a combination of metric-based filtering and evaluations conducted by multi-modal large language
models (MLLMs). This new dataset, Img2LaTex-Hard-1K, is specifically designed to stress-test the
capabilities of current VLMs under more demanding conditions.

Inspired by how visual reasoning emulates human-like thinking through self-correction and iterative
refinement (Tan et al., 2025; Bi et al., 2025; Chen et al., 2024a; Zhang et al., 2025; OpenAI, 2025;
Google, 2024; Xu et al., 2025; Wang et al., 2025), we propose a novel training-free plug-in framework,
A2R2: Advancing Img2LaTeX Conversion via Visual Reasoning with Attention-Guided Refinement.
Our proposed framework enhances VLM performance on the Img2LaTeX task by integrating attention-
based localization with iterative refinement guided by visual feedback. As illustrated in Figure 1,
A2R2 consists of four core stages: (1) Generation: the VLM generates an initial LaTeX hypothesis
from the input image; (2) Rendering and Comparison: the predicted LaTeX is rendered into an
image and visually compared against the input to identify discrepancies, which are then used to elicit
feedback; (3) Attention Localization and Feedback Verification: attention mechanisms guide the
model to focus on the mismatched regions, while the system assesses the reliability of the feedback;
(4) Refinement: the LaTeX output is updated based on the verified feedback, and the process iterates
from stage (2), allowing the model to perform self-correction through visual reasoning.

In summary, our key contributions are as follows:

(1) We propose A2R2, a novel visual reasoning framework that integrates attention-based localization
and iterative self-refinement to enhance VLM performance on the Img2LaTeX task, all within a
training-free paradigm.

(2) Extensive experiments demonstrate that A2R2 consistently outperforms other baselines. Moreover,
increasing the number of inference steps yields notable improvements, supporting the effectiveness
of test-time scaling.

(3) Ablation studies and human evaluations provide further evidence of the practical benefits of the
proposed framework, revealing strong synergy among its core components during inference.

(4) We introduce Img2LaTex-Hard-1K, a dataset of 1,100 challenging samples curated to rigorously
benchmark modern VLMs, which exhibit substantially greater capabilities than prior generations.

2 RELATED WORKS

2.1 IMG2LATEX

Img2LaTeX is a well-established task involving the conversion of an image containing LaTeX-
rendered content into its corresponding textual LaTeX source. This task is crucial in academic
and educational contexts, where accurate transcription of mathematical and scientific notation is
essential (Peng et al., 2021; Kayal et al., 2023; Wang & Shan, 2020). Prior work primarily adopts
computer vision-based architectures for LaTeX recognition (Jiang et al., 2025; Wang et al., 2019a;

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Wang & Liu, 2021). While these models are effective, they typically rely on large-scale annotated
datasets and often struggle with visually complex inputs. More recently, vision-language models
have been applied to this task, but findings indicate that their performance remains limited in this
domain-specific setting (Roberts et al., 2024). Motivated by these challenges, we propose a novel
approach that incorporates visual reasoning to enhance VLM performance on the Img2LaTeX task.

2.2 VISUAL REASONING

With the emergence of the test-time scaling paradigm, researchers increasingly adopt training strate-
gies such as supervised fine-tuning (SFT) and group relative policy optimization (GRPO) to enhance
the reasoning capabilities of large language models (LLMs) (Shao et al., 2024b; Yeo et al., 2025;
Muennighoff et al., 2025). These methods support extended chain-of-thought reasoning and self-
correction during inference, showing promise in domains like mathematical problem solving and code
generation (DeepSeek-AI et al., 2025; Mei et al., 2025; OpenAI et al., 2024a; OpenAI, 2025; Google,
2024). Similar efforts in vision-language models (VLMs) aim to enable long-form multimodal
reasoning. Recent work leverages image-text training to support extended reasoning chains (Shen
et al., 2025; Dong et al., 2025; Xu et al., 2025; Thawakar et al., 2025; Wang et al., 2025), while others
incorporate object localization to ground attention in evidence-rich image regions (Gao et al., 2025;
Shao et al., 2024a). Additional approaches explore multi-agent self-correction (Li et al., 2025a).
These advancements motivate our integration of visual reasoning to improve VLM performance on
the Img2LaTeX task.

