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ABSTRACT

Recent advances in reinforcement learning for large language models have demon-
strated remarkable reasoning capabilities using simple question-answer supervi-
sion. A natural question arises: can we train vision-language models (VLMs) to
reason over images through reinforcement learning alone, without explicit chain-of-
thought annotations? Our investigation reveals a critical bottleneck: over 60% of
VLM reasoning failures stem from inadequate visual perception rather than logical
errors. Furthermore, we find that standard RL approaches optimize reasoning
chains without ensuring accurate visual understanding, leading to confident but
incorrect answers. We argue that the key to effective visual reasoning is to explicitly
evaluate whether visual descriptions actually improve task performance. Therefore,
we propose Caption as Reward (CaR), a framework that assigns rewards to captions
based on their downstream reasoning utility rather than linguistic quality. CaR uses
a gain-based mechanism: captions that fix reasoning errors receive high rewards,
while those that degrade correct predictions are penalized. Trained on 50K visual
question-answer pairs without any CoT supervision, our 3B model outperforms
strong baselines including Visionary-R1, TBAC-VLR1, and VLAA-Thinker on
eight challenging visual reasoning benchmarks. Additional evaluation on MME-
RealWorld confirms substantial improvements in visual perception, particularly
for diagram understanding and OCR tasks. Code and checkpoints will be released
upon acceptance.

Keywords: Vision-Language Models, Reinforcement Learning, Visual Reasoning, Caption Genera-
tion, Reward Modeling, Multimodal Learning

1 INTRODUCTION

Reasoning is essential for enabling AI to tackle complex visual problems in real-world applica-
tions. However, training vision-language models (VLMs) to reason effectively remains challeng-
ing—primarily due to the lack of large-scale reasoning annotations (24; 19). Recent advances in
large language models (LLMs), such as DeepSeek-R1 (9), have demonstrated remarkable reason-
ing capabilities through reinforcement learning using only question-answer pairs, without explicit
chain-of-thought supervision. Meanwhile, the computer vision community has begun exploring RL
approaches for VLMs (37; 32; 5), using methods like GRPO (30) to extend reasoning to multimodal
settings. This success naturally raises a question: can we train VLMs to perform visual reasoning
through reinforcement learning alone?

A straightforward approach is to directly apply RL methods to VLMs, prompting the model to
generate reasoning chains before answering (25; 35; 12). However, our investigation reveals a
critical limitation: standard VLMs process images and questions jointly through a multimodal
encoder (20; 4; 1; 15), but this end-to-end approach often fails to extract task-relevant visual details.
As illustrated in Figure 1 (left), the standard method directly maps image-question pairs to answers,
leaving visual perception implicit and unverifiable. Our error analysis on 1,200 challenging math and
science problems shows that this approach suffers from severe hallucination (5%), factuality errors
(10%), inaccuracies (10%), and omissions (50%)—with visual perception issues accounting for the
majority of failures, consistent with findings in recent benchmark evaluations (23; 22; 7).
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Figure 1: Left: Methodology comparison. The standard method directly processes image-question
pairs through a multimodal LLM, leaving visual perception implicit. Our proposed method first
generates an explicit caption, then performs text-based reasoning over the description. Right: Error
analysis comparing the two approaches. CaR substantially reduces severe hallucination (5%�2%),
factuality errors (10%�8%), and omission errors (50%�25%), shifting the error distribution toward
less severe categories.

An alternative approach decomposes visual reasoning into two stages: first generating a detailed
caption, then reasoning over the text description (3; 10; 14; 26). This caption-then-reason paradigm
makes visual understanding explicit and verifiable, as shown in Figure 1 (left bottom). However, a
key challenge remains: how should we evaluate and optimize caption quality? Existing methods
rely on linguistic metrics (BLEU, ROUGE, CLIPScore) that measure descriptive fluency rather than
reasoning utility (28; 16; 31). A caption may score highly on these metrics while omitting critical
visual details needed for correct reasoning.

We argue that the key to effective visual reasoning is to evaluate captions based on their actual
contribution to downstream task performance. Therefore, we propose Caption as Reward (CaR), a
reinforcement learning framework that assigns rewards to captions based on how much they improve
reasoning accuracy. The core mechanism is gain-based: we compare model performance with and
without the generated caption. Captions that fix reasoning errors receive high rewards, while those
that degrade correct predictions are penalized. This creates a direct training signal linking visual
description quality to task success, building on recent advances in AI-based feedback (13; 27) and
LLM-as-a-judge approaches (39).

CaR requires no human annotations or auxiliary reward models. We leverage an external evaluator
to assess answer correctness and compute rewards based on accuracy gains, integrating this signal
with Group Relative Policy Optimization (30) for stable training. As shown in Figure 1 (right),
our approach substantially reduces all error categories compared to the standard method: severe
hallucination drops from 5% to 2%, factuality errors from 10% to 8%, inaccuracies from 10% to 15%,
and critically, omission errors decrease from 50% to 25%. The overall error pattern shifts toward less
severe categories, indicating more reliable visual understanding.

