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Abstract
A/B testing to evaluate user preferences and engagement is a cor-

nerstone of the modern digital landscape. However, in the current

era, the feedback cycle is considerably shortened while the exper-

imentation space expands significantly, necessitating novel and

efficient ways to assess user engagement. A/A testing, which com-

pares identical content variants, offers a complementary approach

by establishing baselines for engagement metrics and identifying

natural variability in user behavior. However, A/A tests inherently

lack paired samples, limiting their direct applicability to standard

preference alignment methods, which require positive and nega-

tive samples for the same context. To address this gap, we propose

a novel utility theory framework that enables the integration of

unpaired A/A data into content evaluation systems. By translating

Large Language Model (LLM) rewards into a utility framework,

our approach allows for the incorporation of A/A test results, into

predictive models.

CCS Concepts
• Applied computing→ Electronic commerce;Marketing; •
Computing methodologies → Machine learning algorithms; •
General and reference → Evaluation; Experimentation.

1 Introduction
Widespread adoption of mobile devices and increased internet ac-

cess has led to a significant increase in digital content consumption.

To maximize customer engagement, businesses constantly aim to

optimize the content and user experience. For example, news media

industries constantly strive to come up with attractive headlines

and cover images [8] to drive customer engagement. The standard

practice to find attractive headlines is to use A/B testing. However,

this is inefficient for applications surrounding social-media, news

and related sectors; as news and trends have short lifetimes and

might become irrelevant by the time a standard A/B test finishes.

Thus, in industries, where newer content constantly comes up,

there is a great need for more-efficient engagement evaluation.

One additional source of data for this purpose can come from

A/A data. A/A testing involves comparing two identical versions

of content (A vs. A) to establish a baseline for variability and noise

in engagement metrics. By analyzing A/A data, organizations can

better understand the natural fluctuations in user behavior and
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engagement, which helps in distinguishing true performance differ-

ences in A/B tests from random variations. While data from such

runs are used primarily to test the system and improve statistical

significance, such data can hold additional signal which often gets

discarded in favor of paired results from an A/B test. Often, how-

ever such signal is present in a complex manner, distributed across

different contexts. This is where Large Language Models (LLMs),

can provide the necessary representational capacity to utilize such

signal. LLMs have demonstrated the ability to mimic human prefer-

ences and behavior in a variety of consumer research tasks [6, 18];

and in this work we raise the natural question is “Can A/A data

along with LLMs can be improve content rating models?”.

Summary. In this paper, we explore fine-tuning LLMs for A/B

testing with additional A/A data. Since standard preference learning

methods cannot leverage unpaired (A/A) data, we propose a modi-

fied approach inspired by utility theory that can utilize A/A data to

improve performance. For concreteness, we will consider writing

headlines for articles as our running example. As such we will use

the terms content/article/prompt and the terms treatment/headline

interchangeably. Our experiments suggest that with suitable train-

ing LLMs can leverage such data to improve performance, while

smaller models like BERT are less effective.

2 Preliminaries and Related Work
2.1 Learning from A/B Tests
Following Kaufmann et al. [14] we treat the problem of A/B testing

in a preference learning framework and follow standard notation

from literature[29]. The language model is considered as a policy

function 𝜋 that observes a prompt 𝑥 and produces a textual re-

sponse 𝑎 by sampling from a distribution 𝑦 ∼ 𝜋 (· | 𝑥). We are

given a dataset D
pref

= (𝑥, 𝑎+, 𝑎-) consisting of prompts and la-

beled response pairs. Here, 𝑎+ represents the positive response, and

𝑎- represents the negative response. For example, in A/B testing

different summaries or headlines for given content, the preference

data is collected by exposing incoming traffic to one of two possi-

ble treatments (A or B). The resulting engagement, measured via

metrics such as clicks, screen time, or another chosen metric, is

monitored. The option with higher engagement is taken as the

positive sample 𝑎+, while the other is taken as negative sample 𝑎-.

