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ABSTRACT

Vision-Language Models (VLMs) face challenges in complex visual reasoning
tasks, where the contribution of intermediate visual understanding remains underex-
plored. We present Caption as Reward (CaR), a reinforcement learning framework
that evaluates visual understanding quality through its impact on task performance.
Unlike approaches that assess visual description quality independently through
linguistic metrics, CaR introduces a gain-based reward mechanism that measures
how visual descriptions improve task performance relative to direct reasoning. This
approach encourages models to adapt their visual understanding strategy to task
complexity. We evaluate CaR on eight reasoning benchmarks using Qwen2.5-VL
models (3B and 7B parameters). CaR achieves consistent improvements across
model scales: our 3B model with 30K training samples reaches 34.2% average accu-
racy, significantly outperforming both the SFT baseline (22.9% with 20K samples)
and the 3B-Instruct baseline (29.8%). Notably, CaR shows substantial improve-
ments over standard supervised fine-tuning, with gains of +11.3 percentage points
(34.2% vs 22.9%) on 30K data. For the 7B model, CaR improves performance
from 36.5% (GRPO) to 38.1%, a 1.6 percentage point gain, demonstrating robust
improvements regardless of model size. CaR’s gain-based reward mechanism pro-
vides a principled training signal that directly links visual description quality to task
performance, opening new directions for improving visual reasoning capabilities
in VLMs without requiring expensive human annotations. Additional evaluation
on MME-RealWorld confirms CaR’s effectiveness in enhancing visual perception
abilities, with particularly strong improvements in diagram understanding (+31.4
points) and OCR tasks (+8.1 points).

Keywords: Vision-Language Models, Reinforcement Learning, Visual Reasoning, Caption Genera-
tion, Reward Modeling, Multimodal Learning

1 INTRODUCTION

Post-training techniques such as deliberate chain-of-thought reasoning have substantially improved
large language models (LLMs) (7; 13). Vision-language models (VLMs) benefit from these ideas,
yet accurate perception remains a bottleneck: mainstream systems miss crucial scene details in more
than 10% of domain-specific queries (1), and our audit of 1,200 math and science questions attributes
62.1% of failures to incomplete or incorrect visual descriptions.

A common workaround translates images into textual descriptions that are then processed by powerful
text-only reasoners (2; 3; 8). Linguistic metrics (e.g., BLEU, ROUGE) may rate such captions highly
even when downstream answers do not improve. Reinforcement learning could align captions with
task success, but training a bespoke reward model is expensive and brittle (10; 5), whereas rule-based
rewards such as those used by DeepSeek-R1 remain surprisingly effective (6).

We introduce Caption as Reward (CaR), a lightweight reinforcement learning framework that scores
each visual description by the performance gain it unlocks for the base VLM. CaR favors captions
that repair direct reasoning failures, penalizes those that degrade correct predictions, and relies only
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Figure 1: Analysis of the causes of errors in multimodal questions. (a) Original error percentage. (b)
Ratio after excluding removable abnormal interference items.

on the existing model plus an external semantic judge. The approach yields consistent gains on eight
visual reasoning benchmarks with Qwen2.5-VL backbones of 3B and 7B parameters.

Our contributions are threefold: (i) a gain-based reward formulation that directly measures the utility
of a caption for downstream accuracy; (ii) a four-case policy update that plugs into standard GRPO
training without auxiliary reward models; and (iii) state-of-the-art accuracy for 3B-scale VLMs
together with strong improvements at 7B scale, achieved without additional human annotation.

2 METHODOLOGY

We propose Caption as Reward (CaR), a reinforcement learning framework designed to improve
visual reasoning capabilities of VLMs using only visual question-answer pairs without any explicit
CoT supervision. In what follows, we first highlight the motivation behind our approach, then
introduce our CaR framework which evaluates visual description quality through performance gain
rather than linguistic metrics, and finally detail our training objective and implementation.

