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Abstract

Continual learning refers to the problem where the training data is available in
sequential chunks, termed "tasks". The majority of progress in continual learning
has been stunted by the problem of catastrophic forgetting, which is caused by
sequential training of the model on streams of data. Moreover, it becomes compu-
tationally expensive to sequentially train large models multiple times. To mitigate
both of these problems at once, we propose a novel method to continually train
transformer-based vision models using low-rank adaptation and task arithmetic.
Our method completely bypasses the problem of catastrophic forgetting, as well as
reducing the computational requirement for training models on each task. When
aided with a small memory of 10 samples per class, our method achieves perfor-
mance close to full-set finetuning. We present rigorous ablations to support the
prowess of our method.

1 Introduction

The problem of continual learning has grown in importance in recent times due to the large-scale
nature of downstream datasets. Moreover, the high costs of data labelling pose challenge to con-
ventional fine-tuning, where all of the downstream data can be used at once. In many settings, it
is necessary for an agent to learn on-the-fly, by either learning from experiences or by external
supervision from humans. Continual learning has seen many applications, ranging from climate
change (Kane et al., 2022), medical AI (Yi et al., 2023) to real-time chatbots (Liu and Mazumder,
2021). The most promising methods in continual learning maintain a small set of past samples, called
"memory reservoir" (Chaudhry et al., 2019b), and try to avoid catastrophic forgetting by augmenting
the batch of the current task with samples from the memory reservoir. This method has achieved
success to some extent, but is far from perfect. This method still suffers catastrophic forgetting, and
thus cannot be deemed as a reliable method for continual learning in general.

Vision Transformers (ViTs) (Dosovitskiy et al., 2021) have changed the way modern vision tasks
are solved and have become ubiquitous in computer vision. Most of the prominent vision tasks have
seen variants of ViTs reign supreme over the past couple of years. Efforts have been made to make
ViTs, and transformers in general, run faster to support real-time applications. Low-Rank Adaptation
(LoRA) (Hu et al., 2021) is a method for efficient fine-tuning where the large weight tensors are
augmented by low-rank counterparts, which are trained along with the frozen weights of the original
model.

Task arithmetic (Ilharco et al., 2023) is a simple method which leverages the semantics of weight
spaces to manipulate the model weights to achieve compelling performance on tasks it was not trained
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on. It assumes that fine-tuning models pushes the weights away towards a semantically relevant
direction in the weight space, thus creating a "task vector" from the pretrained checkpoint to the
fine-tuned checkpoint.

We make a simple observation: modern continual learning demands the model to efficiently learn
all tasks irrespective to the order they were provided. This observation points to a straightforward
combination of task arithmetic, low-rank adaptation and memory reservoirs. In this paper, we show
that this simple combination is indeed a powerful one. Specifically, we fine-tune only the low-rank
weights of LoRA-ViT on each task. After training on individual tasks, we combine these low-rank
weights using task arithmetic rules and merge them to the pre-trained ViT. Finally, we fine-tune this
ViT on a small set of samples from the dataset. To evaluate our method, we perform experiments on
Flowers-102 (Nilsback and Zisserman, 2008), Oxford-IIIT Pets (Parkhi et al., 2012) and CIFAR10
(Krizhevsky, 2009) datasets. We conclusively show that this simple procedure brings the ViT very
close its fully trained counterparts, thus cementing the effectiveness of our method.

2 Related Work

In computer vision, CNN based models (He et al., 2015) have been the dominant architectures
for tasks like classification, segmentation, and detection. After the application of the Transformer
architecture (Vaswani et al., 2017) to these tasks in computer vision, Vision Transformers (ViTs)
(Dosovitskiy et al., 2021) have surpassed the traditional models and have become the dominant
paradigm. This architecture leverages the effectiveness of large-scale pre-training to surpass the
previous state of the art performance in multiple vision tasks. A variant of this is the BEiT (Bao
et al., 2021), which uses a similar pre-training method to BERT (Devlin et al., 2019) - masked image
modelling. This model is then fine-tuned on downstream tasks, outperforming the ViT. There are
also other variants like the DEiT (Touvron et al., 2021) which uses knowledge distillation to train
Vision Transformers efficiently, ConViT (d’Ascoli et al., 2022) which introduces gated positional
self-attention (GPSA) which can be equipped with a soft convolutional inductive bias for improved
performance, UViT (Chen et al., 2022) which shows that ViTs can perform better on segmentation
and detection tasks without the addition of CNN-like designs and the Swin Transformer (Liu et al.,
2021) which introduces an architecture that can be used as a general-purpose backbone for vision
tasks.