3 IMG2LATEX-HARD-1K

The Im2LaTeX-100k dataset introduced by Deng et al. (2017) remains a foundational benchmark for
LaTeX recognition. However, our preliminary analysis shows that state-of-the-art vision-language
models (VLMs) exceed 90% accuracy on roughly 75% of instances, suggesting that much of the
dataset lacks sufficient difficulty for meaningful evaluation. This saturation limits the ability to assess
model capabilities and differentiate performance in more challenging scenarios.

To address this limitation and enable more discriminative evaluation of current VLMs, we introduce
Img2LaTex-Hard-1K, a curated subset designed to stress-test contemporary models. The curation
combines quantitative performance-based filtering with qualitative assessments of visual complexity,
targeting instances that reveal weaknesses in mathematical reasoning and fine-grained visual under-
standing. Img2LaTex-Hard-1K serves two main goals: offering a more rigorous benchmark for model
comparison and facilitating the analysis of failure modes to guide future research.

We construct the Img2LaTex-Hard-1K benchmark by evaluating diverse open-weight VLMs across
multiple scales and architectures, combining textual similarity metrics (m-ROUGE, BLEU-4, Edit
Distance) with visual fidelity scores from GPT-4O-MINI, and aggregating them into weighted
instance-level difficulty scores to guide final data selection. The detailed construction pipeline is fully
presented in Appendix C.

4 METHODOLOGY

Traditional vision-language models (VLMs) often struggle to capture fine-grained visual details
in LaTeX expressions, resulting in subtle yet critical errors during LaTeX generation. To address
this limitation, we propose the A2R2 framework, which introduces an iterative visual reasoning
process. By rendering predictions and comparing them against input images, the model autonomously
detects and corrects errors through attention-guided localization and targeted refinement. The A2R2

framework operates in five stages: (1) Generation, (2) Rendering, (3) Comparison, (4) Attention
Localization and Feedback Verification, and (5) Refinement. Each stage is described in detail below.

4.1 GENERATION

In the initial stage, a vision-language model (VLM) is employed to produce an initial LaTeX
prediction. Given an input image I and a generation prompt Pgeneration, the model analyzes the visual
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Give me the LaTeX source code for 
the following content in the image.

\[\tilde{X}(\lambda:l) = \exp(-\sum t_i 
\lambda^i) \exp(2 \sum \lambda^{-1} 

\frac{\partial}{\partial t_i})\]
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Step2: Rendering

Function Calling

LaTeX Code

Option 1: LaTeX Code From Step1

Option 2: LaTeX Code From Step5

Please point out the differences 
between two provided images …
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First Image Second Image

The function is written 
as \tilde{X}(\lambda; l).

The function is written 
as \tilde{X}(\lambda: l).

\lambda^{-i} and 
includes a factor of 

\frac{1}{i} 

\lambda^{-1} without 
the factor of \frac{1}{i}.

Step4: Localization and Verification

Verification 1 Error Does Exist!!!

I need to find out the area of 

“\tilde{X}(\lambda; l)” in the image! 

I need to find out the area of 

“\tilde{X}(\lambda: l)” in the image! 

Feedback 1

Verification 2 Error Does Exist!!!

Where is “\lambda^{-i} and includes a 

factor of \frac{1}{i}” in the image?

Where is “\lambda^{-1} without the 

factor of \frac{1}{i}“in the image?

Feedback 2

You are required to refine your initial 
LaTeX code answer according to …

Step5: Refinement

\tilde{X}(\lambda; l) = \exp\left(-\sum t_i 
\lambda^i\right) \exp\left(2\sum 

\lambda^{-i} \frac{1}{i} 
\frac{\partial}{\partial t_i}\right).Stop if round limitation is reached or no further 

refinement.