We make three contributions in this work: (1) We identify that standard VLM reasoning suffers
primarily from visual perception failures rather than logical errors, with over 60% of mistakes
attributable to inadequate visual understanding. (2) We propose CaR, a gain-based reward mechanism
that evaluates caption quality through downstream reasoning utility rather than linguistic similarity,
requiring no additional annotations. (3) Trained on 30K visual question-answer pairs without CoT
supervision, our 3B model outperforms strong baselines including Visionary-R1 (37), TBAC-VLR1,
and VLAA-Thinker on eight challenging visual reasoning benchmarks, with additional improvements
confirmed on MME-RealWorld (7) for visual perception tasks.

2 RELATED WORK

Caption-based visual reasoning. Decomposing visual reasoning into caption generation followed
by text-based reasoning has emerged as an effective strategy for improving VLM performance (18).
ShareGPT4V (3) demonstrates that high-quality captions significantly enhance model capabilities,
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collecting 1.2M detailed descriptions using GPT-4V. Dense Connector (10) proposes multi-layer
visual feature integration to generate richer descriptions. LLaVA-CoT (36) utilizes GPT-4o to label
100K samples with structured reasoning chains including summary, caption, and reasoning steps.
Similarly, OpenVLThinker (5) and Skywork (25) explore caption-enhanced reasoning through it-
erative SFT-RL pipelines. However, these approaches share a common limitation: they evaluate
caption quality through linguistic similarity metrics (BLEU, ROUGE, CLIPScore) or rely on expen-
sive GPT-4o annotations, without directly measuring whether captions actually improve reasoning
outcomes. Our CaR fundamentally differs by evaluating captions solely through their contribution to
downstream task performance—a caption is rewarded only if it demonstrably improves reasoning
accuracy.

Reinforcement learning for visual reasoning. Recent work has demonstrated that RL can effec-
tively enhance VLM reasoning capabilities beyond what SFT alone achieves (2). DeepSeek-R1 (9)
shows that LLMs can develop strong reasoning through RL using only question-answer pairs, inspir-
ing similar approaches for VLMs. Visionary-R1 (37) adopts a caption-reason-answer format and uses
RLAIF to ensure informative captions, achieving strong performance on visual reasoning benchmarks.
VL-Rethinker (32) introduces self-reflection rewards based on consistency checks, while Vision-
R1 (11) applies vision-guided rewards for alignment. Other approaches like OThink-R1 (38) explore
fast/slow thinking mode switching to mitigate over-reasoning, and Virgo (6) investigates reproducing
o1-style reasoning in MLLMs. These methods build on policy optimization techniques including
PPO (29), DPO (27), and GRPO (30). However, existing RL approaches for VLMs do not explicitly
address the perception-reasoning gap: they reward final answer correctness without distinguishing
whether errors stem from visual misunderstanding or logical failures. Our CaR specifically targets
this gap by introducing a gain-based reward that measures how much visual descriptions improve task
performance compared to direct reasoning, providing a more precise training signal that disentangles
perception from reasoning.

Reward modeling for vision-language tasks. Designing effective rewards is crucial for RL-
based VLM training. Traditional caption evaluation relies on n-gram matching (BLEU, ROUGE,
METEOR) or learned similarity measures (BERTScore, CLIPScore), which correlate poorly with
downstream task utility (16). Recent work explores VLMs as zero-shot reward models (28) and
addresses reward model uncertainty (8). LLM-as-a-judge approaches (39) provide scalable evaluation
by using language models to assess output quality, which we adapt for semantic answer matching.
Constitutional AI (13) demonstrates that AI-generated feedback can effectively replace human
annotations. However, these reward formulations focus on absolute quality assessment rather than
relative utility measurement. Our gain-based reward uniquely measures the difference in performance
with and without captions, directly capturing whether visual descriptions provide task-relevant
information that improves reasoning outcomes.

3 METHODOLOGY

We propose Caption as Reward (CaR), a reinforcement learning framework that optimizes visual
descriptions based on their utility for downstream reasoning tasks. Unlike traditional caption evalua-
tion that relies on linguistic metrics (BLEU, ROUGE, CLIPScore), CaR directly measures whether a
caption improves reasoning accuracy. This section first analyzes the perception bottleneck in visual
reasoning (§3.1), then presents our gain-based reward mechanism (§3.2), and finally describes the
training procedure (§3.3).

3.1 PROBLEM ANALYSIS AND MOTIVATION

To understand failure modes in visual reasoning, we manually analyzed 1,200 multimodal math and
science problems from MathVista and ScienceQA. For each failed case, we examined whether the
model could solve a text-only version of the same problem when provided with an accurate visual
description. This methodology isolates perception errors from reasoning errors: if the model succeeds
with accurate descriptions but fails with its own visual understanding, the bottleneck lies in perception
rather than reasoning.
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Among the failures, 48.2% stemmed from missing or incorrect perceptual details in visual descrip-
tions (e.g., misreading numbers, ignoring spatial relationships), 22.3% from reasoning errors (e.g.,
incorrect formula application, logical mistakes), and 29.4% from ambiguous cases where both factors
contributed. After filtering ambiguous cases, perception-related errors comprised 62.1% of clear
failures, as illustrated in Figure 1.

