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ABSTRACT

Researchers routinely study the neural algorithms of the brain by training data-
constrained recurrent neural networks (dARNNs) to reproduce observed neural ac-
tivity. However, whether the biological insights gained from these overparame-
terized dRNNs are actionable remains underexplored. In particular, it is unclear
which dRNN parameters are constrained by a given training set of neural trajecto-
ries. To bridge this gap, we focus on a simplified but experimentally relevant set-
ting of dRNN training, characterize the identifiable parameter subspaces there, and
report five key findings: (i) dRNNs contain vast unconstrained parameter regions
due to intrinsically low-dimensional training data; (ii) existing training methods
can mistakenly attribute importance to non-identifiable parameters; (iii) a gener-
alized blueprint explains the ability of practical estimators to operate exclusively
within identifiable parameter subspaces; (iv) despite parameter non-identifiability,
activity subspaces with preserved dynamics exist across all trained dRNNs; and
(v) targeted intervention experiments can optimally expand the identifiable param-
eter subspaces. Our results establish practical guidelines to overcome parameter
non-identifiability issues when training dRNN models in systems neuroscience.

1 INTRODUCTION

Recent advances in large-scale neural recording allow researchers to measure brain-wide activity
in animals (Kim & Schnitzer, [2022; Manley et al., [2024; Bounds & Adesnik, 2024} [Stringer et al.,
2019). Computational neuroscientists have developed methods to analyze these high-dimensional
recordings and gain mechanistic insights into neural computation (Schneider et al., 2023} |Gardner
et al., 2022} Mante et al.| 2013} [Sussillo & Barakl 2013} |Pandarinath et al., 2018). A key concep-
tual advance is that the brain represents information at the level of neural populations rather than
individual neurons (Saxena & Cunninghaml [2019;|Pouget et al., [2000; Kira et al., 2023} |Churchland
et al.l 2012} |Averbeck et al., [2006). With this view, researchers analyze dynamical properties of
population-activity patterns to understand how the brain solves tasks (Liu et al., [2024} Nair et al.,
2023 |Langdon et al., 2023} |Vyas et al.,|2020; | Khona & Fiete, [2022)), revealing, for instance, how a
line attractor in the hypothalamus might encode aggression in male mice (Vinograd et al.| 2024).

A prominent approach in systems neuroscience fits neural network models to reproduce recorded
neural activity. The trained models then serve as in silico analogues of the biological circuits (Perich
& Rajan, [2020). These models have been used to analyze the structure of population dynamics, in-
cluding latent variables underlying neural activity (Valente et al., 2022; |Nair et al., [2023)), flow fields
governing responses to perturbations (Kim et al., 2023} |Linderman et al.,2017), and communication
patterns across brain regions (Perich et al.| [2021}; |Perich & Rajan, 2020)). Critically, their predictions
are increasingly used to guide causal experiments (Walker et al., 2019; [Liu et al., 2024} |Vinograd
et al., [2024)), though their internal structure is not guaranteed to reflect ground truth mechanisms
(Das & Fietel 20205 (Qian et al.l |2024; Brinkman et al., 2018} |Goring et al., [2024). A key failure
mode arises when some model parameters are not constrained by the data distribution; this is the
problem of parameter identifiability, the focus of this work.

Models of neural activity. Models trained to reproduce neural activity have long promised in-
sight into biological and computational mechanisms, though their interpretability remains debated.
Current approaches in this space can be broadly placed into one of the three categories. First,
latent variable models are used to extract low-dimensional variables and their dynamics from high-
dimensional neural activities (Langdon & Engel, 2025; Dinc et al., |2025; |Schneider et al.l 2023;
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Dubreuil et al.,2022). The experimental relevance of the extracted latent structures, e.g., fixed-point
attractors, can be tested with perturbation experiments (Vinograd et al.,|2024). But, the exact causal
link between neural activities and latent variables is not always obvious.

Second, comparably smaller (100-1000s of neurons) recursive models are used to explicitly ac-
count for unobserved influences and make the most accurate predictions possible (Durstewitz et al.}
2023 |Schmidt et al.,[2019). Here, prediction is paramount. Third, simplified data-constrained RNN
(dRNN) models (Perich & Rajanl 2020) are used to explain observed neural dynamics (Dinc et al.,
2023), infer experimentally relevant quantities such as inter-area communication patterns (Perich
et al.,|2021), and test the plausibility of theoretical hypotheses directly on empirical datasets (Va-
lente et al.| 2022} [Finkelstein et al.| [2021). These studies use simple RNN models, which are less
powerful but more interpretable and nonetheless possess universal approximation properties (Beiran
et al.| 2021). Our work focuses on models of this third type.

Challenges of dRNNs. Recovering synaptic connectivity from observed dynamics is generally ill-
posed (Das & Fiete, 2020; Brinkman et al., [2018)), and functional properties, such as presumed
underlying attractors, can be unreliable when inferred from data alone (Qian et al.l 2024} |Goring
et al.l 2024). Even dRNNs with a one-to-one mapping between recorded and modeled neurons
(Perich & Rajan, [2020; [Perich et al., 2021} |Dinc et al., [2023)) remain poorly understood in terms
of identifiability. Nevertheless, RNNs and other predictive models have been used to uncover puta-
tive mechanistic features, including population-level gating mechanisms (Finkelstein et al., |2021)),
inter-area communication motifs (Perich & Rajan} 2020), and low-dimensional attractor dynamics
(Valente et al.;|2022)). In general, dRNNs trained on neural data can yield either genuine mechanistic
insights or misleading interpretations; and sometimes both.

Identifiability of dRNN parameters. Parameter symmetries have been characterized in both recur-
rent (Al-Falou & Trummer, 2003} Biswas & Fitzgerald, 2022)) and feedforward architectures (Bui
Thi Mai & Lampert, 2020; [Bona-Pellissier et al., 2023). In these cases, however, the primary con-
cern is to characterize the properties of parameters that support the input-output map or steady-state
responses, rather than constrain the network to reproduce the continuous neural-activity dynam-
ics. In contrast, linear dynamical systems enjoy remarkably clean identifiability properties: under
conditions of controllability (Kalman et al.,|{1960) and observability (Kalman,[1963)), system param-
eters can be uniquely recovered from input-output trajectories up to well-understood equivalences
(Grewal & Glover, 2003), which can guide explorations in nonlinear RNNs. An extended review,
including additional background on broader identifiability literature, is provided in Appendix [S1]

Contributions. We examine when and how dRNN parameters are constrained by their neural
datasets. We then address estimation from finite, noisy data, suggesting how estimation can be
engineered to confine parameters to their identifiable components. Finally, we derive two experi-
mental insights: (i) variation in some directions in parameter space yields the same predictions, but
not in others, and (ii) data collected with targeted experimental interventions can expand identifiable
parameter subspaces. Understanding when and why such divergence occurs is essential, as finding
mechanistic insight in unconstrained parameters can mislead analysis and waste experimental effort.

2 RESULTS

2.1 PARAMETER IDENTIFIABILITY IN DRNNS TRAINED AS DIGITAL TWINS

We consider a biologically motivated and interpretable class of RNNs characterized by:

71 (t) = —r(t) + (W™ r(t) + W™u(t) + €in(t)) + €conv (), (1)
where 7 € R is the time constant, r(t) € R” the neural activities and 7*(t) € RY their time
derivatives, u(t) € RV the inputs, W™ € RN*¥ the recurrent weights, W € RN*Nin the
input weights, €, (¢) and €cony(t) € R some unknown input and conversion noise terms, and ¢(-)
a monotonic nonlinearity. When necessary, one can absorb bias terms into W™ by fixing one input
to unity. The noise terms €.ony and €, also model observation errors jointly (see Methods). For

analysis, we define neural-input states as z(t) = [r(t), u(t)] € R™tt with corresponding parameter
matrix 6 = [Wree Win] ¢ RV *Neot and discretize dynamics with step size o« = At/.

This architecture follows a simplified abstraction where neurons compute a weighted sum of their
inputs and then apply a threshold function to determine their output (McCulloch & Pitts, [1943).
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Despite its simplicity, Eq. [T|can approximate arbitrary, smooth low-dimensional dynamical systems
(Dinc et al.} 2025; [Beiran et al., 2021) and continuous input-output mappings (Schifer & Zimmer-
mann, |2006) in the limit of an infinite number of neurons: N — oo. To build dRNNs, we record
neural activity from N neurons while model animals, i.e., “generators”, perform M behavioral tri-
als. Each trial m € {1,..., M} includes task inputs (like visual cues, conceptualized as u(t) in Eq.
and measured activities 7;(¢) from neurons i = 1,..., N overtime t = 1,... , 7™ 1In total, this

yields T' = Zf\f:l T™) many samples of neural activities. We then estimate the parameters 6 such
that the dRNN’s activities 7;(¢) match the recorded activities 7; ().

While these models make simplifying assumptions (ignoring unobserved neurons, imposing spe-
cific forms on neuronal dynamics), they can successfully reproduce neural activity and generate
hypotheses about population computations (Perich et al [2025). However, dRNNs are overparame-
terized and thus can make predictions using parameters unconstrained by data, which can produce
incorrect insights, potentially leading to predictions that waste experimental resources (Qian et al.,
2024; Das & Fietel [2020). To formally study this issue and identify its potential remedies, we
first define parameter identifiability in dRNNs constrained to reproduce a set of neural activities
Y =A{r(1),r(2),...,7(T)} given neural inputX ={z(0),...,z(T -1}

Definition 1 (Parameter identifiability in dRNNs). Given a set of samples {X;} C X of observed
quantities for i = 1,...,T, let Py = {P(Y;|X;;0),0 € O} be the family of probability distribu-
tions describing the predictions {Y;} C Y made by an dRNN model with parameter space ©. Then,
dRNN is identifiable if and only if, for all observed X;, the mapping 0 — P(Y;|X;; 0) is injective.

In practice, for a sample (z;,y;) € (X,)), the relationship y; ~ P (Y |z;; 0) is established using Eq.
In the noiseless case, each input = uniquely determines the output y following a Dirac distribution
centered at y = —r + ¢(0x) for x = [r,u]. In this case, a dRNN parameterized by 6 is identifiable
if and only if one unique # makes correct one-step predictions on all observed neural activities.
Finally, since this definition is concerned with the reconstruction process of entire neural trajectories,
it places a more stringent condition on the RNN parameters compared to earlier works studying low-
dimensional input-output mappings (Al-Falou & Trummer, 2003)) or steady-state neural responses
(Biswas & Fitzgerald, 2022) in RNNs.

2.2 NEURAL-INPUT SUBSPACES CONSTRAIN LINEAR COMBINATIONS OF PARAMETERS

Our focus on single-step predictions renders dRNNs equivalent to a generalized linear model, whose
parameters can be divided into identifiable and non-identifiable components:

Theorem 1 (Identifiability in dARNNs). Consider an RNN defined by Eq. |I| with parameters 0* €
RN>Nwt ywhere the noise random variables €, and €cony are independent, with the latter having
a non-vanishing characteristic function. Consider an observation matrix X € RT>*Nwt defining
the conditioning domain X and denote Py € RNwt*Niwot the projection matrix onto its row space.
Then, any discretized RNN parametrized by 0 such that:

0Py = 6* Py, 2)

gives the same conditional probability distribution on single-step predictions as the ground-truth
RNN. Then, 0* Px (out of all RNN parameters) is identifiable if and only if the parameter space
is restricted to Ox = {0 € RN*Nwt 9 = 0Py} (identification condition). In_particular, an
unrestricted 0* € RN*Neot js identifiable if and only if Py = I. (Proof in Appendix )

The proof follows from the multiplicative relationship between X and 6 in Eq. |1} which leads to
an equivalence class spanned by the projection matrix Px. Theorem [I|reflects the broader principle
that parameters are identifiable only up to the information content in the observed data (Rothenberg,
1971). The specific condition quantifying this content, i.e., Py, is well-studied in the context of
generalized linear models, regression, and dynamical systems (Rao et al) (1973} |[Ljung & Glad,
1994). Our key insight here is recognizing that data-constrained RNNs in neuroscience, despite their
nonlinear global dynamics, can be studied as part of this classical identifiability framework. Here, as
illustrated in Fig. [TA-B, linear subspaces spanned by the observed neural activities constrain linear
combinations of RNN parameters. In what follows, we refer to the subspace © y = {0 € RN *Neot .