Figure 2: A detailed illustration of how the A2R2 framework solves the Img2LaTeX task. The process
consists of multiple stages: generation, rendering, comparison, attention localization, feedback verifi-
cation, and refinement. These stages form a recurrent structure that enables iterative improvement.
This extended reasoning mechanism supports test-time scaling and effectively corrects initial errors,
ultimately producing the correct output.

content and generates the corresponding LaTeX sequence. This process is formalized as:

L = VLM(I, Pgeneration),

where L denotes the LaTeX output generated by the model.

4.2 RENDERING

Once the initial LaTeX output is generated, it is rendered into an image I ′ using external tools such
as pdflatex in conjunction with ImageMagick. For the first round of inference, the input LaTeX code
corresponds to the output from the Generation stage. In subsequent rounds, the input is taken from
the output of the Refinement stage.

4.3 COMPARISON

In the Comparison stage, the rendered image I ′ is paired with the original input image I , and both
are fed back into the model. The vision-language model now acts as a visual difference evaluator,
identifying discrepancies between the original and generated images. This process is formalized as:

D = VLM(I, I ′, Pcomparison),

where Pcomparison denotes a prompt specifically designed to guide the model in identifying and
describing differences between I and I ′ in a structured format. The resulting output D represents the
model-generated feedback, which is subsequently used for verification and refinement.

4.4 ATTENTION LOCALIZATION AND FEEDBACK VERIFICATION

Although vision–language models possess the ability to identify differences between two images,
they remain prone to hallucinations, particularly when their performance on Img2LaTeX conversion
is limited. Therefore, after detecting discrepancies between the original image I and its rendered
counterpart I ′, we employ an attention-based localization mechanism to highlight regions with high
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attention. These regions are assumed to capture potential semantic or structural mismatches. We then
extract two focused subregions from both I and I ′ to enable more fine-grained verification.

Let the textual prompt fed to the model be a sequence τ =
(
τ1, τ2, . . . , τn

)
of n tokens that describe

the mathematical content to be verified. For each token τi, we extract attention weights from a
specified range of cross-attention layers, spanning from lstart to lend, inclusive. Each layer comprises
Hhead attention heads. The attention map corresponding to token τi at layer l and head h is represented
as W (l,h)

i ∈ RH×W .

We first average across all heads and all selected layers to compute a unified attention map for each
token τi:

W̃i =
1

(lend − lstart + 1) ·Hhead

lend∑
l=lstart

Hhead∑
h=1

W
(l,h)
i . (1)

Subsequently, we average over all n tokens to obtain the final attention matrix:

A =
1

n

n∑
i=1

W̃i, Au,v =
1

n

n∑
i=1

w̃i,(u,v), u = 1, . . . ,H, v = 1, . . . ,W. (2)

This yields A ∈ RH×W , where H and W denote the spatial dimensions (in patch units) of the image
feature map. Each entry in A represents the average attention across the selected layers, heads, and
tokens, thereby highlighting how the model aligns the textual prompt with different image regions.

Since the values in the attention matrix typically do not reach 1, we normalize them into an 8-bit
grayscale image to prepare the matrix for contour detection:

Anorm = 255 · A−min(A)

max(A)−min(A)
. (3)

We threshold the normalized attention matrix at the 75th percentile to isolate top-attention regions:

B(i, j) =

{
255 if Anorm(i, j) ≥ τ,

0 otherwise
where τ = Percentile(Anorm, 75), ∀(i, j). (4)

This produces a binary map B ∈ {0, 255}H×W , where pixels with high attention are white and
others are black. We then extract the contours C = {C1, . . . , Ck} from B using standard external
contour detection and select the largest contour based on area:

C = Contours(B), C∗ = argmax
Ci∈C

Area(Ci). (5)

To obtain the final region, we first dilate the largest contour C∗ with a rectangular structuring element
K of size 3× 3:

Cdil = C∗ ⊕K. (6)
We then compute the bounding box of Cdil to extract the corresponding subregion R:

(x, y, w, h) = Bounding(Cdil), R = {(i, j) ∈ I | x ≤ j < x+ w, y ≤ i < y + h}. (7)

Through this process, we obtain two regions cropped from the original input image and the rendered
image, denoted as R and R′. These regions are then fed into the model for self-verification:

D′ = VLM(D,R,R′, Pverification).