This analysis reveals a fundamental mismatch between how captions are evaluated and how they
should be evaluated. Traditional metrics reward descriptive fluency—a caption like “a colorful chart
with multiple bars” may score highly on linguistic quality while omitting the specific values needed
for accurate reasoning. We argue that caption quality should be measured by reasoning utility: does
the caption contain the information necessary to answer the question correctly?

3.2 CAPTION AS REWARD FRAMEWORK

Based on our analysis, we propose to evaluate captions through their downstream impact on reasoning
performance. The key insight is that an effective caption should improve task accuracy when the
model struggles with direct visual understanding, while preserving accuracy when the model already
succeeds.

Given an image I , question Q, and ground-truth answer A∗, we consider two inference modes:

• Direct reasoning: The model processes the image and question jointly to produce an answer
Adirect ∼ Pθ(A | I,Q). This represents the standard VLM inference pipeline where visual
perception is implicit.

• Caption-enhanced reasoning: The model first generates an explicit visual description
C ∼ Pθ(C | I,Q), then reasons over both the caption and image to produce Acaption ∼
Pθ(A | I, C,Q). The caption serves as an intermediate representation that makes visual
understanding explicit and verifiable.

Note that in caption-enhanced reasoning, the model still has access to the original image I , allowing
it to verify or refine the caption during reasoning. This differs from purely text-based approaches that
discard visual information after caption generation.

We define caption reward based on the performance difference between the two inference modes:

R(C | I,Q) =


1.0, if Acaption = A∗ ∧Adirect ̸= A∗ (fixes error)
0.7, if Acaption = A∗ ∧Adirect = A∗ (maintains accuracy)
0.2, if Acaption ̸= A∗ ∧Adirect ̸= A∗ (both fail)
0.0, if Acaption ̸= A∗ ∧Adirect = A∗ (degrades performance)

(1)

The reward values reflect our design priorities. Captions that fix reasoning errors (R = 1.0) provide
the strongest positive signal, as they demonstrate clear utility for the task. Captions that maintain cor-
rect predictions (R = 0.7) are rewarded but less strongly, since they do not demonstrate improvement
over direct reasoning. Captions where both modes fail (R = 0.2) receive minimal positive reward to
encourage exploration. Critically, captions that degrade correct predictions (R = 0.0) are penalized,
discouraging the model from generating descriptions that introduce errors or hallucinations.

Our approach differs fundamentally from Visionary-R1’s RLAIF reward (37). Visionary-R1 uses an
external VLM to judge whether a caption is “informative and accurate” based on absolute quality
assessment. This approach has two limitations: (1) it relies on the external model’s subjective
judgment of caption quality, which may not align with task requirements; (2) it does not consider
whether the caption actually helps reasoning. In contrast, CaR measures caption quality through a
controlled experiment—comparing performance with and without the caption. A caption is rewarded
only if it demonstrably improves reasoning outcomes, providing a more direct and task-aligned
training signal.

The total training reward combines three components:

Rtotal = wacc ·Racc + wformat ·Rformat + wcaption ·R(C | I,Q) (2)
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Figure 2: Evolution of caption quality during CaR training on a flowchart reasoning problem.
Baseline (yellow): Direct reasoning without explicit caption produces incorrect answer (D). Iter 40
(green): Early-stage caption captures partial information (“S is updated by subtracting i from S”) but
misses initialization details, leading to approximate answer (-23). Iter 80 (blue): Fully-trained model
generates complete caption with precise variable initialization (S = 1, i = 3), loop condition (i > 7),
and update rules (S = S − 3i, i = i+ 2), enabling correct step-by-step reasoning and final answer
(C: -44).

where Racc ∈ {0, 1} indicates final answer correctness against ground truth, Rformat ∈ {0, 1} ensures
proper output structure (caption, reasoning, answer sections), and R(C | I,Q) is the gain-based
caption reward from Equation 1. We set weights (wacc, wformat, wcaption) = (1.0, 0.1, 1.0), giving
equal importance to final accuracy and caption utility while using a lower format weight since format
compliance is typically achieved early in training.

3.3 TRAINING IMPLEMENTATION

We integrate caption rewards with Group Relative Policy Optimization (GRPO) (30), which provides
stable training without requiring a separate critic network.

