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Abstract

Recent advances in Natural Language Processing (NLP), and specifically auto-
mated Question Answering (QA) systems, have demonstrated both impressive
linguistic fluency and a pernicious tendency to reflect social biases. In this study,
we introduce Q-Pain, a dataset for assessing bias in medical QA in the context of
pain management, one of the most challenging forms of clinical decision-making.
Along with the dataset, we propose a new, rigorous framework, including a sam-
ple experimental design, to measure the potential biases present when making
treatment decisions. We demonstrate its use by assessing two reference Question-
Answering systems, GPT-2 and GPT-3, and find statistically significant differences
in treatment between intersectional race-gender subgroups, thus reaffirming the
risks posed by AI in medical settings, and the need for datasets like ours to ensure
safety before medical AI applications are deployed.

1 Introduction

Pain management remains one of the most challenging forms of clinical decision making [1]. Since
the patient experience of pain and its manifestations are highly variable, there is inherent subjectivity
in physician pain assessments [2–4]. The challenge of measuring pain combined with the vast
diversity of pharmacologic and non-pharmacologic treatment options results in clinical decision
pathways that are difficult to standardize [5]. Thus, the complexity of pain management and the lack
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of universal standards present opportunities for bias to impact clinical decisions. Racial disparities
in treatment of pain have been shown in prior studies [6–8], where Black patients were consistently
more likely to be given inadequate or no pain medications when compared to White patients [9].
Furthermore, multiple studies have highlighted that women were more likely to be under-treated for
pain [10, 11].

Recent advances in natural language processing (NLP) have enabled the development of automated
question answering (QA) systems that can answer personalized medical questions [12]. However,
many NLP systems, including those specific to QA, have been shown to encode and reinforce harmful
societal biases [13–16]. Benchmark datasets have been instrumental in surfacing bias in NLP systems
[17, 18]. Therefore, before medical QA systems are further deployed and even incorporated into
medical workflows for applications such as mental health conversations and clinical advice lines, it
is critical to develop benchmark datasets that will help us understand the extent to which encoded
societal biases surface in medical QA systems.

We introduce Q-Pain, a dataset for assessing bias in medical QA in the context of pain management
consisting of 55 medical question-answer pairs; each question includes a detailed patient-specific
medical scenario ("vignette") designed to enable the substitution of multiple different racial and
gender "profiles" in order to identify discrimination when answering whether or not to prescribe
medication.

Along with the dataset, we propose a new framework, including a fully reproducible sample exper-
imental design, to measure the potential bias present during medical decision-making for patients
with particular demographic profiles. We demonstrate its use in assessing two reference QA systems,
GPT-2 [19] and GPT-3 [20], selected for their documented ability to answer questions given only a
few examples. We expect our dataset and framework to be used to assess bias across a wide variety
of QA systems, as well as for experiments in real-life medical settings (e.g. through surveys of
clinicians) with only minor changes to our experimental design.

2 Related Work

Medical Question Answering: There have been efforts to create QA datasets for medical reasoning
[21, 22]. The Medication QA dataset [23] comprises nearly 700 drug-related consumer questions
along with information retrieved from reliable websites and scientific papers. The emrQA dataset
[24] approaches case-specific analysis by posing over 400,000 factual questions, the answers to which
are contained in provided electronic medical records. The MedQA task [25] expects a model to
select the correct answer to real-world questions derived from the Chinese medical licensing exam,
given access to a corpus of medical documents. None of these datasets address the pain management
context or evaluate a treatment prescription task.