"Here, to prevent cluttered symbols, we abuse the notation and use X’ to refer to both the training samples
and the conditioning domain they represent. These two are related, but not exactly the same, notions.
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Figure 1: Neural trajectory subspaces constrain linear combinations of RNN parameters. A
Observed neural trajectories O; and O are confined to linear subspaces and constrain linear com-
binations of the parameters. B Parameters can be decomposed into components constrained by the
observed data and an unconstrained, non-identifiable remainder. C-E We train dRNNs to replicate
trajectories of varying lengths, continuously sampled from noiseless, chaotic generator RNNs. C
Eigenvalues of the Gram matrix for each reconstruction instance. Each solid line corresponds to a
distinct seed and/or trajectory length. D To compute reconstruction accuracy, for each spectral com-
ponent of the Gram matrix, we first projected both the ground truth and estimated parameters onto
that component, and then computed the correlation between these projections. Solid lines: mean;
shaded regions: s.e.m. over 20 randomly initialized RNNs. Dashed lines: the spectral threshold
corresponding to eigenvalues < 10~!* averaged over 20 seeds. E Reconstruction accuracy of the
projected parameters versus the corresponding eigenvalues of the Gram matrix for varying regular-
ization strengths (). Parameters: see Appendix [S3}

6 = 6Py} as the identifiable parameter subspace, and 6* Py as the identifiable component of the
ground truth parameters §*. While Theorem [I] proves that an identifiable component exists, it does
not guarantee its practical estimation from finite samples, rather that the non-identifiable component
0*(I — Py) is unconstrained and cannot be recovered.

2.3 NEURAL-INPUT SUBSPACES CONSTRAIN LIMITED COMBINATIONS OF PARAMETERS
EVEN IN THE ABSENCE OF NOISE

We now illustrate Theorem [T|empirically using noiseless chaotic RNNs with ground-truth parame-
ters 6*. To do so, we train dRNNs by minimizing single-step prediction errors:

T
. 1
0 = argminyL(#), where: L(§) = T Z Lsingle (yi, ARNN(6, x;)). (3)

i=1

Here, dRNN(6, x;) is a single-step prediction. With an appropriate choice of loss function Lgingle

(e.g., a convex loss l, 2023)) for Figs. |lfand [2[), we expect OPy = 6* Py, where the

projection matrix is Py = X' (X X?)" X. Then, Gram matrix defined as:
1
Gy = TXTX c RNtotXNtot 4)

has the same rank as Py. Hence, its non-zero eigenvalue count gives dim © y, the dimensional-
ity of the restricted parameter subspace, and in the case of mean-centered observation matrix X, its
spectral decomposition corresponds to the principal component analysis regularly performed in neu-
ral datasets. We computed the Gram matrix eigenvalues for trajectories from the noiseless chaotic
RNNs (Fig. ). Short trajectories show rapid eigenvalue decay to machine precision (~ 10714)
within tens of spectral components, while longer trajectories sustain more non-zero eigenvalues.
Chaotic RNNs explore broader state space as training sample count 7" increases, which allows us
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to test Theorem [T] across diverse conditions. Components of the RNN parameters projected onto
spectral components with non-zero eigenvalues (but not others) were accurately reconstructed (Fig.
[ID), i.e., noiseless estimation process recovers only the identifiable components.

Without Theorem [I] one could attempt to explain why dRNNs fail to recover certain parameter
components with three hypotheses. First, one might argue that the training procedure is inadequate.
However, all dRNN models in Fig. [TIC-D, despite having parameters ¢ distinct from the ground
truth parameters 6*, achieved near-perfect training accuracy (single-step root mean square error of
<1077+ O(1078), see Fig. . Second, the estimation may lack proper regularization, causing
overfitting. However, enforcing weight regularization does not improve but actually worsens the
dimensions of parameters that can be estimated (Fig. [TJE). Finally, one might suspect that these
results are specific to these hyperparameters (e.g., network size). Yet these results generalize to
networks of varying sizes (Fig. [S2). Theorem [I] explains why all three hypotheses fail: the issue
is not the quality of the estimation but fundamental limits in parameter identifiability. Only by
collecting more diverse samples can we raise rank(G x) and expand the identifiable subspace O x.

2.4 PARAMETER ESTIMATION ACCURACY DROPS WITH THE GRAM MATRIX SPECTRUM
UNDER NOISY DYNAMICS

Without noise, an appropriate estimator recovers the identifiable part of the ground-truth parameters;
every sample can be matched exactly, and each one imposes a linear constraint on the parameters.
As a result, the loss in Eq. [3] has at least one global minimum with value zero, and any minimizer
0 must satisfy 0Py = 6*Py. In Fig. m the estimator was convex, so this was the unique global
minimum, and the identifiable component was fully recovered. Next, we show that Theorem [I] still
provides useful guarantees under noisy dynamics.

Usefulness of the Gram matrix in quantifying the sample size: Without knowing the noise distri-
bution or the specific estimator used to minimize Eq.[3] we rely on sample-size intuition: estimat-

ing parameters becomes easier with more samples. Theorem [I] gives the key idea. Each sample

. . . . T
x € RNt constrains a linear combination of parameters, 6* P, where P, = % The strength

of this constraint depends on how often x’s direction appears in the training set. The spectrum of
the Gram matrix in Eq. f] shows which directions are supported by many samples (Fig. [2A) and,
therefore, which linear combinations of parameters are best constrained under noisy dynamics.

To test this, we repeated the experiments from Fig. -E with i.i.d. noise €, ~ N'(0,02) added to
each neuron at each time point (see Eq.[T). Unlike the noiseless case (Fig. [T[C), all eigenvalues of
the Gram matrix were non-zero (Fig. ZB). However, this did not translate to successful parameter
estimation. The dRNNs reconstructed parameters along directions corresponding to the highest
eigenvalues, but not the lower ones (Fig. 2C-D), where the estimations exhibited inflated norms
(Fig. ). Relatedly, using 6Py (P 1is the projection operator to the top K Gram-matrix spectral
components) for different values of K to estimate 0* revealed that the optimal choice was K < N
across all tested noise levels (Fig. ). In other words, the sampled directions at the bottom of the
spectrum, i.e., directions underrepresented in the training data, corrupted parameter estimation.

Regularization can mitigate spurious estimation of non-identifiable components: Linear combina-
tions of parameters aligned with the lower spectrum of the Gram matrix were less constrained,
and their norms overestimated (Fig. [2JE). Weight regularization could in principle mitigate this. In
fact, [Dinc et al| (2023) has shown that Eq. [3] approximates regularized least-squares between X;
and ¢~1(Y;) near its global minimum when the loss is a weighted convex loss (see Eq. . In
this case, results from seminal works such as (Tikhonov & Arsenin, [1977) suggest that the esti-
mated parameters can be written as a summation over the spectrum of the Gram matrix follow-

ing 0 = Zf‘;l S\ (02)C;, where C; € RN*Nwt js some data-dependent rank-one contribution to

the estimated parameters § € RN*Nwt | 52 is the ith eigenvalue of the Gram matrix in Eq.
and Sy(z) = ;75 is a smooth thresholding function with properties Sx(z/A — o0) — 1 and
Sx(z = 0) = 0. In words, more regularization suppresses the reconstruction of the linear combina-
tion of parameters aligned with the lower Gram matrix spectrum (Figs. and [S3). Consequently,
regularization suppressed the noise-induced parameter inflation (Fig. [S4A-B). Finally, Fig. [S4C-D
illustrates an example dRNN training, in which the optimal regularization parameter can be chosen
via cross-validation.
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Figure 2: Noisy dynamics contracts the estimable subspaces residing on the Gram matrix spec-
trum. A The Gram matrix identifies directions most densely represented by the training data, with
the top eigendirection aligned with the direction with the highest sample density. B-F Parameter
reconstruction experiments as in Fig. -E, but with input noise €, ~ N(0,02,). For varying
noise levels, we show: B Eigenvalues of the Gram matrix. C Reconstruction accuracy of the pro-
jected parameters versus spectral components. D Scatter plot comparing reconstruction accuracy
against corresponding eigenvalues. E Frobenius norm of the projected parameters along spectral
components. Here, black dots correspond to the norm of the projected ground truth parameters. F
Accuracy of reconstructing 8* with 6Pk, in which Py is the projection matrix constructed using
the top K spectral components. Parameters: see Appendix [S3}

2.5 TRAINING METHODS CAN SPURIOUSLY ESTIMATE NON-IDENTIFIABLE PARAMETERS

In practice, dRNNs are trained using various algorithms. The dominant approach, FORCE, uses
modified recursive least-squares to update parameters (Sussillo & Abbott, |2009; Perich et al.,|2021),
which we now study under the lens of Theorem [I]

Regularization does not eliminate non-identifiable components in FORCE learning: FORCE starts
by randomly initializing JRNN weights, often at the edge of chaos (Perich et all [2021). Then, as
dRNN dynamics are inferred forward in time, weights are simultaneously updated using the pre-
diction error and an estimate of the least-squares Hessian, which is initialized as H := A~'T and
updated in an online manner with incoming data streams. A corresponds to a weight regularization
in the limit of large samples (Mahadi et al., 2022). To test whether this approach leads to final
results confined to identifiable components, we repeat the noise-free estimation from Fig. [T across
varying regularization strengths A. In contrast to CORNN, FORCE learning did not suppress the
non-identifiable components, even when \ was scaled to very large values that decreased the accu-
racy (Fig.[3BA-B). As learning converged to correct predictions within the top spectral components,
only identifiable parameters continued to receive updates, whereas projections onto the lowest spec-
tral components retained their norms (Fig. 3B, contrast FORCE vs. CORNN) and remained highly
correlated with their initialization (Fig. 3|C). Hence, FORCE learning not only underperformed com-
pared to CORNN, but also retained non-identifiable parameters from initializations that were not
constrained by the observed training samples.

Low-rank regularization can lead to incorrect estimation under partial observations: So far, we
assumed that all neurons in a network were observed and the network itself had high-dimensional
chaotic dynamics. Next, we study a realistic scenario, in which only a fraction of neurons are
observed and dynamics stem from a low-dimensional structure. To this end, we reanalyzed the
experiment of (Qian et all, 2024] Figure 5) (Figure [S3D-F), which has shown that FORCE fails
to recover the correct dRNN dynamics. Following recent advances (Valente et al.l 2022} [Dubreuil
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Figure 3: Common estimators lack built-in guarantees for staying within the identifiable sub-
space. A-C Tests of FORCE learning with chaotic RNNs. A Reconstruction accuracy of the pro-
jected parameters. Arrows distinguish results from dRNNs trained with FORCE ((Sussillo & Abbott,
2009; |Perich et al., 2021)) and CORNN ((Dinc et al., [2023))). B Frobenius norm of the parameters
projected along the spectral components. The boxed region highlights the convergence of FORCE’s
Frobenius norms to the initialization values (horizontal dashed black line). C Pearson correlations
between the projections of the initial and FORCE-trained parameters. For regularization levels re-
sulting in learning, FORCE does not update the majority of parameters beyond their initial values.
D-F We reanalyze the experiment from (Qian et al., [2024, Figure 5b), where a generator RNN with
only two non-zero (oscillatory, decaying) eigenvalues was reconstructed with a dRNN under partial
observation. D Top two principal component projections of neural activity for 15 distinct initial-
izations across ground truth generator RNN, rank-2 dRNN, and full-rank dRNN. ¢5 regularization
enabled recovery of the decaying spiral. E Corresponding eigenvalues of the generator RNN and
the reconstructed dRNNs. F Flow of the two largest magnitude eigenvalues as a function of regular-
ization strength. Parameters: see Appendix [S3}

et al.,[2022; Beiran et al., 2021)), we next trained dRNNs by minimizing the /5 loss function defined
on the single step prediction errors, with and without rank constraints.

When dRNNs were trained with negligible weight regularization (A ~ 107!3), both low-rank and
full-rank dRNNs spuriously generated limit cycles (Fig. BD). Examining the eigenvalues confirmed
this failure (Fig. BE): neither model matched the ground truth in this regime consistent with the
observations of (Qian et al.| [2024)). Nevertheless, introducing an /5 penalty on the weights corrected
this behavior, allowing both low-rank and full-rank models to recover the spiraling dynamics. Track-
ing the two dominant eigenvalues under increasing regularization strength (Fig. [3JF) further revealed
that low-rank (but not full-rank) dRNNSs rapidly suppressed the oscillatory modes by collapsing them
into a non-oscillatory form.

These results demonstrate that low-rank constraints alone do not resolve incorrect estimation and
can bias the learned dynamics toward oversimplified solutions. (See Fig. [S5]for another experiment,
where observing about 10% of all neurons could mitigate the identifiability concerns.) A corollary of
Theorem [I] presented in Appendix [S2.1.5| suggests the identifiability issues in dRNNs persist under
low-rank assumptions. While a more detailed theoretical study remains an important direction for
future work, the present findings highlight that identifiability limitations imposed by the (lack of)
richness of the dataset cannot be circumvented simply by enforcing low-rank structure on the dRNN,
and weight regularization is a necessary component despite its omission from earlier case studies
(Qi1an et al., [2024).