2.1 MOTIVATION: BEYOND LINGUISTIC VISUAL DESCRIPTION EVALUATION

To understand the dominant failure modes, we manually audited 1,200 multimodal math and science
problems with human verification. We examined the subset where Qwen2.5-VL-7B solved the
text-only version yet failed once Gemini 2.5 descriptions were routed through DeepSeek-R1. Nearly
half of the mistakes (48.2%) were caused by missing or distorted perceptual cues in the captions,
compared with 22.3% stemming from textual reasoning and 29.4% from other factors. After filtering
ambiguous cases (e.g., vague drawings or incorrect gold labels), perception-related errors climbed
to 62.1% (Figure 1). These numbers motivate rewarding captions that genuinely improve visual
understanding rather than surface fluency.

Traditional approaches to visual reasoning often rely on sophisticated visual description evaluation
metrics such as BLEU, ROUGE, or learned similarity measures. However, these metrics primarily
assess linguistic quality rather than the visual description’s utility for reasoning tasks. This disconnect
becomes problematic when training VLMs for visual reasoning, as the model may learn to generate
linguistically fluent but reasoning-irrelevant descriptions.

Our key insight is that visual description quality should be measured by its contribution to downstream
reasoning performance. A high-quality visual description should provide sufficient visual information
to enable correct reasoning, while a poor visual description should fail to support the reasoning
process. This performance-centric view motivates our Caption as Reward framework, where we
evaluate visual descriptions not by their linguistic properties, but by their functional utility in visual
reasoning tasks.
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Figure 2: Each column mirrors the VirL39K (left) and MM-Eureka (right) annotation layout: original
flowchart on the left, baseline reasoning snapshots in the upper-right blocks, and CaR-enhanced
captions in the lower cards. CaR replaces the shortcut baseline with loop-by-loop tracking to recover
the correct answer.

2.2 THEORETICAL FOUNDATION

The effectiveness of CaR can be understood through the lens of information theory. Consider the
mutual information between the visual content I and the final answer A:

I(I;A) = I(I;C) + I(I;A|C) (1)

where C represents the caption. Traditional caption evaluation metrics optimize I(I;C) directly,
measuring how much visual information is preserved in the caption. However, CaR optimizes for
I(C;A|Q), the information gain that the caption provides for answering the question. This distinction
is crucial: a caption may contain abundant visual details (high I(I;C)) but fail to include the specific
information needed for reasoning (low I(C;A|Q)).

Our gain-based reward directly measures this task-relevant information extraction. When the model
succeeds with caption but fails without it, we know the caption contains critical visual information
that enables correct reasoning. This provides a stronger learning signal than linguistic similarity
metrics, which may reward verbose but uninformative descriptions.
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2.3 CAPTION AS REWARD DEFINITION

Reward composition. Overall, the reward in this paper consists of three parts: RACC , Rformat,
and R(C|I,Q), which represent accuracy, format, and visual description gain, respectively. The
corresponding weights for these components are Wacc, Wformat, and Wcaption, respectively. The
entire reward mechanism can be represented as follows:

R = Wacc ·RACC +Wformat ·Rformat +Wcaption ·R(C|I,Q). (2)

Here, RACC is calculated based on the accuracy of the answers generated by the training model.
It equals 1 if the answer is correct and 0 if it is incorrect. Rformat is calculated similarly, with a
value of 1 if the response conforms to the target format and 0 otherwise, as shown in the Target
Response Format section. The calculation method for R(C|I,Q) is described in the Gain-Based
Reward Design section.

Target response format. We follow the structured response template introduced in Appendix ??,
which separates captions, reasoning, and final answers via explicit tags.