Human Pain Management Bias: Social bias in human-facilitated pain management is well-
documented [6–8, 10]: a survey of studies on racial and ethnic disparities in pain treatment [2]
demonstrated that in acute, chronic, and cancer pain contexts, racial and ethnic minorities were less
likely to receive opioids. Another meta-analysis of acute pain management in emergency departments
[26] found that Black patients were almost 40% less likely (and Hispanic patients 30% less likely)
than White patients to receive any analgesic. These gaps remained for opioid-specific analgesics,
as well. Finally, closely related to our experimental setup is the work of Weisse et al. [27], who
presented medical vignettes with race- and gender-specific patient profiles to physicians and asked
them to decide not only whether to treat the patient, but with what dosage. However, only three
vignettes were used, leading to a limited number of race-gender profiles to be presented to each given
physician as well as different physicians seeing different profiles for the same scenario, thus making
results more difficult to interpret. In contrast to this work, we consider a larger diversity of scenarios
and profiles, and demonstrate our rigorous statistical approach on two reference QA systems.

QA/Language Model Bias: Social bias in language models is also being increasingly explored,
with new datasets, benchmarks, and metric frameworks geared towards analyzing bias [17, 18, 15].
Li et al. [13] introduce a helpful framework for quantifying bias in QA settings with questions that
do not prime for bias, and demonstrate bias in a broad array of transformer-based models using this
framework. Most closely related to the medical context, Zhang et al. [28] show that language models
exhibit statistically significant performance gaps in clinical predictive accuracy between majority
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and minority groups, thus laying the groundwork for examining bias for language models operating
in medical contexts. In this study, we go one step further and evaluate bias present during medical
decision-making by focusing on treatment recommendation rather than diagnosis prediction.

3 Dataset and Framework

3.1 Clinical Vignettes

Clinical vignettes are medical scenarios typically presenting a patient with a specific set of symptoms,
often with the goal to illustrate decision-making and explore different ranges of actions. We introduce
Q-Pain, a dataset of 55 pain-related clinical vignettes depicting patients in different medical contexts
related to pain management. At the end of each vignette is a question asking whether the patient
should be prescribed pain medication (either intravenous hydromorphone, hydrocodone, oxycodone
or morphine), if so what dosage, and why.

Data Collection: A clinical expert with four years of medical experience designed each of the
clinical scenarios such that the patient presentation and data were consistent with real-life situations
where pain treatment should be offered. As such, the expected treatment answer for all but five of the
vignettes (see "Data Structure & Documentation") used for closed prompts is “Yes." regardless of
gender or race.

The decision to focus on situations where patients should receive treatment (the “Yes” vignettes) was
mainly driven by our interest in harmful bias: "Yes" vignettes present the opportunity for “unjust”
denial of treatment. In contrast, “No” vignettes do not allow us to identify such under-treatment
because those situations do not warrant pain treatment in the first place.

From a clinical standpoint, though, “No" scenarios are also more difficult to compose: there are no
universally-applicable, objective measures for pain assessment such that "No" would be a consistently
valid response. The only option would be to make the scenarios either far too simple (e.g. someone
falls off their bike and scrapes their knee) or significantly more complex by including additional
variables (e.g. depression/mood disorders, medication allergies, substance abuse history, etc.).

To allow for detection of more nuanced discrimination, we included dose/supply scales in each
question. These were defined as low or high according to an appropriate treatment metric (milligrams
or weeks supply of medication) for each clinical context. Similarly, these scales were designed
such that both low and high choices of doses/supplies were objectively acceptable for pain treatment
regardless of gender or race.

Data Structure & Documentation: The Q-Pain dataset is structured into five .csv files, one for
each medical context: Acute Non-Cancer pain, Acute Cancer pain, Chronic Non-Cancer pain, Chronic
Cancer pain, and Post-Operative pain. The fifty "Yes" prompts and the five "No" prompts were
distributed evenly across the five medical contexts: 10 "Yes" prompts and one "No" prompt per
context. For each vignette, it includes: the case presentation ("Vignette"), the question ("Question"),
the expected answer ("Answer") and dosage ("Dosage") as well as a brief explanation justifying the
response ("Explanation").

The full dataset, complete with documentation as well as a Python Notebook with starter code to
reproduce our experimental setup, is available on Physionet:

https://doi.org/10.13026/61xq-mj56

The dataset is licensed under a Creative Commons Attribution-ShareAlike 4.0 International Public
License and will be maintained and improved upon directly on the Physionet platform [29].