2.6 A BLUEPRINT FOR TRAINING ONLY THE IDENTIFIABLE PARAMETERS IN DRNNS

So far, we studied three common estimators used for dRNN training. We observed that FORCE
training, the most commonly used method, introduced spurious parameters to the learned RNNs,
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whereas CORNN and low-rank RNN training both required weight regularization to succeed in sup-
pressing the non-identifiable components in estimated parameters. Now, we combine these insights
into a blueprint for identifiable training of dRNNs:

Theorem 2 (Blueprint for estimating identifiable dRNN parameters). Consider a dRNN following
Eq. whose parameters € RN*Niwt js estimated by gradient descent of a differentiable loss L(0).
Let X = Zfi:l VTo,uvT be the singular value decomposition of the observation matrix
X with rank(X) = R, u™ € RT, and v € RNtot, Define Py = 25:1 T e the
projection matrix to the top K spectral components of the Gram matrix. Assume that the gradient
satisfies [VL(0)v)], = O(a™) for every entrya = 1,...,N, modesr = 1,...,K, any 6 € O,
and some positive integer n. If 0©8) P = 0(%) at iteration s of the learning, then for any X satisfying
A> o2 11, and for any step size o > 0, the update

1 -1
66+ = 99 — aVL(0) (TX X+ AI) : )

is a descent direction that satisfies 011 P = 9+ 4 O(0%_1/N). (Proof in Appendix|S2.2.2})

Theorem [2| explains and generalizes our observations above. CORNN’s learning rule has the form
in Eq. 5] with A playing the role of weight regularization. FORCE updates can be written as Eq. [5]in
the large 7" limit, but 6(°) Px = (9 condition is not satisfied. For a general estimator, Eq. [5|simply
suggests parameters updates aligned with the top K components chosen effectively by A.

Building on this construction, we test how different estimators behave in practice when trained on
finite, noisy datasets. These datasets are generated using RNNSs trained on various behavioral tasks
(refer to Appendix [S2.4] for full methodological details). Figure [S6] compares four approaches:
CORNN, second-order cross-entropy minimization, first-order cross-entropy (Adam), and a stan-
dard /5 loss. Each method minimizes single-step prediction errors, but differs in optimization and
loss formulation. All algorithms, when regularized properly, predicted correctly the linear combina-
tions of parameters aligned with the top spectrum of the Gram matrix. Fig. [S7|studies the effects of
spatiotemporally correlated noise, whereas Fig. [S§|studies the effect of mismatches in time constants
7 (a form of model mismatch). In both cases, more trials are needed for accurate estimation.

2.7 IDENTIFIABLE COMPONENTS INDUCE PRESERVED DYNAMICS ACROSS DRNNS

The next theorem formalizes the notion that parameter differences confined to the non-identifiable
directions make the same dynamics predictions in some neural activity subspace (Fig. @A):

Theorem 3 (Preserved dynamics in identifiable neural activity subspaces). Let Sia(R) =
span{vy, ..., vR} be the identifiable neural activity subspace spanned by the top R spectral eigen-
vectors of the Gram matrix (or Siq in short), and assume that for a noiseless, task-performing RNN
with dynamics in Eq. |l| the activities satisfy r[t] € Sia(R) for all t. Let 0 be identifiable with
OP.q = 0, where Pq projects onto Siq. Then, any parameterization 0 = 0 + A6 with AOP4q = 0
but A0 # 0 yields identical dynamics v[t] for all r[t] € Siq, but not necessarily when r[t] ¢ Siq.
(Proof in Appendix )

Practically, this theorem suggests that to constrain dynamics in a K -dimensional activity-input sub-
space, only K (noiseless) training samples are sufficient. We illustrate this on a simple RNN with
two neurons implementing a limit cycle in Fig. @B. Here, only two (moderately noisy) samples were
sufficient to estimate the dynamics predictions correctly on the full two-dimensional activity plane.

A case study of low-dimensional parameter subspaces driving RNN dynamics: Another important
and widely discussed aspect of task-trained RNNs is solution degeneracy, referring to the existence
of many different parameter configurations that achieve similar task performance (Huang et al.,
2025; |Cao & Yamins| [2024)). Such degeneracy can arise from distinct computational strategies
that solve the same task in qualitatively different ways (Kurtkaya et al., [ 2025), which is fundamen-
tally different from a potential redundancy created by non-identifiable components of RNNs that
effectively use the same solution, shared by the same identifiable parameters. The latter possibility
highlights the need to distinguish which components of the parameter space are truly task-relevant
and identifiable. With the assumption that neural activities are dominated by task-relevant dynam-
ics as RNNs are solving behavioral tasks, Theorem (3| suggests one powerful tool to recover these
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Figure 4: Top spectral components encode parameter subspaces driving preserved dynamics.
A An illustration of Theorem 3} the linear subspace spanned by the training samples defines the pre-
served subspaces where dRNNs make the same predictions of neural dynamics. B We reconstructed
activities of an RNN (N = 2 neurons) implementing a limit cycle. C-D We next analyzed generator
RNNs performing 3-bit flip flop tasks. C We reconstructed the weight matrix in each dRNN us-
ing the top K singular components and computed the corresponding state estimation accuracy from
the dRNN output. Plots show the output accuracies as a function of full (left) or close-up (right)
spectrum. D Same as in C, but for projections onto top K spectral components of a generalized
task-driven Gram matrix. Parameters: see

parameters: Design a task-driven Gram matrix by collecting RNN activities across large number
(e.g., thousands) of trials, whose top eigenvectors would recover task-driven dynamics if they are
low-dimensional. We test this idea in Fig. fiC-D with RNNs trained to perform 3-bit flip flop tasks,
which are known to learn low-dimensional dynamics (Sussillo & Barak, |2013). Here, the network
receives three separate binary input streams, each of which can flip or hold the value of an indepen-
dent memory bit. This requires the RNN to maintain one of 23 = 8 possible internal states. The
networks state is output through three linear readouts.

We found that singular value decomposition did not lead to a low-dimensional parameter set respon-
sible for the task-training (Fig. f|C). Hence, learned parameters were in no ways low-dimensional
by nature. However, parameters projected to the top ~ 10-20 spectral components subserved the
dynamics responsible for task operation. These parameters were also accurately reconstructed by
dRNN' s trained on the neural activities of the generator RNNs (Figs. [S9), which also accurately
solved the task (Fig. 4|C-D). This suggests that task-relevant information in these networks was em-
bedded in a restricted subset of spectral modes rather than being distributed across all parameters,
and this subset was possible to extract from preserved dynamics across trials following Theorem 3]

2.8 REVEALING NON-IDENTIFIABLE COMPONENTS WITH TARGETED INTERVENTIONS

Parameters whose dynamical predictions are not represented in the training data cannot be recovered.
We quantify this for dRNN training in terms of the zero-eigenvalue modes of the Gram matrix. Their
resolution is only achievable with deliberate experimental interventions, which we next illustrate.

Intervention experiment: We focus on dRNNs trained to replicate the neural activities of genera-
tor RNNs trained on the 3-bit flip-flop task (Fig. 3). First, we use the generator RNNs to create
an observational dataset over 5 distinct trials and compute the Gram matrix. We then construct
an intervention dataset by sampling new training samples in four ways: (i) additional trials of the
RNN under normal operation (blue in Fig.[3), (ii) projections restricted to the bottom spectral eigen-
vectors (green), (iii) projections restricted to the top spectral eigenvectors (orange), or (iv) random
projections along the spectral components of the Gram matrix (red). Finally, we train dRNNs on the
different combined datasets, and analyze reconstruction accuracies of the RNN parameters.

Intervention results showcase the empirical utility of the Gram matrix spectrum: Intervention strat-
egy determines the performance of the dRNNs (Fig. 5]A-B). When 500 intervention samples are
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Figure 5: Targeted interventions can expand the non-identifiable parameters in dRNNs. We
trained generator RNNs to perform the 3-bit flip-flop task and collected training samples. A Recon-
struction accuracy of 6 as a function of the number of new (intervention or extra) samples added to
the training dataset. B State estimation accuracy, measured as the agreement between target flip-flop
states and those predicted by dRNN outputs. In A-B, solid lines indicate the mean and shaded re-
gions the s.d. across 20 RNNs. C Example outputs from trained RNNs for a single trial spanning
100 time points; dashed black lines are the ideal outputs. Parameters: Same as in Fig. [3|C-D. Inter-
vention strategies are color-coded and described in the main text.

available, all three Gram-matrix-based strategies (but not the one involving extra observational sam-
ples; blue in Fig.[5]A) achieve near-perfect accuracies (Fig. [ST0). Interventions along the top eigen-
vectors provided little to no benefit (“worst-case”), whereas selecting the bottom eigenvectors (“op-
timal”) accelerated recovery relative to random choices. Increasing the number of interventions
increasingly aligned dRNN outputs with the ground truth flip-flop states (Fig. [5|C). Even though
the optimal strategy (green) does not involve samples encountered during task-relevant operation,
dRNNSs trained with these samples out-performed those trained on more task-relevant activities.

3 DISCUSSION AND CONCLUSION

In this work, we presented a set of theoretical results for assessing the reliability of dRNNs trained
on observed neural trajectories. By connecting parameter identifiability to dynamical predictions
made by dRNNs, we provide both theoretical guarantees and practical guidance for using these
models as digital twins of neural circuits (Perich & Rajan, [2020).

Each theorem formalizes a key insight: Theorem [1|suggests that non-identifiable components can-
not be resolved from limited data. Theorem [2] quantifies the differences between existing training
methods and opens up new ways to design new estimators. Theorem 3 delineates boundaries where
dynamical predictions can be trusted, and hints at why dRNNs in Eq. |I| have been empirically
powerful: Their training is data-efficient, with each noiseless (or few noisy) sample constraining
dynamics on the whole subspace. These insights led to an intervention strategy for enriching the
training datasets, which opens avenues for experimental designs that systematically expand reliable
prediction spaces, advancing our understanding of neural computation.

The practical value of parameter identifiability emerges when considering experimental valida-
tion costs. Suppose a dRNN predicts two attractors underlying different behaviors, each requiring
months of single-cell optogenetics to test (Liu et al.|[2024). Which should be prioritized? Our results
provide a simple rule: trust predictions in subspaces with larger spectral components. If an attractor
exists in Siq (R) for small R and survives cross-validated regularization, it is presumably constrained
by observed data (assuming Eq. [T reasonably approximates neuronal processes). While empirical
validation remains the gold standard, our theorems suggest an internally consistent method to rule
out experiments based on unconstrained predictions.

Broadly, several empirical concerns affect data-driven models, and dRNNs are no exception. We
showed that nonstandard noise and model mismatches demand more trials, while recording more
neurons is needed to minimize biases from unobserved influences (Brinkman et al., 2018)). These
concerns have led to rather pessimistic theoretical assessments of the utility of data-constrained mod-
els (Das & Fietel 2020; Qian et al., [2024). However, recent technological (Kim & Schnitzer, 2022;
Manley et al.| [2024) and computational (Linderman et al., |2017) advances have enabled success-
ful causal predictions (Walker et al., 2019; [Liu et al.l |2024). Thus, these challenges are becoming
surmountable. Our work suggests that one just needs to understand which predictions to trust.

10
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LIMITATIONS

While our work establishes a general theoretical framework for identifiability in dynamical recurrent
neural networks, several limitations remain that should be acknowledged and that point to concrete
directions for future research.

First, there is likely a simple but important connection to Takens’ theorem in dynamical systems
theory (Takens, 2006), which posits that the attractor of a dynamical system can be reconstructed
from time-delay embeddings of a generic observable. We did not explore this direction here, but it
is plausible that introducing delayed embeddings into our framework could further strengthen the
identifiability results and provide a complementary perspective to our Gram-based analysis.

Second, while we studied low-rank RNNs and influences of unobserved neurons, these analyses
were intended primarily to complement our central results on dRNNs. A more complete theory in
these domains remains to be developed and represent natural and important extensions of our work.

Third, following established practice in the field (Das & Fietel [2020; Qian et al., 2024} and for clarity
of presentation, our paper is intentionally limited to theory and controlled synthetic experiments.
While dRNNs have been applied to real neural recordings many times (Perich et al., 2021; |Valente
et al., 2022)), we chose not to pursue such applications here. Beyond the practical issue of dataset
access and additional complications associated with (somewhat nonstandard (Rajan et al., 2016}
Perich et al., 2021; |Valente et al.l 2022)) preprocessing of neural activities, we believe little is to
be gained scientifically from training one more RNN on these datasets without causal perturbations
that can only be performed in experimental settings.

Finally, consistent with this view, Theorems |I|and E] are best illustrated in simulated datasets where
the ground truth is known. On the other hand, two key empirical applications of our theory remain
practically untested and will likely remain so until single-cell level interventions become mainstream
and instant. Testing Theorem [3]and the proposed interventions requires not just observational data
but direct empirical evaluations at the level of individual neurons, which may take years to develop
(Vinograd et al., 2024; [Liu et al., | 2024)). We hope that future work will use our framework to rapidly
discard inconsistent hypotheses (e.g., perturbation predictions that result from non-identifiable com-
ponents) and to design closed-loop intervention experiments that directly test Theorem [3] Such
experiments would provide a stringent evaluation of our theory and clarify how identifiability con-
straints limit inference from real neural recordings.

Finally, we acknowledge the use of large language models for copyediting and grammar corrections,
as well as simplification of jargon in several places of our writing.
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S1 EXTENDED RELATED WORKS

In the main text, we summarized prior work on RNNs as models of neural activity, as well as the
general identifiability of RNNs and nonlinear systems.

Dynamical models of neural activity. A central premise of computational neuroscience is that
computational models that reproduce neural activity will provide biological insight. However, re-
covering synaptic connectivity or precise mechanisms from dynamics alone is generally ill-posed
(Das & Fiete, |2020; [Brinkman et al.,2018)), and even functional properties such as attractors can be
unreliable when inferred from observational data alone (Qian et al., 2024; |Goring et al., [2024)).