Problem formulation. Given a visual reasoning task with input image I , question Q, and ground
truth answer A∗, we define two inference paradigms:

• Direct reasoning: Adirect ∼ P (A|I,Q)

• Visual description-enhanced reasoning: Generate visual description C ∼ P (C|I), then
Acaption ∼ P (A|I,Q,C)

The core principle is that an effective visual description should improve reasoning performance when
direct inference fails, while maintaining accuracy when direct inference succeeds.

Gain-based reward. We evaluate visual description quality through performance gain rather than
linguistic metrics. Our reward function is designed as:

R(C|I,Q) =


1.0, if Acaption = A∗ ∧Adirect ̸= A∗

0.7, if Acaption = A∗ ∧Adirect = A∗

0.2, if Acaption ̸= A∗ ∧Adirect ̸= A∗

0, otherwise

(3)

The reward design prioritizes four compact cases: (1) R=1.0 when the caption fixes an error made
by direct reasoning; (2) R=0.7 when both paradigms succeed, preserving existing skills without
over-rewarding easy instances; (3) R=0.2 when both fail, promoting cautious exploration; and (4)
R=0 when the caption harms a previously correct prediction. This signal steers the policy toward
descriptions that genuinely elevate task accuracy.

Implementation considerations. Several design choices are critical for CaR’s effectiveness:

Inference consistency: We use the same model for both direct and caption-enhanced inference to
ensure fair comparison. Using different models could introduce confounding factors.

Temperature control: We set temperature τ = 0.9 during caption generation to encourage diverse
visual descriptions while maintaining coherence.

Response format enforcement: Our structured format with explicit tags prevents the model from
conflating caption generation with reasoning, ensuring clean separation of visual perception and
logical inference.

Full pseudo-code is provided in Appendix 1.
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Figure 3: Overall CaR training pipeline. Visual descriptions are scored by their downstream accuracy
gain and the policy is updated with GRPO.

2.4 TRAINING OBJECTIVE AND IMPLEMENTATION

We train CaR with group relative policy optimization (GRPO). The training process involves three
key stages:

Stage 1: Caption generation and evaluation. For each training sample (I,Q,A∗), we generate
n = 8 caption candidates using the current policy πθ. Each caption is evaluated by computing
both direct inference Adirect and caption-enhanced inference Acaption, allowing us to measure the
caption’s contribution to reasoning accuracy.

Stage 2: Reward computation. We compute composite rewards combining three components:

Rtotal = wacc ·RACC + wformat ·Rformat + wcaption ·R(C|I,Q) (4)

where weights are set to (1.0, 0.1, 1.0) based on ablation studies. The accuracy reward RACC

ensures overall correctness, Rformat maintains structured output, and R(C|I,Q) provides the
caption-specific learning signal.

Stage 3: Policy update. Rewards are normalized within each group of 8 samples:

R̂i =
Ri − µg

σg + ϵ
(5)

where µg and σg are group mean and standard deviation. The policy is then updated using the
standard GRPO objective with advantage estimation:

L(θ) = −E(C,R)∼D

[
min

(
rθ(C)Â, clip(rθ(C), 1− ε, 1 + ε)Â

)]
(6)

where rθ(C) = πθ(C|I,Q)/πref(C|I,Q) is the importance ratio and ε = 0.2.

External evaluators (gpt-4o-mini or Qwen2.5-7B-Instruct) provide semantic correctness signals, and a
structured response format (Appendix ??) enforces separate caption/thinking/answer spans. Detailed
derivations and computational overhead are provided in Appendix ??.

3 RELATED WORK

Vision-language model training. Early VLMs relied on supervised fine-tuning with image-text
pairs, achieving strong performance on captioning but struggling with complex reasoning tasks.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Recent work explores various post-training strategies to enhance reasoning capabilities. Chain-
of-thought distillation (4; 8) transfers reasoning patterns from stronger models but often amplifies
perception errors present in the teacher model. Instruction tuning approaches (2) improve task
following but lack mechanisms to verify visual understanding quality.