In continual learning, a sequence of contents like tasks or examples is provided incrementally over a
period of time to the system, and it is expected that the system learns them as if they were provided
simultaneously. One of the main hindrances in continual learning is catastrophic forgetting (French,
1999), where knowledge of previous tasks is lost when a system is trained on a new task. Some recent
promising techniques to overcome catastrophic forgetting include as Experience Replay also called
"memory reservoir" (Chaudhry et al., 2019b) in which a small set of past examples is maintained
and the current task is augmented with these samples and AGEM (Chaudhry et al., 2019a) which
stores the past examples and treats the losses on the past examples as an inequality constraint.
Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017) is another method used to mitigate
catastrophic forgetting in which we selectively decrease the plasticity of weights and protects the
previous knowledge while training on new tasks. Another method, Learning without Forgetting
(Li and Hoiem, 2018) uses a combination of knowledge distillation and fine-tuning to preserve the
performance on old tasks. Deep Generative Replay (Shin et al., 2017) is a method which uses fake
data that is generated to mimic former examples in training to enable flexible knowledge transfer
between tasks.

Fine-tuning models for downstream tasks is an inefficient process as all of the parameters are updated.
One of the ways to overcome this inefficiency is to make use of parameter efficient fine-tuning,
where we fine-tune only a small number of parameters with relatively unchanged performance. Some
methods include Adapters (Houlsby et al., 2019) where we add a small number of parameters to the
model which are trained for downstream tasks. However adapters introduce inference latency and
bottlenecks which make the overall process more inefficient. Low-Rank Adaptation (LoRA) (Hu
et al., 2021) uses low-rank matrix counterparts of the original weights during fine-tuning, and keeps
the actual weights frozen. After training is done the model parameters are updated using the low-rank
matrices at no inference cost or bottlenecks.
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Figure 1: Our experimental setup. We only train the LoRA weights associated with the model. Each
input example passes through the frozen and LoRA weights, and both the outputs are summed to get
the final output. Each of these sets of LoRA weights is trained on the data of a particular task. We
then calculate and merge the task vectors associated with each of these tasks. Finally, we fine-tune
the model on a small set of samples, after which the model is ready for deployment.

3 Method

3.1 Problem setting

We address the problem of continual learning in a class-incremental setting. Concretely, there are N
tasks, each denoted by T i = {Xi, Y i} where i ∈ {0, . . . , N − 1} and Xi and Y i are image-label
pairs for the ith task. Here each element in Y 0 ∪ Y 1 ∪ . . . ∪ Y N−1 ⊂ {0, . . . , C − 1}, and C is
the number of total classes in the dataset. Note that X0 ∩X1 ∩ . . . ∩XN−1 = ϕ, which means no
samples are repeated across tasks. Each task encompasses a subset of classes from the total number
of classes, which roughly equals C/N . A model is sequentially provided the data associated with
each task T i, with the preceding task’s data being inaccessible when a new task is presented. The
goal, in our experimental setup, is to maximize performance on a hold-out set {Xtest, Y test} where
elements from Y test ⊂ {0, . . . , C−1}. The most well-known problem in this setting is "catastrophic
forgetting", where the model performs poorly on initial tasks, since the weights are overridden by the
updates while training on newer tasks.

