
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

A THEORY OF PARAMETER IDENTIFIABILITY IN DATA-
CONSTRAINED RECURRENT NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

An increasingly common approach in neuroscience seeks to understand the brain
by training recurrent neural networks (RNNs) to reproduce observed neural ac-
tivity. Unlike brains, these RNNs can be computationally poked and perturbed to
reveal principles central to their function. However, whether the insights gained
from these RNNs truly apply to biological neural circuits remains an open ques-
tion. The answer hinges on a key distinction: which RNN parameters are uniquely
determined by the data they are trained on (i.e., identifiable), and which are un-
constrained? To this end, we develop a framework that isolates identifiable sub-
spaces of the RNN parameters, leading to several key findings: (i) commonly used
RNN estimators have unconstrained parameters and the dimensionality of train-
ing data, i.e., the trajectories in neural state space, dictates the extent of parameter
constraints; (ii) we can design RNN estimators to remain confined to identifi-
able components; (iii) we propose intervention experiments to expand the iden-
tifiable subspace; and (iv) we prove that changes in non-identifiable components
preserve dynamics on identifiable subspaces but can introduce spurious structure
elsewhere. Together, these results delineate regions of state space where RNN
predictions are reliable and pinpoint where they are not. Our theory shows that
current RNNs are not valid proxies of neural circuits, as their predictions and in-
terpretation can be swayed by non-identifiable components. These results define
guidelines for the responsible use of RNN models in neuroscience.

1 INTRODUCTION

Recent advances in large-scale neural recording allow researchers to measure brain-wide activity
in animals (Kim & Schnitzer, 2022; Manley et al., 2024; Bounds & Adesnik, 2024; Stringer et al.,
2019). Computational neuroscientists have developed methods to analyze these high-dimensional
recordings and gain mechanistic insights into neural computation (Schneider et al., 2023; Gardner
et al., 2022; Mante et al., 2013; Sussillo & Barak, 2013; Pandarinath et al., 2018). A key conceptual
advance is the view that the brain represents information at the level of neural populations, rather
than individual neurons (Saxena & Cunningham, 2019; Pouget et al., 2000; Kira et al., 2023; Church-
land et al., 2012; Averbeck et al., 2006). This view analyzes dynamical properties of population-
activity patterns to understand how the brain solves the task at hand (Liu et al., 2024; Nair et al.,
2023; Langdon et al., 2023; Vyas et al., 2020; Khona & Fiete, 2022), revealing, for instance, how
a line attractor in the hypothalamus might encode aggression in male mice (Vinograd et al., 2024).
Hence, modeling population dynamics, even from partially observed neural activity, may offer a
path to reverse-engineering algorithms in the brain (Durstewitz et al., 2023; Dinc et al., 2025).

A prominent approach in systems neuroscience fits recurrent neural networks (RNNs) as dynamical
models to reproduce recorded neural activity trajectories. This approach then treats the resulting
trained RNNs as in silico analogues of the biological circuits (Rajan et al., 2016; Daie et al., 2021;
Perich et al., 2021; Perich & Rajan, 2020; Valente et al., 2022; Duncker & Sahani, 2021; Cohen
et al., 2020; Finkelstein et al., 2021; Dinc et al., 2023; Kim et al., 2023; Liu et al., 2024; Linderman
et al., 2017). These RNN models have been used to analyze the structure of population dynamics,
including attractors underlying neural activity (Valente et al., 2022; Nair et al., 2023), flow fields
governing responses to perturbations (Kim et al., 2023; Linderman et al., 2017), and communication
patterns across brain regions (Perich et al., 2021; Perich & Rajan, 2020). Critically, their predictions
are increasingly used to guide causal experiments Walker et al. (2019); Liu et al. (2024); Vinograd
et al. (2024), though their internal structure is not guaranteed to reflect ground truth mechanisms
(Das & Fiete, 2020; Qian et al., 2024; Brinkman et al., 2018; Göring et al., 2024). A key failure
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mode arises when some model parameters are not constrained by the data distribution; this is the
problem of parameter identifiability, the focus of this work.

Our contributions are as follows: we examine when data-constrained RNN (dRNN) parameters are
constrained by their neural datasets. We then address estimation from finite and noisy recordings,
suggesting how estimation can be engineered to confine parameters to their identifiable components.
Finally, we derive two experimental insights: (i) targeted interventions can reveal non-identifiable
parameter subspaces, and (ii) there exist parameter subspaces where variation yields the same pre-
dictions, and those where they differ. Understanding when and why such divergences occur is es-
sential because treating unconstrained parameters as mechanistic insight can mislead interpretation
and waste experimental effort.

2 BACKGROUND

We introduce the RNNs used for our theorems, along with essential concepts from estimation theory.

Recurrent Neural Networks (RNNs) The focus of this work is to analyze RNNs that are commonly
used to reproduce observed neural activity (Perich et al., 2021; Valente et al., 2022; Duncker &
Sahani, 2021; Cohen et al., 2020; Finkelstein et al., 2021; Dinc et al., 2023). Accordingly, we
consider a biologically motivated and interpretable class of RNNs (Perich et al., 2021; Dinc et al.,
2025), characterized by the time evolution equation:

τ ṙ(t) = −r(t) + ϕ(W recr(t) +W inu(t) + ϵin(t)) + ϵconv(t), (1)

where τ ∈ R refers to the neuronal decay time constant, r(t) ∈ RNrec the neural activities and
ṙ(t) ∈ RNrec their time derivatives, u(t) ∈ RNin the inputs, W rec ∈ RNrec×Nrec the recurrent
weights, W in ∈ RNrec×Nin the input weights, ϵin/conv(t) ∈ RNrec some unknown input/conversion
noise terms, and ϕ(·) a monotonic nonlinearity. In this definition, we omit the bias term without loss
of generality, as it can be incorporated by fixing one of the inputs to one.

For notational convenience, we define the concatenated vector x(t) = [r(t), u(t)] ∈ RNrec+Nin and
the parameter matrix θ = [W rec,W in] ∈ RNrec×(Nrec+Nin), so that the input to the nonlinearity
becomes z(t) = θx(t) + ϵin. In what follows, we denote NX = Nrec + Nin. In practice, neural
activity data is discretized in time. Hence, we introduce discrete RNN models resulting from the
Euler discretization of Eq. 1:

r[s+ 1] = (1− α)r[s] + αϕ(z[s]) + ϵconv, (2)

where we perform the discretization via r[s] = r(s ·∆t), where we denote the discretized time scale
as α = ∆t/τ and s ∈ N refers to the discretized time.

Identifiability. We introduce the notion of identifiability and explain how it applies to these RNNs.
Intuitively, identifiability is about whether you can uniquely determine the parameters of a model
from the observed data. If a model is identifiable, then, given enough data, there is only one set
of parameters that could produce that data. If a model is non-identifiable, then there are multiple
different sets of parameters that could produce the same observations.

Definition 1 (Identifiability (Lehmann & Casella, 2006)). Let P = {Pθ : θ ∈ Θ} be a model, or
family of parameterized probability distributions, with parameter space Θ. P is identifiable if and
only if the mapping θ 7→ Pθ is injective, i.e., if

Pθ1=̂Pθ2 ⇒ θ1 = θ2 for all θ1, θ2 ∈ Θ, (3)

where =̂ means equal in distribution.

Identifiability of θ can often be achieved under certain “identification conditions.” For instance, for
a family of distributions Pθ that satisfy the condition Pθ=̂P−θ=̂P|θ|, one may enforce θ ≥ 0 as an
identification condition. Identifiability in RNN parameters often requires an identification condition,
which we will expand upon in Section 4.

3 RELATED WORKS

We review related work on models trained to reproduce neural activity and their ability to gener-
ate biological insights, followed by control and systems theory on linking observable behavior of
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a system (i.e., data) to underlying model states and dynamics. An extended review, including ad-
ditional background on identifiability in nonlinear systems and task-trained RNNs, is provided in
Appendix A.

Models of neural activity. Models trained to reproduce neural activity have long promised insight
into biological and computational mechanisms, though their interpretability remains debated. Re-
covering synaptic connectivity from observed dynamics is generally ill-posed (Das & Fiete, 2020;
Brinkman et al., 2018), and functional properties, such as presumed underlying attractors, can be
unreliable when inferred from data alone (Qian et al., 2024; Göring et al., 2024). Even physically
constrained RNNs with a one-to-one mapping between recorded and modeled neurons (Perich & Ra-
jan, 2020; Perich et al., 2021; Dinc et al., 2023) remain poorly understood in terms of identifiability.
Nevertheless, RNNs and other predictive models have been used to uncover putative mechanistic
features, including population-level gating mechanisms (Finkelstein et al., 2021), inter-area com-
munication motifs (Perich & Rajan, 2020), and low-dimensional attractor dynamics (Valente et al.,
2022). In some cases, the predictions of these models have been refined and causally validated
through intervention (Daie et al., 2021; Liu et al., 2024; Vinograd et al., 2024; Walker et al., 2019),
but in others models can result in misleading interpretations. This ambiguity highlights a paradox:
RNNs trained on neural data can yield genuine mechanistic insights, misleading interpretations, and
sometimes both.

Identifiability of nonlinear systems. The question of whether models are uniquely determined
by data has long been studied in control theory. Classical realization theory results show that any
external behavior generated by a finite-dimensional system can be represented by a “minimal” and
unique system, which must be controllable and observable (Sussmann, 1976). Such a minimal model
can often be found by restricting the parameters to the quotient space of the original model space
and the equivalence relation of indistinguishability, or, equivalently, by reducing the state space
to the manifold occupied by the lower-dimensional underlying system (Crouch, 1979; Brockett,
2005). For neural networks specifically, identifiability has been examined under specific conditions
(Sussmann, 1992; Poznyak et al., 2001; Albertini & Sontag, 1993). This analysis excluded “de-
generate situations”, such as those with parameter dependencies, nonobservability, and underlying
low-dimensionality–all of which occur in real-world neural data (Dubreuil et al., 2020; Perich et al.,
2025). Parameter symmetries have been characterized in both recurrent (Al-Falou & Trummer,
2003; Biswas & Fitzgerald, 2022) and feedforward architectures (Bui Thi Mai & Lampert, 2020;
Bona-Pellissier et al., 2023). Recent studies have highlighted how RNN dynamics and behavior are
only partially constrained by partial input–output observations (Rajan et al., 2010; Kepple et al.,
2022), leading to parameter ambiguity, and have proposed frameworks to measure, understand, and
intervene on solution degeneracy in task-trained RNNs (Huang et al., 2025)

4 THEORY

Consider a ground-truth RNN model with parameters θ∗ and dynamics as defined in Eq 2. We
consider two empirically relevant questions: i) Are the parameters θ∗ identifiable in the absence
of noise? ii) Can we define identification conditions such that an estimation procedure recovers an
identifiable solution θ̂? Here, we answer both questions.

4.1 CONDITIONAL IDENTIFIABILITY FOR RNNS

To apply the framework of identifiability as defined in Definition 1 to RNNs, we associate a prob-
ability distribution with the discretized dynamics of Eq. 2. The model parameters θ govern the
mapping x[s] = [r[s], u[s]] 7→ r[s + 1] under these dynamics. We therefore define the family of
conditional probability distributions PX = {P (Y |x; θ), ∀x ∈ X , θ ∈ Θ}, on a random variable Y ,
where X denotes the domain of conditioning variables. In the case of RNNs, X corresponds to the
joint space of inputs and neural states, x = [u, r] ∈ X . This motivates the following definition:
Definition 2 (Conditional Identifiability). Given a conditioning domain X , let PX =
{P (Y |x; θ),∀x ∈ X , θ ∈ Θ} be a model with parameter space Θ. The model is conditionally iden-
tifiable if and only if, for every x ∈ X , the mapping θ 7→ P (Y | x; θ) is injective.

When θ is multidimensional (e.g., θ = [W rec,W in] in RNNs) it may be that only certain components
of, or directions within, θ are identifiable. In such cases, the model as a whole is not identifiable, but
identifiable parameter combinations can still be defined. In this paper, we will characterize which
subsets of θ are identifiable.
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Figure 1: Neural trajectory subspaces constrain parameters. A Observed neural trajectories Oi

for i ∈ {1, 2} are confined to linear subspaces. B Parameters can be decomposed into components
constrained by the observed neural data and an unconstrained, non-identifiable remainder.

4.2 NEURAL ACTIVITY SUBSPACES CONSTRAIN LINEAR COMBINATIONS OF PARAMETERS

We establish a theorem that characterizes the identifiable and non-identifiable parameter directions
in θ∗ = [W rec,W in], the recurrent and input weight matrices of the ground-truth RNN. We formu-
late this notion in terms of conditional identifiability, where the conditioning domain is the set of
observed input–activity data X =

{
x(m)[s] = [u(m)[s], r(m)[s]] | s = 1, . . . , T,m = 1, . . . ,M

}
at

any time s = 1, . . . , T and across all experimental trials m = 1, . . . ,M . We define X ∈ RTM×NX

to be the observation matrix, each row containing an x(m)[s] for s = 1, . . . , T and m = 1, . . . ,M .
Theorem 1 (Conditional Identifiability in RNNs). Consider the noiseless RNN defined by Eq. 2 with
parameters θ∗. Consider X an observation matrix defining the conditioning space X and denote
P ∈ RNX×NX the projection matrix onto its column space. Then, any RNN parametrized by θ such
that:

θ = θ∗P +∆θ for some ∆θ that verifies ∆θP = 0, (4)
gives the same conditional probability distribution as the ground-truth RNN. θ∗ is conditionally
identifiable if one of the following holds: (i) P is full rank, in which case P = I , or (ii) the
parameter space is restricted to {θ ∈ Θ : θ(I − P ) = 0} (identifiability condition).

The proof for theorem 1, and a Corollary extending it to networks with unobserved influence, includ-
ing partial observations, are provided in Appendix C. Since Theorem 1 applies to noiseless neural
data, the concept of whether a parameter is conditionally identifiable under X simplifies into deter-
mining whether changing this parameter will change the neural trajectories that have been observed
in X . Theorem 1 characterizes the equivalence class of RNNs that generate X .

As illustrated in Fig. 1, we find that the linear subspaces of observed neural activities constrain
linear combinations of RNN parameters. In what follows, we refer to the subspace defined by
the relationship θ = θP as the identifiable parameter subspace, and θ̃ := θ∗P as the identifiable
component of the ground truth parameters θ∗.

Theorem 1 gives practical insights. Even with noiseless data, the richness of the neural dataset
(quantified by the rank of the projection matrix P ) imposes fundamental limits on parameter re-
covery. It determines when and in which regions of state space the novel predictions of estimated
models can be trusted. Any RNN with estimates θ̂ that are such that θ̂(I − P ) ̸= 0 will make pre-
dictions that are unconstrained by the observed data, i.e., it will “hallucinate” dynamics. Next, we
will discuss how to avoid such hallucinations.