For each training sample, we generate n = 8 caption candidates using temperature sampling (τ = 0.7).
Computing absolute rewards can lead to high variance across samples of different difficulty. Following
GRPO, we normalize rewards within each group:
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Figure 3: CaR training pipeline. For each image-question pair, the policy model generates multiple
caption candidates. Each candidate is evaluated through both direct reasoning (without caption) and
caption-enhanced reasoning to compute performance gains. The gain-based rewards are normalized
within each group, and GRPO updates optimize the policy to favor captions with higher reasoning
utility.

R̂i =
Ri − µg

σg + ϵ
(3)

where µg and σg are the mean and standard deviation of rewards within the group, and ϵ = 10−8

prevents division by zero. This normalization ensures that the model receives meaningful gradient
signals regardless of sample difficulty.

The policy is updated using clipped importance sampling to prevent large deviations from the
reference policy:

L(θ) = −E(I,Q,C)∼D

[
min

(
ρθ · R̂, clip(ρθ, 1− ε, 1 + ε) · R̂

)]
(4)

where ρθ = πθ(C | I,Q)/πref(C | I,Q) is the importance ratio between the current policy and
reference policy, and ε = 0.2 is the clipping threshold. The reference policy is updated periodically
(every 100 steps) to track the evolving policy while maintaining training stability.

A critical design choice is how to assess answer correctness for computing Racc and the gain-based
reward. Using the training model itself would create a circular dependency where the model judges
its own outputs. Instead, we employ an external evaluator—either GPT-4o-mini or Qwen2.5-7B-
Instruct—to determine semantic equivalence between predicted and ground-truth answers.

The evaluator receives the question, ground-truth answer, and predicted answer, then outputs a
binary correctness judgment. This design has two advantages: (1) it provides unbiased assessment
independent of the training model’s beliefs; (2) it handles semantic equivalence (e.g., “0.5” vs “1/2”
vs “half”) better than exact string matching. We found that GPT-4o-mini provides more consistent
judgments with lower variance across similar samples, so we use it as the default evaluator.

To ensure clean separation between perception and reasoning phases, we enforce a structured output
format with explicit XML-style tags:

<caption>...</caption> <think>...</think> <answer>...</answer>

6
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Table 1: Comprehensive performance comparison across visual reasoning benchmarks. CaR denotes
our Caption as Reward method.

MMK12 MathVista MathVision MathVerse DynaMath WeMath LogicVista OlympiadBench Avg

Qwen2.5-VL-3B
GRPO 57.6 66.1 25.3 30.1 14.4 28.8 42.1 8.8 34.2
Ours 60.1 68.1 26.2 31.1 15.0 30.1 41.4 8.8 35.1

InternVL2.5-4B
GRPO 58.8 67.5 26.0 30.8 14.9 29.4 43.4 8.6 34.9
Ours 61.6 69.7 27.0 31.9 15.4 30.3 43.5 8.6 36.0

Qwen2.5-VL-7B
GRPO 61.2 71.5 27.3 32.5 15.5 31.0 45.8 9.0 36.7
Ours 63.8 74.3 28.5 33.9 16.2 32.3 46.4 9.2 38.1

Baseline Comparisons (3B)
Qwen2.5-VL-3B 41.1 61.2 21.9 31.2 13.2 22.9 40.0 6.8 29.8
Visionary-R1 45.3 69.4 24.7 33.0 13.8 28.0 41.6 7.8 33.0
TBAC-VLR1 47.2 64.8 25.0 34.5 17.7 32.4 40.8 8.3 33.8
VLAA-Thinker-3B 43.2 61.0 24.4 36.4 18.2 33.8 38.5 7.9 32.9

The <caption> section contains the visual description, <think> contains the reasoning process,
and <answer> contains the final response. This structure allows us to extract and evaluate each
component independently during reward computation. Format compliance is checked automatically,
and Rformat = 1 only when all three sections are present and properly formatted.

We sample 30K visual question-answer pairs from two existing datasets: MM-Eureka (17) (mathemat-
ical reasoning) and VirL39K (33) (logical reasoning). Importantly, we use only the question-answer
pairs without any chain-of-thought annotations or human-written captions. The model must learn to
generate useful captions and reasoning chains purely through reinforcement learning signals. This
demonstrates that CaR can improve visual reasoning without expensive annotation efforts.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We train models using two established multimodal reasoning datasets: MM-Eureka (17), focusing
on mathematical problem-solving, and VirL39K (33), targeting logical inference tasks. We apply
stratified sampling based on difficulty levels determined through eight inference runs with Qwen2.5-
VL-7B (34), creating a balanced training set of 30K samples with a 90%/10% mix of medium
and high-difficulty items. For evaluation, we assess performance across eight challenging visual
reasoning benchmarks: MathVista (23), MathVision, MathVerse, DynaMath, WeMath, LogicVista,
MMK12-EVAL, and OlympiadBench. All experiments use Qwen2.5-VL models at 3B and 7B
parameter scales with GRPO (group size n = 8, learning rate 5 × 10−7, temperature 0.9) for two
epochs. The composite reward weights are set to (1.0, 0.1, 1.0) for accuracy, format, and caption
components respectively, with GPT-4o-mini or Qwen2.5-7B-Instruct serving as external evaluators.
Training is conducted using the VeRL framework on NVIDIA A100 GPUs.