Offline RLHF. [7, 24, 29] addresses the challenge of aligning a

policy network using D
pref

= {(𝑥, 𝑎+, 𝑎-)}. Given a context or

prompt 𝑥 , a pair of outputs is sampled from 𝜋ref (· | 𝑥) and then

ranked based on a preference function, which is often determined

by human annotations. RLHF methods [7, 24] aim to learn a policy

𝜋 that aligns with this preference data. As in previous work [24],

we consider the Bradley-Terry model [5] for preferences, though

other models could also be applied. Typically, the process begins

by estimating a reward function 𝑟 from D
pref

using maximum

1
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likelihood estimation (MLE). Once 𝑟 is obtained, reinforcement

learningmethods like PPO are used to optimize 𝑟 , with an additional

regularization term

𝜋 = argmax

𝜋 ∈Π
E𝜋

[
𝑟 (𝑥, 𝑦) − 𝛽 log

𝜋 (𝑎 | 𝑥 )
𝜋ref (𝑎 | 𝑥 )

]
.

The optima for the above model is given by the energy model

𝜋 ∝ 𝜋ref exp(𝑟/𝛽) [32]. Using this insight the DPO method [27]

relies on optimizing 𝜋 directly via plugging the corresponding

implied reward function in MLE objective, leading to :

max

𝜋

∑︁
(𝑥,𝑎+,𝑎- ) ∈Dpref

log𝜎

(
𝛽

𝜋 (𝑎+ | 𝑥)
𝜋ref (𝑎+ | 𝑥) −

𝜋 (𝑎- | 𝑥)
𝜋ref (𝑎- | 𝑥)

)
, (1)

Other methods like SLIC [31], IPO [1], follow the same insight

and use the log-likelihood ratio between the LLM policy and the

reference model as the implied reward model for tuning LLMs.

Utility Theory. is a fundamental concept in economics and de-

cision theory, for modeling choices under uncertainty [20]. Given

a space X of outcomes, a utility function 𝑢 : X → R assigns

a real value to a real number to each 𝑥 ∈ X. The utility func-

tion is meant to capture the decision-maker’s preferences, where:

𝑥1 ≥ 𝑥2 iff 𝑢 (𝑥1) ≥ 𝑢 (𝑥2). Typically 𝑢 is a positive non-decreasing

function when X ⊆ R.
LLM Alignment is a major research topic with many differ-

ent methods proposed. Yuan et al. [30] uses ranking loss instead

of sigmoid loss. Ethayarajh et al. [12] uses a reference point for

computing reward/loss from a sample. Many proposals also use dif-

ferent forms of including using ’chain-of-thought’ COT reasoning

[25] and using curriculum learning [26]. Our work while learning

alignment is more focused on using the LLM as a rater for the treat-

ment arms, instead of specific alignment with human preferences.

For example, a model which can rate the treatments correctly may

not be good at generating text.

Other RelatedWork. The connection between stochastic ordering
and preference learning has been previously noted [22, 23]. Melnyk

et al. [22] propose minimizing the Wasserstein distance between

reward functions and link it to stochastic ordering. Other connec-

tions between optimal transport-related methods and stochastic

ordering have been well studied [10, 15, 16]. Borrowing ideas from

prospect theory, the KTO approach of Ethayarajh et al. [12] op-

timizes the margin between the chosen reward and the average

reward of rejected sentences. This is a form of stochastic dominance

that focuses on population means.

3 Method
We now present our methodology for incorporating partial results

from an experiment, particularly when results from A/A tests are

available. An A/A test is a randomized experiment similar to an

A/B test. However, unlike an A/B test, an A/A test exposes both

the treatment and control groups to the same conditions rather

than different ones. The main purpose of an A/A test is typically to

validate the experimental setup and estimate variability.

Since in an A/A test we evaluate only one treatment, and an A/A

test only gives data in the form (𝑥, 𝑎), unlike an A/B test which

provides data in the form (𝑥, 𝑎+, 𝑎-). Therefore, in this section, we

focus on scenarios where triplets of articles and positive/negative

headlines (𝑥, 𝑎+, 𝑎-) are not available. Instead, we assume access

to two separate distributions: 𝜇+, which contains positive pairs

(𝑥+, 𝑎+) representing higher click rate examples that the model

should imitate, and 𝜇− , which contains negative samples (𝑥−, 𝑎-)
associated with lower click rates. These distributions can be derived

from anA/A test, though other sources of such data are also possible.