4.3 ESTIMATION OF RNN PARAMETERS USING ONLY IDENTIFIABLE COMPONENTS

Theorem 1 ties identifiability to the rank of P . Higher rank means fewer RNNs can reproduce the
data X . Lower rank means that many can and that the trained RNN model is just one of them. To
evaluate in which scenario we are, we propose a method to estimate the rank of P .

For simplicity of exposition, we consider here that the entries of the observation matrix for one trial
are i.i.d. distributed as Xij = X̃ij + ϵij , where X̃ ∈ RT×NX is now the noiseless component from
Theorem 1 and ϵij is noise with mean 0 and variance σ2

ϵ . We present the analysis with spatiotemporal
correlations and unobserved influence in Appendix B.2.

Because P is the orthogonal projection to the column space of the noiseless observation matrix
X̃ , we have that rank(P ) = rank(X̃). To estimate this rank, we consider the singular value de-
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composition X =
∑RX

r=1 σrv
(r)u(r)T , where X ∈ RMT×NX , v(r) ∈ RMT , u(r) ∈ RNX , and

RX = min(MT,NX). In the absence of noise X = X̃ , finding the rank of P reduces to counting
the nonzero singular values σr of X . With noise, however, every σr becomes nonzero, obscuring
the rank of the noiseless X̃ .

To address this issue, we consider the Gram matrix of the columns ofX , denotedG = XTX , which
has expectation:

E[G] = E[XTX] = E
[
(X̃ + ϵ)T (X̃ + ϵ)

]
= E

[
X̃T X̃ + ϵT X̃ + X̃T ϵ+ ϵT ϵ

]
= E[G̃]+MTσ2

ϵ I,

(5)
with G̃ = X̃T X̃ and σ2

ϵ the noise variance. Notably, G̃ scales linearly with MT , as it involves
summation over MT terms. Cross-terms involving Xij and ϵij vanish in expectation due to zero-
mean, data-independent noise, and Tσ2

ϵ I follows from the i.i.d. assumption. Accordingly, the
singular value decomposition of G is:

G = XTX =

RX∑
r=1

σ2
ru

(r)u(r)T
E−→ G̃+ σ2

ϵ I =

RX∑
r=1

(
σ̃2
r + TMσ2

ϵ

)
ũ(r)ũ(r)T , (6)

where σ2
ϵ is the noise variance, σr and σ̃r are the singular values (scaling linearly with TM ) of X

and X̃ , respectively, and u and ũ are the eigenvectors of G and G̃ respectively. Once again, we
note that it follows that (i) the eigenvectors of the empirical Gram matrix G coincide in expectation
with those of the noiseless Gram matrix G̃, and (ii) noise shifts the eigenvalues by σ2

ϵ . Thus, in
expectation, G separates the contributions of signal and noise. Its leading eigenvectors define the
column space of X̃ , which defines P and accordingly characterizes the identifiable subspace of
parameters defined by θ = θP , and its eigenvalues provide the rank of P by subtracting the noise
variance σ2

ϵ . In practice, the expectation of the Gram matrix will be estimated by its sample mean
across the M trials. For the remainder of this section, we consider that the singular values σ̃r are
ordered and are such that σ̃r ≫ σϵ for all r ≤ R and σ̃r = 0 for all r > R where R = rank(X̃) is
the rank of the noiseless X̃ .
Theorem 2 (Identifiable estimation of RNN parameters). Under the assumptions and notation of
this section, consider an RNN whose parameters θ ∈ RNrec×NX is estimated by gradient descent
of a differentiable loss L(θ). Assume that the gradient satisfies v(r)T∇L(θ) = O(σn

r ) for every
θ ∈ Θ and some integer n. If θ(k)P = θ(k) at iteration k of the gradient descent, then for any λ
with TMσ2

ϵ ≪ λ≪ σ̃2
R, and for any step α > 0, the update

θ(k+1) = θ(k) − α∇L(θ)
(
XTX + λI

)−1

, (7)

is a descent direction that satisfies θ(k+1)P = θ(k+1) +O(σn
ϵ /λ).

Theorem 2 relies on some common assumptions. Specifically, the condition that the gradients pro-
jected onto singular components v(r) scale as O(σn

r ) follows from the behavior of common estima-
tion methods (e.g., n = 1 for least squares, see Corollary 1 below) near their solutions, stemming
from the linear parameter-data interaction in Eq. 1. Notably, in this formulation, both λ and σ̃2

R
scale linearly with MT , as the latter involves summation over MT components following Eq. 6.
Corollary 1 (Identifiability in nonlinear regression via local weighted least squares). In the setting
of Theorem 2, suppose the loss is

L(θ) =
TM∑
i=1

L
(
Yi, g(θ

TXi)
)
+ λ∥θ∥22, (8)

where L is twice differentiable in its second argument, g is smooth, and λ ≥ 0 is a regularization
parameter. In the neighborhood of a minimizer θ̄, the objective locally reduces to weighted ridge
regression:

L̄(θ) = ∥W 1/2(Y −Xθ)∥22 + λ∥θ∥22, (9)
with W determined by the curvature of the loss at θ̄. Define σ̃ϵ as the singular values of the (noise-
free) matrix W 1/2X and σϵ the noise component such that TMσ2

ϵ ≪ λ ≪ σ̃2
R. Then, the regular-

ized solution approximates an unregularized estimator with only identifiable parameter components.
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Figure 2: Gram-matrix spectra determine identifiable parameter subspaces. A Reconstruction
accuracy of the projected parameters vs. spectral components with varying trajectory lengths (T ).
Solid lines: mean; shaded regions: s.e.m. over 20 randomly initialized RNNs. B Eigenvalues
of the Gram matrix. Each solid line corresponds to a distinct seed and/or length T . C A scatter
plot showing reconstruction accuracy of the parameters projected onto spectral components of the
Gram matrix (G = 1

TX
TX) versus the corresponding eigenvalues, where each dot represents one

projected parameter estimate. Parameters: Refer to Appendix D.2.6

Proofs for Theorem 2 and a more detailed version of Corollary 1 are provided in Appendix C.
Intuitively, Corollary 1 requires only that the loss is twice differentiable and parameters interact
with X multiplicatively. Under these conditions, the update rule of Theorem 2 locally coincides
with a Hessian-preconditioned (second-order) update, where λ acts as ℓ2 regularization.

In practice, this setting arises when RNNs in Eq. 1 are trained on single-step prediction: given
state–input pairXi = [r[i], u[i]], the next state Yi = r[i+1] is independent of history. Thus, locally,
identifiable RNN training reduces to the same spectral conditions as in linear regression, with the
effective Gram matrix determined by the observed neural dataset D.

5 RESULTS
Theorems 1 and 2, along with their corollaries, constitute the backbone of this section. We use
them to (i) analyze and categorize existing empirical estimators, (ii) show that standard overfitting
controls do not necessarily resolve non-identifiability, and (iii) establish two additional theorems
with direct relevance to practical applications of data-constrained RNNs Rajan et al. (2016); Perich
et al. (2021); Valente et al. (2022); Duncker & Sahani (2021); Cohen et al. (2020); Finkelstein et al.
(2021); Dinc et al. (2023). We note that, throughout our empirical verifications, we normalize the
eigenvalues of the Gram matrix by 1/MT to account for scaling over number of samples, and use
average loss function values during training.

5.1 EMPIRICAL VALIDATION OF IDENTIFIABILITY AND ESTIMATION THEORY

We use empirical simulations to validate Theorems 1–2 and Corollary 1, and to provide numerical
evidence consistent with Theorem 2. We use chaotic RNNs as generators to produce datasets, as
they sustain rich but mechanistically ambiguous activity without input, isolating identifiability ef-
fects. To estimate our data-constrained RNN (dRNNs), we adopt CORNN (Dinc et al., 2023), a
convex optimization method that belongs to the estimator class of Theorem 2 (which stems from the
connection this approach to least-squares covered by our Corollary 1) and admits a global minimum.
Later and in Appendix B.2, we extend these analyses to task-trained RNNs and extend to alternative
estimators.

Gram-matrix spectrum defines identifiable components. We empirically verify that the identi-
fiable component of the parameter space is controlled by the nonzero spectral modes of the Gram
matrix (Theorem 1). First, we initialize a ground-truth RNN with randomly sampled weights and
collect T samples by Eq. 2 without any noise or input. We use CORNN to estimate the dRNN pa-
rameters (see Fig. 2A-B). For each dataset, we compute the empirical Gram matrix G = 1

TX
TX ,

whereX is the observation matrix of concatenated neural activities {r[0], r[1], . . . , r[T −1]}. In the
noiseless case, G has nonzero eigenvalues along the directions spanned by P and zero eigenvalues
along its kernel. Because the spectral components ofG capture how strongly different directions are
represented in the dataset, larger eigenvalues align with directions within P , while smaller eigen-
values correspond to directions outside P . Theorem 1 predicts projections onto larger eigenvalue
directions are identifiable, which we verify.
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Firstly, all models trained to reproduce the dataset achieve single-step root mean square error of
≤ 10−7±O(10−8). The projected learned parameters correlate strongly with the projected ground-
truth parameters in the directions associated with the leading spectral components, dropping sharply
as the eigenvalues approach zero (Fig. 2A). The sharp drop shifts as the trajectory length increases;
longer trajectories increase G’s effective rank. Consistent with this, Fig. 2B shows the eigenvalue
spectra of G. As T increases, the rank of G increases due to the appearance of additional nonzero
eigenvalues, showing that richer trajectories expand the identifiable subspace.

Regularization parameter controls the spectral components used in the estimation. Theorem 2
predicts that estimators using the second-order preconditioning in Eq. 7 suppress contributions from
non-identifiable directions, yielding reconstructions confined to the identifiable subspace when the
regularization parameter λ is correctly chosen. CORNN is one such estimator as we have shown
above. In the absence of noise, the regularization parameter λ directly determines which spectral
components contribute to the estimate. As shown in Figs. 2C and S3A, reconstruction accuracy
closely follows the eigenvalue spectrum; components above the effective cutoff set by λ are re-
tained in the solution, whereas those below are suppressed. Increasing λ progressively discards
informative spectral modes, reducing reconstruction accuracy. This effect is reflected in Fig. S1B,
where stronger regularization worsens single-step prediction errors despite perfect training at min-
imal λ ∼ O(10−13), and in Fig. S3A with near perfect reconstruction accuracies up to spectral
eigenvalues of the same order. Together, these results confirm Theorem 2, that λ acts as a spectral
filter, preventing spurious contributions from near-zero eigenmodes but risking eliminating genuine
signal when too high.

Noise permanently limits what is identifiable, regularization mitigates artifacts. With noise,
clean separation between identifiable and non-identifiable components is no longer possible. As
shown in Fig. S3A vs B, spectral components accurately reconstructed without noise are now cor-
rupted with noise. Modes with large enough eigenvalues remain reliable, but not lower-eigenvalue
directions. Thus, noise irreversibly shrinks the effective dimensionality of the identifiable subspace.
At the same time, Fig. S4 shows that without regularization, noise inflates parameter estimates along
corrupted directions, producing spurious growth in Frobenius norm. Regularization cannot recover
lost components, but it can prevent this uncontrolled amplification. Choosing λ ≥ O(σ2

ϵ ) suppresses
noise-driven contributions, confining the solution to the remaining identifiable subspace (Fig. S3B).

5.2 WHY STANDARD OVERFITTING CONTROLS DO NOT RESOLVE NON-IDENTIFIABILITY

Standard ℓ2 (or rank) regularization alone does not guarantee confinement of the solution to the
identifiable subspace for a general estimator. Above, we demonstrated a case where the estimator
satisfies the conditions of Theorem 2. We now consider estimation approaches that do not in fact
resolve the issue of non-identifiability. In Appendix B, we show that low-rank regularization does
not eliminate non-identifiability and prove an analog of Theorem 1 for this case. Here, we illustrate
how an ℓ2 penalty on the weights does not guarantee estimation confined to identifiable subspaces.

L2 regularization does not eliminate non-identifiable components in FORCE learning. Most
earlier works on dRNNs employ FORCE learning during training Rajan et al. (2016); Perich et al.
(2021); Cohen et al. (2020); Finkelstein et al. (2021). This uses an online algorithm to adjust the
recurrent weights to match predicted trajectories to observed neural activity. In essence, FORCE
approximates the Gram matrix and updates parameters with an implicit ridge penalty on the recursive
least-squares Sussillo & Abbott (2009). Although the FORCE update rule follows the same structure
as Eq. 7, which stems from the use of recursive least-squares (Sussillo & Abbott, 2009; Rajan et al.,
2016; Perich et al., 2021), the network begins from chaotic random initializations. Since FORCE
attains low error after few iterations by the use of recursive least-squares (Sussillo & Abbott, 2009),
subsequent updates remain in the identifiable subspace (Theorem 2).

Fig. 3 shows the direct implication of this process. We repeat the noise-free estimation from Fig. 2
using a FORCE learner Perich et al. (2021) across normalized regularization strengths λ. In con-
trast to CORNN, FORCE learning did not suppress the non-identifiable components even when λ
was scaled to very large values that decreased the accuracy (Fig. 3A–B). As learning converged
to correct predictions within the top spectral components, only identifiable parameters continued
to receive updates, whereas projections onto the lowest spectral components retained their norms
(Fig. 3B, contrast FORCE vs. CORNN) and remained highly correlated with their initialization
(Fig. 3C). This outcome confirms Theorem 2, showing how non-identifiable components present at
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Figure 3: FORCE learning inevitably learns non-identifiable RNN parameters. A Reconstruc-
tion accuracy of the projected parameters as a function of the spectral components of the training-
sample Gram matrix. B Frobenius norm of the projected parameters along the spectral components.
The boxed region highlights that, for FORCE, the Frobenius norms converge to the (expected) val-
ues at initialization (horizontal dashed black line). C Pearson correlations between the projections
of the initial and learned parameters by FORCE. Parameters: Refer to Appendix D.2.6.

initialization remain largely unchanged. Together, these findings provide conclusive evidence that a
popular estimator relies on parameters unconstrained by observed data (being effectively determined
by initialization), and ℓ2 penalties on the weights alone do not resolve identifiability issues.

5.3 REVEALING NON-IDENTIFIABLE COMPONENTS WITH TARGETED INTERVENTIONS

We have shown above that a common estimator (Sussillo & Abbott, 2009; Perich & Rajan, 2020,
FORCE) projects arbitrary weights into a randomly initialized subspace, even if it contains non-
identifiable directions. In contrast, estimators consistent with Theorem 2 assign zero to those direc-
tions. As shown in Figs. S3 and S4 (and discussed further in Appendix B.2), adding random noise
to the dynamics can degrade performance. Thus, to resolve the zero-eigenvalue modes of the Gram
matrix, we turn to a powerful tool: deliberate experimental interventions.