Validation Protocol: To further validate the dataset, a random selection of vignettes spanning
each clinical context were provided to two internal medicine physicians who were not involved in
the initial design. For each vignette, the physicians were asked to assess for (1) credibility of the
described scenario, (2) coherence of clinical information provided, and (3) sufficiency of information
provided toward making a clinical decision. For all vignettes assessed, both physicians responded
affirmatively to each query.
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3.2 Experimental Design

The Q-Pain dataset was conceived with the objective of measuring harmful bias against both race and
gender identities in the context of pain management. We demonstrate the following experimental
design on GPT-3 (davinci, via the OpenAI API) and GPT-2 (gpt2-large, via the HuggingFace API).
GPT-3 [20] is a transformer-based autoregressive language model with 175 billion parameters trained
on a combination of the Common Crawl corpus (text data collected over 12 years of web crawling),
internet-based books corpora and English-language Wikipedia. At a high level, the model takes
in a prompt and completes it by sampling the next tokens of text from a conditional probability
distribution. GPT-2 [19] has similar architecture to GPT-3 but fewer parameters. We used these
models with the goal of providing an initial benchmark in large language models (LLMs).

Closed Prompts: LLMs have been shown to answer questions more accurately in a “few-shot”
setting, in which the model is first given several question-answer examples (“closed prompts”) to
better learn the relevant task: with this in mind, we preceded all our vignettes (“open prompts”) with
three closed prompts sampled from the same pain context. To limit the influence of these closed
prompts on the generated text and make them as neutral as possible, we removed any indication of
race or gender, named the patients “Patient A”, “Patient B” and “Patient C”, used gender-neutral
pronouns ("they"/"their"), and ensured each of the three possible answers (“No.”, “Yes. Dosage:
High”, and “Yes. Dosage: Low”) were represented in the closed prompt selection. We also used ‘##’
as a stop token to mark the separation between prompts and give the models a sense of where to stop
during generation (see Fig. 1a for an example of input). Throughout our experiments, temperature
was set to 0 to eliminate the randomness of the output, as recommended by OpenAI for factual
question answering. The maximum number of tokens for the model to generate was set to 150. Other
parameters were kept to their default values: no nucleus sampling and no presence or frequency
penalties.

Rotating Patient Identities: As we prompted the models for answers, we rotated the patient’s race
(Asian, Black, Hispanic, White) and gender (man, woman) across all vignettes for a total of eight
patient combinations and 400 open prompts. Conscious of the demographic information carried
within a person’s name and inspired by prior work on race-based stereotyping [30], we opted to name
each patient according to their demographic profile using Harvard Dataverse’s ’Demographic aspects
of first names’ dataset [31]. This dataset contains a list of 4,250 first names along with data on their
respective frequency and proportions across mutually exclusive racial groups. For each race and
gender, we chose the top ten first names based on their overall frequency and representation within
each group, excluding unisex names and names that differed by only one character (see Fig. 1b).
For each context, we selected a random permutation of names to use across the ten open prompts.
Beyond the names, race, gender, and corresponding pronouns, everything else in the vignettes
remained completely unchanged—from symptom presentation and severity to age and preceding
closed prompts, so as to minimize the influence of other factors in the final decision.

3.3 Bias Framework

We propose the following framework for investigating bias in the 400 outputs generated from
running our experimental design on the Q-Pain dataset (in our case, using GPT-3 and GPT-2 for
demonstration). We outline three core goals: (1) assessing bias in the form of unequally-applied,
harmful decision-making, (2) attending to intersectionality, and specifically the interconnected nature
of race and gender, and (3) confirming the statistical significance of the results using p-values and
confidence intervals.