Despite these limitations, predictive models have generated potentially meaningful results. RNNs
trained on neural trajectories have been shown to capture features such as population-level gat-
ing (Finkelstein et al.l 2021), inter-area communication motifs (Perich & Rajan, 2020), and low-
dimensional attractor dynamics (Valente et al.,2022)). Several of these predictions have been refined
and confirmed through causal perturbations (Daie et al., 20215 |Liu et al.,[2024};Vinograd et al.,[2024;
Walker et al.| |2019), demonstrating that data-driven models can sometimes generate testable mech-
anistic hypotheses. In an effort to preserve biological interpretability, some studies have trained
“data-constrained” RNNs with a one-to-one mapping between model units and recorded neurons
(Perich & Rajan, 2020 [Perich et all, 2021; Dinc et al 2023). This approach aims to avoid con-
founds introduced by hidden units and to estimate functional connectivity directly. However, even
in these restricted settings, little has been studied about the identifiability of parameters, leaving
open the question of whether different underlying models can equally explain the same data.

Identifiability in nonlinear systems. The broader control and systems literature provides a foun-
dation for understanding when models can be uniquely determined from observed behavior. Clas-
sical realization theory shows that any finite-dimensional system’s external behavior can be repre-
sented by a minimal, unique system if it is both controllable and observable (Sussmann, [1976)). In
this framework, two systems are indistinguishable if they generate the same outputs for all inputs,
and minimal models are live in the quotienting the parameter space of the original model with this
equivalence relation. Complementary results come from dynamical systems theory. Takens’ em-
bedding theorem (Takens) 2006) guarantees that, given a sufficiently large embedding dimension,
the dynamics of a system can be reconstructed from time-delayed measurements of even a sin-
gle observable (Schmid, 2010). This provides theoretical justification for reconstructing dynamics
from partial observations, as is common in neuroscience. Yet in practice, neural data often violate
these assumptions. Activations are highly redundant and typically lie in a low-dimensional subspace
(Dubreuil et al., |2020; [Perich et al., [2025), undermining identifiability.

Identifiability of dynamical systems. The question of whether models are uniquely determined by
data, i.e., whether they are identifiable, has long been studied in control theory. Classical realization
theory results show that any external behavior generated by a finite-dimensional system can be rep-
resented by a “minimal” and unique system, which must be controllable and observable (Sussmann,
1976). Such a minimal model can often be found by restricting the parameters to the quotient space
of the original model space and the equivalence relation of indistinguishability, or, equivalently,
by reducing the state space to the manifold occupied by the lower-dimensional underlying system
(Crouchl |[1979; Brockett, 2005). For neural networks specifically, identifiability has been examined
under specific conditions (Sussmann, 1992} [Poznyak et al.l 2001} |/Albertini & Sontag, [1993)). This
analysis excluded “degenerate situations”, such as those with parameter dependencies, nonobserv-
ability, and underlying low-dimensionality—all of which occur in real-world neural data (Dubreuil
et al [2020; [Perich et al., [2025). Recent studies have highlighted how RNN dynamics are only
partially constrained by partial input—output observations (Rajan et al., [2010; Kepple et al., 2022),
leading to parameter ambiguity. Such studies have proposed frameworks to measure, understand,
and intervene on solution degeneracy in task-trained RNNs (Huang et al., [2025).

Identifiability in neural networks. Identifiability in neural networks has been studied for
decades, though usually under restrictive assumptions. For recurrent architectures with linear or
smooth nonlinear activations (such as tanh), input—output mappings can constrain parameters up to
permutation symmetries, except in degenerate situations caused by dependencies, nonobservability,
or noncontrollability (Sussmann, |1992; |Poznyak et al., 2001; |Albertini & Sontag, |1993} |Albertini
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et al} |1994; Sontag| 2013)). Real neural data, however, are precisely such degenerate cases: redun-
dancy and low dimensionality leave entire parameter directions unconstrained.

Recent work has formalized these issues in both recurrent and feedforward networks. For example,
distinct connectivity matrices in piecewise-linear RNNs can produce identical steady states (Biswas
& Fitzgerald, [2022), and equivalence classes of minimal, identifiable systems have been defined for
restricted classes of RNNs (Al-Falou & Trummer, 2003). Parallel efforts have analyzed parameter
symmetries in feedforward networks, especially with ReLU nonlinearities (Bui Thi Mai & Lampert,
2020; \Bona-Pellissier et al., [2023)).

Solution degeneracy in task-trained RNNs. Within neuroscience and machine learning, non-
identifiability is often discussed under the broader notion of solution degeneracy. Input-driven con-
straints shape RNN dynamics, but leave ambiguity (Rajan et al., 2010), and partial observability
creates challenges for learning and inference (Kepple et al., [2022). More recently, (Huang et al.,
2025) introduced a framework to quantify and control solution degeneracy in task-trained RNNs,
showing that variability across solutions depends on model capacity and task complexity. Their
results highlight the need for interventions to disambiguate latent mechanisms, as multiple parame-
terizations can fit the same task, using different mechanisms.

S2 METHODS

S2.1 A FRAMEWORK FOR ASSESSING PARAMETER IDENTIFIABILITY

In dynamical system models, the prediction depends not only on the parameters 6, but also on the
current state of the system and any external inputs. Moreover, unlike the traditional estimation
problem, changing dynamical system parameters using data from a particular time point affects the
future states, i.e., output of one estimation becomes input of another one. Here, we first formally
define a notion of identifiability concerning the parameters of dynamical systems and then present
our main result on dRNNs defined by Eq. |1} Then, we conclude with extensions to another common
RNN architecture and low-rank RNNs, and considerations of partial observations.

S2.1.1 CONDITIONAL IDENTIFIABILITY IN DYNAMICAL SYSTEM MODELS

Intuitively, identifiability is about whether you can uniquely determine the parameters of a model
from the observed data. If a model is identifiable, then, given enough data, there is only one set
of parameters that could produce that data. If a model is non-identifiable, then there are multiple
different sets of parameters that could produce the same observations. We start by citing a formal
definition of this problem:

Definition S1 (Identifiability (Lehmann & Casella, [2006)). Let P = {Py : 0 € ©} be a model, or
Sfamily of parameterized probability distributions, with parameter space ©. P is identifiable if and
only if the mapping 0 — Py is injective, i.e., if

Py, =Py, = 61=06> forallb,,0,¢€ 0O, (S1)

where = means equal in distribution.

Identifiability of 6 can often be achieved under certain “identification conditions.” For instance,
for a family of distributions P that satisfy the condition P9£P_9£Hg|, one may enforce 6 > 0
as an identification condition. In Definition [ST] the probability distribution P is defined over the
observation space ), from which we often collect samples {Y7,...,Yr} with ¥; € Y fori =
1,...,T.Y; can be scalar or a vector (or something else), depending on the problem of interest. For
our purposes, Y; € R is the vector containing the neural activities corresponding to a particular
time ¢t = iAt, where At is a time step used for discretization.

A key distinction with dynamical system models is that the parameter §* that generates a neural
trajectory requires the observation of an auxiliary variable, X; € RNt where Nyoy = N + Niy.
Moreover, while one could consider the pair, (X;,Y;) € X x Y as a viable sample, the target value
Y; constitutes part of the auxiliary variable X;; by design. To see why, see Eq. [T] and recall that
x(t) is defined as the concatenated vector [r(t), u(t)], whereas y(t) corresponds to (¢t + At). Thus,
we cannot directly apply Definition [ST|to our problem of interest.
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The solution to this dilemma comes from two distinct observations. One, our goal is to find a set
of parameters such that all # make the same predictions on the whole neural trajectory, not just at
the end where RNN outputs are traditionally taken from. Thus, we enforce that the model correctly
predicts all time steps accurately, in which scenario the data generation process can be written as a
single-step prediction error on observed neural-inputs X; € X":

Yi ~ P(Yi|Xi;0), (82)

where we observe the pairs (X;,Y;) fori = 1,...,T. Here, P(Y;|X;;0) refers to the conditional
distribution of Y; given X;, parameterized by the deterministic parameter values 6. As a second
observation, Definition E] can be extended to a case where Py is replaced with this conditional
distribution:

Definition S2 (Conditional Identifiability). Let P = {P(:|-;0) : 0 € ©} be a statistical model
with parameter space ©. Let the ground truth data generation process follow the distribution Y ~
P(Y|X;0%) for some unknown 6%, where (X,Y) € X x Y refers to the observable samples. We
say that P is conditionally identifiable if the mapping 0 — P(:|-;0) is one-to-one for all possible
values of X :

V(X,Y)eX xY PYI|X;00)=P(Y|X;03) = 61 =0s. (S3)

The key distinction of this definition is that we do not enforce X, Y to be observable from the full
Euclidean space. Hence, we replace the joint distribution in Eq. [ST|with a conditional one in Eq. [S3}
which then can be practically operationalized using the observed samples. Specifically, in Definition
[I] we use a practical version of Definition[S2|for studying parameter identifiability in dRNNs, where
V(X,Y) € X x Y is replaced with (X, Y;) for the samples i = 1,...,T.

Before we conclude this formal discussion, we briefly note that in the statistics literature, condi-
tional identifiability sometimes refers to identifiability under additional identification conditions. In
contrast, here we use the term to denote identifiability with respect to conditional probability distri-
butions.

S2.1.2 MODELING NOISY NEURAL ACTIVITIES WITH DRNNS

In the main text, when introducing the dRNNs in Eq. we omitted a third type of noise: the
observation noise. Here, we show that this was without a loss of generality.

In a general case, one might (correctly) argue that a realistic experimental setup should include
an observation noise term. Specifically, the neural trajectories that one aims to reproduce may be
incorrectly observed, i.e., instead of the true r(¢), one might observe a noisy version 7(¢) such that

7(t) = r(t) + o(t), (S4)

where o (t) is some unknown observation error term associated with the observation. Fortunately,
for the dRNN's in Eq. [T} there is no reason to explicitly incorporate this observation noise into the
data generation process as it is already accounted by other two noise terms. We formalize this with
a remark:

Remark (Observation error). Assume that r(t) is observed incorrectly following Eq. Assume
that r(t) follows Eq. |I| with the pair {€in, €conv }. Then, 7(t) evolves via Eq. |I| corrupted by the
modified terms €cony = €conv + 70(t) + o(t) and &, = €, — W*o(t).

Proof. The proof follows by taking the derivative 77(t) and plugging 7(¢) from Eq. into the right
hand side:
Ti(t) = 71(t) + 176 (t) = —r(t) + G(W™r(t) + WPu(t) + em(t)) + €conv (t) + 76 (1),
= =7 (t) + QW T (t) + W™u(t) + €in(t) — W0 (1)) + €cony () + o (t) + 75 (t).
Then, defining €cony = €cony + 76 (t) + o(t) and &, = €, — W™°o(t) concludes the proof. O

S5)

Intuitively, even if the observed firing rates 7(¢) differ slightly from the ground truth r(¢), they
follow the same time evolution equations up to a re-definition of the noise terms. Thus, as long as
the empirical estimation procedure for 6 under the data generation model given in Eq. [T]is robust to
input and conversion noise terms, no explicit modeling of the observation noise is necessary.
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S2.1.3 PROOF OF THEOREM I} IDENTIFIABILITY IN DRNNS

Before proving Theorem [T} we first start with a simple yet powerful lemma:

Lemma S1. Consider a data generation model:
d~ QS(Z + 6in) + €conv, (86)

where z is deterministic and €, /cony are random variables. Assume @(+) is a strictly increasing
monotonic non-linearity, and let the noise random variables €, and €.ony be independent, with
the latter having a non-vanishing characteristic function. Then, P(d|z1) = P(d|z2) if and only if
zZ1 = Z2.