The intervention setup. We focus on generator RNNs trained on the 3-bit flip-flop task, whose
neural activities are reconstructed with dRNNs (Fig. 4). Here, the network receives three separate
binary input streams, each of which can flip or hold the value of an independent memory bit. This
requires the RNN to maintain one of 23 = 8 possible internal states. The networks state is output
through three linear readouts. First, we use the generator RNNs to create an observational dataset
Dobs over 5 distinct trials and compute the Gram matrix. We then construct an intervention dataset
Dint by sampling new points x(j) in four cases: (i) additional trials of the network under normal
operation (blue in Fig. 4), (ii) projections restricted to the bottom spectral eigenvectors (green), (iii)
projections restricted to the top spectral eigenvectors (orange), or (iv) random projections along the
spectral components of the Gram matrix (red). Finally, we combine Dobs and Dint, train dRNNs on
the combined datasets, and analyze the reconstruction accuracies of the RNN parameters.

Intervention results showcase the empirical utility of Theorem 1. Intervention strategy critically
determines the performance of the dRNNs (Fig. 4A-B). When 500 intervention samples are avail-
able, all three Gram-matrix–based strategies (but not the one involving extra observational samples;
blue in Fig. 4A) achieve near-perfect accuracies. This is consistent with Theorem 1; all parameters
are identifiable when the data are full rank (i.e., P = I in Theorem 1, albeit with noisy samples).
Here, interventions along the top eigenvectors provide little to no benefit (“worst-case”), whereas
selecting the bottom eigenvectors (“optimal”) accelerates recovery relative to random choices. The
lowest eigenvectors of the Gram matrix are more likely to correspond to the null or noisy dimen-
sions (Theorem 1). Increasing the number of interventions progressively aligns dRNN outputs with
the ground truth flip-flop states (Fig. 4C). Even though the optimal strategy (green) has no informa-
tion on the task itself, i.e., does not involve samples encountered during task-relevant operation of
the dRNNs, dRNNs trained with these samples over-perform those trained with equally more sam-
ples collected from task-performing generators. Hence, a task-agnostic parameter disambiguation
strategy may provide more information on task-relevant parameters than task-relevant information.
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Figure 4: Targeted interventions can recover non-identifiable parameters of RNNs trained
to perform 3-bit flip-flop tasks. A Reconstruction accuracy of parameters θ = [W rec,W in] as
a function of the number of intervention samples in training. B Corresponding state estimation
accuracy (agreement between predicted and target flip-flop states). In A-B, solid lines indicate the
mean and shaded regions the s.d. across 20 RNNs. C Example outputs from trained RNNs for a
single trial (T = 100); dashed black lines denote the ideal outputs. Parameters: Parameters: Refer
to Appendix D.2.6.

5.4 IDENTIFIABLE DYNAMICS ARE CONSTRAINED BY OBSERVED TRAJECTORIES

Our findings above lead to a crucial question: Do RNNs that share the same top spectral components
also share the same dynamical structures within these components? To answer, we recall that the
task-relevant parameters span only the first few top spectral components. We define “identifiable
neural activity subspace” to be that which is spanned by the relevant set of spectral eigenvectors via
Sid = {

∑R
r=1 aivi|vi : top ith spectral eigenvector}, where R is some cutoff chosen empirically.

We rephrase the question: Can parameter differences confined to the non-identifiable directions
induce distinct dynamical behaviors in the identifiable neural activity subspaces?
Theorem 3 (Preserved dynamics in identifiable neural activity subspaces). Let Sid =
span{v1, . . . , vR} be the identifiable subspace spanned by the top R spectral eigenvectors of the
Gram matrix, and assume that for a noiseless, task-performing RNN with dynamics in Eq. 1, the
activities satisfy r[t] ∈ Sid for all t. Let θ̃ be identifiable with θ̃Pid = θ̃, where Pid projects onto
Sid. Then, any parameterization θ = θ̃+∆θ with ∆θPid = 0 but ∆θ ̸= 0 yields identical dynamics
ṙ[t] for all r[t] ∈ Sid, but not necessarily when r[t] /∈ Sid.

Theorem 3 ties our results to the central motivation for training dRNNs. It shows that identifiability
is not only a property of parameter recovery but also of dynamical fidelity. It states that within the
identifiable subspace, all RNNs consistent with the training data yield the same dynamics, even for
regions of state space not sampled during training, thus enabling principled generalization beyond
the observed data. By contrast, outside this subspace, unconstrained parameter variations can induce
divergent dynamics, with no empirical support from the observed neural dataset.

Overall, our main theoretical results (Theorems 1, 2, 3) set up a theory of RNN identifiability for ex-
perimental and computational neuroscientists seeking to use them as models of dynamical systems.
Appendix B provides empirical analyses and ablation studies to test its robustness and scope. There,
we examine the effects of different noise models, estimators, and partial observability; extend the
framework to low-rank RNNs; and investigate how temporal scales influence parameter estimation.
We also show how to use the Gram matrix to reveal solution degeneracy in task-trained RNNs.

6 CONCLUSION
Our results delineate boundaries of state space where dynamical models can and cannot be trusted,
offering a practical guide for the responsible use of data-constrained RNNs as digital twins (Perich &
Rajan, 2020). While dRNNs are often framed as generalizing beyond training samples and recover-
ing neural circuit dynamics, no theoretical guarantee had established that the recovered dynamics are
consistent, unique, or generalizable. We prove that identifiability governs both consistency and gen-
eralization, introducing identifiable and non-identifiable parameters with their associated subspaces.
Finally, we propose an empirical intervention framework for probing non-identifiable subspaces,
showing that although such components cannot be resolved by computation alone with limited data,
they can be uncovered through perturbation, opening the way for experimental designs that expand
prediction-safe regions.
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LIMITATIONS

While our work establishes a general theoretical framework for identifiability in dynamical recurrent
neural networks, several limitations remain that should be acknowledged and that point to concrete
directions for future research.

Firstly, there is likely a simple but important connection to Takens’ theorem in dynamical systems
theory Takens (2006), which posits that the attractor of a dynamical system can be reconstructed
from time-delay embeddings of a generic observable. We did not explore this direction here, but it
is plausible that introducing delayed embeddings into our framework could further strengthen the
identifiability results and provide a complementary perspective to our Gram-based analysis.

Second, while we studied both task-trained and low-rank RNNs in the Appendices, these analyses
were intended primarily to support our central results on dRNNs. A more complete theory in these
domains remains to be developed. For task-trained networks, this would involve clarifying how
structured manifolds, multiple timescales, and mixed selectivity affect the identifiable subspace. For
low-rank RNNs, this would mean integrating the latent dynamics implied by the low-rank factoriza-
tion with the spectral constraints derived from the Gram matrix. Both directions represent natural
and important extensions of our work.

Following established practice in the field Das & Fiete (2020); Qian et al. (2024) and for clarity
of presentation, our paper is intentionally limited to theory and controlled synthetic experiments.
While dRNNs have been applied to real neural recordings many times Perich et al. (2021); Valente
et al. (2022), we chose not to pursue such applications here. Beyond the practical issue of dataset
access and additional complications associated with (somewhat nonstandard (Rajan et al., 2016;
Perich et al., 2021; Valente et al., 2022)) preprocessing of neural activities, we believe little is to
be gained scientifically from training one more RNN on these datasets without causal perturbations
that can only be performed in experimental settings. Notably, theorems 1 and 2 are best illustrated
in simulated datasets where the ground truth is known.

Currently, two key empirical applications of our theory remain practically untested and will likely
remain so until single-cell level interventions become mainstream and instant. Testing two of our
central ideas, most notably Theorem 3 and the proposed interventions, requires not just obser-
vational data but direct empirical evaluations at the level of individual neurons, which may take
years to develop Vinograd et al. (2024); Liu et al. (2024). We hope that future work will use our
framework to rapidly discard inconsistent hypotheses (e.g., perturbation predictions that result from
non-identifiable components) and to design closed-loop intervention experiments that directly test
Theorem 3. Such experiments would provide a stringent evaluation of our theory and clarify how
identifiability constraints limit inference from real neural recordings.

Finally, we acknowledge the use of large language models for copyediting and grammar corrections,
as well as simplification of jargon in several places of our writing.
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Niclas Alexander Göring, Florian Hess, Manuel Brenner, Zahra Monfared, and Daniel Durstewitz.
Out-of-domain generalization in dynamical systems reconstruction. In Forty-first International
Conference on Machine Learning, 2024. URL https://openreview.net/forum?id=
xTYIAD2NND.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Ann Huang, Satpreet H Singh, Flavio Martinelli, and Kanaka Rajan. Measuring and controlling
solution degeneracy across task-trained recurrent neural networks. ArXiv, pp. arXiv–2410, 2025.

D Kepple, Rainer Engelken, and Kanaka Rajan. Curriculum learning as a tool to uncover learning
principles in the brain. In International Conference on Learning Representations, 2022.

Mikail Khona and Ila R Fiete. Attractor and integrator networks in the brain. Nature Reviews
Neuroscience, 23(12):744–766, 2022.

Timothy Doyeon Kim, Thomas Zhihao Luo, Tankut Can, Kamesh Krishnamurthy, Jonathan W Pil-
low, and Carlos D Brody. Flow-field inference from neural data using deep recurrent networks.
bioRxiv, 2023.

Tony Hyun Kim and Mark J Schnitzer. Fluorescence imaging of large-scale neural ensemble dy-
namics. Cell, 185(1):9–41, 2022.

Shinichiro Kira, Houman Safaai, Ari S Morcos, Stefano Panzeri, and Christopher D Harvey. A
distributed and efficient population code of mixed selectivity neurons for flexible navigation de-
cisions. Nature communications, 14(1):2121, 2023.

Bariscan Kurtkaya, Fatih Dinc, Mert Yuksekgonul, Marta Blanco-Pozo, Ege Cirakman, Mark
Schnitzer, Yucel Yemez, Hidenori Tanaka, Peng Yuan, and Nina Miolane. Dynamical phases of
short-term memory mechanisms in RNNs. In Forty-second International Conference on Machine
Learning, 2025. URL https://openreview.net/forum?id=ybBuwgOPOd.

Christopher Langdon, Mikhail Genkin, and Tatiana A Engel. A unifying perspective on neural
manifolds and circuits for cognition. Nature Reviews Neuroscience, pp. 1–15, 2023.

Erich L Lehmann and George Casella. Theory of point estimation. Springer Science & Business
Media, 2006.

Scott Linderman, Matthew Johnson, Andrew Miller, Ryan Adams, David Blei, and Liam Paninski.
Bayesian learning and inference in recurrent switching linear dynamical systems. In Artificial
intelligence and statistics, pp. 914–922. PMLR, 2017.

Mengyu Liu, Aditya Nair, Nestor Coria, Scott W Linderman, and David J Anderson. Encoding of
female mating dynamics by a hypothalamic line attractor. Nature, pp. 1–3, 2024.

12

https://openreview.net/forum?id=xTYIAD2NND
https://openreview.net/forum?id=xTYIAD2NND
https://openreview.net/forum?id=ybBuwgOPOd


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jason Manley, Sihao Lu, Kevin Barber, Jeffrey Demas, Hyewon Kim, David Meyer, Fran-
cisca Martı́nez Traub, and Alipasha Vaziri. Simultaneous, cortex-wide dynamics of up to 1 million
neurons reveal unbounded scaling of dimensionality with neuron number. Neuron, 2024.

Valerio Mante, David Sussillo, Krishna V Shenoy, and William T Newsome. Context-dependent
computation by recurrent dynamics in prefrontal cortex. nature, 503(7474):78–84, 2013.

Francesca Mastrogiuseppe and Srdjan Ostojic. Linking connectivity, dynamics, and computations
in low-rank recurrent neural networks. Neuron, 99(3):609–623, 2018.

Aditya Nair, Tomomi Karigo, Bin Yang, Surya Ganguli, Mark J Schnitzer, Scott W Linderman,
David J Anderson, and Ann Kennedy. An approximate line attractor in the hypothalamus encodes
an aggressive state. Cell, 186(1):178–193, 2023.

Chethan Pandarinath, Daniel J O’Shea, Jasmine Collins, Rafal Jozefowicz, Sergey D Stavisky,
Jonathan C Kao, Eric M Trautmann, Matthew T Kaufman, Stephen I Ryu, Leigh R Hochberg,
et al. Inferring single-trial neural population dynamics using sequential auto-encoders. Nature
methods, 15(10):805–815, 2018.

Matthew G Perich and Kanaka Rajan. Rethinking brain-wide interactions through multi-region
‘network of networks’ models. Current opinion in neurobiology, 65:146–151, 2020.

Matthew G Perich, Charlotte Arlt, Sofia Soares, Megan E Young, Clayton P Mosher, Juri Minxha,
Eugene Carter, Ueli Rutishauser, Peter H Rudebeck, Christopher D Harvey, et al. Inferring brain-
wide interactions using data-constrained recurrent neural network models. bioRxiv, pp. 2020–12,
2021.

Matthew G Perich, Devika Narain, and Juan A Gallego. A neural manifold view of the brain. Nature
Neuroscience, pp. 1–16, 2025.

Alexandre Pouget, Peter Dayan, and Richard Zemel. Information processing with population codes.
Nature Reviews Neuroscience, 1(2):125–132, 2000.

Alexander S Poznyak, Edgar N Sanchez, and Wen Yu. Differential neural networks for robust
nonlinear control: identification, state estimation and trajectory tracking. World Scientific, 2001.

William Qian, Jacob Zavatone-Veth, Ben Ruben, and Cengiz Pehlevan. Partial observation can
induce mechanistic mismatches in data-constrained models of neural dynamics. Advances in
Neural Information Processing Systems, 37:67467–67510, 2024.

Kanaka Rajan, LF Abbott, and Haim Sompolinsky. Stimulus-dependent suppression of chaos in
recurrent neural networks. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics,
82(1):011903, 2010.