3.2 LoRA-adapted task-wise training

The first part of our approach is to take an off-the-shelf ViT backbone and augment it with LoRA.
Specifically, we introduce an additional set of weights, corresponding to all query and value weight
matrices in ViT. These new weights have a drastically low rank, and a single matrix W

M×M
is

represented by two matrices of lower rank, A
M×K

and B
K×M

where K << M . In practice, M = 768

and K = 16. So, for an input tensor X
b×s×M

(b and s are batch size and sequence length, respectively):

output = WX +BAX (1)

The advantage of this method is that while training, W is frozen, and only A and B are updated. This
results in significantly lesser computation, both in terms of FLOP count and wall-clock time. For
inference, we modify the model weights such that

W ∗ = (W +BA)X (2)

output = W ∗X (3)
This effectively makes it the same as a conventional fine-tuned model. In our experiments, we
fine-tune each LoRA-augmented ViT on a specific task. We finally merge the LoRA weights to the
base model to get the task-specific model.

3.3 Task arithmetic

For all experiments, we assume the "task vector" of a given task-specific model to be defined as
follows:

τi = θi − θpre (4)

3



Here, θi is the collection of weights of the task-specific model of task T i, and "−" implies elementwise
subtraction. After fine-tuning each LoRA-augmented model on its respective task, we combine the
task vectors using the following:

τ = ΣN−1
i=0 λτi (5)

Intuitively, we get our final, task-agnostic model by doing the elementwise operation:

θfinal = θpre + τ (6)

This, in itself provides a surprisingly strong benchmark on two of our three evaluation datasets.

3.4 Finetuning on memory

Commonly used methods like episodic memory (Chaudhry et al., 2019b) and experience replay
(Rolnick et al., 2019) use a memory buffer to capture examples from individual tasks and to retrain
the model later on these examples. To emulate this effect, we choose 10 samples per class from
each dataset and fine-tune our final, task-agnostic model on this collated set. This approach has
two advantages over the experience replay approach. Firstly, there is no requirement of augmenting
every batch as done in reservoir sampling, for example. Secondly, training the model on a balanced
dataset completely bypasses the inconsistencies associated with sampling. This not only improves the
performance, but brings it very close to the full-shot supervised baseline. We present our experimental
setup and results in the upcoming section.

3.5 Enforcing feature distribution using KL-divergence loss

One of the intuitions behind training only LoRA weights is that this will result in small changes to
the model, which will make more sense when we perform task arithmetic. Extending this thought,
we also enforce the similarity of distribution from LoRA-adapted model to the one from vanilla ViT.
This would enforce the task-wise LoRA features to be closer to the more generalized vanilla ViT
features. Our loss function for KL-divergence experiments is as follows:

Lcls = Crossentropy(outputs, Y ) (7)

LKL = KLDiv(softmax(fpre
bb (x), softmax(fft

bb (x)) (8)

L = λ1Lcls + λ2LKL (9)

Here, fcls and fbb are the classifier head and backbone respectively, where the superscript denotes
if the model is pre-trained or fine-tuned. We take a weighted sum of the losses, and we empirically
choose λ1 = 0.6 and λ2 = 0.4. We have illustrated our complete training procedure in Figure 1.

4 Results and discussion

The efficiency of our proposed method is demonstrated through varied experiments and comparisons.
The experimental setup consists of three datasets namely, Oxford-IIIT Pets (37 classes), Flowers-102
(102 classes), and CIFAR10 (10 classes). Table 1 shows the details of the data samples used for
training and testing. The task to class mapping for each dataset is shown in Appendix A.

4.1 Comparison with offline learning benchmarks

Pretrained ViT and its LoRA counterpart were trained in the offline setting on the three datasets to
get the baseline accuracy for each dataset. We observed that the resultant model of our continual
learning approach, when trained on Flowers-102, has results almost similar to the offline counterparts
on the same dataset. Our method showed lower but comparable accuracy with the offline learning
benchmarks when trained on Oxford-IIIT Pets and CIFAR10 datasets. These results can be viewed
and compared from Table 2.

λ in Eqn. 5 is not learnable and the experiments are performed with λ = 0.25.
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Table 1: Details of the datasets used for experimentation

Dataset No. of tasks
Train Test

Total Avg. samples/task Total Avg. samples/task

Oxford-IIIT pets 6 3680 613 3669 612

Flowers-102 10 2040 204 6149 615

CIFAR10 5 50000 10000 10000 2000

4.2 Comparison with continual learning benchmarks

In order to validate the efficiency of our proposed CL method, we benchmarked our results against the
SOTA methods for CL like AGEM (Chaudhry et al., 2019a) and Experience Replay (ER) (Chaudhry
et al., 2019b). The Table 2 shows the superior performance of the new approach as compared to the
SOTA methods stated above. Moreover, as a consequence of training a LoRA-augmented ViT, we
can observe a significant reduction in the training time and FLOPs.