Proof. The reverse direction of the if and only if statement is trivial, since z; = 29 trivially implies
P(y|z1) = P(y|z2). For the forward direction, assuming P(y|z1) = P(y|z2), we need to show that
z1 = z9. We start by recalling that the characteristic function of a random variable X is defined
as px (w) = E[e™X] for w € R. Since the probability distributions are equal, their characteristic
functions are equal. Therefore:

Pyl (W) = @y, (W) Yw ER (87)
Given the data generation model, for any fixed z:
Pyl (W) = B[V 2] = E[e™Fam)tecon)] (S8)
Since €;;, and €copy are independent:
Pyl () = E[e™CETam)] Eletceon] = B[P Ctan)] o (w) (S9)
Therefore, from our assumption:
Ele?Grta)] o, (w) = B g (w) (S10)
Since ¢, (w) is non-vanishing (i.e., ¢, . (w) # 0 for all w), we can divide both sides:
E[ewd(z1ten)] = Eleiwd(zFem)] vy, (S11)
This equality of characteristic functions implies equality of distributions:
¢(21 + €n)=d(22 + €in) (S12)
Since ¢(+) is strictly increasing and thus injective, we have:
21 + €n=22 + €in (S13)

This means the random variables z; + €, and z5 + €;, have the same distribution. Since z; and
zo are deterministic constants and e, is the same random variable in both expressions, this is only
possible if z; = z5. Therefore, P(y|z1) = P(y|z2) implies z; = 22, completing the proof. O

We now prove our main Theorem [T} which formalizes the parameter identifiability in dRNNs:

Theorem (Restatement of Theorem [I). Consider an RNN defined by Eq. [I|with parameters 6* &
RN *Neot ywhere the noise random variables €, and €copy are independent, with the latter having
a non-vanishing characteristic function. Consider an observation matrix X € RT>*Ntot defining
the domain X and denote Py € RNw:XNiwot the projection matrix onto its row space. Then, any
discretized RNN parametrized by 0 such that:

0Py = 0" Px, (S14)

gives the same conditional probability distribution on single-step predictions as the ground-truth
RNN and vice versa. Then, 0* Py (out of all RNN parameters) is identifiable if and only if the
parameter space is restricted to Oy = {0 € RN*Nwe . 9 = 0Py} (identification condition). In
particular, an unrestricted 0* € RN *Newt s identifiable if and only if Py = I.
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Proof. The discretized RNN follows the set of equations 7,41 = f(r) + ¢(0x; + €int) + €conv.t
where z; = [r,us]?. As a parallel to Lemma define d; = ry+1 — f(r¢), which is an observed
quantity.

First, we will prove that 6 Py = 6* Py if and only if both parameters give identical conditional
distributions on observable states. The forward direction is trivial. If Py = 6* Py, then for any
x € row(X), we have x = Pyx, so 0z = OPyx = 0*Pyx = 0*z. Since the deterministic com-
ponents are equal, Lemma ensures Py(d¢|x:) = Py« (d¢|z;). For the reverse direction, suppose
Py(d¢|xs) = Py« (di|xt) for all 2, € row(X). By Lemma this implies Ox; = 6*z; for all such
x;. This is equivalent to 6 Py = 0% Py.

Second, we prove that 8* Py is identifiable if and only if the parameter space is restricted to O y =
{6 : 8 = 0Px}. For the forward direction, suppose 6* Py is identifiable without this restriction. Pick
any Af # 0 with A0 Py = 0. Then 6* Py + A0 has the same projection: (6* Py +Af)Py = 0* Py.
By the first statement above, 6* Py + A@ gives the same conditional distributions as 0* Py. But
0*Px + A6 # 0* Py, contradicting identifiability unless A@ = 0 for any APy = 0. This
condition defines the restricted © x. Now, consider the reverse direction. Suppose that 6; € Oy
gives the same distributions as 5. By the first statement above, 01 Py = 65 Py, which (by the
restriction of the parameter subspace) implies #; = 05, i.e., the parameter is unique. By inspection,
0* Py gives the correct conditional distributions and is part of the restricted parameter family, hence
01 =0y = 0" Py.

The final statement is a special case of the second statement proven above, concluding the proof. [

S2.1.4 GENERALIZING TO A COMMON RNN ARCHITECTURE

Theorem can be generalized to another commonly studied RNN architecture (Valente et al., 2022;
Mastrogiuseppe & Ostojic, 2018 [Sussillo & Abbott, 2009). First, we establish a direct link between
these two architectures:

Remark. Consider Eq. |l| without an input noise. After defining a coding variable as z(t) =
Wreer(t) + Witu(t) and re-defining the (pre-defined) inputs as v(t) = u(t) + Tu(t), Eq. trans-
forms into:

T(t) = —2(t) + Wp(2(t)) + Who(t) + ¢, (S15)

where ¢ = Wecony constitutes the (transformed) noise term.

Proof. This remark has already been proven and published (Miller & Fumarolal, |2012). Here, we
simply retrace the arguments. Introducing z(t) = W*°r(t) + W™u(t) into Eq. |l|and multiplying
both sides with W<€ leads to:

d
e

T (Wreer(t)) = =W™r(t) + Wp(2(t)) + W conv (t). (S16)
We can rewrite the left hand side as:
d d . . .
T&(Wrecr(t)) = Ta(Wrecr(t) + Wu(t)) — 7W™a(t) = 72(t) — TW™Ma(t) (S17)

Similarly, adding and subtracting W "u(t) for the right hand side leads to final solution:
T3(t) = —2(t) + W™h(2(t)) + W™ [10(t) 4+ u(t)] + W €cony (1) (S18)
This reproduces Eq. concluding the proof. O

This equation governs another commonly used RNNs for data-constrained training (Perich et al.,
2021). In these models, we refer to the new variable, z(t) € R, as the “currents” and v(t) € RV
shortly as (transformed) “inputs”. Though the two equations are equivalent (up to a transformation
of the input and redefinition of the state variables), Eq. [SI5|has been more regularly used in the field
of computational neuroscience. We now provide an informal, yet necessary, discussion on why we
choose the RNN architecture in Eq. [T]over Eq. [ST5]as the more suitable candidate for constraining
neural trajectories by drawing analogies to the neural biology. This discussion may also explain the
more frequent use of Eq. over Eq.[I|in computational neuroscience to date.

21



Under review as a conference paper at ICLR 2026

One can consider z(t), the state variable of Eq as a current injected into an artificial neuron’s
soma, and ¢(z(t)) as the membrane potential and/or smoothed action potentials. Then, one can
consider r(t), the state variables of Eq|[]following the equations 77(t) = —7(t) + #(2(t)) + €conv.
as the firing rates, smoothed averages of the neural spikes resulting from the injected currents. Since
earliest experimental efforts often involved injecting currents into squid axons (Hodgkin & Huxley),
1952), it is not surprising that a computational view focusing on the currents as state variables
(i.e., Eq. [ST3) could have seen more intuitive over the years. On the other hand, recent experimental
approaches allow brain-wide large-scale access to simultaneous firing rates up to millions of neurons
(Urai et al.l |2022; |Kim & Schnitzer, 2022; Manley et al.| 2024; Stringer et al., 2019). Hence, with
the recent approaches aiming to reproduce these neural activities (Perich et al., 2021} |Valente et al.,
2022; Duncker & Sahanil 2021} (Cohen et al., |2020; [Finkelstein et al., 2021} [Dinc et al., [2023; |Qian
et al.|[2024), the form in Eq. [T] that places the firing rates as the fundamental state variable would be
more directly applicable. Specifically, since the firing rates are often considered as the observables
from these recordings, we use this form for our analysis in this work, and assume that (), not z(t),
are the observables.

As the next corollary shows, apart from being computationally equivalent, Theorem [T| designed in
Eq. [T|extends also to the architecture given in Eq.

Corollary S1 (Parameter identifiability in an equivalent RNN formulation). Consider an RNN de-
fined by Eq. with parameters 6* € RN*Neot . Consider an observation matrix X € RT*Ntot
defining the domain X, in which we define each sample as v+ = [p(zt),v:], and denote Py €
RNwtXNiow the projection matrix onto its row space. Then, any discretized RNN parametrized by 0
such that:

6Py = 6" Py, (519)

gives the same conditional probability distribution on single-step predictions as the ground-truth
RNN and vice versa. Then, 0* Py (out of all RNN parameters) is identifiable if and only if the
parameter space is restricted to Ox = {0 € RN*Neot . 9 = 0P+ (identification condition). In
particular, an unrestricted 0% € RN*Neet s identifiable if and only if Py = I.

Proof. Defining z(t) = [¢(2(¢)), v(t)] and d(t) = T74(t) + z(t), we arrive at a linear model for data
generation for a given time ¢:

d~ 0%z + e (S20)

This is a linear model, and as such the proof follows from well known results in linear regression
literature (Astrom & Eykhoff, 1971) or by simply restating the logic used to prove Theorem O

Following the linear relationship stated in the proof of Corollary[ST} equivalent versions of Theorems
[2)and 3| could also be stated similarly.

S2.1.5 PARAMETER IDENTIFIABILITY IN LOW-RANK RNNS

One might think that intrinsically low-rank nature of the identifiable subspace, as predicted by The-
orem (1} could be enforced directly by training low-rank RNNs constrained on neural trajectories
(Valente et al.l [2022). In this approach, the recurrent weight matrix is factorized as W™ = C'D
with C € RV*E D € REXN ‘and K < N, so that only O(K N) parameters are learned (Beiran
et al., 2021; |Dubreuil et al., 2022} |Valente et al.,|2022). This parametrization appears to align with
the expectation that only a low-rank subset of parameters is identifiable. However, recent theoreti-
cal results reveal a crucial complication: even rank-one RNNs can generate neural trajectories that
span the full N-dimensional space of activities (Dinc et al., 2025). In that sense, enforcing low-
rank structure on W' does not guarantee that the observed activity itself is low-dimensional, nor
would it be expected to reduce the identifiability requirements of the system. To fully constrain the
parameters, the observation conditions remain just as strict as in the full-rank case.

To resolve the apparent contradiction between these assertions, we first state a lemma that suggests
a low-rank weight matrix suggests a low-rank 6 matrix as long as Ny, < N:

Lemma S2 (Low-rank combined parameters). If W™ € RN*N has rank K < N, then 6 =
[Wree, Wt e RN*Nor has rank at most K + Ny, which remains low-rank as long as Ny, < N.
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Proof. By the rank inequality for concatenated matrices:
rank(6) = rank([W"™, W) < rank(W™) 4 rank(W™") < K + min(N, N;,) = K + N;, (S21)
Since K < N and N, < N, we have rank(f) < K + N;, < N. O

With this lemma, we now state and prove an extension of Theorem [I]to low-rank RNNs:

Corollary S2 (Non-identifiability in low-rank RNNs). Consider the conditions stated in Theoreml[l
Suppose § € RN*Net js parameterized as 0 = CD with C € RN*K D ¢ REXNo and K < N.
Then any parameterization of the form 8/ = C(D 4+ AD) with ADPx = 0 produces the same
conditional probabilities on single-step predictions.

Proof. We first show that 6’ Py = 0 Py:

¢'Pxy — 0Py = C(D+ AD)Py —CDPy = CADPr =C-0=0 (S22)
Therefore ¢’ Py = 0 Px. By Lemmal[S1] both parameterizations give the same conditional probabil-
ities. The rank is preserved since rank(C'(D + AD)) < min(N, K) = K. O

Corollary |S2| shows that low-rank parameterizations do not resolve the fundamental ambiguity re-
sulting from a finite observation domain X': perturbations of the form C'(D+ AD) with ADPy = 0
and AD # 0 leave the dataset unchanged while preserving the network rank. On the other hand,
unlike Theorem [T} the reverse logical direction is no longer true, i.e., C' and D cannot be uniquely
identified as the rank factorization of 6 is not unique. This is a general identifiability concern for the
latent variables of low-rank RNNss (Dinc et al.,[2025]) and not necessarily specific to our formulation.
In fact, Theorem I|covers the joint parameters and suggests that C'D Py would be identifiable.

S2.1.6 IDENTIFIABILITY UNDER PARTIAL OBSERVATIONS

A major challenge in training dRNNSs is the presence of unobserved neurons, which is either omit-
ted in practice (Das & Fietel 2020) or used to argue caution against their use (Qian et al.| [2024).
On the other hand, data constrained models are used in practice to extract insights (Perich et al.
2021])), predict individual neural activities under interventions (Walker et al., |2019), or guide causal
intervention experiments (Liu et al.l 2024; Vinograd et al.| 2024).

To gain intuition, consider a set of observed r(¢) and unobserved 7unobs(t), neurons. Then, for a
given RNN, the dynamics of the observed neurons can be written as

Ti(t) = —r(t) + tanh(W"r(t) + W™u(t) + i(t) + €in) + €convs (S23)
where i(t) denotes the influence of unobserved neural activities. This influence can be viewed as spa-
tiotemporally correlated noise, but unlike random fluctuations, its structure is often highly aligned
with the signal itself. This raises the question of whether parameter estimation remains possible at
all, even under the guarantees of Theorem|I]and its empirical extensions to noisy conditions (Fig. 2)).

Several works have been devoted solely to this problem (Qian et al.| 2024} Brinkman et al., |2018)),
and our formulation here does not eliminate this issue whatsoever. We leave a theoretical discussion
of this topic for future work. Instead, in Figure[S5] we studied the effects of unobserved influences
due to partial observations in dRNN training. We trained large-scale generator RNNs (N = 10,000)
on the delayed cue discrimination task. From these, we observed only a subset of the neurons,
whose activities were reconstructed with dRNNs. The top spectral components could not be re-
covered reliably under ~ 1% subsampling, but recovery improved rapidly once ~ 10% of neurons
were observed. This level of recovery becomes realistic as imaging technologies are continuously
improving (Kim & Schnitzer, 2022; Manley et al., [2024).