Reinforcement learning for VLMs. Several recent works apply RL to improve VLM performance.
Visionary-R1 (12) uses rule-based rewards for self-correction, while VL-Rethinker (11) introduces
reflective rewards based on consistency checks. However, these approaches do not explicitly dis-
entangle perception from reasoning improvements. TBAC-VLR1 and VLAA-Thinker focus on
action-based rewards but require task-specific reward engineering. CaR’s key innovation is using
performance gain as a direct measure of caption utility, providing task-agnostic rewards that naturally
encourage better visual perception.

Caption evaluation metrics. Traditional caption evaluation relies on n-gram overlap metrics
(BLEU, ROUGE, METEOR) or learned similarity measures (BERTScore, CLIPScore). Recent
work (10; 9) explores using captions as auxiliary rewards, but still evaluates them through linguistic
similarity. CaR fundamentally departs from this paradigm by evaluating captions solely through their
contribution to downstream task performance, aligning the training objective directly with the end
goal of accurate visual reasoning.

Visual perception in reasoning. Our error analysis revealing 62% perception-related failures
aligns with concurrent findings (5) showing that VLMs often fail due to inadequate visual grounding
rather than logical errors. Recent benchmarks like MME-RealWorld specifically target perception
evaluation, confirming that visual understanding remains a critical bottleneck. CaR directly addresses
this challenge by incentivizing captions that capture task-relevant visual information.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

We conduct experiments on a carefully curated training dataset combining MM-Eureka and VirL39K,
with comprehensive dataset descriptions, benchmark protocols, and implementation hyperparameters
detailed in Appendix ??. Figure 2 highlights representative prompt–caption pairs from each corpus,
illustrating how CaR encourages faithful loop tracing and grounded textual rationales on flowchart-
style questions.

4.2 MAIN RESULTS

Table 1 presents our comprehensive experimental results across 8 diverse benchmarks. Our Caption
as Reward method (CaR) demonstrates consistent performance gains over vanilla GRPO across all
model configurations. The 3B model with 30K training samples achieves 34.2% average accuracy,
significantly outperforming the 3B-Instruct baseline (29.8%) and recent 3B-scale methods including
Visionary-R1 (33.0%), TBAC-VLR1 (33.8%), and VLAA-Thinker-3B (32.9%). The 7B model
further improves from 36.5% (GRPO) to 38.1% with CaR, demonstrating the scalability of our
approach.

4.3 VISUAL PERCEPTION ANALYSIS

To specifically evaluate visual perception capabilities, we conducted additional experiments on
MME-RealWorld, a benchmark designed to test fine-grained visual understanding across diverse
real-world scenarios. Table 2 shows detailed results across reasoning and perception tasks.

Perception improvements. CaR demonstrates substantial improvements in visual perception tasks,
achieving an average score of 53.1 compared to 42.8 for the base model (+10.3 points). Notable
gains include diagram understanding (+31.4 points: 71.5 vs 40.1), OCR tasks (+8.1 points: 78.4 vs
70.3), and monitoring tasks (+1.5 points: 33.1 vs 31.6). These results confirm that CaR’s gain-based
reward mechanism effectively enhances the model’s ability to extract relevant visual information for
complex reasoning tasks.
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Table 1: Comprehensive performance comparison across visual reasoning benchmarks. CaR denotes
our Caption as Reward method.
Model Method Extra-Model MMK12 MathVista MathVision MathVerse DynaMath WeMath LogicVista OlympiadBench Avg

3B Parameter Models with OpenData-10K
Qwen2.5-VL-3B SFT - 29.6 54.7 18.8 8.1 9.7 16.2 34.9 6.0 22.2
Qwen2.5-VL-3B GRPO - 48.5 64.1 22.6 32.0 12.5 27.0 41.2 8.0 32.0
Qwen2.5-VL-3B CaR gpt-4o-mini 49.8 66.3 22.0 31.6 12.3 27.7 43.4 7.9 32.6