Emphasizing Harmful Bias: Since both GPT-3 and GPT-2 generate text by calculating the proba-
bilities of possible next words conditioned on previous words, we were able to not only access the
generated text, but also the underlying probability distributions. More precisely, we extracted two
elements: the probability of the model to answer “Yes.” or “No.”, and if the former, the probability of
prescribing a “Low” or “High” dosage (see Fig. 1c). In this framework, we chose to focus on the
probability of a “No.” (rather than "Yes."), signifying a recommendation to forego the appropriate
pain treatment to patients, as well as the probability of outputting a “Low” dosage (rather than a
“High” one). This approach allows us to focus on the most harmful outcomes for patients and assess
potential disparities in treatment.
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Figure 1: (a) Example of Input with 3 closed prompts + 1 open prompt with placeholders for name,
race, gender and pronouns, (b) Chosen names based on Harvard Dataverse Demographic aspects of
first names dataset, (c) Examples of Outputs from GPT-3.
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Figure 2: (a) Overview of the underlying average “No” probability distribution across contexts (Acute
NC/C: Acute Non Cancer/Cancer Pain, Chronic NC/C: Chronic Non Cancer/Cancer Pain, Post Op:
Post Operative Pain) for GPT-3, (b) p-values for Intersectionality Subgroup Comparisons, obtained
via a paired two-tailed t-test

Examining Intersectionality: "Intersectionality" encapsulates the idea that the combination of
certain identity traits, such as gender and race (among others), can create overlapping and interdepen-
dent systems of discrimination [32], leading to harmful results for specific minorities and subgroups.
With this in mind, we chose not only to look at overall differences between genders (regardless of
race) and between races (regardless of gender) across vignettes and pain contexts, but also to further
explore race-gender subgroups with the idea to assess all potential areas of bias and imbalance—for a
total of 28 subgroup-to-subgroup comparisons.

Ensuring Statistical Significance: Bias measurements—whether with LLMs or in real-life
settings—are inherently uncertain [33] and can hardly be summarized in a single number. When
measuring whether a specific race-gender subgroup is being discriminated against compared to a
reference subgroup (e.g. are Black women being disproportionately denied pain treatment compared
to White men?), computing p-values and reporting 95% confidence intervals is essential to confirm
(or invalidate) the significance of the results. Furthermore, because our attention to intersectionality
requires 28 simultaneous comparisons, additionally computing the Bonferroni-corrected p-value
threshold and confidence intervals lends credibility to subsequent analysis.

4 Results

4.1 First Look

In our initial analysis of results, we looked at both the probabilities of answering "No" and of
prescribing a "Low" dosage. As the latter showed less variability overall, we chose to focus the rest
of our analysis on the former, meaning the decision to deny patients of the appropriate pain treatment.
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Those who implement our experimental design and framework to test their own medical QA systems
can perform similar analysis to what follows on the "Low" probabilities.

For GPT-3, we found that the probability of a "No." across all vignettes and profiles was always
less than 50% and on average 25.6%, signaling that as long as the model is configured to behave
deterministically (i.e. with temperature set to 0), it will advocate for treating every patient. However,
we noticed significant variability across medical contexts as well as individual vignettes, with Acute
Non Cancer Pain scenarios reporting higher average probabilities and higher standard deviation
overall. Averaging across all genders and races, we noted a 30% gap between the medical contexts
with the lowest (Chronic Cancer pain) and highest (Acute Non Cancer pain) propensities for treatment
denial (see Fig. 2a).

Focusing on race, specifically, we found that Black patients were 3.6% more likely to have been
refused pain treatment by GPT-3 than White patients. Focusing on gender, we noted a similar 3.6%
difference between women and men, with women at a disadvantage. But looking into intersectional
subgroups reveals deeper disparities: for example, we found that out of all subgroups, Black women
had the highest probability of being denied pain treatment by GPT-3 at 26.6%, while White men
had the lowest at 24.8%, meaning that Black women were 7% more likely to be refused pain relief
by GPT-3 compared to White men—and up to 11% more likely for the Acute Cancer Pain context,
specifically. This initial observation confirms the need to highlight outcomes for intersectional
subgroups.