4.2 MAIN RESULTS

Table 1 presents comprehensive results across all evaluation benchmarks. CaR demonstrates consistent
improvements over baseline methods across different model scales. The 3B model achieves 35.1%
average accuracy, improving +0.9 points over the GRPO baseline (34.2%) and +5.3 points over the
3B-Instruct baseline (29.8%).

Notably, CaR shows particularly strong improvements on individual benchmarks. On MMK12-EVAL,
the 3B model improves from 57.6% to 60.1% (+2.5 points), and on MathVista from 66.1% to 68.1%
(+2.0 points). The 7B model exhibits even larger gains, improving from 36.7% to 38.1% average
(+1.4 points), with notable improvements on MathVista (71.5% to 74.3%, +2.8 points) and MMK12
(61.2% to 63.8%, +2.6 points).
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Table 2: Performance on MME-RealWorld benchmark for visual perception evaluation. Results show
improvements in both reasoning and perception capabilities.

Model
Reasoning Perception

Avg
Monitor Auto Drive OCR Diagram Remote Monitor Auto Drive OCR Diagram Remote

Qwen2.5-VL-3B-Instruct 22.5 30.0 57.8 46.6 0.0 31.6 35.7 70.3 40.1 22.6 35.7
Ours 21.9 28.2 60.8 52.2 0.0 33.1 37.2 78.4 71.5 26.9 41.0

Table 3: Impact of different external evaluators on caption reward quality.
MMK12 MathVista MathVision MathVerse DynaMath WeMath LogicVista OlympiadBench Avg

Qwen2.5-7B-Instruct 50.4 65.1 22.0 30.5 12.8 25.2 38.9 7.5 31.6
gpt-4o-mini 49.8 66.3 22.0 31.6 12.3 27.2 43.4 7.9 32.8

To validate that CaR’s effectiveness extends beyond a single model family, we also evaluate on
InternVL2.5-4B (4). Results show consistent improvements (+1.1 points average), demonstrat-
ing that the gain-based reward mechanism transfers across different VLM architectures. This
cross-architecture consistency suggests that CaR captures fundamental properties of useful visual
descriptions rather than architecture-specific patterns.

Performance improvements vary across benchmarks, with the largest gains on tasks requiring precise
visual extraction. MathVista shows consistent improvement across all model scales, while DynaMath
and OlympiadBench—which involve complex multi-step reasoning—show more modest gains. This
pattern suggests that CaR primarily improves the perception component of visual reasoning, with
downstream reasoning benefiting indirectly from more accurate visual information.

Compared to recent competitive baselines, our 3B model (35.1%) outperforms Visionary-R1 (33.0%),
TBAC-VLR1 (33.8%), and VLAA-Thinker-3B (32.9%) on average accuracy across all benchmarks.

4.3 VISUAL PERCEPTION ANALYSIS

To evaluate CaR’s impact on visual perception specifically, we conduct additional experiments
on MME-RealWorld, a benchmark designed for fine-grained visual understanding across diverse
real-world scenarios. Table 2 shows detailed results across reasoning and perception tasks.

CaR demonstrates substantial improvements in visual perception capabilities, achieving 41.0%
average performance compared to 35.7% for the baseline (+5.3 points). The most significant gains
occur in Perception-Diagram (+31.4 points: 71.5 vs 40.1) and Perception-OCR (+8.1 points: 78.4
vs 70.3). These results confirm that CaR’s gain-based reward mechanism effectively enhances the
model’s ability to extract task-relevant visual information.

The performance gains are not uniform across all perception categories. Diagram understanding
shows the largest improvement, likely because mathematical diagrams require precise extraction of
numerical values, geometric relationships, and labels—exactly the type of information that CaR’s
gain-based reward incentivizes. OCR tasks also benefit substantially, as accurate text recognition
is often critical for correct reasoning. In contrast, autonomous driving and remote sensing tasks
show more modest improvements, possibly because these domains require different types of visual
understanding that are less directly captured by our question-answering training format.

Interestingly, some reasoning subtasks show slight decreases (e.g., Monitor: 22.5 to 21.9, Auto Drive:
30.0 to 28.2) while corresponding perception tasks improve. This suggests that CaR may shift the
model’s focus toward detailed visual extraction at a small cost to high-level reasoning in certain
domains. However, the overall average improvement (+5.3 points) indicates that the perception gains
substantially outweigh any reasoning trade-offs, validating CaR’s design philosophy of prioritizing
accurate visual understanding as a foundation for reasoning.
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4.4 ANALYSIS

We investigate the impact of different evaluation models for caption reward calculation (Table 3). GPT-
4o-mini yields superior performance (32.8% average) compared to Qwen2.5-7B-Instruct (31.6%),
with a +1.2 points difference. This suggests that more capable evaluators provide cleaner training
signals with reduced evaluation noise, highlighting the importance of evaluator quality in RL-based
training pipelines.