Kanaka Rajan, Christopher D Harvey, and David W Tank. Recurrent network models of sequence
generation and memory. Neuron, 90(1):128–142, 2016.
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Figure S1: Single-step prediction root-mean-squared errors corresponding to Figure 2. A Ef-
fect of the number of observed neurons on single-step prediction RMSE across trajectory lengths
T with negligible regularization (λ = 10−15). B Effect of regularization strength λ on single-step
prediction RMSE across trajectory lengths T . These results complement Figure 2 by showing the
direct single-step prediction errors for RNNs trained to reproduce neural trajectories sampled from
chaotic RNNs. A reasonable tolerance level for the single-step prediction RMSE is O(10−8), since
squared error is minimized during training and machine precision is ∼ 10−16. Parameters: For A,
same as in Fig. 1A-B but with varying N . For B, same as in Fig. 1C but with additional λ values.
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Figure S2: Empirical verification of the neural uncertainty principle with networks of varying
sizes. We performed the same analysis as in Fig. 2A-B, but for RNNs that had N = 100 (A),
N = 300 (B), and N = 500 (C) neurons.
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Figure S3: Regularization levels control which spectral components are used for parameter
estimation. We performed the same analysis as in Fig. 2C for varying λ values for noiseless
(A) and noisy (B) evolutions of the RNN. For the noisy case, we picked ϵin ∼ N (0, 10−6) and
ϵconv ∼ Laplace(10−3), in which x in Laplace(x) refers to the scale parameter.
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Figure S4: When estimation is not regularized, noise inflates the non-identifiable components.
Similar to Fig. S3 (using the same parameters), we examined the Frobenius norm of parameter com-
ponents projected onto the spectral components of the Gram matrix (left) and the reconstruction
accuracy measured as the correlations between ground truth and predicted projections (right) across
varying λ values for noiseless (A) and noisy (B) RNN evolutions. Without regularization, noise
caused systematic overestimation of magnitude in non-identifiable components, which should ide-
ally have been chosen with zero norm.
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Figure S5: Revealing all RNN parameters is distinct from revealing those that encode task-
relevant computations, the latter predominantly reside in the top spectral components. We
reanalyzed the RNNs trained in Fig. 4 by computing a generalized Gram matrix from 1000 trials
of each network performing the 3-bit flip-flop task. Using its spectral components, we evaluated
reconstruction accuracies of the projected parameter dimensions as a function of the number of
intervention samples used during reconstruction. Compared with Fig. 4C (where ∼ 100 intervention
samples led to high output accuracies for the optimal strategy; and ∼ 200 for the random and
“extra-trial-data” strategies), RNNs that reliably solved the 3-bit flip-flop task exhibited substantial
variability in their higher spectral components relative to the generator RNNs. As expected from
Theorem 1, all three Gram-matrix–based strategies (i.e., all except “extra-trial-data”) eventually
achieved uniform perfect reconstruction.
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A EXTENDED RELATED WORKS

In the main text, we summarized prior work on RNNs as models of neural activity, as well as the
general identifiability of RNNs and nonlinear systems.

Dynamical models of neural activity. A central premise of computational neuroscience is that
computational models that reproduce neural activity will provide biological insight. However, re-
covering synaptic connectivity or precise mechanisms from dynamics alone is generally ill-posed
(Das & Fiete, 2020; Brinkman et al., 2018), and even functional properties such as attractors can be
unreliable when inferred from observational data alone (Qian et al., 2024; Göring et al., 2024).

Despite these limitations, predictive models have generated potentially meaningful results. RNNs
trained on neural trajectories have been shown to capture features such as population-level gat-
ing (Finkelstein et al., 2021), inter-area communication motifs (Perich & Rajan, 2020), and low-
dimensional attractor dynamics (Valente et al., 2022). Several of these predictions have been refined
and confirmed through causal perturbations (Daie et al., 2021; Liu et al., 2024; Vinograd et al., 2024;
Walker et al., 2019), demonstrating that data-driven models can sometimes generate testable mech-
anistic hypotheses. In an effort to preserve biological interpretability, some studies have trained
“data-constrained” RNNs with a one-to-one mapping between model units and recorded neurons
(Perich & Rajan, 2020; Perich et al., 2021; Dinc et al., 2023). This approach aims to avoid con-
founds introduced by hidden units and to estimate functional connectivity directly. However, even
in these restricted settings, little has been studied about the identifiability of parameters, leaving
open the question of whether different underlying models can equally explain the same data.

Identifiability in nonlinear systems. The broader control and systems literature provides a foun-
dation for understanding when models can be uniquely determined from observed behavior. Clas-
sical realization theory shows that any finite-dimensional system’s external behavior can be repre-
sented by a minimal, unique system if it is both controllable and observable (Sussmann, 1976). In
this framework, two systems are indistinguishable if they generate the same outputs for all inputs,
and minimal models are live in the quotienting the parameter space of the original model with this
equivalence relation.

Complementary results come from dynamical systems theory. Takens’ embedding theorem (Takens,
2006) guarantees that, given a sufficiently large embedding dimension, the dynamics of a system
can be reconstructed from time-delayed measurements of even a single observable (Schmid, 2010).
This provides theoretical justification for reconstructing dynamics from partial observations, as is
common in neuroscience. Yet in practice, neural data often violate these assumptions. Activations
are highly redundant and typically lie in a low-dimensional subspace (Dubreuil et al., 2020; Perich
et al., 2025), undermining identifiability.

Identifiability in neural networks. Identifiability in neural networks has been studied for
decades, though usually under restrictive assumptions. For recurrent architectures with linear or
smooth nonlinear activations (such as tanh), input–output mappings can constrain parameters up to
permutation symmetries, except in degenerate situations caused by dependencies, nonobservability,
or noncontrollability (Sussmann, 1992; Poznyak et al., 2001; Albertini & Sontag, 1993; Albertini
et al., 1994; Sontag, 2013). Real neural data, however, are precisely such degenerate cases: redun-
dancy and low dimensionality leave entire parameter directions unconstrained.

Recent work has formalized these issues in both recurrent and feedforward networks. For example,
distinct connectivity matrices in piecewise-linear RNNs can produce identical steady states (Biswas
& Fitzgerald, 2022), and equivalence classes of minimal, identifiable systems have been defined for
restricted classes of RNNs (Al-Falou & Trummer, 2003). Parallel efforts have analyzed parameter
symmetries in feedforward networks, especially with ReLU nonlinearities (Bui Thi Mai & Lampert,
2020; Bona-Pellissier et al., 2023).

Solution degeneracy in task-trained RNNs. Within neuroscience and machine learning, non-
identifiability is often discussed under the broader notion of solution degeneracy. Input-driven con-
straints shape RNN dynamics, but leave ambiguity (Rajan et al., 2010), and partial observability
creates challenges for learning and inference (Kepple et al., 2022). More recently, Huang et al.
(2025) introduced a framework to quantify and control solution degeneracy in task-trained RNNs,
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showing that variability across solutions depends on model capacity and task complexity. Their
results highlight the need for interventions to disambiguate latent mechanisms, as multiple parame-
terizations can fit the same task, using different mechanisms.

B ADDITIONAL RESULTS AND ABLATION STUDIES

B.1 ESTIMATION WITH A BROAD CLASS OF ESTIMATORS

Theorem 2 and Corollary 1 jointly propose a clear path for designing estimators, i.e., those that
respect an update rule in Eq. 7, and/or a class of loss functions, i.e., those that follow Eq. 8. In
this section, we focus on one group of estimators inspired by Eq. 8, for which parameters at a local
minimum is guaranteed to be reconstructed in a manner consistent with Theorem 1. Specifically, for
a given set of auxiliary (r[s]) and target (r[s+ 1) activities, we first define an equivalent target:

di[s] =
ri[s+ 1]− (1− α)ri[s]

α
. (S1)

Notably, this is also an observable once r[s] and r[s+ 1] are known and can be estimated via:

d̂[s] = tanh(θTx[s]), (S2)

where x[s] = [r[s], u[s]] ∈ RN+Nin and the parameter matrix θ = [W rec,W in] ∈ RN×(N+Nin)

defined as before. Then, the loss function in Eq. 8 becomes:

L(θ) =
TM∑
s=1

L(di[s], d̂i[s]), (S3)

in which the loss can be chosen as a standard ℓ2 loss, or cross entropy, or a weighted cross entropy
as in Dinc et al. (2023).

Building on this construction, we now test how different estimators behave in practice when trained
on finite, noisy datasets. Figure S6 compares four approaches: CORNN, second-order cross-entropy
minimization, first-order cross-entropy (Adam), and a standard ℓ2 loss. Each method minimizes

Figure S6: Estimators consistent with Theorem 2 can employ distinct loss functions and opti-
mization strategies, yet still agree with Theorem 1 near their minima. We reconstructed parame-
ters of RNNs (N = 300) trained on a delayed match-to-sample (DMTS) task using four distinct op-
timization strategies, each minimizing single-step prediction error. Left: Estimators with negligible
regularization (λ = 10−13). All converged except the first-order minimization of an ℓ2 loss, which is
non-convex and likely had not converged near a local minimum. Right: With proper regularization
(λ = 10−5), all estimators produced reconstruction accuracies that decreased systematically along
the spectral components of the Gram matrix G computed from the training samples. Parameters:
Tin = 30 ms, Tdelay = 80 ms, Tresp = 50 ms, ∆t = 5 ms, and α = 0.5. RNNs were injected with
random noise at every time step with ϵin ∼ N (0, 10−4) and ϵconv ∼ 0.1Poisson(10−3). Training
samples included B = 40 trials, each with 38 data points, totaling T = 1520.
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single-step prediction error, hence guaranteed by Corollary 1 to follow the reconstruction pattern
as stated by Theorem 1, but differs in optimization and loss formulation. To do so, we focus on
generator RNNs that are trained to perform a canonical working memory task, i.e, delayed match-
to-sample (DMTS) (Fig. S6). In this task, the network receives a brief input cue, maintains it over a
variable delay, and generates the corresponding output upon the go signal.

When dRNNs were trained with negligible regularization (Fig. S6, left; λ ≈ 10−13), all estimators
but the one minimizing the ℓ2 loss produced reconstructions aligned with the theoretical predictions
of Theorem 1. CORNN and both cross-entropy variants, all of which are convex loss functions, track
the leading spectral components of the Gram matrix with near-perfect accuracy. By contrast, the
first-order ℓ2 loss, being non-convex, fails to converge near a local minimum described by Corollary
1. This is expected, as proper regularization is often needed for a first-order estimation to settle
into a local minimum with a non-convex loss function. This was indeed the case with regularization
(Fig. S6, right; λ = 10−5), for which all estimators collapse onto the same characteristic behavior:
reconstruction accuracy decays systematically with spectral index as regularization suppresses the
low spectral components following Corollary 1. Importantly, while the specific loss function and
optimizer differ, their asymptotic solutions agree at the top spectral components of the parameters.

Taken together, these results demonstrate that dRNNs can employ distinct loss functions and op-
timization strategies yet still yield reconstructions that agree within the identifiable subspace. In
other words, the precise choice of estimator matters less than whether its updates conform to the
structure prescribed by Theorem 2, or its loss function follows the form given in Corollary 1 (albeit,
optimization with non-convex loss functions may not need to converge).

B.2 PRACTICAL ESTIMATION OF THE GRAM MATRIX WITH NONTRIVIAL NOISE MODELS

The practical applicability of Theorem 1, as well as the premise of Theorem 2, both rely on the
assumption that Eq. 6 holds, i.e., noise is zero-mean and independently sampled across neurons and
time points. What if either was not the case, which is expected to occur in practice, what hope do
we have in reconstructing identifiable parameters in dRNNs?

Independent noise with finite mean. We already considered this case empirically in Fig. S6,
in which Poisson distribution introduced finite mean to the conversion noise. Yet, the parameter
reconstruction roughly follows Theorem 1. Here, we theoretically argue why finite bias introduced
by independent noise is expected to have minor, if any, perturbation to Eq. 6. First, define a = E[ϵ],
then we can write:

E[G] = E[XTX] = E
[
(X̃ + ϵ)T (X̃ + ϵ)

]
= E

[
X̃T X̃ + ϵT X̃ + X̃T ϵ+ ϵ2

]
,

= E[G̃] + TM(σ2
ϵ + aaT ) + X̃T1aT + a1T X̃,

(S4)

where 1 is a vector of all 1s. Notably, this is at most a rank-3 correction to the original Eq. 6, and a
diagonal plus low-rank correction to G̃. Hence, while noise with finite mean can hurt the estimation
of the Gram matrix, this happens at most with a low-rank correction.

Low-rank spatiotemporally correlated noise. In the most general case, we can write the empirical
Gram matrix as

E[G] = E[XTX] = E
[
(X̃ + ϵ)T (X̃ + ϵ)

]
= E[G̃] + Σϵ + E

[
ϵT X̃ + X̃T ϵ

]
. (S5)

Here, the first term G̃ = X̃T X̃ is the noiseless Gram matrix, the second term accounts for the
intrinsic spatiotemporal covariance of the noise, while the remaining terms capture possible corre-
lations between X̃ and ϵ. Unlike the case with a random noise, here, there is no guarantee that any
of the corrections are diagonal and/or low-rank. On the other hand, earlier work has hypothesized
(supported with empirical evidence Ebrahimi et al. (2022); Rumyantsev et al. (2020)) that noise
correlations may actually be low-rank Dinc et al. (2025), which is what we consider next.

Specifically, suppose the noise ϵ ∈ RT×N is confined to an r-dimensional subspace of RN , so that
we can write ϵ = ZUT with U ∈ RN×r and Z ∈ RT×r. Then the correction takes the form

E[G] = E[G̃] + E[U [ZTZ]UT ] + E[UZT X̃ + X̃TZUT ]. (S6)

The first correction term has rank at most r, while the cross-terms add at most another 2r directions.
Hence, the corrections are bounded by the total number of dimensions that noise is confined to.
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Figure S7: Spatiotemporally correlated noise induces structure that complicates estimation,
but can be mitigated with increased number of trials. We trained generator RNNs (N = 500)
on the delayed cue discrimination task with injected random, spatiotemporally independent (left) vs
correlated (right) noise. Estimation accuracies (Pearson’s r) of the projected parameters between
dRNNs and generator RNNs were plotted as a function of the spectral components of the Gram
matrix used during dRNN training. While training with spatiotemporally correlated noise required
more trials to be accurate, it converged to the structure predicted by Theorem 1 in the end. Parame-
ters: Tin = 30 ms, Tdelay = 80 ms, Tresp = 50 ms, ∆t = 10 ms, and α = 0.5. RNNs were injected
with (random or correlated, see Appendix D.2.3 for the noise generation process) noise at every time
step with ϵin ∼ N (0, 10−4) and ϵconv ∼ 0.1Poisson(10−3). Each training trial contained 32 data
points. dRNNs were trained (λ = 10−7) with varying numbers of observed neurons and trials, as
indicated in the figure legends.

Notably, while confinement of noise to a subspace may impede with the signal, there is empirical
evidence that in biological brains, noise is largely orthogonal to the signaling directions Rumyantsev
et al. (2020).

Empirical tests with spatiotemporally correlated noise. We next asked how realistic (full-rank)
spatiotemporal correlations empirically affect estimation (Fig. S7). We focused on generator RNNs
trained to perform a delayed cue discrimination task, in which the network receives a brief input cue
out of two options, maintains it over a variable delay, and generates the corresponding output in the
appropriate response channel. To introduce correlated noise, we first sampled independent Gaussian
noise at every neuron and time step, then applied a two-dimensional low-pass filter (convolution
with a Gaussian kernel) across neurons and time, and finally rescaled the variance to a fixed target
(see Appendix D.2.3 for details). Because the noise was injected directly into the dynamics rather
than into an observation process, the resulting neural activities were effectively correlated with the
injected noise.