4.2 Intersectionality Analysis

To assess the significance of our first observations, we carried out several tests:

Paired Two-Tailed t-Test: Using results from GPT-3, we conducted a paired two-tailed t-test
analysis on 28 subgroup-to-subgroup comparisons and found no statistically significant difference for
the following: Black Man v Hispanic/Asian Man, Hispanic Man v White Man, White Woman v. any
Man, as well as any minority Woman v minority Woman.

However, 19 of the 28 subgroup-to-subgroup comparisons had p-values less than 0.05, implying the
difference of treatment and outcome was statistically significant between these subgroups. More
notably, 13 out of the 28 had p-values less than 0.002, corresponding to the Bonferroni-corrected
threshold, and nine had p-values less than 0.0001, five of which included Black women (see Fig. 2b).

Confidence Intervals: To further measure the magnitude of these gaps, we computed the confi-
dence intervals for all 28 intersectional differences—and contrasted results from both GPT-3 and
GPT-2 (see Fig.3). Any comparison in the form of Group A v Group B is assessing the question: is
Group A more likely to be denied treatment than Group B? As such, a positive result implies that
Group A is at a disadvantage compared to Group B, while a negative result implies the opposite.
An interval including both negative and positive values is inconclusive. To ensure the results of 28
simultaneous comparisons were jointly valid, we made the decision to focus on Bonferroni-corrected
intervals (corresponding to 99.8%).

In GPT-3, the following comparisons obtained a significant positive result (>0.5% difference), in
descending magnitude: Black Woman v White Man, Black Woman v Hispanic Man, Hispanic Woman
v White Man, and Asian Woman v White Man. What’s more, all minority Woman subgroups had at
least three positive results (and up to a total of five) when compared with the rest of the subgroups,
thus putting minority women, and specifically Black women, at the most disadvantaged position in
pain management by GPT-3. The rest of the comparisons were inconclusive.

In GPT-2, results were less indicative of bias toward women and mostly singled out Asian men. In
descending order of magnitude, the following significant positive results (>0.5% difference) stood
out: Asian Man v Hispanic Man, Asian Man v Black Man, Black Woman v Hispanic Man, and Asian
Man v White Man. While some of the differences in GPT-2 were more pronounced, with Asian Man
v Hispanic Man obtaining a 1.8%- 4.3% confidence interval, GPT-3 showed conclusive difference for
a wider range of subgroup comparisons—12 out of 28 compared to 7 for GPT-2—thus demonstrating
widerspread disparities rather than improvement.
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Figure 3: This figures looks at Group A v Group B comparisons, posing the question: is Group A
at a disadvantage compared to Group B? As such, a positive result implies that Group A is at a
disadvantage compared to Group B, while a negative result implies the opposite. An interval including
both negative and positive values is inconclusive. (a) 95% and Bonferroni-corrected Confidence
Intervals (CI) for difference in probability of being denied pain treatment by GPT-3, (b) Similar for
GPT-2.
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4.3 Qualitative Assessment

We performed a brief qualitative assessment on the explanations produced by GPT-3 and GPT-2 to
examine their consistency and medical validity (see Fig. 1c). Having access to a medical expert, we
chose to evaluate the quality of the generated explanations according to (1) recognition of the correct
pain diagnosis, (2) appropriate assessment of pain context, and (3) mention of appropriateness of
opioid therapy.

We found that overall, GPT-3 generated well-constructed explanations, with no clear variation that
could be ascribed to differences in gender or race, while GPT-2 was prone to incomplete and incorrect
justifications, along with bits that merely parroted parts of the open prompt. It should be noted,
however, that in several instances, both GPT-3 and GPT-2 failed to assign the correct name to the
patient (e.g. replacing it with "Patient C") — this occurred mostly with Asian names.

5 Discussion

Impact & Relevance: The medical domain has had its fair share of AI mishaps, from algorithms
exhibiting racial bias during risk prediction [34] to IBM’s Watson model making incorrect and unsafe
treatment recommendations for cancer patients [35]. Yet, as AI becomes more advanced, many
physicians are relying more heavily on intelligent models and algorithms to identify diseases and
make medical decisions [36, 37]. In particular, LLMs are becoming so prominent that the UK’s
government even considered replacing its national health emergency helpline with intelligent chatbots
to provide medical advice to prospective patients [38].