This attention-guided localization and verification step enables the model to focus on high-attention
regions, enhancing its robustness in filtering out hallucinated or incorrect feedback.

4.5 REFINEMENT

In the final step, we utilize the cropped regions from the original image R and the rendered image
R′, together with the previously identified correct difference description D′, to guide the model in
revising the current LaTeX generation L.

A refinement prompt Prefinement is designed to ensure that the model modifies only the erroneous part
of L while preserving its correct components:

Lupdated = VLM(L,R,R′, D′, Prefinement).

5
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Base Model Inference Method
Textual Metrics Visual Metrics

ROUGE-1↑ ROUGE-2↑ ROUGE-L↑ BLEU-4↑ Edit Distance↓ Match↑ CW-SSIM↑

LLAMA-3.2-11B-VISION-INSTRUCT

Direct Prompting 84.14 68.59 83.69 64.83 27.45 89.66 87.00

Chain-of-Thought Prompting 78.11 61.30 77.30 50.75 41.28 89.52 86.97

Best-of-N (N = 2) 84.51 68.74 83.92 64.98 27.10 89.92 87.18

Best-of-N (N = 4) 84.76 68.87 84.04 65.13 26.84 90.17 87.26

Best-of-N (N = 8) 84.98 69.01 84.11 65.23 26.63 90.24 87.38

A2R2 (Ours) 90.87 73.13 89.21 70.41 20.12 93.75 93.46

QWEN2.5-VL-32B-INSTRUCT

Direct Prompting 79.47 60.59 77.94 55.21 31.35 90.86 89.00

Chain-of-Thought Prompting 75.62 57.59 74.45 51.32 46.08 89.80 87.61

Best-of-N (N = 2) 79.72 60.81 78.12 55.36 30.95 91.07 89.23

Best-of-N (N = 4) 79.92 61.05 78.28 55.50 30.37 91.24 89.39

Best-of-N (N = 8) 80.04 61.19 78.39 55.61 30.02 91.33 89.52

A2R2 (Ours) 86.92 66.17 83.45 62.32 22.87 94.16 94.58

Table 1: Performance of two vision-language models on the filtered Img2LaTex-Hard-1K dataset,
evaluated across seven metrics spanning both textual and visual dimensions. The best score for each
model under each metric is highlighted in bold red.

Here, Lupdated denotes the updated LaTeX code after correcting the identified error. Following this
refinement, the process returns to step (2) to verify whether additional discrepancies remain. If so,
the model repeats steps (2) to (5) iteratively:

L(t+1) = REFINE(L(t), I, I ′).

This self-refinement loop continues until no new differences are detected or a predefined iteration
limit Tmax is reached. The final output is given by:

L∗ = L(T ), where T = Tmax or diff(I, I ′(T )) = ∅.

5 EXPERIMENTS SETUP

5.1 DATASET

We use our curated Img2LaTex-Hard-1K dataset, which comprises 1,100 images containing LaTeX
content.

5.2 VISION-LANGUAGE MODELS

Our proposed method relies on identifying salient regions across image pairs by accessing attention
weights during inference. To facilitate this, we adopt open-weight vision-language models that
expose internal attention mechanisms. For our main experiments, we select two models with distinct
architectural designs and parameter scales:

• QWEN2.5-VL-32B-INSTRUCT (Bai et al., 2025): A 32-billion-parameter model from the
QWEN2.5 family, representing a large-scale transformer-based architecture.

• LLAMA-3.2-11B-VISION-INSTRUCT (Meta AI, 2024): An 11-billion-parameter model from
the LLAMA3.2 family, chosen to evaluate the effect of reduced model capacity.

5.3 METRICS

We evaluate the similarity between the generated LaTeX source code and the ground-truth label from
both textual and visual perspectives.