When noise was independent, estimation accuracies decayed systematically with the spectral com-
ponents of the Gram matrix, and increasing the number of training trials improved recovery as
expected (Fig. S7, left). By contrast, spatiotemporally correlated noise introduced additional low-
dimensional structure that complicated estimation and reduced accuracy at small sample sizes
(Fig. S7, right). Nevertheless, increasing the number of trials progressively mitigated these ef-
fects, and the reconstructions eventually converged to the structure predicted by Theorem 1. This
shows that while correlated noise complicates estimation, its impact can be overcome with sufficient
data. This finding is consistent with earlier literature, i.e., effective estimation under correlated noise
requires larger sample sizes (Dinc et al., 2023), but generalizes it by stating that increased data size
and richness enables empirical parameter identification in line with Theorem 1.

Effects of mismatches in the estimated time-scales. Another important, empirically relevant as-
pect of dRNN training is the potentially incorrect estimation of the timescale parameter τ . Notably,
in many applications τ is set by the kernel of the smoothing performed on the neural datasets Perich
et al. (2021), yet it is instructive to study the effects of such mismatches. Since the Gram matrix
is computed directly from the observed neural activities, a potential mismatch in the assumed time
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Figure S8: Even with mismatched time constants, dRNN training tracks the spectrum of the
Gram matrix. We trained dRNNs to reproduce RNNs performing the 3-bit flip-flop task from
Fig. 4. In the mismatch condition, time constants were sampled as α ∼ N (0.5, 0.052) instead of
being fixed at α = 0.5. A Reconstruction accuracy vs. spectral components of the Gram matrix. B
Parameter norms vs. spectral components. Parameters: N = 500, λ = 10−2, ϵin ∼ N (0, 10−6),
ϵconv ∼ 0.1Poisson(10−1). Each trial contained 100 data points.

constants of dRNNs does not affect our ability to estimate the spectral components, although it can
introduce systematic biases into the parameter estimates Dinc et al. (2023).

To test this, we trained dRNNs to reproduce RNNs performing the 3-bit flip-flop task (Fig. 4), either
with matched time constants (fixed at α = 0.5) or with mismatched ones, where α was drawn
from a distribution N (0.5, 0.052) at each step. Figure S8A shows reconstruction accuracies as a
function of the spectral components of the Gram matrix. In both conditions, estimation accuracies
decayed systematically with spectral index, and increasing the number of training trials improved
recovery as expected. Even with mismatched time constants, the dRNNs continued roughly to track
the Gram spectrum in line with Theorem 1, though some perturbations similar to Fig. S7 did occur.
Notably, the Frobenius norm of the projected parameters did not change substantially between two
cases ( Figure S8B), revealing that mismatches did not particularly bias the norms of the estimated
parameters the way that random noise did, e.g., in Fig. S4.

Together, these results demonstrate that mismatched time constants do not compromise identifia-
bility of the spectral components themselves, but they do introduce systematic biases in parameter
recovery.

Effects of unobserved influences on the identifiable estimation of dRNN parameters. A major
challenge in training dRNNs is the presence of unobserved neurons, which is either omitted in
practice Das & Fiete (2020) or used to argue caution against their use Qian et al. (2024). For a given
RNN, the dynamics of the observed neurons can be written as

τ ṙ(t) = −r(t) + tanh(W recr(t) +W inu(t) + i(t) + ϵin) + ϵconv, (S7)

where i(t) denotes the influence of unobserved neural activities. This influence can be viewed
as spatiotemporally correlated noise, but unlike random fluctuations, its structure is often highly
aligned with the signal itself. This raises the question of whether parameter estimation remains
possible at all, even under the guarantees of Theorem 1.

To formalize this, we extend Theorem 1 to partially observed populations:
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Figure S9: Partial observations induce unobserved influences that bias the top spectral com-
ponents of the estimated Gram matrix. We trained large-scale generator RNNs with N = 10, 000
neurons on the delayed cue discrimination task from Fig. S7 and performed inference using only
partially observed neural populations. Estimation accuracies (Pearson’s r) of the projected param-
eters between dRNNs and generator RNNs were plotted as a function of the spectral components
of the Gram matrix used during dRNN training. The right panel provides a close-up of the left. As
the number of observed neurons increased, the top ∼ 10 − 15 spectral components, initially non-
identifiable, became identifiable again. Parameters: Same as in Fig. S7, but with N = 10000 and
only independent noise injections. For A, we used 300 trials, comparable to a single imaging ses-
sion, whereas for B, we used 2000 trials, comparable to a week long dataset Ebrahimi et al. (2022).

Proposition S1 (Non-identifiability under partial observation). Let x[i] = [xobs[i], xunobs[i]], where
xobs[i] denotes the observed neural activities and inputs for i = 1, . . . , T , and xunobs[i] the cor-
responding unobserved variables. Let θ∗obs denote the parameters among observed neurons, and
θ∗unobs those involving unobserved neurons. Let ϕ(·) be any nonlinearity, not necessarily continu-
ous. Then, when θunobs = θ∗unobs, all RNNs with parameters θobs produce the same observed neural
trajectory provided that

θobs = θ̃obs +∆θobs, where θ̃obs = θ∗obsP, and ∆θobsP = 0, (S8)

with P denoting the projection operator onto the observed subspace of the neural dataset.

This result highlights that when there are unobserved variables, the converse of Theorem 1 fails
to hold. In particular, even if P = I , RNN parameters may remain non-identifiable due to the
hidden influence of unobserved neurons or the redundancy introduced by non-monotonic activation
functions.

Empirical effects of partial observations on identifiability under common influence factors.
A realistic assumption, supported by recent theories of neural computation Dinc et al. (2025) and
empirical work in task-trained low-rank RNNs Valente et al. (2022); Beiran et al. (2021); Mas-
trogiuseppe & Ostojic (2018); Schuessler et al. (2020); Dubreuil et al. (2022), is that the same latent
variables underlie the dynamics of both observed and unobserved neurons. If this is the case, then
the top spectral components of the Gram matrix are presumably dominated by the projections of
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latent computations and may become secluded and biased by the missing activity. In contrast, the
lower spectral components may still be reconstructed. Figure S9 illustrates this effect by training
large-scale generator RNNs (N = 10,000) on the delayed cue discrimination task. From these,
we observed only a subset of the neurons, whose activities were reconstructed with dRNNs. When
the training dataset was limited to the scale of a single imaging session (Fig. S9A), the top spec-
tral components could not be recovered reliably under ∼ 1% subsampling, but recovery improved
rapidly once ∼ 10% of neurons were observed. When more data were collected, equivalent to a
week-long dataset (Fig. S9B), estimation accuracies improved considerably in the lower spectral
components, similar to the case of spatiotemporally correlated noise in Fig. S7, but we observed
little to no improvement in the top components.

Taken together, these results show that partial observations introduce biases that compromise iden-
tifiability of the leading components at finite sample sizes, but increasing the number of samples
and recording from more neurons progressively mitigates these effects and restores accurate recon-
struction of the broader structure of the dynamics. Importantly, this is not a trivial restatement of
known limitations, as the lower spectral components are most important to capture to predict non-
trivial dynamics with dRNNs (Theorem 3). Moreover, with the latest imaging technologies Kim &
Schnitzer (2022); Manley et al. (2024), such sampling fractions are now feasible, and the number
of trials used here are well within experimental reach, with month-long recordings already demon-
strated Driscoll et al. (2017). Notably, these tools will only get improved over time Kim & Schnitzer
(2022). Overall, our finding that only a fraction of the full neuronal population may be sufficient to
counteract the effects of non-identifiable components helps explain the latest successes of dynami-
cal system models in predicting causal perturbations Vinograd et al. (2024); Liu et al. (2024), and
should motivate rather than discourage experimentalists to use dRNN models as tools for extracting
new insights into neural algorithms from large-scale brain recordings.

B.3 EXTENSIONS OF THE IDENTIFIABILITY THEORY TO LOW-RANK RNNS

Non-identifiability in low-rank RNN parameters. A first intuition might be that the intrinsically
low-rank nature of the identifiable subspace, as predicted by Theorem 1, could be enforced directly
by training low-rank RNNs constrained on neural trajectories Valente et al. (2022). In this approach,
the recurrent weight matrix is factorized as W rec = CD with C ∈ RN×K , D ∈ RK×N , and
K ≪ N , so that only O(KN) parameters are learned. This parametrization appears to align with
the expectation that only a low-rank subset of parameters is identifiable. However, recent theoretical
results reveal a crucial complication: even rank-one RNNs can generate neural trajectories that
span the full N -dimensional space of activities Dinc et al. (2025). In that sense, enforcing low-
rank structure on W rec does not guarantee that the observed activity itself is low-dimensional, nor
should it reduce the identifiability requirements of the system. To fully constrain the parameters,
the observation conditions remain just as strict as in the full-rank case. To resolve the apparent
contradiction between these two intuitions, we state and prove the following theorem:

Proposition S2 (Non-identifiability in low-rank RNNs). Consider the noiseless RNN in Eq. 2 with
ϵin/conv(t) = 0. Suppose the recurrent weights are parameterized asW rec = CD withC ∈ RN×K ,
D ∈ RK×N , and K ≪ N . Let X be the observation matrix with the projection operator P onto
its column space. Then any parameterization of the form W rec = C(D + ∆D) with ∆DP = 0
produces the same neural dataset D while preserving rank(W rec) ≤ K.

In essence, Proposition S2 shows that low-rank parameterizations do not resolve the fundamental
ambiguity: perturbations of the form C(D + ∆D) with ∆DP = 0 leave the dataset unchanged
while preserving the network rank.

Low-rank regularization does not necessarily mitigate incorrect estimation, weight regular-
ization does. Combining Theorems 2 and 3 with our results in Figs. S7 and S9, it is reasonable
to expect that introducing ℓ2 penalty on the weights (though, only when the estimator is correctly
structured, see Fig. 3 for a counterexample) improves the estimation of underlying dynamics in
dRNNs. As a (commonly argued Valente et al. (2022)) alternative, since the number of free pa-
rameters significantly decreases in the low-rank setting, we next asked whether constraining dRNNs
to a low-rank parameterization would improve recovery of the underlying dynamics under partial
observation.
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Figure S10: Low-rank estimation is not sufficient to correctly recover generator dynamics.
We reanalyzed the experiment from (Qian et al., 2024, Figure 5b), in which a generator RNN with
only two non-zero (oscillatory, decaying) eigenvalues was reconstructed with a dRNN under par-
tial observation. A Principal component projections of neural activity for 15 distinct initializations:
ground truth (left), rank-2 dRNN (middle), and full-rank dRNN (right), dRNNs trained with mini-
mal regularization (λ = 10−13). B Eigenvalue spectra of the generator RNN and the reconstructed
dRNNs. Optimal ℓ2 regularization enabled recovery of the correct structure (λlow−rank = 10−3,
λfull−rank = 10−1). C Flow of the two largest eigenvalues (by magnitude) as a function of regular-
ization strength. Low-rank dRNNs quickly suppress oscillatory dynamics, whereas full-rank dRNNs
preserve the oscillatory structure until it collapses into the origin. Parameters: Generator RNN with
N = 500 neurons, 25 observed for dRNNs. Dataset from (Qian et al., 2024, Figure 5b): α = 0.01,
T = 80000 time steps, with noise injected at each step (ϵin ∼ N (0, 1)), and an extra observation
noise (N (0, 1)) was added only to the measured activities and not fed back into the dynamics.

To test this, we reanalyzed the experiment of (Qian et al., 2024, Figure 5), in which a generator
RNN with two oscillatory and decaying eigenvalues was reconstructed from partially observed tra-
jectories (Figure S10). When dRNNs were trained with negligible regularization (λ ≈ 10−13), both
low-rank and full-rank dRNNs incorrectly generated limit cycles instead of the expected decaying
spirals (Fig. S10A). Examining the eigenvalue spectra confirmed this failure (Fig. S10B): neither
model matched the ground truth in this regime and both overestimated the eigenvalues, consistent
with the observations of Qian et al. (2024). Nevertheless, introducing an ℓ2 penalty on the weights
corrected this behavior, allowing both low-rank and full-rank models to recover the spiraling dy-
namics. Notably, however, tracking the two dominant eigenvalues under increasing regularization
strength (Fig. S10C) further revealed that low-rank dRNNs rapidly suppressed the oscillatory modes
by collapsing them into a non-oscillatory form, whereas full-rank dRNNs preserved the correct spi-
ral structure until regularization became excessively strong.

These results demonstrate that low-rank constraints alone do not resolve incorrect estimation and can
bias the learned dynamics toward oversimplified solutions, whereas proper weight regularization
(as formalized by Theorem 2 and Corollary 1) may be necessary to stabilize recovery of the true
dynamics. While a more detailed study of identifiability in low-rank RNNs remains an important
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Figure S11: Only top 10 − 20 spectral, but not singular, components store task-relevant pa-
rameters. We re-analyzed the RNNs from Fig. 4, but for dRNNs trained with varying numbers
of regularization parameters. A We used the projected parameters to the top K component of the
singular value decomposotion and computed the accuracies of the reconstructed dRNNs to perform
the task. Left. The full spectrum. Right. Close-up into top 50 components. B Same as in A, but for
projections onto topK spectral components of the Gram matrix, computed from the neural activities
of the generator RNNs across 1000 trials. Parameters: Same as in Fig. 4.

direction for future work, the present findings highlight that identifiability limitations imposed by
the (lack of) richness of the dataset cannot be circumvented simply by enforcing low-rank structure.

B.4 TOP SPECTRAL COMPONENTS OF THE GRAM MATRIX REVEAL TASK-RELEVANT RNN
PARAMETERS

Another important and widely discussed aspect of task-trained RNNs is solution degeneracy, re-
ferring to the existence of many different parameter configurations that achieve similar task per-
formance (Huang et al., 2025; Cao & Yamins, 2024). Such degeneracy can arise from distinct
computational strategies that solve the same task in qualitatively different ways (Kurtkaya et al.,
2025), which is fundamentally different from a potential redundancy created by non-identifiable
components of RNNs that effectively use the same solution, shared by the same identifiable param-
eters. The possibility of the existence for the latter case highlights the need to distinguish which
components of the parameter space are truly task-relevant and identifiable, and which instead reflect
redundant degrees of freedom. Our theoretical results suggest that the identifiable subspace is cap-
tured by the top spectral components of the Gram matrix, which encode the directions most strongly
constrained by the observed neural activity. If task performance relied equally on all degrees of
freedom, no clear cutoff in reconstruction accuracy would be expected.