Analysis of 100 samples where CaR succeeded but baselines failed reveals consistent improvement
patterns. First, CaR generates specific numerical values and spatial relationships rather than approxi-
mate descriptions—for example, describing “a triangle with sides 3, 4, and 5 units” instead of “a right
triangle.” Second, models learn to prioritize information directly relevant to the question, emphasizing
geometric relationships in math problems over aesthetic details like colors or backgrounds. Third, the
resulting descriptions follow structured patterns that systematically cover different image regions,
reducing the likelihood of missing critical visual elements.

Regarding computational cost, CaR introduces additional inference passes for caption evaluation.
However, several optimizations minimize overhead: (1) the question-only inference results can be
precomputed before training, eliminating network I/O during the training loop; (2) during rollout,
partially generated captions that share common prefixes can reuse cached computations; (3) the
caption evaluation and importance sampling can be computed in parallel, synchronizing only at the
final loss computation to avoid blocking the training pipeline. With these optimizations, CaR remains
competitive with other RL-based methods in terms of training efficiency.

5 DISCUSSION AND LIMITATIONS

Our analysis suggests several factors contribute to CaR’s effectiveness. By directly optimizing for
task utility rather than proxy metrics like linguistic similarity, CaR creates a tight feedback loop
between perception quality and reasoning accuracy. The gain-based reward also naturally establishes
an implicit curriculum where the model learns to fix obvious perception errors before gradually
improving on subtler cases—this organic difficulty progression may explain why CaR scales better
with data than SFT. Additionally, separate evaluation of direct and caption-enhanced reasoning
provides disentangled learning signals that clarify what visual information is missing, helping the
model identify task-relevant visual features rather than memorizing caption patterns.

Unlike linguistic metrics (BLEU, ROUGE) that measure surface-level similarity, CaR’s gain-based
reward directly captures reasoning utility. This fundamental difference explains why CaR outperforms
caption-based methods that rely on linguistic optimization. Compared to self-consistency approaches
that check reasoning agreement, CaR provides stronger supervision by requiring captions to demon-
strably improve task performance. The use of external evaluators also avoids the self-reinforcement
bias that can occur when models judge their own outputs.

Our experiments demonstrate that CaR generalizes across different model scales (3B, 4B, 7B) and task
types (mathematical reasoning, logical inference, visual perception). The consistent improvements
suggest that the gain-based reward captures fundamental aspects of visual description quality that
transfer across domains. However, the degree of improvement varies by task: CaR shows larger
gains on tasks requiring precise numerical extraction (e.g., diagram understanding) compared to tasks
dominated by spatial reasoning.

While CaR demonstrates strong results, several limitations warrant discussion. The approximately 3×
computational overhead compared to SFT may limit adoption for resource-constrained settings; future
work should explore more efficient reward computation strategies such as caching evaluator responses
or using lightweight reward models. We evaluated CaR only on Qwen2.5-VL (34) and InternVL (4)
models, and testing on more diverse architectures (LLaVA (20; 21), BLIP (15), MiniGPT-4 (40))
would strengthen claims about generalizability. Current experiments focus on question-answering
tasks, and extending CaR to other modalities (video, audio) and tasks (generation, editing) remains
unexplored. Our reward weights and thresholds were determined through limited grid search, and
more principled approaches using multi-objective optimization or learned reward functions could
improve performance.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

CaR’s improved visual perception could enable more reliable VLM deployments in education,
accessibility, and scientific research. For educational applications, accurate visual understanding is
critical for tutoring systems that explain diagrams and figures. In accessibility contexts, better caption
generation could improve screen reader experiences for visually impaired users. However, enhanced
visual understanding also raises concerns about potential misuse for surveillance or generating
misleading content. We recommend careful deployment with appropriate safeguards and regular
auditing of model outputs to detect potential misuse.

6 CONCLUSION

We introduced Caption as Reward (CaR), a reinforcement learning framework that optimizes visual
descriptions based on their utility for downstream reasoning tasks. CaR addresses a fundamental
limitation in vision-language model training: the disconnect between linguistic caption quality and
reasoning performance. By evaluating captions through performance gains rather than linguistic
similarity metrics, CaR provides a principled training signal that directly aligns visual understanding
with task requirements.

Our experimental results demonstrate CaR’s effectiveness across eight challenging visual reasoning
benchmarks. The 3B model achieves 35.1% average accuracy, outperforming the instruction-tuned
baseline (29.8%, +5.3 points) and the GRPO baseline (34.2%, +0.9 points). The 7B model shows
consistent improvements from 36.7% to 38.1% (+1.4 points), demonstrating scalability across model
sizes. Cross-architecture validation on InternVL2.5-4B (+1.1 points) confirms that CaR’s benefits
transfer beyond a single model family.