Table 2: Top-1 accuracy(%) of ViT, LoRA-ViT trained on entire datasets, AGEM and Experience
Replay (ER) trained by class-incremental CL and our proposed class-incremental CL approach,
trained on different datasets (50 epochs). "XEnt" and "KLDiv" stand for Crossentropy and KL
Divergence losses respectively. The best scores for the continual setting have been highlighted in
bold.

Oxford-IIIT Pets Flowers-102 CIFAR10

Offline learning
baselines

ViT 94.03 98.69 99.05

LoRA ViT 93.75 97.08 98.55

CL baselines
AGEM 73.18 (-20.85) 33.39 (-65.3) 62.3 (-36.35)

Replay 88.25 (-5.78) 91.07 (-7.62) 86.25 (-12.8)

Proposed method
XEnt loss 90.32 (-3.71) 94.36 (-4.33) 95.59 (-3.46)

XEnt + KLDiv loss 88.69 (-5.34) 97.06 (-1.63) 92.49 (-6.56)

4.3 Computation analysis

The comparison of computational complexity of our proposed method and Experience replay mea-
sured in PFLOPs (PetaFLOPs) has been shown in Table 3. Our method uses 3 - 5 times less PFLOPs
while significantly outperforming the existing methods. We calculated the FLOPs required for training
using the fvcore library. The FLOPs required for the forward and backward pass were considered.
In our LoRA-adapted ViT the FLOPs required for the backward pass were significantly lower as
compared to a ViT as in a LoRA-adapted model the model weights are frozen and only the LoRA
weights get updated during the backward pass. This contributes greatly to the lower complexity of
our proposed methodology. Furthermore, we also note that memory replay essentially uses double
the compute, since the model is trained on a combination of task data as well as data sampled from
the memory.

4.4 Implementation details

For performing extensive experiments on LoRA-augmented ViT, we had access to a Nvidia Tesla
P100 GPU with 16GB HBM2 memory. We employed Adam optimizer with a learning rate of 5ϵ− 6,
weight decay of 1ϵ − 6, and batch size of 32 for all the datasets. The LoRA parameters that were
configured for ViT, using the PEFT library (Mangrulkar et al., 2022) from the Hugging Face API,
were r = 16 and alpha = 16, where r is the dimension used by update matrices and alpha is
the scaling factor. The bias parameters were set as non-trainable parameters. This configuration
enabled us to train only 2.02% of the total 87.6M parameters of a ViT to get impressive results.
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Table 3: Comparison of Computational Complexity (in PFLOPs) of proposed method with Experience
Replay (ER). Reduction shows the how much the number of PFLOPs required on each dataset was
reduced by using our method.

Dataset Replay Our Method Reduction

Oxford-IIIT Pets 17.828 3.493 5.10×
Flowers-102 6.139 1.599 3.84×

CIFAR10 237.326 44.880 5.28×

The experiments were performed by incorporating KL Divergence loss and few-shot finetuning by
training Oxford-IIIT Pets for 50 epochs, CIFAR10 for 50 epochs, and Flowers-102 for 30 epochs.
The scaling factor used for adding the task vectors is λ = 0.25 for all experiments.

We used Avalanche (Lomonaco et al., 2021) to calculate the CL baselines for AGEM and
Experience Replay (ER) methods. For AGEM, 100 patterns per task were used and the memory size
for ER was set to 200. The offline learning baselines were calculated using the above-given learning
rate and weight-decay with 50 epochs for Oxford-IIIT pets and CIFAR10 while using 30 epochs for
Flowers-102.

4.5 Observations

In this section, we present some key observations from our experiments.