6
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Figure 3: Ablation results for two vision-language models across four metrics demonstrate the impact
of Attention Localization and Feedback Verification (AL & FV) on overall performance. Darker bars
indicate the full model, while lighter bars represent variants with AL and FV removed. m-ROUGE
denotes the mean of ROUGE-1, ROUGE-2, and ROUGE-L scores.

Textual Metrics. To assess the fidelity of the generated LaTeX sequences at the token and character
levels, we employ the following standard text generation metrics:

• ROUGE (Lin, 2004): A recall-oriented metric that measures n-gram overlap between the
generated sequence and the reference.

• BLEU-4 (Papineni et al., 2002): A precision-oriented metric that evaluates the overlap of up to
4-grams.

• Edit Distance (Ristad & Yianilos, 1998): Computes the minimum number of edits needed to
match the ground-truth sequence.

Visual Metrics. To evaluate the visual fidelity of the rendered LaTeX outputs, we compare the
predicted and ground-truth images using the following image-level metrics:

• Match: Measures the proportion of identical pixels between the predicted and ground-truth
renderings.

• CW-SSIM (Sampat et al., 2009): Evaluates structural similarity in the complex wavelet domain,
robust to minor distortions.

5.4 IMPLEMENTATION DETAILS

We obtain all model weights from the official repositories hosted on HuggingFace. All experiments
are conducted on a machine equipped with four NVIDIA A100 80GB GPUs. To ensure consistency
and reproducibility, we use the default inference settings provided by each model. Further details and
an introduction to the baseline are provided in Appendix D and Appendix E, respectively.

6 EXPERIMENT RESULTS

For the main experiments, we evaluate 160 test instances using two models, comparing our method
against three baselines. To ensure fairness, we cap our method at two inference rounds, keeping the
average token count comparable to Best-of-N (N = 8). As shown in Table 1, A2R2 consistently
outperforms other baselines across both models and all textual and visual metrics.

Under the LLAMA-3.2-11B-VISION-INSTRUCT model, CoT prompting introduces interpretability
but consistently degrades performance across all metrics, suggesting that verbose reasoning may
hinder generation quality in multimodal settings. Best-of-N sampling yields slight gains as N
increases from 2 to 8, but improvements remain modest, indicating limited textual diversity despite
increased computational cost.

In contrast, our framework delivers substantial improvements. ROUGE increases by approximately
6 points, Edit Distance decreases to 20.12, and visual metrics improve significantly, with Match

7
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Figure 4: Performance of two vision-language models under four evaluation metrics using the
proposed method with an expanded inference limitation round. Results demonstrate that extending
test-time execution leads to improved performance across both models.

rising from 89.66 to 93.75 and CW-SSIM from 87.00 to 93.46. These results highlight A2R2’s ability
to maintain structural fidelity and cross-modal coherence. Similar patterns are observed with the
QWEN2.5-VL-32B-INSTRUCT model. CoT again leads to performance degradation, while our
method achieves consistent gains across all metrics. BLEU-4 improves from 55.21 to 62.32, and
visual alignment strengthens further, with Match reaching 94.16 and CW-SSIM 94.58, the highest
across all settings.

Overall, these results validate the effectiveness and robustness of our proposed framework. In contrast
to simple prompt engineering or sampling heuristics, A2R2 fundamentally enhances the model’s
ability to interpret, align, and verbalize visual information. The improvements span both text-level and
image-level evaluations across different models, demonstrating the generalizability of our framework.

7 ABLATION STUDY

Our framework introduces attention-based visual reasoning, which localizes crucial regions and

Base Model Round 1 Round 2 Round 3

LLAMA-3.2-11B-VISION-INSTRUCT 21.21% 25.83% 27.56%

QWEN2.5-VL-32B-INSTRUCT 17.78% 22.04% 23.77%

Table 2: Hallucination rates during the comparison step
across Rounds 1, 2, and 3 using our proposed method,
highlighting the importance of attention localization and
feedback verification.

integrates feedback verification during re-
finement. This design mitigates halluci-
nated differences incorrectly identified by
the model, thereby improving both accu-
racy and reliability. This raises the cen-
tral question: How much do attention lo-
calization and feedback verification help
mitigate the negative effects of visual hal-
lucination? To answer this, we conduct
ablation experiments with both models,
comparing refinement with and without
these components.