The key insight underlying CaR is that visual description quality should be measured by reasoning
utility rather than descriptive fluency. This performance-centric approach enables models to learn
what visual information matters for specific tasks, resulting in more precise and task-relevant visual
understanding. Additional evaluation on MME-RealWorld confirms enhanced perception capabilities,
with particularly strong improvements in diagram understanding (+31.4 points) and OCR tasks (+8.1
points).

Current limitations include evaluation on two model families (Qwen2.5-VL and InternVL) and
reliance on external evaluators for reward computation. Future work will explore broader architectural
validation across diverse VLM designs, extension to video and audio modalities, and application to
generative tasks beyond question answering.

CaR opens new directions for task-adaptive multimodal learning by demonstrating that performance-
based optimization can effectively bridge the perception-reasoning gap in vision-language models
without requiring human annotations or auxiliary reward models. This approach may generalize to
other domains where proxy metrics (e.g., perplexity, BLEU) poorly correlate with downstream task
performance, suggesting a broader paradigm of utility-based optimization for foundation models.
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ETHICS STATEMENT

CaR targets educational and scientific reasoning workloads by strengthening factual visual under-
standing. Although stronger perception could be misused to generate misleading analyses, the method
reduces hallucinated descriptions and relies only on public datasets, which we acknowledge may
carry existing societal biases. We adhere to the ICLR Code of Ethics and confirm that our work
complies with all ethical guidelines. All authors of this work have read and commit to adhering to the
ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

We train on the publicly available MM-Eureka and VirL39K corpora using Qwen2.5-VL models
(3B/7B) and InternVL2.5-4B. All hyperparameters (GRPO with n=8, learning rate 5 × 10−7,
temperature 0.9, two epochs, reward weights (1.0, 0.1, 1.0)) and evaluator choices (GPT-4o-mini
or Qwen2.5-7B-Instruct) are described in Section 4.1. Code, data splits, and checkpoints will be
released upon acceptance.
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A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

A.1 POLICY MODEL PROMPT

To ensure the model generates structured visual descriptions before reasoning, we include additional
instructions in the system prompt to guide the policy model in generating the corresponding output.
Using this prompt, the model will insert the corresponding image description labeled as ¡caption¿
before the thinking process, additional to the existing ¡think¿ and ¡answer¿.

Policy Model Prompt

A conversation between User and Assistant. The
user asks a question, and the Assistant solves it.
The assistant begins the response with a concise,
image-grounded caption enclosed in <caption>
</caption>, then thinks about the reasoning
process in the mind and provides the answer.
The reasoning process and answer are enclosed
within <think> </think> and <answer>
</answer> tags, respectively; i.e., <caption>
caption here </caption> <think> reasoning
process here </think> <answer> answer here
</answer>.

A.2 GAIN-BASED REWARD IMPLEMENTATION

Algorithm 1 summarizes the reward computation pipeline referenced in Section 3.2.
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Algorithm 1 Gain-Based Reward Computation
Require: Image I , Question Q, Generated Caption C, Ground Truth A∗, Vision-Language Model
M, External Evaluator E

Ensure: Gain-based reward R(C|I,Q)
1: Adirect ←M(I,Q) {Direct reasoning}
2: Acaption ←M(I,Q,C) {Caption-enhanced reasoning}
3: correctdirect ← E .SemanticMatch(Adirect, A

∗)
4: correctcaption ← E .SemanticMatch(Acaption, A

∗)
5: if correctcaption and ¬correctdirect then
6: R(C|I,Q)← 1.0 {Caption fixes an error}
7: else if correctcaption and correctdirect then
8: R(C|I,Q)← 0.7 {Caption confirms success}
9: else if ¬correctcaption and ¬correctdirect then

10: R(C|I,Q)← 0.2 {Both attempts fail}
11: else
12: R(C|I,Q)← 0.0 {Caption harms accuracy}
13: end if
14: return R(C|I,Q)

A.3 TRAINING DATA SOURCES

Our training dataset combines two established open-source multimodal reasoning corpora: MM-
Eureka (17) and VirL39K (33), covering diverse visual reasoning tasks including mathematical
problem-solving and spatial reasoning. We apply stratified sampling based on difficulty levels to
ensure effective training data quality, following the data construction methodology described in
Section 3.3.

A.4 ADDITIONAL EXPERIMENTAL RESULTS

Data Scaling Analysis We analyze the impact of training data size on CaR performance. Table 4
shows results with 10K, 20K, and 30K training samples on the 3B model. CaR demonstrates
consistent improvements over GRPO across all data scales: 10K (+0.6 points), 20K (+1.2 points),
and 30K (+1.3 points). This scaling trend indicates that CaR effectively leverages additional training
data to enhance visual reasoning capabilities.