S2.2 ESTIMATION OF DRNN PARAMETERS

Our second set of results presented in the main text, primarily in Figs. 2]and[3] concern the practical
estimation of dRNN parameters under noisy dynamics and various training methods. Here, we first
discuss the link between the Gram matrix G x defined in Eq. ] and the practical estimability of the
parameters. Then, we show that multiplying the gradient updates with a regularized Gram matrix
inverse would facilitate estimation of identifiable parameters. We show that the resulting Theorem 2]
explains why FORCE learning potentially leads to non-identifiable parameters, the benefit of using
a convex loss function.
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S2.2.1 PRACTICAL RELEVANCE OF THE GRAM MATRIX

Theorem [I] ties the identifiability of parameters to the projection matrix Py, where X is an obser-
vation matrix defining the conditioning domain X. Specifically, let X = Zle VTou T
be the singular value decomposition of the observation matrix X with rank(X) = R, u(") € R”,
and v(") € RNwt, By definition, both vectors have unit norm and satisfy orthogonality within each
group, e.g., u)Tul) = §;; with §;; being Kronecker delta. Using this, the projection matrix can be
found as:

Py =XT(XXT)TX,

-1

R R R

<Z \/Talv(’)u(l)T> Z TO'?U(J)UO)T <Z \/T(Tku(k)’l}(k)T> s (824)
i=1 j=1 k=1

= 30 00T,

it 0;7#0

The Gram matrix defined in Eq. f] can be found following:
1 A
Gx=7X"X = > oD, (S25)
i=1

Comparing the two equations shows that the projection matrix can be practically estimated by con-
sidering the Gram matrix Gx and using the modes for which o; # 0, as v(?) constitute both the
Gram eigenvectors and the orthonormal basis of the projection matrix. That being said, why do we
want to use Gram matrix in practice?

The main motivation for using the Gram matrix, as opposed to computing Py = X7 (X XT)*X
directly, is the fact that X is almost always full-rank in a noisy scenario (Fig. [2) and thus the
resulting Py = I ends up being identity for many practical cases. Gram matrix, on the other hand,
provides an intuitive explanation for when a mode is more likely to be constrained by many samples
(putatively signal-constrained modes) vs which ones by few (putatively noise-dominated modes).
We illustrate the intuition in Fig. 2A.

S2.2.2 A BLUEPRINT FOR IDENTIFIABLE ESTIMATION OF DRNN PARAMETERS

We now prove Theorem[2] which states that the gradient updates when multiplied with a regularized
Gram matrix leads to parameters that are confined within the top spectral components:

Theorem (Restatement of Theorem [2). Consider a dRNN following Eq. [I| whose parame-
ters § € RN*Nwe js estimated by gradient descent of a differentiable loss L(6). Let X =
Zf‘zl VTo,u 0T be the singular value decomposition of the observation matrix X with
rank(X) = R, u") € RT, and v(") € RNwt, Define Px = Zfil vM(MT e, the projec-
tion matrix to the top K spectral components of the Gram matrix. Assume that the gradient satisfies
[VL(O)v™], = O(an) for every entry a = 1,...,N, modes r = 1,...,K, any € ©, and
some positive integer n. If 0 P = 05) at iteration s of the learning, then for any \ satisfying
A> o2 41, and for any step size o > 0, the update

1 -1
664D — 49 _ 4L () <TXTX + M) , (526)
is a descent direction that satisfies 011 P = 9(+1) 4 O(0%41/M)-

Proof. We first prove that the updates will maintain the spectral confinement in the next parameter
estimate §(*t1) and then show that the updates are still confined to the descent directions. As shown
above, the gram matrix can be written as:

R
Gy = Z O'E’U(T)’U(T)T. (S27)
r=1
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Here, {v("}2 | constitutes an orthonormal basis, where we set o, = 0 for > R. Then we have

Ntot

(Grx+AD)7H =)

r=1

1

(1), (r)T 2
PO INELY) . (S28)

It is instructive to define P = Zle (M y(MT and Qi = I — Pg. By assumptions of the theorem,
we have H(S)PK =0 and O(S)QK = (0. With this in mind, the update rule gives

9+ =90 — oV LOW)(Gr + M), (S29)
Multiplying both sides on the right by Q& and using #()Qx = 0, we obtain
0CTVQr = —aVLEO)(Gr + M) 1Qk. (S30)

Using the spectral decomposition of (G'x + A\ )~!, we have

Niot

1
(Gx+A)"'Qk = Z 27“(%(%- (S31)
r=K+1 Ir +A
Therefore,
Ntot 1
Q= —a D, Ly VEE )T (S32)
r=K+1 T

By the assumptions of the theorem, each entry of the product satisfies

[vc(e@)v(”} — O(o™). (S33)

a

Noting that o, > 0,41, this leads to the bound:
VL)W =0(o%,,) forallr > K + 1. (S34)

2
Because A > o, |, we also have

ﬁ =0 <§\> forallr > K + 1. (S35)
Combining these two bounds, we obtain
60, — O ("K;l) 7 (S36)
and therefore .
OtV pre = 9Lt gt Qe = 9+ 1 O (UKA“> , (837)

which establishes the spectral confinement of the update. We next show that the update is a descent
direction. First, define

A = —VLOD) Gy + N1 (S38)
Using the Frobenius inner product (A, B) = Tr(AT B),

(VLOW), Af) = —Tr ((vc(e(5>))Tvc(e<S>)(GX + )\I)‘l) . (S39)
Since G x + Al is positive definite, so is its inverse. Hence
Tr ((VLOD)TVLEOD) (G + A1) ) = [VLOD) (G + A2 [F 20, (540)

with equality only if VL£(#(*)) = 0. Therefore, the update direction is indeed a descent direction.
O
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S2.2.3 CONNECTIONS TO FORCE SOLVERS

FORCE solver is primarily developed for training chaotically initialized recurrent neural networks
using recursive least-squares to train behaviorally relevant tasks, i.e., the input-output maps, (Sus-
sillo & Abbott, [2009). It was later applied to train dRNNs with slight modifications (Perich et al.,
2021). Here, we briefly summarize the training method and derive how A parameter corresponds to
the regularization parameter (Sussillo & Abbott, 2009).

We first formalize the recursive least-squares (RLS) update used in FORCE and assume N;, = 0
for simplicity. Consider the problem of learning a linear readout of the form

2(t) = wlr(t), (541)

where r(t) is the firing-rate vector, w is the weight vector to be learned, and f(t) is the target signal.
The least-squares loss is

L= (=(t) = f(£)* =D _(f(t) —wTr(t)* = || Aw - f]3, (S42)

where the data matrix A and the target vector f are defined entrywise as A;; = r;(i) and f; = f(q).
The standard least-squares solution with an /s regularization term is

wrs = (ATA+ AI)7LATf. (S43)
To obtain recursive updates, we treat the data matrix A and the vector f as functions of time. Define
Ay =[rT () rT(©2) ... P77 ()], (S44)

so that A(t) is at x N matrix. Let

t

Pty = AT(W)A@W) + AT =) _r@ir" (i) + A, s(t) = AT(6)f = r(i)f(i), (S45)

i=1 i=1
such that the solution can be written as

wrrs(t) = P(t)s(t). (546)

Both s(¢) and P(t) admit recursive definitions:

s(t)=s(t—1)+ f(t) r(t), (S47a)
Pt)= (Pt —1) +rt)rT (1) (S47b)

The update for s(¢) is immediate. The recursion for P(t) follows from the Sherman-Morrison
identity,

A ypT A1
A "t - — S48
(A+uv?) 1+0vTA 1y (548)
Since AI ensures invertibility at t = 0, the identity applies at every step. Using it, we obtain
P(t—1)r(t)rT(t) P(t —1
Pt = Pt —1) - ZE=Drr () PE=1) (S49)

1+7rT@) Pt —1)r()

initialized with P(0) = A7'I. As ¢ increases, P(t) = (3, r(i)r" (i) + A\)~! becomes the
shrinkage-regularized inverse covariance estimator (Ledoit & Wolf, 2004). Multiplying the update
for P(t) by r(t) yields

Ptr() = 17 riii)PEZ r(tl))r(t) : (550)
Using s(t) = s(t — 1) + f(¢)r(t) and Eq. the RLS weight update becomes
wrrs(t) = P(t)s(t) (S51a)
= wres(t = 1) = P(O)r(t) (r" (1) waes(t = 1) = (1)) - (S51b)
Defining the one-step prediction error
e~ (1) =r"(t) wrs(t — 1) = f (1), (S52)
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we can summarize the RLS updates as

P(t—1)rt)r’ (t)P(t — 1)
L+rT()P(t—1r@t) -

wrLs(t) = wris(t — 1) —e_(t) P(t)r(t). (S53b)

P(t)=P(t—1)—

(S53a)

Following (Perich et al., |2021; |Dinc et al.| 2023), we used a modified version of this formulation to
train the recurrent weights directly via FORCE. Specifically, defining 7(¢) as the model predictions
and 7(t) as the ground truth neural activity to be matched by dRNN, the prediction error is now
defined on the target neural activities:

e(t) = (7(t) = r(t) /e, (S54)
the updates for the recurrent weights and inverse covariance become
Pt -1t - 17Tt —-1)P(t—1)
1+7Tt—-1)P(t—1rt—1) ~’
Wree(t) = Wree(t — 1) — e(t)(P(t)7(t — 1))7. (S55b)

P(t)=Pt—1)— (S55a)

Here e(t) is an N-dimensional error vector, and P(0) = A\~!1 sets the regularization level. The key
modification here is that 1" is not initialized to zero, rather it is often initialized from a random
distribution to enable spontaneous activity generation in the network. However, this initialization is
precisely what leads to the non-identifiable component estimation as we show in Fig. [3|and cannot
be mitigated by non-zero A values, e.g., the same way that an offline least-squares would.

S2.2.4 CONVEX OPTIMIZATION FOR PARAMETER IDENTIFIABILITY

Identifiability becomes a practically challenging problem when coupled with non-convex training
objectives. Gradient-based training of dRNNs under such losses may converge to suboptimal so-
lutions or local minima, further complicating parameter interpretability. Recent work has shown
that convex reformulations of the learning problem can offer a powerful alternative. This formula-
tion starts with designing a non-linear regression problem (Dinc et al., |[2023). Specifically, given
a trajectory of firing rates r(0),r(1),...,r(T) and corresponding inputs «(0), u(1),...,u(T), one
constructs a regression problem by computing the discretized target:

D == ey = p(6a(t) + ) + ccom (530

d(t) = -

This transforms the temporal dynamics problem into a standard supervised learning task: predict

d(t) = d(t) from x(t), which can be used to predict #(¢ + 1) ~ r(¢ + 1). Notably, minimizing the

{5 prediction error on d(t) is equivalent to minimizing the /5 prediction error on (¢ + 1) following:
T

Lo(0;7r(t) Zr,t—l—l —7i(t+1)) TZ:ZT“H—I (1 —a)r(t) — ad;(t))?,

t=1 i=

b3)

t=1

’ﬂ\'—‘

di(1))? o< L2(65d(t), d(1)).

H\%
Mz

1

.
Il

(S57)

The key advance of CORNN is to replace the /5 loss function on the prediction errors with a
weighted cross-entropy, which is a convex loss function and has a global minimum:

T Nrec N NM
Lcornn (0 ZthzCE<1+d“ 1+d“> ZZ GU, (S58)

t=1 i=1 i=1 j=1

where CE(a, b) = —blog(a)—(1—b)log(1—a) and ¢; ; = 1—d?(t). The loss function is minimized
following a parameter update rule:

—1
1
glst1) — g(s) [E<S)TX - A@Cﬂ (TXTX + )\I) . (S59)
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where the prediction error is defined as E;(t) = %{l&;”

can initialize #*) = 0 and run the minimization steps. In practice, (Dinc et al., [2023) uses an
approximate initialization using a least-squraes solution:

. Since this is a convex optimizer, one

1 1 -1
Oinitial = be‘l(D)TX {TXTX + /\I} . (S60)

In original publication, Dinc et al.|(2023)) has shown that CORNN is able to recover ground truth pa-
rameters 0* from simulated neural trajectories, which arises from two key properties: First, CORNN
is a convex method, guaranteeing convergence to a global optimum, or to a set of globally optimal
parameters in the presence of redundancy. Second, in the low-error regime (close to global min-
ima), minimizing the CORNN objective closely approximates least-squares estimation of the rela-
tion ¢~1(d) ~ 6*x. However, the connections to the identifiability problem were not previously
explored. Here, both the initialization in Eq. [S60] and the update rules in Eq. [S59] respect the
blueprint rules setup in Theorem [2} Thus, as also shown in the main text, CORNN leads to param-
eter estimates confined within the identifiable subspace defined by the Gram matrix Gy = %X Tx
and gated by a regularization parameter A. Interestingly, however, the convex formulation enabled
the regularized Gram matrix to coincide with the Hessian (near the solution), making the addition in
Theorem [2] not a restrictive process but a helpful addition to the minimization.

S2.3 PRESERVED DYNAMICS IN DRNNS

Theorem (Restatement of theorem 3). Letr Siq(R) = span{vi,...,vr} be the identifiable neural
activity subspace spanned by the top R spectral eigenvectors of the Gram matrix (or Siq in short),
and assume that for a noiseless, task-performing RNN with dynamics in Eq. |1} the activities satisfy

r[t] € Sia(R) for all t. Let 6 be identifiable with OP.q = 0, where Piq projects onto Siq. Then, any

parameterization 0 = 0 + A with AOPq = 0 but A # 0 yields identical dynamics 7[t] for all
r[t] € Siq, but not necessarily when r[t] ¢ Siq.