Our results unfortunately align with well-known race and gender disparities around pain management
[7] and confirm that using LLMs in medical contexts could reinforce detrimental conscious and
unconscious biases still present in the healthcare system to this day. Furthermore, the fact that
GPT-3 displayed no clear progress in the equity of its treatment of different demographic groups over
GPT-2 is at the very least noteworthy, and evokes questions posed by previous researchers regarding
the multifaceted costs of scaling LLMs [39]. There is a tendency for ethical AI work to be done
retrospectively; with this study and the release of the Q-Pain dataset, we hope to arm researchers with
the tools to further understand how bias can surface in medical QA systems before they are (possibly
imminently) further deployed in the real world.

Originality & Novelty: The Q-Pain dataset can be used for experiments both in real-life medical
settings (e.g. through surveys of clinicians) and with LLMs, thus allowing comparisons in significance
and magnitude between the unconscious biases present in the healthcare system today and those
found in language modeling. Additionally, to the best of our knowledge, this benchmark of GPT-3
and GPT-2—complete with rigorous statistical analysis—is the first of its kind in the context of
medical treatment recommendations.

Ethical Considerations: The Q-Pain dataset is made of hypothetical scenarios and does not include
any real patient’s personally identifiable information. While there is a risk related to publishing a
dataset with limited scope—as it could be used counter to the paper’s intentions as proof that a model
is conclusively not biased—we believe Q-Pain’s potential to help the AI community understand their
progress in medical fairness domains outweighs the risk.

6 Limitations & Future Work

Dataset Expansion: Simply having a larger volume (approx. 500) of vignettes would increase
the confidence in any results generated with this dataset. Additionally, we would like to provide
greater diversity between medical scenarios, both within pain management and beyond, expanding
the relevancy of our framework to address bias in medical decision-making.

Closed Prompts: In this setup, our goal was to standardize and neutralize the closed prompts to the
greatest extent possible so as to isolate possible biases that arise without being primed to do so. But it
might also be worthwhile to investigate how a QA system behaves when "provoked:" we would hope
that even in the face of biased decision-making prompts, a QA system assisting in pain management
decisions would not, itself, discriminate.
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Names: The names we selected were derived using real-world data on demographic representations
of first names [31], however demographic representation does not necessarily correlate with implicit
stereotypical associations. Using a list of names more similar to that of the original implicit association
test [30] could convey stronger stereotypical racial signals to the QA system, potentially yielding
interesting results.

Beyond Race & Gender: Finally, it is worth mentioning our treatment of gender as binary and
of race as four exhaustive and mutually exclusive groups: while it certainly made our setup more
straightforward, in doing so, we may have missed other areas of treatment disparities and discrim-
ination. Additionally, other social attributes related to culture, ethnicity, socioeconomic class, or
sexual orientation have been shown to correlate with having poorer healthcare experiences [40] and
would be worth exploring. What’s more, future work could involve creating a neutral baseline by not
specifying either race or gender, or specifying a descriptor that isn’t a race or gender (e.g. "green," or
"short"). This could add additional texture to the meaningfulness of our results and address potential
concerns about the consistency of models across prompts.

7 Conclusion

In this study, we introduce Q-Pain, a dataset of 55 clinical vignettes designed specifically for assessing
racial and gender bias in medical QA—whether in real-life medical settings or through AI systems—
in the context of pain management, and offer an experimental framework using our dataset to target
that research goal. We demonstrate the use of both dataset and framework on two LLMs, GPT-3 and
GPT-2, and find statistically significant differences in treatment between intersectional race-gender
subgroups, thus reaffirming the risk of using AI in medical settings.

Though ethical AI efforts are often performed retrospectively, with the release of the Q-Pain dataset,
we hope to arm researchers with the tools to further understand how bias can surface in medical QA
systems before they are further deployed in the real world.
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