As shown in Figure 3, relying only on textual feedback without attention localization and cropped
verification leads to a clear performance drop across four metrics. Both models show declines of
over 4 points in m-ROUGE and BLEU-4, while Match and CW-SSIM fall by 2.5–3.5 points. These
results indicate that direct refinement based solely on textual feedback provides limited benefit. The
degradation stems from the base models’ limited comparison abilities, where unverified feedback
often introduces errors by altering correct content into incorrect predictions.

Table 2 further supports this finding by reporting hallucination rates during the first three refinement
rounds, measured using the more reliable GPT-4O model (OpenAI et al., 2024c). The results confirm
the ablation analysis and highlight the necessity of structured verification to guard against errors
introduced by hallucinated feedback.
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8 TEST-TIME SCALING

Our framework employs iterative refinement, where feedback is generated over multiple rounds
by identifying differences between two input images. This process embodies the idea of test-time
scaling: allowing more refinement rounds increases inference time but enhances the model’s ability
to detect discrepancies and improve outputs.

We evaluate two vision-language models under different round limits using four metrics, with results
shown in Figure 4. Performance consistently improves as the number of rounds increases, though
gains diminish beyond three rounds. For instance, the improvement from three to five rounds is
notably smaller than that from one to two, suggesting that models gradually reach their reasoning
capacity and fewer errors remain for correction.

Overall, the upward trends validate the test-time scaling property of our method and highlight the
effectiveness of iterative visual reasoning. These results also suggest that stronger base models could
provide more accurate feedback, enabling further improvements through refinement.

9 HUMAN EVALUATION

Evaluating Img2LaTeX is inherently complex, as both textual and visual fidelity must be considered.
The metrics in Table 1 ensure fair comparisons by using the same base models, but they are sensitive

4.2 4.3 4.4 4.5 4.6 4.7
Average Human Evaluation Score

Direct Prompting

Chain-of-Thought

Best-of-N (N=8)

A²R² (Ours)

4.26

4.21

4.35

4.61

4.32

4.29

4.39

4.68

Llama-3.2-11B-Vision-Instruct

Qwen2.5-VL-32B-Instruct

Figure 5: Human evaluation scores of different infer-
ence methods with two tested vision-language models,
our method acheives the highest scores among all infer-
ence methods.

to stylistic variations in LaTeX expressions.
For example, syntactic differences such as
using “text” may alter token-based scores
without affecting the rendered image.

To better capture human preferences, we
conduct a human evaluation with three
computer science graduate students profi-
cient in LaTeX. We randomly sample 100
outputs from two models under different
inference methods. Each annotator assigns
a score from 0 to 5 (with 0.5 increments)
based on visual similarity to the ground
truth, with 5 indicating indistinguishable
outputs aside from padding or minor for-
matting differences. Scores are averaged
across annotators for each method, and re-
sults are shown in Figure 5.

Our method consistently achieves the high-
est average scores across both base models, demonstrating superior visual fidelity. These results
confirm that, beyond improving textual metrics, our approach delivers the strongest real-world
performance for Img2LaTeX by effectively handling stylistic variations in LaTeX code.

10 CONCLUSION

In this work, we introduce A2R2, a framework that integrates visual reasoning with attention
localization and iterative refinement to enhance the performance of vision-language models (VLMs)
on the Img2LaTeX task. However, several limitations remain: (1) Due to the closed-source nature
of models such as GPT-4O and CLAUDE-3.5-SONNET (OpenAI et al., 2024c; Anthropic, 2024),
we are unable to access their internal attention weights, which limits our ability to fully assess the
effectiveness of the proposed method on these platforms. (2) Computational constraints prevent us
from incorporating larger models such as LLAMA-3.2-90B-VISION-INSTRUCT in our experiments.
We leave the exploration of scaling our approach to such models for future work. (3) Our current
approach depends on manually crafted prompts to effectively guide model behavior. This suggests
that future research could focus on developing prompt-free or prompt-agnostic methods to improve
generalizability and ease of deployment.