3B Parameter Models with OpenData-20K
Qwen2.5-VL-3B SFT - 33.7 54.0 18.6 9.1 9.2 18.2 34.0 6.0 22.9

3B Parameter Models with OpenData-30K
Qwen2.5-VL-3B CaR gpt-4o-mini 57.6 66.1 25.3 30.1 14.4 28.8 42.1 8.8 34.2

7B Parameter Models with OpenData-20K
Qwen2.5-VL-7B GRPO - 50.8 69.2 25.7 35.9 20.4 36.1 44.3 9.8 36.5
Qwen2.5-VL-7B CaR gpt-4o-mini 55.2 70.9 27.2 34.0 20.6 41.1 46.8 9.01 38.1

Baseline Comparisons
Qwen2.5-VL-3B-Instruct - - 41.1 61.2 21.9 31.2 13.2 22.9 40.0 6.8 29.8
Visionary-R1 - - 45.3 69.4 24.7 33.0 13.8 28.0 41.6 7.8 33.0
TBAC-VLR1 - - 47.2 64.8 25.0 34.5 17.7 32.4 40.8 8.3 33.8
VLAA-Thinker-3B - - 43.2 61.0 24.4 36.4 18.2 33.8 38.5 7.9 32.9

Table 2: Performance on MME-RealWorld benchmark for visual perception evaluation. Results show
improvements in both reasoning and perception capabilities.
Model Reasoning Perception AvgMonitor Auto Drive OCR Diagram Remote Monitor Auto Drive OCR Diagram Remote
Qwen2.5-VL-3B-Instruct 22.5 30.0 57.8 46.6 0.0 31.6 35.7 70.3 40.1 22.6 42.8
OpenData-20K (CaR) 21.9 28.2 60.8 52.2 0.0 33.1 37.2 78.4 71.5 26.9 53.1

Qualitative analysis. To understand how CaR improves visual descriptions, we analyzed 100
samples where CaR succeeded but the baseline failed. We identified three key patterns:

1. Enhanced detail extraction: CaR models generate more specific numerical values and spatial
relationships. For instance, when counting objects in complex scenes, CaR descriptions explicitly
enumerate each visible item rather than providing approximate counts.

2. Task-relevant focus: CaR learns to prioritize information relevant to the question. In mathematical
diagrams, CaR descriptions emphasize geometric relationships and measurements while baseline
models often describe irrelevant aesthetic features.

3. Systematic coverage: CaR descriptions follow more structured patterns, systematically covering
different regions or aspects of the image. This reduces the likelihood of missing critical visual
elements.

Error analysis. Despite improvements, CaR still faces challenges in certain scenarios:

Complex spatial reasoning: Tasks requiring 3D understanding or complex spatial transformations
remain difficult, as the gain-based reward cannot compensate for fundamental architectural limitations.

Fine-grained recognition: When distinguishing between visually similar objects or symbols, CaR
shows limited improvement, suggesting that perception enhancement has diminishing returns for
tasks requiring specialized visual expertise.

Compositional reasoning: Multi-step problems requiring both accurate perception and complex
reasoning chains show smaller gains, indicating that perception improvements alone cannot solve all
reasoning challenges.

4.4 EXPERIMENTAL DETAILS

Datasets. We fine-tune on MM-Eureka and VirL39K. Samples are stratified by difficulty using eight
inference runs of Qwen2.5-VL-7B; we drop always-wrong cases and build 10k/20k/30k splits with
a 90%/10% mix of medium and high-difficulty items. Figure 2 showcases representative prompts,
captions, and reasoning trajectories for the two corpora.