Strikingly, this is not what we observe. As shown in the main text (Fig. 4), only the top ∼ 10–20
spectral components become well constrained, even in networks that reliably perform the task (see
also Fig. S5). This suggests that task-relevant information is embedded in a restricted subset of spec-
tral modes rather than being distributed across all parameters, providing a principled resolution to
the apparent degeneracy of solutions. To test this further, we compared two types of reconstructions.
In the first test, we projected the estimated parameters onto the top K singular vectors of the re-
current weight matrix obtained through singular value decomposition (SVD), a standard method for
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analyzing network dimensionality. In the second, we projected the combined parameters θ onto the
top K spectral components of the Gram matrix, which by construction capture the data-constrained
directions of the parameter space via Theorem 1. Figure S11 shows the outcome of this comparison.
Reconstructions based on SVD (Fig. S11A) produced performance that depended strongly on the
choice of regularization and increased only gradually with K, with no sharp cutoff. By contrast,
reconstructions based on the spectral components of the Gram matrix (Fig. S11B) achieved near-
perfect task performance once the top ∼ 10-20 spectral components were included, independent of
the regularization strength.

Together, these results demonstrate that task-relevant parameters are concentrated in the top spectral
components of the Gram matrix obtained from the trial-relevant activations of the generator RNN
(here computed with 1000 trials), not in the top singular vectors of the weight matrix. This dis-
tinction shows that many RNNs can solve the same task using the same strategies as long as they
share a similar structure in their dominant spectral components, providing a principled framework
for distinguishing task-relevant dynamics from a trivially redundant solution degeneracy.

C PROOFS OF THEOREMS, PROPOSITIONS, AND COROLLARIES

In this section, we state (again) and prove the theorems, propositions, and corollaries used in the
main text and appendices.

C.1 PROOF OF THEOREM 1

Theorem (Restatement of Theorem 1). Consider the noiseless RNN defined by Eq. 2 with pa-
rameters θ∗. Consider X an observation matrix defining the conditioning space X and denote
P ∈ RNX×NX the projection matrix onto its column space. Then, any RNN parametrized by θ such
that:

θ = θ∗P +∆θ for some ∆θ that verifies ∆θP = 0, (S9)
gives the same conditional probability distribution as the ground-truth RNN. θ∗ is conditionally
identifiable if one of the following holds: (i) P is full rank, in which case P = I , or (ii) the
parameter space is restricted to {θ ∈ Θ : θ(I − P ) = 0} (identifiability condition).

Proof. We perform this proof in three steps. We first recast the conditional identifiability criterion
for noiseless RNNs into an equivalent deterministic form. Then, we characterize the full set of pa-
rameters that yield identical next-step predictions. Finally, we read out the identifiability conditions
explicitly.

Step 1: Equivalence of noiseless RNNs. Consider the noiseless discretized RNN in Eq. 2 with pa-
rameter θ. Define its flowmap as Fθ(·) for notational simplicity. Given x[s] ∈ X , the next state is
deterministically

r[s+ 1] = Fθ(x[s]). (S10)
Thus, the conditional probability distribution of r[s+ 1] given x[s] is

P (r[s+ 1] | x[s]; θ) = δ
(
r[s+ 1]− Fθ(x[s])

)
, (S11)

where δ(·) is the Dirac delta distribution centered at the deterministic prediction. Now consider two
parameterizations θ1 and θ2. Their induced conditional distributions are

P (r[s+ 1] | x[s]; θ1) = δ
(
r[s+ 1]− Fθ1(x[s])

)
, (S12)

P (r[s+ 1] | x[s]; θ2) = δ
(
r[s+ 1]− Fθ2(x[s])

)
. (S13)

For these two distributions to be equal for all x[s] ∈ X , their supports must coincide:
Fθ1(x[s]) = Fθ2(x[s]), ∀x[s] ∈ X . (S14)

Therefore, two noiseless RNNs are equivalent in the sense that they produce the same conditional
probability distributions if and only if they make the same single-step predictions.

Step 2: Find the set of parameters that can reproduce the same next step predictions deterministically.
Let x ∈ X be an observation and denote P the projection matrix onto the column space of X . The
ground-truth RNN with parameters θ∗ produces predictions determined by

r[s+ 1] = (1− α)r[s] + αϕ(θ∗x[s]), (S15)
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where ϕ is the fixed monotone nonlinearity. Suppose there exists an alternative parameterization θ
that yields identical predictions for all x ∈ X . Then, for all x ∈ X ,

ϕ(θx) = ϕ(θ∗x). (S16)

Because ϕ is monotone and applied elementwise, equality of outputs implies

θx = θ∗x, ∀x ∈ X . (S17)

Equivalently, θ and θ∗ must act identically on the subspace spanned by X . This condition can be
expressed using the projection P as

θP = θ∗P. (S18)

Thus, every parameterization θ that reproduces the same predictions can be written as

θ = θ∗P +∆θ, ∆θP = 0. (S19)

Conversely, if θ takes this form, then for any x ∈ X we can write x = Px, which gives

θx = θ∗Px+∆θPx = θ∗Px = θ∗x, (S20)

showing that θ and θ∗ produce identical single-step predictions. Hence, the set of parameters that
can reproduce the same next-step predictions as θ∗ is exactly

{θ = θ∗P +∆θ : ∆θP = 0}. (S21)

Step 3: Read out the identifiability conditions explicitly. Finally, conditional identifiability of θ∗ re-
quires uniqueness within the admissible parameter set. This holds in either of the following cases:
(i) if P is full rank, then P = I and the parameter is uniquely determined; or (ii) if we restrict the
parameter space to {θ ∈ Θ : θ(I − P ) = 0}, ensuring that no additional unconstrained components
remain.

C.2 PROOF OF PROPOSITION S1

Proposition (Restatement of Proposition S1). Let x[i] = [xobs[i], xunobs[i]], where xobs[i] denotes
the observed neural activities and inputs for i = 1, . . . , T , and xunobs[i] the corresponding un-
observed variables. Let θ∗obs denote the parameters among observed neurons, and θ∗unobs those
involving unobserved neurons. Let ϕ(·) be a function. Then, when θunobs = θ∗unobs, all RNNs with
parameters θobs produce the same observed neural trajectory provided that

θobs = θ̃obs +∆θobs, where θ̃obs = θ∗obsP, and ∆θobsP = 0, (S22)

with P denoting the projection operator onto the observed subspace of the neural dataset.

Proof. By assumption, the parameters involving unobserved neurons are fixed at their ground-truth
values, θunobs = θ∗unobs. Hence, the observed trajectory depends only on the action of θobs on the
observed inputs xobs[i]. Applying Theorem 1 to the observed subspace spanned by {xobs[i]}Ti=1, we
obtain that all parameterizations θobs yielding the same observed trajectories must satisfy

θobs = θ∗obsP +∆θobs, ∆θobsP = 0, (S23)

where P denotes the projection operator onto the column space of the observed dataset. Thus, any
such θobs produces the same observed neural trajectory when paired with θunobs = θ∗unobs.

C.3 PROOF OF PROPOSITION S2

Proposition (Restatement of Proposition S2). Consider the noiseless RNN in Eq. 2 with
ϵin/conv(t) = 0. Suppose the recurrent weights are parameterized asW rec = CD withC ∈ RN×K ,
D ∈ RK×N , and K ≪ N . Let X be the observation matrix with the projection operator P onto
its column space. Then any parameterization of the form W rec = C(D + ∆D) with ∆DP = 0
produces the same neural dataset D while preserving rank(W rec) ≤ K.
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Proof. We prove the claim in three steps. We first express how the low-rank recurrent parameteri-
zation determines the observed trajectories. We then characterize the family of equivalent parame-
terizations that leave the dataset unchanged. Finally, we verify that these parameterizations preserve
the low-rank constraint.

Step 1: Express the recurrent contribution. The recurrent weights are parameterized as W rec = CD

with C ∈ RN×K and D ∈ RK×N . For an input x ∈ X , the recurrent contribution to the update is

W recx = CDx. (S24)

Thus, the predictions of the RNN depend directly on how D acts on the projection of x onto the
column space of X , i.e. onto Px. In other words, Dx should remain invariant for the single-step
predictions to remain invariant.

Step 2: Characterize equivalent parameterizations. Consider a perturbation D̃ = D+∆D. Then for
any x ∈ X ,

CD̃x = C(D +∆D)x = CDx+ C∆Dx. (S25)

Since x = Px for x ∈ X , we have

CD̃x = CDPx+ C∆DPx. (S26)

If ∆DP = 0, the second term vanishes, yielding

CD̃x = CDPx = CDx. (S27)

Therefore, C(D +∆D) produces the same outputs as CD for all x ∈ X .

Step 3: Verify preservation of rank constraint and conclude the argument. Since D̃ = D + ∆D is
still a K ×N matrix, the rank of the recurrent weights satisfies

rank(W rec) = rank(CD̃) ≤ K, (S28)

i.e., the low-rank structure is preserved. Therefore, any recurrent weight matrix of the form W rec =
C(D+∆D) with ∆DP = 0 yields the same neural dataset D while ensuring rank(W rec) ≤ K.

C.4 PROOF OF THEOREM 2

Theorem (Restatement of Theorem 2). Under the assumptions and notation of this section, consider
an RNN whose parameters θ ∈ RNrec×NX is estimated by gradient descent of a differentiable loss
L(θ). Assume that the gradient satisfies v(r)T∇L(θ) = O(σn

r ) for every θ ∈ Θ and some n. If
θ(k)P = θ(k) at iteration k of the gradient descent, then for any λ with TMσ2

ϵ ≪ λ≪ σ̃2
R, and for

any step α > 0, the update

θ(k+1) = θ(k) − α∇L(θ)
(
XTX + λI

)−1

, (S29)

is a descent direction that satisfies θ(k+1)P = θ(k+1) +O(σn
ϵ /λ).

Proof. We prove the claim in three steps. We first expand the preconditioner using the SVD of X .
We then show that the update approximately preserves the identifiability condition θ(k)P = θ(k).
Finally, we verify that the update direction is a descent direction under the spectral assumptions.

Step 1: Expand the preconditioner via SVD. Let X = UΣV T be the singular value decomposition,
with V = [v(1), . . . , v(NX)] and Σ = diag(σ1, . . . , σNX

). Then

XTX + λI = V (Σ2 + λI)V T , (XTX + λI)−1 = V (Σ2 + λI)−1V T . (S30)

In this basis, directions v(r) with large singular values σ2
r ≫ λ are nearly preserved, while directions

with σ2
r ≪ λ are suppressed.

Step 2: Show approximate preservation of identifiability. Suppose θ(k)P = θ(k). The update rule is

θ(k+1) = θ(k) − α∇L(θ) (XTX + λI)−1. (S31)
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Right–multiplying by P gives

θ(k+1)P = θ(k)P − α∇L(θ) (XTX + λI)−1P. (S32)

Since θ(k)P = θ(k), it remains to compare the last term with the unprojected update. Expanding in
the eigenbasis {v(r)},

(XTX + λI)−1v(r) =
1

σ2
r + λ

v(r). (S33)

By assumption, the gradient component satisfies v(r)T∇L(θ) = O(σn
r ) by assumption. Thus the

contribution introduced by projecting is at most of order Cr =
σn
r

σ2
r+λ . Noting that σ2

r = σ̃2
r +TMσ2

ϵ

and σ̃r = 0 for r > R, we have the following contributions

Cr

{
∼ O(1) for r ≤ R

∼ O(σn
ϵ /λ) for r > R

(S34)

which follows from TMσ2
ϵ ≪ λ≪ σ̃2

R. Here, O(1) refers to independence from the regularization.
Hence

θ(k+1)P = θ(k+1) +O(σn
ϵ /λ). (S35)

Step 3: Verify descent property. This follows from the fact that XTX + λI is positive semi-definite
such that

−Tr[∇L(θ)(XTX + λI)−1∇L(θ)T ] ≤ 0. (S36)

Thus, the preconditioned update in Eq. equation 7 both preserves the identifiability condition up to
O(σn

ϵ /λ) and guarantees descent, as claimed.

C.5 PROOF OF COROLLARY 1

Corollary (A longer version of Corollary 1). Consider the scenario in Theorem 2, and suppose the
loss is

L(θ) =
TM∑
i=1

L
(
Yi, g(θ

TXi)
)
+ λ∥θ∥22, (S37)

where L is twice differentiable in its second argument, g is smooth, and λ ≥ 0 is a regularization
parameter. Define X =

∑N
r=1

√
TMσrv

(r)u(r)T Then, the following statements hold:

1. Around a minimizer θ̄, L(θ) is locally equivalent to the weighted ridge regression objective

L̄(θ) = ∥W 1/2(Y −Xθ)∥22 + λ∥θ∥22, (S38)

where W depends on the local minimum θ̄.

2. Assuming W = I without loss of generality, the stationary point of L̄ is

θ̄ = (XTX + λI)−1XTY =

N∑
r=1

σr
σ2
r + λ

[u(r)TY ] v(r). (S39)

3. In the noiseless case (σϵ = 0), if λ = 0 and σ̃r = 0 for some r > R, the solution is
not unique: any component of θ̄ parallel to the kernel ker(X) is arbitrary. In the noisy
case (σϵ > 0), these null directions acquire empirical singular values of order σϵ, yielding
coefficients

1

1 +
(

λ
σ2
ϵ

) [u(r)TY ]

σϵ
, for r > R. (S40)

When λ ≫ σ2
ϵ and assuming a correlation between Yi ∼ Xi such that v(r)TY ∼ O(σr),

such spurious contributions are suppressed to order O(σ2
ϵ /λ).
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4. If σ2
ϵ ≪ λ≪ σ̃2

R, the solution approximates

θ̄ ≈
R∑

r=1

1

σ̃r
[ũ(r)TY ] ṽ(r), (S41)

i.e., the uniquely identifiable part of the estimator.

Proof. We prove each statement in turn.

Step 1: Reduce to a weighted ridge regression objective. Consider the loss

L(θ) =
T∑

i=1

L
(
Yi, g(θ

TXi)
)
+ λ∥θ∥22. (S42)

Since L is twice differentiable in its second argument and g is smooth, a second-order Taylor ex-
pansion of L(Yi, g(θTXi)) around a minimizer θ̄ yields a quadratic approximation of L(θ) near θ̄.
Collecting the quadratic terms gives a weighted least-squares objective

L̄(θ) = ∥W 1/2(Y −Xθ)∥22 + λ∥θ∥22, (S43)
where W is a positive definite weight matrix depending on θ̄. This proves (1).