9
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs to assist with the phrasing and grammar of the manuscript. The LLMs were used
strictly as a writing aid and did not contribute to the scientific ideation, methodology, or results
presented in this paper.

B FURTHER RELATED WORK

Here, we further discuss related work on the potential of vision–language models (VLMs) in the
Img2LaTeX task.

B.1 VISION LANGUAGE MODELS

Vision–language models (VLMs) aim to unify visual perception with linguistic understanding.
Their development has been primarily driven by the emergence of Transformer architectures and
contrastive learning techniques, which align visual and textual representations within a shared
semantic space (Vaswani et al., 2023; Chen et al., 2020; Radford et al., 2021). VLMs are explicitly
designed to process and integrate multimodal inputs, enabling strong performance across a broad
range of tasks, including image captioning, visual question answering, and related vision-language
understanding tasks (Liu et al., 2023; OpenAI et al., 2024b; Caffagni et al., 2024; Zhang et al., 2024a;
Yin et al., 2024; Li et al., 2023; Bordes et al., 2024; Li et al., 2022; Alayrac et al., 2022). Recent
advances in scaling strategies, including increases in model capacity and data volume, combined
with the availability of large-scale multimodal datasets, substantially improve generalization and
task-specific accuracy (Bai et al., 2025; Team et al., 2024; Li et al., 2024; Schuhmann et al., 2022;
Team et al., 2025; Chen et al., 2024b; 2025; Zhang et al., 2024c). State-of-the-art models now
demonstrate robust performance across diverse benchmarks, highlighting the rapid progress and
increasing potential of VLMs in addressing complex multimodal tasks. However, the potential of
VLMs in the Img2LaTeX task remains underexplored. While prior work has evaluated the capabilities
of recent high-performing models in this domain, experimental results indicate that their performance
falls short of human expectations.

C IMG2LATEX-HARD-1K: CONSTRUCTION PIPELINE

We present the full pipeline for constructing the Img2LaTex-Hard-1K dataset, which consists of three
stages described below:

C.1 MODEL GENERATION

Our filtering methodology requires comprehensive evaluation across diverse architectural paradigms
and model scales. To this end, we select three representative open-weight VLMs that span the current
performance spectrum:

• QWEN2.5-VL-7B-INSTRUCT and QWEN2.5-VL-32B-INSTRUCT (Bai et al., 2025): Rep-
resenting the QWEN2.5 family, these models enable controlled scale comparisons within a
consistent architecture.

• LLAMA-3.2-11B-VISION-INSTRUCT (Meta AI, 2024): A member of the LLAMA3.2 family,
this model introduces architectural diversity and serves as a cross-family reference point.

This selection strategy ensures that our difficulty assessment reflects performance variations due to
both architectural diversity and model scale, mitigating biases toward any single design paradigm.

We conduct inference with each model on approximately 7, 000 instances from our dataset. For every
prediction, we compute three evaluation metrics: m-ROUGE, BLEU-4, and Edit Distance. As a
result, each instance is associated with nine evaluation scores, corresponding to the three metrics
computed across the three models, which facilitates a comprehensive analysis of model behavior.
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Let each instance in the dataset be denoted as xi, where i = 1, 2, . . . , N . We evaluate each instance
using three models, M1,M2,M3, corresponding to the previously described systems. For each model
Mj (j = 1, 2, 3), we compute the following evaluation metrics:

• Rij : the m-ROUGE score for instance xi under model Mj .
• Bij : the BLEU-4 score for instance xi under model Mj .
• Dij : the raw Edit Distance for instance xi under model Mj .

To ensure comparability across metrics, we apply min-max normalization to the Edit Distance values:

D̃ij =
Dij −min(D)

max(D)−min(D)
,

where min(D) and max(D) denote the minimum and maximum Edit Distance values computed over
all instances and all models.