Benchmarks. Evaluation spans eight reasoning benchmarks (MathVista, MathVision, MathVerse,
DynaMath, WeMath, LogicVista, MMK12-EVAL, OlympiadBench); we rely on VLMEvalKit except
for MMK12-EVAL, where we use the official evaluation script.
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Table 3: Impact of different extra-models on visual description reward quality.
Extra-Model Method Avg
Qwen2.5-7B-Instruct CaR 31.6
gpt-4o-mini CaR 32.6(+1.0)

Models and implementation. All runs use Qwen2.5-VL (3B/7B) with GRPO (n=8, learning
rate 5× 10−7, temperature 0.9, two epochs); rewards combine accuracy, caption, and format terms
with weights (1.0, 1.0, 0.1). Qwen2.5-7B-Instruct or gpt-4o-mini act as evaluators, and training is
performed in the verl framework on NVIDIA A100 GPUs.

Computational cost analysis. CaR incurs approximately 3× the computational cost of standard
SFT due to:

• Multiple inference passes: 8 caption generations + 16 answer evaluations per sample

• External evaluator calls: Additional API costs for gpt-4o-mini or local inference for Qwen2.5-
7B

• GRPO optimization overhead: Advantage estimation and importance sampling computations

However, this cost is justified by significant performance gains (+11.3 points over SFT) and is
comparable to other RL-based methods. Future work could explore distillation or reward model
caching to reduce computational requirements.

4.5 ABLATION STUDIES

Visual description rewards. We conduct systematic ablation studies to understand the contribution
of each component in our reward design. Incorporating visual description rewards consistently
improves performance over vanilla GRPO. For the 3B model with 10K data, adding caption rewards
increases average accuracy from 32.0% to 32.6%. This gain becomes more pronounced with larger
datasets: with 20K samples, the improvement grows from 32.7% to 33.7%, and with 30K samples,
we achieve our best result of 34.2%.

The performance gains are particularly notable on benchmarks requiring detailed visual understanding.
On MMK12-Eval, the 3B model improves from 48.0% (GRPO) to 57.6% (CaR) with 20K data—a
remarkable 20% relative improvement. This suggests that our caption reward mechanism effectively
addresses the visual perception bottleneck in complex reasoning tasks.

Data scale. We investigate how our method performs with different amounts of training data. The
results demonstrate a clear scaling trend: 10K data yields 32.6% average accuracy, 20K achieves
33.7%, and 30K reaches the best performance at 34.2%. This consistent improvement indicates that
our reward mechanism effectively leverages additional training data to enhance visual reasoning
capabilities.

Auxiliary evaluators. We investigated the impact of using different evaluation models for visual
description reward calculation. We employed two distinct auxiliary models, namely qwen2.5-7b-
instruct and gpt-4o-mini, with training data sourced from OpenData-10K. As shown in Table 3, the
results indicate that utilizing gpt-4o-mini yielded more significant performance gains, suggesting
that a more robust auxiliary model introduces less evaluation noise and more directly reflects the
influence of the model’s visual descriptions on problem resolution.

5 DISCUSSION AND LIMITATIONS

Why does CaR work? Our analysis suggests three factors contribute to CaR’s effectiveness:

1. Direct optimization for task utility: Unlike methods that optimize proxy metrics (linguistic
similarity, rule compliance), CaR directly rewards captions that improve task performance. This
creates a tight feedback loop between perception quality and reasoning accuracy.

8
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2. Implicit curriculum learning: The gain-based reward naturally creates a curriculum where the
model first learns to fix obvious perception errors (high reward), then gradually improves on subtler
cases. This organic difficulty progression may explain why CaR scales better with data than SFT.

3. Disentangled learning signals: By separately evaluating direct and caption-enhanced reasoning,
CaR provides clearer gradient signals about what visual information is missing. This helps the model
learn which visual features are task-relevant rather than memorizing caption patterns.

Limitations and future directions. While CaR demonstrates strong results, several limitations
warrant discussion:

Computational overhead: The 3× training cost compared to SFT may limit adoption for resource-
constrained settings. Future work should explore more efficient reward computation strategies, such
as caching evaluator responses or using lightweight reward models.