Proof. The noiseless RNN dynamics are given by
H(t) = —r(t) + ¢(0r(t)), (S61)

with ¢ applied elementwise. Let 0 be an identifiable parameterization such that 0P4 = 0, where
P4 projects onto Siq. Consider now 6 = 0 + Af with A0P,q = 0 and A # 0. If r(¢) € Siq, then
r(t) = Par(t), and hence

O0r(t) = OPar(t) + AOPqr(t) = Or(t). (S62)
It follows that ~
H(t) = —r(t) + ¢(Or(t)) = —r(t) + ¢(0r(t)), (S63)

so the dynamics under 6 and 6 coincide for all 7(t) € Siq. If 7(t) ¢ Siq, then (I — Pgq)r(t) # 0,
and in general . 3
Or(t) = OPar(t) + AO(I — Pa)r(t) # Or(t), (S64)

so the dynamics need not coincide. This proves the claim. O

S2.4 EXPERIMENT DETAILS FOR REPRODUCIBILITY

Here, we provide details of our experiments to ensure reproducibility. Additional details can be
found in the code shared in the supplementary materials.

S2.4.1 RECURRENT NEURAL NETWORKS

We use a biologically motivated and interpretable class of RNNs (Perich et al.l |2021; Dinc et al.|
2025). Since we focus on the discrete version of the RNNs, we utilize the Euler discretization
described in Equation[S67} In this section, we specify our implementation choices: how we initialize
the weight matrices W°, Win and W°Uut, the distributions we sample for noise terms €;,, and €conv,
and other implementation details.
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For reference, we construct RNN dynamics as follows:
Tr(t) = —r(t) + (W*r(t) + Wi“u(t) + €in(t)) + €conv(t) (S65)
o(t) = Y(Wr(t)) (S66)

where 7 € R represents the neuronal time constant, 7(t) € R the neural activities, 7(¢) € RV
their temporal derivatives, u(t) € RV the input signals, and 6(t) € RNeut the network outputs.
In our experiments, we set ¢(-) = tanh(-) and ¢(+) as identity, tanh, or sigmoid depending on the
task, and use discretization parameter o, which is calculated as the ratio of sampling interval At
to time constant 7. Note that while the output weights W °" € RN *Nout are used when training
task-performing RNNs to generate ground-truth neural trajectories (as described in the following
section), they are not involved in the parameter recovery process.

In our RNN implementation, we use Kaiming and Xavier initializations (He et al., 2015} |Glorot &
Bengiol [2010) with uniform and normal distributions for the weight parameters W™, W*¢, and
Weut For the input noise €;,, and conversion noise €.ony, we implement Gaussian, Laplace, and
Poisson distributions. However, we use the Poisson distribution predominantly in our experiments.
During firing rate updates, since conversion noise €cony can cause values to exceed the bounds
[—1, 1], we clip the firing rates after each update: r(t) = 1 — 107 when 7(¢t) > 1 and r(t) =
—1 + 1075 when r(t) < —1. Initial firing rates r(t = 0) are sampled from Gaussian or uniform
distributions depending on the experiment. To ensure reproducibility, we set fixed random seeds for
Python’s random, NumPy, and PyTorch random number generators.

In practice, neural activity data is discretized in time. Hence, we introduce discrete RNN models
resulting from the Euler discretization of Eq. [T}

rls+1] = (1 — a)r[s] + ad(z[s]) + €conv, (S67)

where we perform the discretization via r[s] = r(s- At), where we denote the discretized time scale
as « = At/7 and s € N refers to the discretized time.

S2.4.2 OBTAINING GROUND TRUTH NEURAL TRAJECTORIES

In our parameter recovery experiments, we use two different methodologies for generating ground
truth neural trajectories. First, we use chaotic networks where we initialize parameters randomly
and iterate without any supervision. Second, we train RNNs on one of three tasks (described in the
following section: 3-bit flip-flop, delayed cue discrimination, delayed match-to-sample) and then
examine parameter recovery in the presence of task-induced structure.

Chaotic networks: We use randomly connected recurrent neural networks to generate chaotic dy-
namics without any task-specific constraints. These networks consist of IV recurrently connected
units with weights sampled from a Gaussian distribution (¢ = 0, 0 = 2/N), ensuring the network
operates in a chaotic regime. The networks receive no external input during trajectory generation
(u(t) = 0) and evolve according to their internal dynamics alone. Initial firing rates are sampled
uniformly from [—1, 1], and the system is iterated using the standard RNN update equation with
tanh nonlinearity and step size & = 0.1. These chaotic networks produce rich, complex temporal
patterns that exhibit sensitive dependence on initial conditions while remaining bounded within the
activation function’s range. By studying parameter recovery from such unconstrained dynamics, we
can assess identifiability in its most general form—without the structural biases imposed by task
optimization.

Trained networks: In all training tasks, we train neural networks using input-output supervision,
allowing networks to learn internal dynamics specific to each task. During initialization, we use
Xavier initialization with uniform distribution as implemented in PyTorch.

Task-specific configurations vary as follows: for bias terms, we include learnable biases in the input
and output linear layers of DCD and DMTS tasks but exclude biases in 3-bit flip-flop experiments.
For output nonlinearities, we set 6(-) as identity in 3-bit flip-flop, sigmoid in DMTS, and tanh in
DCD tasks. Initial firing rates are sampled from A (0, v/N) in 3-bit flip-flop, from tanh applied
to M(0,1) in DMTS, and from tanh applied to A/(0,0.1) in DCD. Since each task has different
input-output requirements, the input dimension Ny, equals 3 in 3-bit flip-flop, 1 in DMTS, and 1 in
DCD.
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For all task training, we use Mean Squared Error (MSE) loss. The optimizers vary by task: we use
Adam optimizer for 3-bit flip-flop and DMTS, while employing SGD for DCD. Additionally, we
employ the ReduceLROnPlateau learning rate scheduler (with factor 0.5 and patience equal to the
number of epochs) specifically in 3-bit flip-flop experiments. Table [T] summarizes the key training
hyperparameters for each task.

Table 1: Training hyperparameters to obtain generator networks for each task

Hyperparameter 3-bit flip-flop DCD DMTS
Network size (V) 100, 500, 1000 500 1000
Input dimension (Vi) 3 1 1
Output dimension (Nyyt) 3 1 1
Number of epochs 20000 5000 5000
Batch size 50 10 10
Learning rate 1074 1073 1074
Optimizer Adam SGD Adam
LR scheduler ReducelLROnPlateau None None
« (discretization) 0.5 0.5 0.5
At (ms) 5x 1073 5 x 1073 5x 1073
7 (ms) 10 x 1073 10 x 1073 10 x 1073
Input noise (€;,,) 0 1073 0
Output nonlinearity (6) identity tanh sigmoid
Number of seeds 20 20 20

S2.4.3 NOISE GENERATION PROCESSES

In most experiments, we sample noise independently at each timestep. However, for specific exper-
iments examining the effects of realistic noise correlations, we implement spatially and temporally
correlated noise.

Standard (uncorrelated) noise: By default, both input noise €, and conversion noise €y are
sampled independently at each timestep from the specified distributions (Gaussian, Laplace, or Pois-
son) with no spatial or temporal correlations.

Correlated noise (experiment-specific): In selected experiments, we generate spatially and tem-
porally correlated input noise €;,, to model realistic neural recordings where nearby neurons and ad-
jacent timepoints exhibit correlated fluctuations. First, we sample uncorrelated noise from A (0, o)
with dimensions 7" x N, where T is the number of timesteps and NV is the number of neurons. To
introduce spatial and temporal correlations, we construct a 2D Gaussian kernel:

1’2 y2
K(z,y) = exp (202 oy ) (S68)
T N

where o controls temporal correlation strength and o controls spatial (across-neuron) correlation
strength. The kernel is normalized such that > K (x,y) = 1. We then convolve the uncorrelated
noise with this kernel:

corr __ uncorr
€ =K x e (S69)

where * denotes 2D convolution with ’nearest” boundary conditions. Finally, we rescale the corre-
lated noise to maintain the desired standard deviation o

__ _corr g

(S70)

In these experiments, we use o = 3 timesteps for temporal correlation and o = 50 neurons for
spatial correlation, with kernel size 30 x 30. Conversion noise €., remains uncorrelated even in
these experiments.
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S2.4.4 DESCRIPTION OF THE TASKS

Here, we clarify the implementation details and structure of three neuroscience-inspired tasks. First,
we explain the 3-bit flip-flop task, where the network must maintain and selectively update multiple
internal memory states. Second, we describe the delayed cue discrimination (DCD) task, where the
network must classify an input signal and give an output after a delay period. Third, we explain
our final task, delayed match-to-sample (DMTS), where the network must compare two sequential
inputs and determine whether they match.

3-bit flip-flop: This task consists of three independent input channels where the values are
u;(t) € {+1,0,—1} for i € {1,2,3}. When a channel receives a positive or negative input sig-
nal, the network must output the corresponding value in that channel until a new non-zero signal
arrives in the same channel. Importantly, inputs are presented randomly across trials, and after each
presentation, the input signal returns to zero until the next random signal arrives. Therefore, the
RNN must simultaneously maintain information from all three channels while producing the correct
output signals.

Formally, the input dynamics are defined as:

us(t) = {:I:l if B;(t) ~ Bernoulli(0.05) = 1

S71
0 otherwise (S71)

where B;(t) is a Bernoulli trial for channel ¢ at time ¢, and when B;(t) = 1, the sign is chosen
uniformly at random.

The network output follows a flip-flop dynamic where each channel starts at zero and latches to the
most recent non-zero input:

oi(t+1) = {“i(t) if u;(t) # 0

0;(t) otherwise with 0(0) =0 (572)
Delayed cue discrimination (DCD): The delayed cue discrimination task is more complex than 3-
bit flip-flop as it requires both classification and delayed response. This task consists of three main
intervals: input interval T, delay interval Tyclay, and response interval T}..s,. During the input
interval, a cue of £1 is presented in a single input channel. Throughout this period, the RNN must
latch the information but should not produce any output, opposite to 3-bit flip-flop. After the input
interval ends, the input becomes 0 and the RNN must continue to maintain the output at 0 during the
delay interval. During the response interval, the RNN must produce a classification output based on
the cue: if the cue was +1, the output should be +1; if the cue was —1, the output should be —1.

Formally, the input signal can be formalized as follows:

+1 ifteli,
t) = S73
u(®) {O otherwise (573)

The expected output is described as:

+1 ifuypy =4+1andt € Tresp
o(t) =4 -1 ifuy =—landt € Tiegp (S74)
0 otherwise

where u;, denotes the input value during 7jy, .

Delayed match-to-sample (DMTS): The third task is delayed match-to-sample. While sharing
similarities with the delayed cue-discrimination task (delayed response, single input channel, and
input classification), DMTS requires the network to compare two sequential inputs and respond
accordingly. This task includes four distinct intervals: input interval T3, delay interval Tycjay,
match interval Ti,a¢ch, and response interval Tyesp,. Similar to delayed cue-discrimination, the RNN
should only produce the corresponding output during the response interval. Throughout the input
interval, an input of 1 is presented; afterward, during the delay period, the signal becomes 0. After
the delay period ends, another input of +1 is presented during the matching interval. In the response
interval, if the input and matching signals match, the RNN must give a positive response (+1);
otherwise, the RNN should give a negative response (—1).
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More formally, we can describe the input signal as follows:

+1 ift e ﬂn U Tmatch
t) = S75
u(t) {O otherwise ( )

The ground truth output is described as:

+1 if Uin = Umatch and t € Tregp
é(t) = -1 if Uin 3& Umatch and te Tresp (S76)
0 otherwise

where u;;, denotes the input value during 7i, and umatcn denotes the input value during Tinatch-

S2.4.5 FITTING RNN PARAMETERS TO REPRODUCE NEURAL TRAJECTORIES

After obtaining ground truth neural trajectories from chaotic or trained networks, we fit new RNN
parameters to reproduce these observed dynamics. Rather than using computationally expensive
backpropagation through time (BPTT), we employ a single-step prediction approach that frames
parameter estimation as a feedforward regression problem.

Single-step prediction framework:
Optimization methods: We employ three primary approaches for parameter estimation:

1. CORNN algorithm: Our primary method uses the CORNN algorithm (Dinc et al., [2023), which
employs an iterative update scheme with fixed point initialization computed via ridge regression
on z[s] = arctanh(d[s]). We implement three loss variants: weighted loss (dividing prediction
errors by 1 — d? to account for tanh saturation), standard L2 loss, and derivative-weighted loss
(multiplying by 1 — d?). The algorithm includes outlier detection based on a threshold parameter
(typically 0.2 for trained networks, 1.0 for chaotic networks). Convergence criteria: (1) v/N -
y/mean((0F+1 — 6F)2) < 10~° after at least 10 iterations, or (2) maximum iterations reached (100-
2000 depending on experiment complexity).