Step 2: Solve the stationary point of the quadratic problem. Without loss of generality, assume
W = I (this can be absorbed into a change of variables by X → W 1/2X and Y → W 1/2Y
and redefining σ2

r ). The stationary point satisfies the normal equations

(XTX + λI)θ̄ = XTY. (S44)
Thus

θ̄ = (XTX + λI)−1XTY. (S45)
Expanding using the SVD X = UΣV T , with singular values σr and singular vectors u(r), v(r),
yields

θ̄ =

N∑
r=1

σr
σ2
r + λ

[u(r)TY ] v(r). (S46)

This proves (2).

Step 3: Analyze uniqueness in noiseless vs noisy cases. In the noiseless case (σϵ = 0), if λ = 0 and
σ̃r = 0 for some r > R, then any component of θ̄ in ker(X) is arbitrary, because (XTX)−1 is
undefined along these directions. Hence the solution is not unique.

In the noisy case (σϵ > 0), the empirical Gram matrix XTX acquires perturbations of order σ2
ϵ ,

so directions r > R in the kernel now appear with effective singular values of order σϵ. In these
directions, the coefficients take the form

1

σ2
r + λ

σr[u
(r)TY ]v(r) ∼ 1

σ2
ϵ + λ

σϵ[u
(r)TY ]v(r). (S47)

Equivalently, one may write
1

1 +
(

λ
σ2
ϵ

) [u(r)TY ]

σϵ
, r > R. (S48)

When λ ≫ σ2
ϵ and assuming v(r)TY ∼ O(σr), these contributions are suppressed to order

O(σ2
ϵ /λ). This proves (3).

Step 4: Approximate the identifiable estimator. If σ2
ϵ ≪ λ ≪ σ̃2

R, then directions with σ2
r ≫ λ (for

r ≤ R) are nearly unaffected by the ridge term (i.e., remain O(1)), while directions with σ2
r ≪ λ

(for r > R) are heavily damped (i.e., are O(λ−1)). Thus the solution approximates

θ̄ ≈
R∑

r=1

1

σ̃r
[ũ(r)TY ] ṽ(r), (S49)

which is precisely the identifiable part of the estimator. This proves (4).

Conclusion. Each of the four claims follows under the assumptions of Theorem 2 (but with a redef-
inition of σr to remove TM dependencies), establishing the corollary.
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C.6 PROOF OF THEOREM 3

Theorem (Restatement of Theorem 3). Let Sid = span{v1, . . . , vR} be the identifiable subspace
spanned by the top R spectral eigenvectors of the Gram matrix, and assume that for a noiseless,
task-performing RNN with dynamics in Eq. 1, the activities satisfy r[t] ∈ Sid for all t. Let θ̃ be
identifiable with θ̃Pid = θ̃, where Pid projects onto Sid. Then, any parameterization θ = θ̃ + ∆θ
with ∆θPid = 0 but ∆θ ̸= 0 yields identical dynamics ṙ[t] for all r[t] ∈ Sid, but not necessarily
when r[t] /∈ Sid.

Proof. The RNN dynamics are given by

ṙ[t] = −r[t] + ϕ(θr[t]), (S50)

with ϕ applied elementwise. Let θ̃ be an identifiable parameterization such that θ̃Pid = θ̃, where
Pid projects onto Sid. Consider now θ = θ̃ +∆θ with ∆θPid = 0 and ∆θ ̸= 0. If r[t] ∈ Sid, then
r[t] = Pidr[t], and hence

θr[t] = θ̃Pidr[t] + ∆θPidr[t] = θ̃r[t]. (S51)

It follows that
ṙ[t] = −r[t] + ϕ(θr[t]) = −r[t] + ϕ(θ̃r[t]), (S52)

so the dynamics under θ and θ̃ coincide for all r[t] ∈ Sid. If r[t] /∈ Sid, then (I − Pid)r[t] ̸= 0, and
in general

θr[t] = θ̃Pidr[t] + ∆θ(I − Pid)r[t] ̸= θ̃r[t], (S53)

so the dynamics need not coincide. This proves the claim.

D METHODS

D.1 IDENTIFIABILITY IN DYNAMICAL SYSTEMS

In dynamical system models, the prediction depends not only on the parameters θ∗, but also on the
current state of the system and any external inputs. LetXi ∈ RN+Nin denote the combined state and
input at time i, where N is the number of state variables and Nin is the number of input dimensions.
Then, we formally write the data generation process as:

Yi ∼ P (Yi|Xi; θ
∗), (S54)

where the observed data consist of pairs (Xi, Yi) for i = 1, . . . , T . Here, P (Yi|Xi; θ
∗) is the

conditional distribution of Yi given Xi, parameterized by the deterministic parameter values θ∗. For
our purposes, one can assume Yi ∈ RN refers to the state variables in the next time step. With this
data generation model, we can now define the concept of conditional identifiability:

Definition S1 (Conditional Identifiability). Let P = {P (·|·; θ) : θ ∈ Θ} be a statistical model
with parameter space Θ. Let the ground truth data generation process follow the distribution Yi ∼
P (Yi|Xi; θ

∗) for some unknown θ∗, where Yi ∈ RN refers to the observed sample i and Xi ∈
RN+Nin the observed sample i of a set of auxiliary random variables. We say that P is conditionally
identifiable if the mapping θ 7→ P (·|·; θ) is one-to-one for all possible values of X:

∀X ∈ X P (Yi|Xi; θ1)=̂P (Yi|Xi; θ2) =⇒ θ1 = θ2, (S55)

where X refers to the domain of X .

We note that in the statistics literature, conditional identifiability sometimes refers to identifiability
under additional identification conditions. In contrast, here we use the term to denote identifiability
with respect to conditional probability distributions.

As we show below, whether the distribution P (X) has support over the full domain X = RN+Nin is
particularly relevant for the identifiability of RNNs. This definition can easily generalize to RNNs,
but first, we need to specify the observables. For simplicity of notation, we assume that a dis-
cretized neural trajectory is observed along with the corresponding inputs. Specifically, we define
the observed neural trajectory as O := {r[1], r[2], . . . , r[T ]}, and the inputs are denoted similarly
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as u[1], . . . , u[T ]. Since r[s] ∈ RN are observed and α known by the definition of RNNs in Eq. 1,
we can define an observed sample as:

di[s] =
ri[s+ 1]− (1− α)ri[s]

α
. (S56)

Earlier work has shown that di[s] are numerically convenient to work with for empirical estimation
Dinc et al. (2023). Theoretically, following Eq. 2, d[s] values can be considered samples of a
random vector defined as Y := ϕ(θ∗X + ϵin) + ϵconv, where θ∗ is the concatenated weight matrix
and X contains corresponding neural activities and outside inputs, as defined above. Then, with the
samples Xi := x[i] and Yi := d[i], we recover the form of the data generation model introduced
in Eq. S54. This allows us to formally define conditional identifiability for RNNs constrained on a
trajectory O:
Definition S2 (Conditional Identifiability in RNNs). Let θ ∈ Θ denote the parameters of an RNN
model and let O denote the set of observed quantities as defined above. We say that the RNN is
conditionally identifiable on O if the following holds:

∀i = 1, . . . , T ; P (Yi|Xi; θ1) = P (Yi|Xi; θ2) =⇒ θ1 = θ2. (S57)

Note that if θ1 ̸= θ2 yield exactly the same next-step predictions within O, then (noiseless) RNNs
with either parameter set would yield the exact same neural trajectory O when initialized with r[0].
Therefore, even though defined on the next step predictions, this definition formalizes the condition
under which the parameters of an RNN are uniquely determined by the sequence of (noiseless)
neural activities and inputs observed along a trajectory. Notably, however, the converse is not true.
For a simple example, noisy RNNs can produce distinct trajectories even if they have exact same
given parameters. Thus, we find it instructive to define identifiability in a noiseless setting (which
is often the case, e.g., the limit of infinite samples Lehmann & Casella (2006)), and then test the
implications for noisy RNNs empirically or by considering expectation values (e.g., see Eq. 6).

D.2 EXPERIMENT DETAILS FOR REPRODUCIBILITY

Here, we provide details of our experiments to ensure reproducibility. Additional details can be
found in the code shared in the supplementary materials.

D.2.1 RECURRENT NEURAL NETWORKS

As described in the Background section (Section 2), we use a biologically motivated and inter-
pretable class of RNNs Perich et al. (2021); Dinc et al. (2025). Since we focus on the discrete
version of the RNNs, we utilize the Euler discretization described in Equation 2. In this section, we
specify our implementation choices: how we initialize the weight matrices W rec, W in, and W out,
the distributions we sample for noise terms ϵin and ϵconv, and other implementation details.

For reference, we construct RNN dynamics as follows:

τ ṙ(t) = −r(t) + ϕ(W recr(t) +W inu(t) + ϵin(t)) + ϵconv(t) (S58)

ô(t) = ψ(W outr(t)) (S59)
where τ ∈ R represents the neuronal time constant, r(t) ∈ RNrec the neural activities, ṙ(t) ∈ RNrec

their temporal derivatives, u(t) ∈ RNin the input signals, and ô(t) ∈ RNout the network outputs.
In our experiments, we set ϕ(·) = tanh(·) and ψ(·) as identity, tanh, or sigmoid depending on the
task, and use discretization parameter α, which is calculated as the ratio of sampling interval ∆t to
time constant τ . Note that while the output weights W out ∈ RNrec×Nout are used when training
task-performing RNNs to generate ground-truth neural trajectories (as described in the following
section), they are not involved in the parameter recovery process.

In our RNN implementation, we use Kaiming and Xavier initializations He et al. (2015); Glorot &
Bengio (2010) with uniform and normal distributions for the weight parameters W in, W rec, and
W out. For the input noise ϵin and conversion noise ϵconv, we implement Gaussian, Laplace, and
Poisson distributions. However, we use the Poisson distribution predominantly in our experiments.
During firing rate updates, since conversion noise ϵconv can cause values to exceed the bounds
[−1, 1], we clip the firing rates after each update: r(t) = 1 − 10−6 when r(t) ≥ 1 and r(t) =
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−1 + 10−6 when r(t) ≤ −1. Initial firing rates r(t = 0) are sampled from Gaussian or uniform
distributions depending on the experiment.

To ensure reproducibility, we set fixed random seeds for Python’s random, NumPy, and PyTorch ran-
dom number generators. All detailed information about distribution selections and hyperparameters
for each experiment can be found in Section D.2.6.

D.2.2 OBTAINING GROUND TRUTH NEURAL TRAJECTORIES

In our parameter recovery experiments, we use two different methodologies for generating ground
truth neural trajectories. First, we use chaotic networks where we initialize parameters randomly
and iterate without any supervision. Second, we train RNNs on one of three tasks (described in the
following section: 3-bit flip-flop, delayed cue discrimination, delayed match-to-sample) and then
examine parameter recovery in the presence of task-induced structure.

Chaotic networks: We use randomly connected recurrent neural networks to generate chaotic dy-
namics without any task-specific constraints. These networks consist of Nrec recurrently connected
units with weights sampled from a Gaussian distribution N (µ = 0, σ = 2/Nrec), ensuring the
network operates in a chaotic regime. The networks receive no external input during trajectory gen-
eration (u(t) = 0) and evolve according to their internal dynamics alone. Initial firing rates are
sampled uniformly from [−1, 1], and the system is iterated using the standard RNN update equation
with tanh nonlinearity and step size α = 0.1. These chaotic networks produce rich, complex tempo-
ral patterns that exhibit sensitive dependence on initial conditions while remaining bounded within
the activation function’s range. By studying parameter recovery from such unconstrained dynamics,
we can assess identifiability in its most general form—without the structural biases imposed by task
optimization.

Trained networks: In all training tasks, we train neural networks using input-output supervision,
allowing networks to learn internal dynamics specific to each task. During initialization, we use
Xavier initialization with uniform distribution as implemented in PyTorch.

Task-specific configurations vary as follows: for bias terms, we include learnable biases in the input
and output linear layers of DCD and DMTS tasks but exclude biases in 3-bit flip-flop experiments.
For output nonlinearities, we set θ(·) as identity in 3-bit flip-flop, sigmoid in DMTS, and tanh in
DCD tasks. Initial firing rates are sampled from N (0, 4

√
Nrec) in 3-bit flip-flop, from tanh applied

to N (0, 1) in DMTS, and from tanh applied to N (0, 0.1) in DCD. Since each task has different
input-output requirements, the input dimension Nin equals 3 in 3-bit flip-flop, 1 in DMTS, and 1 in
DCD.

For all task training, we use Mean Squared Error (MSE) loss. The optimizers vary by task: we use
Adam optimizer for 3-bit flip-flop and DMTS, while employing SGD for DCD. Additionally, we
employ the ReduceLROnPlateau learning rate scheduler (with factor 0.5 and patience equal to the
number of epochs) specifically in 3-bit flip-flop experiments. Table S1 summarizes the key training
hyperparameters for each task. Section D.2.6 covers additional hyperparameter configurations for
figures.

D.2.3 NOISE GENERATION PROCESSES

In most experiments, we sample noise independently at each timestep. However, for specific exper-
iments examining the effects of realistic noise correlations, we implement spatially and temporally
correlated noise.

Standard (uncorrelated) noise: By default, both input noise ϵin and conversion noise ϵconv are
sampled independently at each timestep from the specified distributions (Gaussian, Laplace, or Pois-
son) with no spatial or temporal correlations.

Correlated noise (experiment-specific): In selected experiments, we generate spatially and tem-
porally correlated input noise ϵin to model realistic neural recordings where nearby neurons and ad-
jacent timepoints exhibit correlated fluctuations. First, we sample uncorrelated noise from N (0, σ)
with dimensions T ×Nrec, where T is the number of timesteps and Nrec is the number of neurons.
To introduce spatial and temporal correlations, we construct a 2D Gaussian kernel:
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Table S1: Training hyperparameters to obtain generator networks for each task
Hyperparameter 3-bit flip-flop DCD DMTS
Network size (Nrec) 100, 500, 1000 500 1000
Input dimension (Nin) 3 1 1
Output dimension (Nout) 3 1 1
Number of epochs 20000 5000 5000
Batch size 50 10 10
Learning rate 10−4 10−3 10−4

Optimizer Adam SGD Adam
LR scheduler ReduceLROnPlateau None None
α (discretization) 0.5 0.5 0.5
∆t (ms) 5× 10−3 5× 10−3 5× 10−3

τ (ms) 10× 10−3 10× 10−3 10× 10−3

Input noise (ϵin) 0 10−3 0
Output nonlinearity (θ) identity tanh sigmoid
Number of seeds 20 20 20

K(x, y) = exp

(
− x2

2σ2
T

− y2

2σ2
N

)
(S60)

where σT controls temporal correlation strength and σN controls spatial (across-neuron) correlation
strength. The kernel is normalized such that

∑
K(x, y) = 1. We then convolve the uncorrelated

noise with this kernel:

ϵcorrin = K ∗ ϵuncorrin (S61)

where ∗ denotes 2D convolution with ’nearest’ boundary conditions. Finally, we rescale the corre-
lated noise to maintain the desired standard deviation σ:

ϵin = ϵcorrin · σ

std(ϵcorrin )
(S62)

In these experiments, we use σT = 3 timesteps for temporal correlation and σN = 50 neurons for
spatial correlation, with kernel size 30 × 30. Conversion noise ϵconv remains uncorrelated even in
these experiments.