1. Oxford-IIIT Pets and CIFAR10 have better pre-finetuning results: We observe that
without finetuning, Flowers-102 has the worst performance. We speculate that this is because
of the high variance and high number of classes in Flowers-102. We hypothesize that if the
tasks have some underlying distributions, the task vector will be better directed, thus having
a better task-agnostic model.

2. KL Divergence loss reduces variance amongst task vectors: We observe that KL Diver-
gence loss was detrimental in the case of datasets with low number of classes. However,
in the case of Flowers-102, it gave a significant boost. We speculate that this is because in
the former case, KL Divergence loss was a too strong regularizer, which hindered actual
learning. However, in the case of Flowers-102, it reduced the high variance in the resultant
task vectors, hence exhibiting better performance.

3. The efficacy of few-shot finetuning makes the case for task arithmetic: As shown in
Appendix B, we can see that finetuning greatly improves the performance of the model
obtained using task-arithmetic. We consider this as a testimony to our original weight
manipulation method. Since the model is able to achieve near offline results with very few
samples, we deduce that the weights obtained by task-arithmetic are a good initialization for
the model to learn task-agnostic representations.

5 Conclusion

In this work, we introduce a novel approach to tackle continual learning. We use task arithmetic and
low-rank adaption to mitigate catastrophic forgetting. We empirically show that the combination of
these three seemingly unrelated methodologies outperforms classical baselines. Since a considerable
part of vision community has started working on ViTs, we believe this work can serve as a simple yet
strong baseline for all future works in the field of continual perception.

A probable future work in this direction is to study the model combination logic in greater detail.
Works like ZipIt! (Stoica et al., 2023) propose novel methods to manipulate the weights in order to
support continual settings. Weight manipulation for continual and multi-task settings is still a nascent
and little-understood field, which might provide greater insights and improvements to our method.
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Appendix

A Dataset Details

The Oxford-IIIT Pets dataset, that has 37 classes, was split into 6 disjoint tasks as shown in Table 4.
The Flowers-102 dataset, which has 102 classes, was split into 10 disjoint tasksas shown in Table 5.
The CIFAR10 dataset, which has 10 classes, was split into 5 disjoint tasks as shown in Table 6.

B Task-wise results

The task-wise accuracy values obtained while performing experiments on each dataset are shown
below in the following sections. Tables 7, 8, and 9 present the performance for Oxford-IIIT Pets,
Flowers-102 and CIFAR10 datasets respectively.
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Table 4: Task to class mapping in the CL setting for Oxford-IIIT Pets

Task 0
american_bulldog, scottish_terrier, english_setter,

6 classes
newfoundland, Maine_Coon, British_Shorthair

Task 1
Persian, boxer, english_cocker_spaniel,

6 classes
saint_bernard, Russian_Blue, Bombay

Task 2
japanese_chin, Sphynx, german_shorthaired,

6 classes
basset_hound, samoyed, shiba_inu

Task 3
staffordshire_bull_terrier, Siamese, wheaten_terrier,

6 classes
Abyssinian, keeshond, havanese

Task 4
yorkshire_terrier, Bengal, great_pyrenees,

6 classes
Egyptian_Mau, pomeranian, beagle

Task 5
american_pit_bull_terrier, Ragdoll, miniature_pinscher

7 classes
pug, Birman, leonberger, chihuahua

Table 5: Task to class mapping in the CL setting for Flowers-102

Task 0
alpine sea holly, buttercup, fire lily,

10 classesanthurium, californian poppy, foxglove,
artichoke, camellia, frangipani, azalea

Task 1
canna lily, fritillary, ball moss,

10 classescanterbury bells, garden phlox, yellow iris,
balloon flower, cape flower, gaura, barbeton daisy

Task 2
carnation, gazania, bearded iris, bird of paradise,

10 classescautleya spicata, germanium, bee balm,
clematis, giant white arum lily, colt’s foot

Task 3
globe thistle, bishop of llandaff, great masterwort,

10 classesglobe flower, black-eyed susan, common dandelion,
grape hyacinth, blackberry lily, corn poppy, columbine

Task 4
blanket flower, cyclamen, hard-leaved pocket orchid,

10 classesbolero deep blue, daffodil, hibiscus, bougainvillea,
desert-rose, hippeastrum, bromelia