Table 4: Impact of training data size on CaR performance (Qwen2.5-VL-3B).
Data Size Method MMK12 MathVista MathVision MathVerse DynaMath WeMath LogicVista OlympiadBench Avg

10K SFT 29.6 54.7 18.8 8.1 9.7 16.2 34.9 6.0 22.2
10K GRPO 48.5 64.1 22.6 32.0 12.5 27.0 41.2 8.0 32.0
10K CaR 49.8 66.3 22.0 31.6 12.3 27.7 43.4 7.9 32.6

20K SFT 33.7 54.0 18.6 9.1 9.2 18.2 34.0 6.0 22.9
20K GRPO 51.2 64.8 23.4 28.5 13.1 27.5 41.8 8.2 32.3
20K CaR 53.5 66.9 24.2 29.4 13.6 28.4 43.1 8.5 33.5

30K SFT 38.5 61.5 19.1 23.6 4.3 17.9 36.7 7.1 26.1
30K GRPO 54.8 63.9 24.5 29.2 13.9 27.9 40.8 8.5 32.9
30K CaR 57.6 66.1 25.3 30.1 14.4 28.8 42.1 8.8 34.2

Hyper-parameter Analysis We analyze the sensitivity of CaR to the caption reward weight
wcaption in the composite reward structure. For the accuracy and format rewards, we follow standard
GRPO settings with equal weights. Table 5 shows results across all benchmarks for different caption
reward weights. We observe that wcaption = 0.1 achieves the best overall performance (35.1%
average), while higher weights lead to slight degradation. To maintain training stability and prevent
caption reward from dominating the optimization objective, we recommend using wcaption = 0.1 in
practice.
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Table 5: Hyper-parameter analysis for caption reward weight wcaption (Qwen2.5-VL-3B).
Weight wcaption MMK12 MathVista MathVision MathVerse DynaMath WeMath LogicVista OlympiadBench Avg

0.1 60.1 68.1 26.2 31.1 15.0 30.1 41.4 8.8 35.1
0.5 57.0 64.7 24.6 29.5 14.1 28.3 39.1 8.3 33.2
1.0 55.3 62.9 24.2 28.7 13.8 27.7 38.3 8.1 32.4

A.5 VISUALIZATION OF THE CAR OUTPUT

We present four representative examples demonstrating CaR’s structured output format with caption,
thinking, and answer components.

Diagram Reasoning

Q: How many predators does the mouse have?
Options: 4, 1, 0, 2
A: 1

CaR Output
<caption> A food web diagram showing ecological relationships. Primary
producers (berries, grass, trees) are at the bottom. Primary consumers include
insects, deer, and mice. Secondary consumers are skunks, wolverine, and
weasel. Tertiary consumers at top are arctic fox, great horned owl, and hawks.
Blue arrows show energy flow from prey to predator. </caption>
<think> Looking at the food web, I need to find which animals eat mice.
Following the arrows FROM mice, I can see only one arrow pointing to
weasel. The weasel is the only predator that consumes mice in this diagram.
</think>

<answer> 1 </answer>

Table Understanding

Q: During this time, thermal energy was transferred
from () to ().
A. each refrigerator...the surroundings
B. the surroundings...each refrigerator
A: B

CaR Output
<caption> A table showing temperature changes in two refrigerators. Row
1: Refrigerator with door open, initial temp 3.9°C, final temp 11.4°C. Row
2: Refrigerator with door closed, initial temp 3.9°C, final temp 5.4°C. Both
refrigerators increased in temperature over 10 minutes. </caption>
<think> Both refrigerators started at 3.9°C and ended at higher temperatures
(11.4°C and 5.4°C). Since temperature increased, thermal energy must have
flowed INTO the refrigerators FROM the warmer surroundings, not the other
way around. </think>

<answer> B </answer>
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Chart Analysis

Q: How many colors are in the bar?
A: 5

CaR Output
<caption> A horizontal stacked bar chart titled ”Adults ages 25 to 34 are
most likely to be cohabiting.” Shows percentages by age group (18-24, 25-
34, 35-49, 50+) with 5 categories: Cohabiting (dark green), Married (light
green), Divorced/widowed (beige), Never married (olive), and Separated
(gray). </caption>
<think> Counting the distinct colors in the legend: 1) Cohabiting (dark
green), 2) Married (light green), 3) Divorced or widowed (beige), 4) Never
married (olive/brown), 5) Separated (gray). Total: 5 colors. </think>

<answer> 5 </answer>

Geometry Problem

Q: Find m∠S.
A: 123°

CaR Output
<caption> A quadrilateral QRST (kite shape) with vertices Q at top, R at
left, S at bottom, T at right. Angle at R is x°, angle at T is x°. Angle at Q is
(2x+5)°, angle at S is (2x+7)°. The shape appears symmetric about the vertical
axis. </caption>
<think> Sum of angles in a quadrilateral = 360°. So: x + x + (2x+5) +
(2x+7) = 360. Simplifying: 6x + 12 = 360, thus 6x = 348, x = 58. Therefore,
m∠S = 2(58) + 7 = 116 + 7 = 123°. </think>

<answer> 123° </answer>
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