We define a composite score Sij for each instance-model pair as a weighted average of the three
metrics, where the normalized inverse Edit Distance (1− D̃ij) is treated as a positive indicator of
similarity:

Sij = α ·Rij + β ·Bij + γ · (1− D̃ij)

We set the weights to α = 0.4, β = 0.4, and γ = 0.2. This formulation yields a unified measure of
model performance that balances lexical similarity and character-level accuracy.

C.2 GPT EVALUATION

While textual metrics capture semantic similarity, they may fail to reflect visual rendering similarities
that impact practical usability. For example, two LaTeX expressions may differ semantically yet
produce visually similar outputs due to variations in generation patterns. To account for this visual
dimension, we employ GPT-4O-MINI (OpenAI, 2024) as an image-level comparator, selected for its
strong visual reasoning capabilities and cost-effectiveness in large-scale evaluation.

For each instance xi, we generate three LaTeX code predictions Lij from the models Mj (j =
1, 2, 3). Each LaTeX string is compiled into a rendered image Igen

ij using tools such as pdflatex and
ImageMagick. These generated images are then compared to the ground-truth rendering Igt

i to assess
visual fidelity.

To evaluate reproduction accuracy, we employ the GPT-4O-MINI model as an image comparator. For
each pair (Igt

i , I
gen
ij ), we prompt GPT-4O-MINI to assign a similarity score Gij ∈ [0, 10], indicating

how faithfully the generated LaTeX output reproduces the visual content of the original image.

To align this visual fidelity score with the other evaluation metrics, which lie in the range [0, 1], we
apply linear normalization:

G̃ij =
Gij

10
,

where G̃ij ∈ [0, 1] denotes the normalized visual reproduction score for instance xi under model Mj .
This normalization enables fair integration of visual fidelity into the unified evaluation framework.

C.3 DATA SELECTION

After computing four evaluation scores for each model’s output on each input instance, we assign
weights to the models based on their parameter scales and empirical performance. Specifically, we
set the model weights as follows:

w1 = 0.30 (QWEN2.5-VL-7B-INSTRUCT)

w2 = 0.40 (QWEN2.5-VL-32B-INSTRUCT)

w3 = 0.30 (LLAMA-3.2-11B-VISION-INSTRUCT)

Following the metric and visual fidelity computations described above, we define the final score for
instance xi under model Mj as:

Sfinal
ij = Sij + 0.5 · G̃ij ,
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where Sij is the composite textual metric score and G̃ij is the normalized GPT-4O-MINI visual
fidelity score. To aggregate model-specific evaluations into a single score per instance, we compute a
weighted sum:

Sfinal
i =

3∑
j=1

wj · Sfinal
ij

We then rank all instances by Sfinal
i in descending order and select the top 1,100 examples to construct

the Img2LaTex-Hard-1K benchmark. This subset is intended to better reflect the evaluation demands
of modern, high-capacity models.

D IMPLEMENTATION DETAILS

We follow established methodologies for attention-based localization as proposed in prior work (Yao
et al., 2025; Li et al., 2025b). For LLAMA-3.2-11B-VISION-INSTRUCT, we extract attention maps
from the 13th cross-attention layer, as cross-attention is applied every five layers between the 3rd and
38th layers. This layer has been shown to effectively capture cross-modal interactions, particularly in
OCR-focused tasks. For QWEN2.5-VL-32B-INSTRUCT, we compute the mean attention across the
central one-eighth of all layers, which serves as a representative proxy for identifying salient regions
relevant to our localization objective.

E BASELINE INTRODUCTION

In the main experiments, we compare our proposed method against three baseline approaches, which
are briefly described below:

• Direct Prompting: Generates LaTeX code directly from the input prompt and image without
any auxiliary reasoning or guidance.

• Chain-of-Thought (CoT) Prompting: Implements zero-shot CoT prompting by appending the
phrase “Let’s think step by step” to the input prompt, encouraging the model to decompose the
problem into intermediate reasoning steps (Kojima et al., 2023; Wei et al., 2023).

• Best-of-N: Generates N candidate LaTeX sequences in parallel and selects the one that best
satisfies a predefined verification metric.
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