Task 5
english marigold, japanese anemone, king protea,

10 classesstemless gentian, lenten rose, petunia, sunflower,
lotus, peruvian lily, pincushion flower

Task 6
sweet pea, love in the mist, pink primrose,

10 classessweet william, magnolia, pink-yellow dahlia, sword lily,
mallow, poinsettia, thorn apple

Task 7
marigold, primula, tiger lily, mexican aster,

10 classesprince of wales feathers, toad lily, mexican petunia,
purple coneflower, tree mallow, monkshood

Task 8
red ginger, tree poppy, moon orchid, trumpet creeper,

10 classesrose, morning glory, ruby-lipped cattleya,
wallflower, orange dahlia, siam tulip

Task 9
water lily, osteospermum, silverbush, watercress,

12 classesoxeye daisy, snapdragon, wild pansy, spring crocus,
passion flower, spear thistle, windflower, pelargonium,

Table 6: Task to class mapping in the CL setting for CIFAR10

Task 0 airplane, automobile 2 classes
Task 1 bird, cat 2 classes
Task 2 deer, dog 2 classes
Task 3 frog, horse 2 classes
Task 4 ship, truck 2 classes
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Table 7: Task-wise Top-1 Accuracy(%) on Oxford-IIIT Pets dataset for our proposed approach
experimented on combination of Crossentropy loss, KL Divergence loss and memory fine-tuning .
"XEnt" and "KLDiv" stand for Crossentropy and KL Divergence losses respectively. "TARV" and
"MemFT" stand for task-agnostic resultant vector and few-shot fine-tuning on memory, respectively.
The best scores for the continual setting have been highlighted in bold.

Task XEnt loss XEnt + KLDiv loss
TARV TARV+MemFT TARV TARV+MemFT

0 62.94 83.97 72.29 85.64
1 91.31 95.57 76.32 93.87
2 55 91.17 57.67 92.67
3 85.67 93.52 64.51 84.64
4 90.45 95.31 77.39 90.45
5 75.43 83.71 82.43 85.43

Entire dataset 76.8 90.54 71.77 88.78

Table 8: Task-wise Top-1 Accuracy(%) on Flowers-102 dataset for our proposed approach experi-
mented on combination of Crossentropy loss, KL Divergence loss and memory fine-tuning . "XEnt"
and "KLDiv" stand for Crossentropy and KL Divergence losses respectively. "TARV" and "MemFT"
stand for task-agnostic resultant vector and few-shot fine-tuning on memory, respectively. The best
scores for the continual setting have been highlighted in bold.

Task XEnt loss XEnt + KLDiv loss
TARV TARV+MemFT TARV TARV+MemFT

0 27.64 92.86 24.53 98.14
1 27.95 86.61 25.17 95.15
2 7.83 93.21 14.6 99.22
3 21.45 98.21 17.96 97.86
4 32.32 92.13 28.87 93.92
5 41.49 97.72 39.09 96.76
6 49.48 98.45 36.79 98.45
7 9.09 94.46 5.09 97.64
8 49.72 97.22 30.81 98.99
9 29.50 90.65 25.75 95.54

Entire dataset 29.65 94.15 24.87 97.17

Table 9: Task-wise Top-1 Accuracy(%) on CIFAR10 dataset for our proposed approach experimented
on combination of Crossentropy loss, KL Divergence loss and memory fine-tuning . "XEnt" and
"KLDiv" stand for Crossentropy and KL Divergence losses respectively. "TARV" and "MemFT"
stand for task-agnostic resultant vector and few-shot fine-tuning on memory, respectively. The best
scores for the continual setting have been highlighted in bold.

Task XEnt loss XEnt + KLDiv loss
TARV TARV+MemFT TARV TARV+MemFT

0 92.3 97.35 14.9 93.9
1 84.9 90.65 96.55 94.05
2 95.8 95.35 28.35 81.6
3 96.1 97.6 26.1 95.85
4 97.3 97 12.15 97.05

Entire Dataset 93.28 95.59 35.61 92.49
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