D.2.4 DESCRIPTION OF THE TASKS

Here, we clarify the implementation details and structure of three neuroscience-inspired tasks. First,
we explain the 3-bit flip-flop task, where the network must maintain and selectively update multiple
internal memory states. Second, we describe the delayed cue discrimination (DCD) task, where the
network must classify an input signal and give an output after a delay period. Third, we explain
our final task, delayed match-to-sample (DMTS), where the network must compare two sequential
inputs and determine whether they match.

3-bit flip-flop: This task consists of three independent input channels where the values are
ui(t) ∈ {+1, 0,−1} for i ∈ {1, 2, 3}. When a channel receives a positive or negative input sig-
nal, the network must output the corresponding value in that channel until a new non-zero signal
arrives in the same channel. Importantly, inputs are presented randomly across trials, and after each
presentation, the input signal returns to zero until the next random signal arrives. Therefore, the
RNN must simultaneously maintain information from all three channels while producing the correct
output signals.

Formally, the input dynamics are defined as:

ui(t) =

{
±1 if Bi(t) ∼ Bernoulli(0.05) = 1

0 otherwise
(S63)
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where Bi(t) is a Bernoulli trial for channel i at time t, and when Bi(t) = 1, the sign is chosen
uniformly at random.

The network output follows a flip-flop dynamic where each channel starts at zero and latches to the
most recent non-zero input:

oi(t+ 1) =

{
ui(t) if ui(t) ̸= 0

oi(t) otherwise
with oi(0) = 0 (S64)

Delayed cue discrimination (DCD): The delayed cue discrimination task is more complex than 3-
bit flip-flop as it requires both classification and delayed response. This task consists of three main
intervals: input interval Tin, delay interval Tdelay, and response interval Tresp. During the input
interval, a cue of ±1 is presented in a single input channel. Throughout this period, the RNN must
latch the information but should not produce any output, opposite to 3-bit flip-flop. After the input
interval ends, the input becomes 0 and the RNN must continue to maintain the output at 0 during the
delay interval. During the response interval, the RNN must produce a classification output based on
the cue: if the cue was +1, the output should be +1; if the cue was −1, the output should be −1.

Formally, the input signal can be formalized as follows:

u(t) =

{
±1 if t ∈ Tin
0 otherwise

(S65)

The expected output is described as:

ô(t) =


+1 if uin = +1 and t ∈ Tresp
−1 if uin = −1 and t ∈ Tresp
0 otherwise

(S66)

where uin denotes the input value during Tin.

Delayed match-to-sample (DMTS): The third task is delayed match-to-sample. While sharing
similarities with the delayed cue-discrimination task (delayed response, single input channel, and
input classification), DMTS requires the network to compare two sequential inputs and respond
accordingly. This task includes four distinct intervals: input interval Tin, delay interval Tdelay,
match interval Tmatch, and response interval Tresp. Similar to delayed cue-discrimination, the RNN
should only produce the corresponding output during the response interval. Throughout the input
interval, an input of ±1 is presented; afterward, during the delay period, the signal becomes 0. After
the delay period ends, another input of ±1 is presented during the matching interval. In the response
interval, if the input and matching signals match, the RNN must give a positive response (+1);
otherwise, the RNN should give a negative response (−1).

More formally, we can describe the input signal as follows:

u(t) =

{
±1 if t ∈ Tin ∪ Tmatch

0 otherwise
(S67)

The ground truth output is described as:

ô(t) =


+1 if uin = umatch and t ∈ Tresp
−1 if uin ̸= umatch and t ∈ Tresp
0 otherwise

(S68)

where uin denotes the input value during Tin and umatch denotes the input value during Tmatch.

D.2.5 FITTING RNN PARAMETERS TO REPRODUCE NEURAL TRAJECTORIES

After obtaining ground truth neural trajectories from chaotic or trained networks, we fit new RNN
parameters to reproduce these observed dynamics. Rather than using computationally expensive
backpropagation through time (BPTT), we employ a single-step prediction approach that frames
parameter estimation as a feedforward regression problem.
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Single-step prediction framework: Given a trajectory of firing rates r[0], r[1], . . . , r[T ] and cor-
responding inputs u[0], u[1], . . . , u[T ], we construct a regression problem by computing the dis-
cretized target:

d[s] =
r[s+ 1]− (1− α)r[s]

α
= ϕ(θx[s]) + ϵconv (S69)

where x[s] = [r[s], u[s]] concatenates firing rates and inputs, and θ = [W rec,W in] are the param-
eters to be estimated. This transforms the temporal dynamics problem into a standard supervised
learning task: predict d[s] from x[s] for all timesteps.

Optimization methods: We employ three primary approaches for parameter estimation:

1. CORNN algorithm: Our primary method uses the CORNN algorithm Dinc et al. (2023), which
employs an iterative update scheme with fixed point initialization computed via ridge regression
on z[s] = arctanh(d[s]). We implement three loss variants: weighted loss (dividing prediction
errors by 1 − d2 to account for tanh saturation), standard L2 loss, and derivative-weighted loss
(multiplying by 1 − d̂2). The algorithm includes outlier detection based on a threshold parameter
(typically 0.2 for trained networks, 1.0 for chaotic networks). Convergence criteria: (1)

√
Nrec ·√

mean((θk+1 − θk)2) < 10−5 after at least 10 iterations, or (2) maximum iterations reached (100-
2000 depending on experiment complexity).

2. FORCE learning: In selected experiments with chaotic networks, we implement recursive least
squares (RLS) FORCE learning Sussillo & Abbott (2009). FORCE updates parameters online
using rank-one updates to the inverse covariance matrix, minimizing either current errors (pre-
nonlinearity) or firing rate errors (post-nonlinearity). We use regularization parameters λ = 100
for recurrent weights and run the algorithm for up to 1000 iterations.

3. Gradient-based optimization: For comparison in selected experiments, we use PyTorch-based
gradient descent with Adam optimizer (learning rate 10−3, up to 104 iterations). Parameters are
optionally initialized from the fixed point solution. This approach uses either Binary Cross-Entropy
(BCE) loss or Mean Squared Error (MSE) loss, with L2 regularization applied through weight decay.

Regularization: The L2 regularization parameter λ ranges from 10−23 to 10−1 depending on the
experiment, with typical values around 10−15 to 10−13 for chaotic networks and 10−13 to 10−5 for
trained networks. In CORNN, regularization is scaled by the number of data points T .

Experimental variations: We perform parameter recovery on both chaotic RNNs and trained net-
works performing the three tasks (3-bit flip-flop, DCD, and DMTS). For experiments with external
inputs (trained task networks), we concatenate u[s] with firing rates in x[s]; for chaotic networks
without inputs, we set u[s] = 0. Detailed configurations are provided in Section D.2.6.

D.2.6 EXPERIMENTAL PARAMETERS BY FIGURE

Figures 2, S1, S2: We generate chaotic dynamics from randomly initialized RNNs without external
inputs, where network parameters are sampled from N (0, g/

√
Nrec) with chaos parameter g = 2

and initial firing rates are sampled uniformly from [−1, 1]. We set the discretization parameter α =
0.1 and iterate the network dynamics with no input (u(t) = 0), no input noise (ϵin = 0), and no con-
version noise (ϵconv = 0). We systematically vary network size acrossNrec ∈ {100, 300, 500, 1000}
and trajectory length across T ∈ {100, 300, 500, 1000, 1500, 2000, 2500, 3000} timesteps, repeat-
ing all experiments across 20 random seeds (seeds 0-19). We employ the CORNN algorithm
with weighted loss to recover parameters from the observed trajectories, setting regularization as
λ = T × 10−15 (scaling linearly with trajectory length), fixed point initialization, update step size
γ = 1, outlier threshold 1.0 (appropriate for chaotic networks), discretization parameter α = 0.1
(matching the ground truth), and maximum iterations of 100 with convergence checking enabled,
where training terminates when

√
Nrec ·

√
mean((θk+1 − θk)2) < 10−5 after at least 10 iterations.

Figures 2, S1, S3, S4: Following the same setup as Figures 2, S1, S2, we fix the net-
work size at Nrec = 500 and systematically vary the regularization parameter across λ ∈
{10−23, 10−21, 10−19, 10−17, 10−15, 10−13, 10−11, 10−9, 10−7, 10−5, 10−3, 10−1} to examine the
bias-variance tradeoff in parameter recovery across different trajectory lengths.
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Figures S3, S4: Following the same setup as Figures 2, S1, S3, S4, we introduce
noise to the chaotic dynamics by setting input noise ϵin = 10−3 and conversion noise
ϵconv = 10−3 with Laplace distribution. We vary the regularization parameter across λ ∈
{10−15, 10−7, 10−5, 10−3, 10−2, 10−1, 1, 10} to examine parameter recovery robustness under
noisy conditions.

Figure 3: Following the same setup as Figures 2, S1, S2 with fixed network size Nrec = 500,
we compare CORNN and FORCE learning algorithms for parameter recovery. We vary tra-
jectory length across T ∈ {1000, 2000} timesteps and regularization parameter across λ ∈
{10−5, 10−4, 10−3, 10−2, 10−1}. For FORCE learning, we use recursive least squares with regular-
ization λFORCE = λ × 105, input scaling gin = 3, and maximum iterations of 100. FORCE mini-
mizes errors in the predicted firing rates (i.e., post-nonlinearity outputs) rather than pre-nonlinearity
currents, directly matching the observable neural activity at each timestep.

Figures 4, S5: We use trained 3-bit flip-flop networks (Nrec = 500, trained as described in the
Trained Networks section) and generate trajectories with the trained parameters. We set discretiza-
tion parameter α = 0.5, introduce Poisson-distributed input noise ϵin = 10−2 and conversion noise
ϵconv = 10−2, and vary the number of trials Ttrial ∈ {5} (each trial contains 100 timesteps). We
augment the training data with nint intervention samples using spectral vectors (top, bottom, or
random eigenvectors of the covariance matrix), where nint ranges from 10 to 500. We employ the
CORNN algorithm with weighted loss, fixed regularization λ = 10−6, outlier threshold 0.2 (appro-
priate for trained networks), discretization parameter α = 0.5, maximum iterations of 2000 with
convergence checking enabled, and repeat experiments across 20 random seeds (seeds 0-19).

Figure S6: We use trained DMTS networks (Nrec = 300, trained as described in the Trained Net-
works section) and generate trajectories with the trained parameters. We set discretization parameter
α = 0.5, input dimension Nin = 2 (including bias), Poisson-distributed input noise ϵin = 10−2 and
conversion noise ϵconv = 10−3, and use 10 trials (each trial contains 38 timesteps covering input,
delay, match, and response intervals). We compare four parameter recovery methods: CORNN
with standard L2 loss (with outlier detection), CORNN with weighted loss, PyTorch gradient de-
scent with BCE loss, and PyTorch with MSE loss. For CORNN methods, we use regularization
λ ∈ {10−13, 10−5}, outlier threshold 0.2, and maximum iterations of 2000. For PyTorch methods,
we use learning rate 10−2, maximum iterations of 105, and the same regularization values. All
experiments are repeated across 20 random seeds (seeds 0-19).

Figure S7: We use trained DCD networks (Nrec = 500, trained as described in the Trained Net-
works section) and generate trajectories with the trained parameters. We set discretization parameter
α = 0.5, input dimension Nin = 2 (including bias), Poisson-distributed input noise ϵin = 10−2 and
conversion noise ϵconv = 10−3. We vary the number of trials across Ttrial ∈ {5, 10, 30} (each
trial contains 32 timesteps covering input, delay, and response intervals) and examine parameter
recovery with both uncorrelated and spatially-temporally correlated noise patterns (using 2D Gaus-
sian kernel convolution with σT = 3 for temporal correlation and σN = 50 for spatial correla-
tion). We employ the CORNN algorithm with weighted loss and outlier detection, regularization
λ ∈ {10−13, 10−7, 10−5, 10−3, 10−1}, outlier threshold 0.2, and maximum iterations of 2000 with
convergence checking enabled, repeating experiments across 20 random seeds (seeds 0-19).

Figure S9: We use trained 3-bit flip-flop networks (Nrec = 500, trained as described in the
Trained Networks section) and examine parameter recovery through spectral analysis. We set
discretization parameter α = 0.5, Poisson-distributed input noise ϵin = 10−3 and conversion
noise ϵconv = 10−1, and vary the number of trials across Ttrial ∈ {5, 10, 30} (each trial con-
tains 100 timesteps). We employ the CORNN algorithm with weighted loss, regularization λ ∈
{10−13, 10−7, 10−5, 10−3, 10−2, 10−1}, outlier threshold 0.5, and maximum iterations of 2000 with
convergence checking enabled, repeating experiments across 20 random seeds (seeds 0-19). We an-
alyze parameter recovery quality by projecting onto individual eigenvectors of the input covariance
matrix.

Figure S10: We use trained DCD networks with a large network size (Nrec = 10000, trained as de-
scribed in the Trained Networks section) and examine parameter recovery under partial observabil-
ity, where we only observe Nobs ∈ {100, 300, 500, 1000, 2000} neurons from the full network. We
set discretization parameter α = 0.5, input dimension Nin = 2 (including bias), Poisson-distributed
input noise ϵin = 10−2 and conversion noise ϵconv = 10−3, and use 150 trials (each trial contains
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32 timesteps). We employ the CORNN algorithm with weighted loss and outlier detection, fixed
regularization λ = 10−13, outlier threshold 0.2, and maximum iterations of 2000 with convergence
checking enabled, repeating experiments across 20 random seeds (seeds 0-19).

Figure S11: We use trained 3-bit flip-flop networks (Nrec = 500, trained as described in the
Trained Networks section) and examine parameter recovery quality through performance met-
rics. We set discretization parameter α = 0.5, Poisson-distributed input noise ϵin = 10−2

and conversion noise ϵconv = 10−2, and use 5 trials for training (each trial contains 100
timesteps). We employ the CORNN algorithm with weighted loss, varying regularization across
λ ∈ {10−1, 10−2, 10−3, 10−4, 10−5, 10−6, 10−7, 10−8}, outlier threshold 0.5, and maximum iter-
ations of 2000 with convergence checking enabled, repeating experiments across 20 random seeds
(seeds 0-19). We test recovered parameters on a separate test set of 1000 trials and evaluate both
reconstruction accuracy via spectral projections and task performance accuracy on the flip-flop task.
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