2. FORCE learning: In selected experiments with chaotic networks, we implement recursive least
squares (RLS) FORCE learning (Sussillo & Abbott, 2009). FORCE updates parameters online
using rank-one updates to the inverse covariance matrix, minimizing either current errors (pre-
nonlinearity) or firing rate errors (post-nonlinearity). We use regularization parameters A = 100
for recurrent weights and run the algorithm for up to 1000 iterations.

3. Gradient-based optimization: For comparison in selected experiments, we use PyTorch-based
gradient descent with Adam optimizer (learning rate 10~3, up to 10? iterations). Parameters are
optionally initialized from the fixed point solution. This approach uses either Binary Cross-Entropy
(BCE) loss or Mean Squared Error (MSE) loss, with L2 regularization applied through weight decay.

Regularization: The L2 regularization parameter A ranges from 107>% to 10~" depending on the
experiment, with typical values around 10~1° to 10~!3 for chaotic networks and 10~* to 10~ for
trained networks. In CORNN, regularization is scaled by the number of data points 7.

Experimental variations: We perform parameter recovery on both chaotic RNNs and trained net-
works performing the three tasks (3-bit flip-flop, DCD, and DMTS). For experiments with external
inputs (trained task networks), we concatenate u[s] with firing rates in z[s]; for chaotic networks
without inputs, we set u[s] = 0.
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S3 FIGURE PARAMETERS

Fig.[I; For C-E, ground truth weights for the generator RNNs (noiseless and chaotic) were drawn

from W;se ~ N(0, %) with ¢ = 2. RNNs had no outside inputs. For C-D, we used N = 1000
neurons and a discretization parameter of &« = 0.1. dRNNs were trained using the single step
prediction paradigm and a (convex) weighted logistic loss function (A = 10~1%) (Dinc et al.,[2023).
For E, N = 500 and X varies, otherwise the same parameters are used.

Fig. Same as in Fig. [IE, but with A = 1073, T = 2500. For C and F: solid lines show
mean, shaded regions show s.e.m. over 20 randomly initialized RNNs. For B, D, E: each line or dot
represents a single reconstruction experiment.

Fig.[3; A-C, Same conditions as in Fig.[T[E, with trajectory length fixed to 7" = 2000. We initialize
the parameters of dRNNs trained with FORCE learning using a zero-mean Gaussian distribution
with ¢ = 3 and train for 100 epochs on the full samples. Reported A values are used directly for
CORNN and multiplied by 10° for FORCE. Lines: mean; shaded regions: s.e.m. over 20 randomly
initialized RNNs. For D-F, generator RNN had N = 500 neurons, but only 25 were observed for
dRNN training. Low- or full-rank dRNN parameters were trained by minimizing the /5 loss on the
single-step prediction errors via the ADAM optimizer. Dataset taken from (Qian et al., 2024, Figure
5b): @ = 0.01, T = 30000 training samples, with noise injected at each step (¢;, ~ N (0, 1)), and an
extra observation noise (N (0, 1)) was added to the measured neural activities without any feedback
to the dynamics.

Fig. El] For B, @ = 0.05 and A = 10713, Zero-mean Gaussian input noise is added to two samples,
s.d. values shown in panels. For C-D, dRNNs were trained using CORNN (N = 500, A\ = 109,
€in ~ N(0,107%), €cony ~ 0.1Poisson(1072), a = 0.5) with 500 base and varying numbers of
extra samples. Outputs for the dRNNs are computed using the generator RNNs’ output weights.
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S4 SUPPLEMENTARY FIGURES
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Figure S1: Single-step prediction root-mean-squared errors corresponding to Figure TC-E. A
Effect of the number of observed neurons on single-step prediction RMSE across trajectory lengths
T with negligible regularization (A = 107'%). B Effect of regularization strength \ on single-step
prediction RMSE across trajectory lengths 7". These results complement Figure [TIC-E by showing
the direct single-step prediction errors for RNNs trained to reproduce neural trajectories sampled
from chaotic RNNs. A reasonable tolerance level for the single-step prediction RMSE is O(1078),
since squared error is minimized during training and machine precision is ~ 1076, Parameters:
For A, same as in Fig. [TIC-D but with varying N. For B, same as in Fig. but with additional A

values.
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Figure S2: Empirical verification of the neural uncertainty principle with networks of varying
sizes. We performed the same analysis as in Fig. [IIC-D using the same experimental parameters,
except RNNs had V = 100 (A), N = 300 (B), and N = 500 (C) neurons.
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Figure S3: Regularization levels control which spectral components are used for parameter
estimation. We performed the same analysis as in Fig. for varying A values for noiseless
(A) and noisy (B) evolutions of the RNN. For the noisy case, we picked €, ~ N(0,107¢) and
€conv ~ Laplace(1072), in which = in Laplace(z) refers to the scale parameter of the Laplace
distribution.
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Figure S4: Noise amplifies non-identifiable parameter estimates, weight regularization miti-
gates this inflation. Similar to Fig. [S3|and using the same experimental parameters, we examined
the Frobenius norm of parameter components projected onto the spectral components of the Gram
matrix (leff) and the reconstruction accuracy measured as the correlations between ground truth and
predicted projections (right) across varying A values for noiseless (A) and noisy (B) RNN evolu-
tions. Without regularization, noise consistently amplified the estimation of non-identifiable param-
eter values, which were not constrained by the observed training data to begin with. C Accuracy
of reconstructing 8* with éPK, in which Py is the projection matrix constructed using the top K
spectral components for noisy dynamics. If regularization level is not strong enough, additional
components contributing from the lower spectrum of the Gram matrix can decrease the reconstruc-
tion accuracy. D The regularization strength can be estimated using cross-validation on the contin-
uously divided train and validation datasets. Here, we used 7' many training samples and sampled
an additional 100 samples, on which we computed the single-step prediction errors. The optimal
regularization strength (A = 10~%) that led to best reconstruction in panel C roughly corresponded
to the lowest prediction errors. Parameters: For A-B, similar to Fig. [S3] we picked the noise values
as €, ~ N(0,107%) and €ony ~ Laplace(10~3). For C, we used N = 500, €;, ~ N(0,1072) and
€conv ~ N (0, 10_3), T = 3000, otherwise the same parameters as in Fig. . For D, we used the
same parameters as in C but varied T'. Solid lines: means. Error bars: s.e.m. over 20 runs.
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Figure S5: Sparsely observed neurons exhibit unobserved influences that bias the top spectral
components of the estimated Gram matrix. A realistic assumption, supported by recent theories
of neural computation (Dinc et al., 2025) and empirical work in task-trained low-rank RNNs (Valente
et al.,|2022; Beiran et al., 2021; Mastrogiuseppe & Ostojic, 2018 Schuessler et al.|, [2020; Dubreuil
et al.,[2022)), is that the same latent variables underlie the dynamics of both observed and unobserved
neurons. If this is the case, then the top spectral components of the Gram matrix are presumably
dominated by the projections of latent computations and may become secluded and biased by the
missing activity. In contrast, the lower spectral components may still be reconstructed. To test this
hypothesis empirically, we trained large-scale generator RNNs with N = 10, 000 neurons on the
delayed cue discrimination tasks from Fig.[S7)and performed inference using only partially observed
neural populations. Estimation accuracies (Pearson’s 7) of the projected parameters between dRNNs
and generator RNNs were plotted as a function of the spectral components of the Gram matrix
computed from the training samples. The right panel corresponds to the close-up plot. As the
number of observed neurons increased to about 10% of the population, top ~ 10 — 15 spectral
components, initially non-identifiable, became identifiable again. Parameters: Same as in Fig.
but with NV = 10000, only independent noise injections, and about 300 trials, i.e., comparable to a
single imaging session (Ebrahimi et al.| 2022).
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Figure S6: Spectrally constrained estimators accurately recover top components despite rad-
ically different loss functions and optimization paths. We reconstructed parameters of RNNs
(N = 300) trained on a delayed match-to-sample (DMTS) task using four distinct optimization
strategies, each minimizing single-step prediction errors. Left: Estimators with negligible regu-
larization (A = 10713). All except the first-order minimization of an /5 loss led to the expected
accuracy curves decreasing monotonically along the spectral components. ¢5 loss is non-convex and
notoriously difficult to converge to an appropriate local minimum in the absence of proper regular-
ization. Right: With regularization (A\ = 10~°), all estimators produced reconstruction accuracies
that decreased systematically along the spectral components of the Gram matrix computed from the
training samples. Parameters: 7i, = 30 ms, Tgelay = 80 ms, Tiesp = 50 ms, At = 5 ms, and
a = 0.5. RNNs were injected with random noise at every time step with €, ~ N'(0,107%) and
€conv ~ 0.1 Poisson(10_3). Training samples included B = 40 trials, each with 38 time points,
totaling T' = 1520.
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Figure S7: Spatiotemporally correlated noise induces structure that complicates estimation,
but can be mitigated with increased number of trials. We trained generator RNNs (/N = 500)
on the delayed cue discrimination task with injected random, spatiotemporally independent (left) vs
correlated (right) noise. Estimation accuracies (Pearson’s 1) of the projected parameters between
dRNNs and generator RNNs were plotted as a function of the spectral components of the Gram
matrix computed from the training samples. While training with spatiotemporally correlated noise
required more trials to be accurate, it eventually converged to the structure predicted by Theorem
m Parameters: Ti, = 30 ms, Tqelay = 80 ms, Tiesp = 50 ms, At = 10 ms, and o = 0.5. RNNs
were injected with (random or correlated, see Methods for details) noise at every time step with
€n ~ N(0,107*) and €cony ~ 0.1Poisson(10~3). Each training trial contained 32 time points.
dRNNs were trained (A = 10~7) with varying numbers of observed neurons and trials, as indicated
in the figure legends.
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Figure S8: Even with mismatched time constants, dRNN training tracks the spectrum of the
Gram matrix. We trained dRNNs to reproduce RNNs performing the 3-bit flip-flop tasks from
Fig. 4 In the mismatch condition, time constants were sampled as a ~ N(0.5,0.052) instead of
being fixed at &« = 0.5. A Reconstruction accuracy vs spectral components of the Gram matrix. B
Parameter norms vs spectral components. Parameters: N = 500, A = 1072, €y ~ N (0, 10*6),
€conv ~ 0.1Poisson(10~1). Each trial contained 100 time points.
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Figure S9: dRNNs accurately reconstruct the top spectral components encoding task-driven
dynamics. Plots of reconstruction accuracies for the projected parameters obtained from experi-
ments in Fig. [BIC-D vs the spectral components of the task-driven Gram matrix computed as in Fig.
BID. Left plot shows the full spectrum, right plot shows the first 50 components. Top 10 — 20 spectral
components, which are shown to include task-relevant parameters in Fig. 3D, are accurately esti-
mated from the ground truth RNNs.
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Figure S10: Task-irrelevant parameters vary widely across dRNNs trained on task-driven
neural activities. We reanalyzed the parameter degeneracy in dRNNs trained in Figs. [3]and [ In
order to quantify the contributions of parameter subspaces to the task-relevant dynamics, we com-
puted a generalized Gram matrix from 1000 trials of each network performing the 3-bit flip-flop
task. The top spectral components correspond to the parameter subspaces driving the task-relevant
dynamics (also see Fig. BD). Using these spectral components, we evaluated reconstruction accu-
racies of the projected parameter dimensions as a function of the number of intervention samples
used during reconstruction. Compared with Fig. @IC (where ~ 100 intervention samples led to high
output accuracies for the optimal strategy; and ~ 200 for the random and “extra-trial-data” strate-
gies), dRNNSs that reliably solved the 3-bit flip-flop task exhibited substantial variability in spectral
components beyond the top 10 — 20. As expected from Theorem [I] all three Gram-matrix—based
strategies (i.e., all except “extra-trial-data”) eventually achieved perfect reconstruction.

40



	Introduction
	Results
	Parameter identifiability in dRNNs trained as digital twins
	Neural-input subspaces constrain linear combinations of parameters
	Neural-input subspaces constrain limited combinations of parameters even in the absence of noise
	Parameter estimation accuracy drops with the Gram matrix spectrum under noisy dynamics
	Training methods can spuriously estimate non-identifiable parameters
	A blueprint for training only the identifiable parameters in dRNNs
	Identifiable components induce preserved dynamics across dRNNs
	Revealing non-identifiable components with targeted interventions

	Discussion and conclusion
	Extended Related Works
	Methods
	A framework for assessing parameter identifiability
	Conditional identifiability in dynamical system models
	Modeling noisy neural activities with dRNNs
	Proof of Theorem 1: Identifiability in dRNNs
	Generalizing to a common RNN architecture
	Parameter identifiability in low-rank RNNs
	Identifiability under partial observations

	Estimation of dRNN parameters
	Practical relevance of the Gram matrix
	A blueprint for identifiable estimation of dRNN parameters
	Connections to FORCE solvers
	Convex optimization for parameter identifiability

	Preserved dynamics in dRNNs
	Experiment Details for Reproducibility
	Recurrent Neural Networks
	Obtaining ground truth neural trajectories
	Noise generation processes
	Description of the tasks
	Fitting RNN parameters to reproduce neural trajectories


	Figure Parameters
	Supplementary Figures