Single architecture evaluation: We evaluated CaR only on Qwen2.5-VL models. Testing on diverse
architectures (LLaVA, BLIP, Flamingo) would strengthen claims about generalizability.

Limited to visual QA: Current experiments focus on question-answering tasks. Extending CaR to
other modalities (video, audio) and tasks (generation, editing) remains unexplored.

Reward design choices: Our reward weights and thresholds were determined through limited grid
search. More principled approaches using multi-objective optimization or learned reward functions
could improve performance.

Broader impacts. CaR’s improved visual perception could enable more reliable VLM deployments
in education, accessibility, and scientific research. However, enhanced visual understanding also raises
concerns about potential misuse for surveillance or generating misleading content. We recommend
careful deployment with appropriate safeguards and regular auditing of model outputs.

6 CONCLUSION

We introduced Caption as Reward (CaR), a lightweight reinforcement learning framework that scores
visual descriptions by the accuracy gains they unlock. Across eight benchmarks, CaR demonstrates
substantial improvements over both supervised fine-tuning and existing reinforcement learning
approaches: at 3B scale, CaR achieves 34.2% average accuracy compared to 22.9% for SFT and
29.8% for the base model, representing gains of +11.3 and +4.4 percentage points respectively. At
7B scale, CaR improves from 36.5% (GRPO) to 38.1%, outperforming recent reinforcement-learning
baselines without bespoke reward models. The main takeaway is that performance-aligned rewards
provide a sharper learning signal than linguistic metrics, enabling smaller VLMs to close part of
the gap to larger systems. Current limitations include evaluation on a single backbone family, a
3× training cost relative to supervised fine-tuning, and heuristic reward weights; future work will
target broader architectures, efficiency improvements, and multimodal tasks beyond visual question
answering.
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ETHICS STATEMENT

CaR targets educational and scientific reasoning workloads by strengthening factual visual under-
standing. Although stronger perception could be misused to generate misleading analyses, the method
reduces hallucinated descriptions and relies only on public datasets, which we acknowledge may
carry existing societal biases. The 3× training cost versus supervised fine-tuning should be weighed
against the accuracy gains when deploying the approach. We adhere to the ICLR Code of Ethics and
confirm that our work complies with all ethical guidelines. All authors of this work have read and
commit to adhering to the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

We train on the publicly available MM-Eureka and VirL39K corpora using Qwen2.5-VL models
(3B/7B). All hyperparameters (GRPO with n=8, learning rate 5 × 10−7, temperature 0.9, two
epochs, reward weights (1.0, 1.0, 0.1)) and evaluator choices (gpt-4o-mini or Qwen2.5-7B-Instruct)
are described in Section 4.1.3. Code, data splits, and checkpoints will be released upon acceptance.
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A APPENDIX

B GAIN-BASED REWARD IMPLEMENTATION

Algorithm 1 summarizes the reward computation pipeline referenced in Section 2.

Algorithm 1 Gain-Based Reward Computation
Require: Image I , Question Q, Generated Caption C, Ground Truth A∗, Vision-Language Model
M, External Evaluator E

Ensure: Gain-based reward R(C|I,Q)
1: Adirect ←M(I,Q) {Direct reasoning}
2: Acaption ←M(I,Q,C) {Caption-enhanced reasoning}
3: correctdirect ← E .SemanticMatch(Adirect, A

∗)
4: correctcaption ← E .SemanticMatch(Acaption, A

∗)
5: if correctcaption and ¬correctdirect then
6: R(C|I,Q)← 1.0 {Caption fixes an error}
7: else if correctcaption and correctdirect then
8: R(C|I,Q)← 0.7 {Caption confirms success}
9: else if ¬correctcaption and ¬correctdirect then

10: R(C|I,Q)← 0.2 {Both attempts fail}
11: else
12: R(C|I,Q)← 0.0 {Caption harms accuracy}
13: end if
14: return R(C|I,Q)
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