For example, marketers often create multiple alternatives before

narrowing down to the most promising ones. In such cases, the

unselected examples can serve as a potential source of such data.

Consider the problem of comparing two distributions, 𝜇+ and

𝜇− . We have access to datasets D+ = (𝑥+, 𝑎+) and D− = (𝑥−, 𝑎-),
which are sampled from 𝜇+ and 𝜇− , respectively. Here, 𝑥+ and 𝑥−
represent features or variables, while 𝑎+ and 𝑎- represent associated

outcomes or actions. Ideally, we aim to learn amodel or decision rule

that favors the positive example distribution 𝜇+ over the negative

example distribution 𝜇− . However, since the 𝑥-values between the

two datasets are not shared, it is not possible to compare them at the

instance level, as is done in standard preference learning methods

like RLHF [7], DPO [27] and IPO [2].

While individual tuples cannot be directly compared, we can

approach this problem from a decision-theoretic perspective. In

decision theory, preferences are typically defined in terms of the

decision maker’s utility. Following this idea, we compare the ag-

gregate utilities derived from each dataset. Let 𝑢 (𝑟 (𝑥, 𝑎)) represent
the decision maker’s utility function, which assigns a real num-

ber to each pair (𝑥, 𝑎). Since we want a model that prefers D+/𝜇+
over D−/𝜇− ; we need to ensure that the expected utility from the

dataset 𝜇+ is greater than the expected utility from 𝜇− , meaning:

E(𝑥,𝑎)∼𝜇+ [𝑢 (𝑥, 𝑎)] > E(𝑥,𝑎)∼𝜇− [𝑢 (𝑥, 𝑎)], (2)

where the expectation is taken over the distributions 𝜇+ and 𝜇− .
This comparison would indicate that, on average, the dataset 𝜇+
yields higher utility than 𝜇− . However, the true utility function 𝑢

for the decision-maker is unknown, which making this constraint

non-trivial to enforce.

To resolve this, we instead consider the same constraint over all

reasonable utility functions 𝑢. We restrict our attention to utility

functions that are positive, increasing, and concave ( which is a

reasonable assumption in many economic and decision-making

contexts). When𝑢 satisfies these conditions, eq. (2) becomes related

to the idea of Stochastic Dominance, which is a way to compare

probability distributions in terms of risk preferences. A distribution

𝜇+ is said to second-order stochastically dominates 𝜇− (written as

𝜇+ ≥
SD

𝜇− ), if for all increasing concave utility functions 𝑢, the

following condition holds:

𝜇+ ≥
SD

𝜇− if E𝑧∼𝜇+ [𝑢 (𝑧)] ≥ E𝑧∼𝜇− [𝑢 (𝑧)] . (3)

Equation 3 simply asserts that the expected utility from 𝜇+ is higher

than 𝜇− . Intuitively, if one distribution stochastically dominates

another, it is preferred by all decision-makers who are risk-averse

(i.e., who have concave utility functions).

To apply this to the LLM setting we note that the implicit 𝑟 used

by the trained final LLM is related to the final model’s likelihood as

in Rafailov et al. [27], Ziebart et al. [32]. Specifically, as the implicit

2
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Figure 1: Overview of the proposed generative approach. The reward model 𝑟 is obtained by tuning an LLM on the preference
data Dpref, which consist of tuples of contexts/articles along with two treatments arms (𝑎+, 𝑎-). Given a prompt 𝑥 (which
includes the context/article along with instructions) the generator LLM produces an output 𝑎. The pair 𝑥, 𝑎+ is considered as a
demonstration for the generator to match and improve using the reward model 𝑟 .

reward given an RLHF model 𝜋𝜃 , is given by log
𝜋𝜃 (𝑦 |𝑥 )
𝜋
ref

(𝑦 |𝑥 ) , we can
define distributional preference for 𝜋𝜃 as follows:

Definition 1 (Distributional Preference [22]). A policy 𝜋𝜃 prefers

distributionally 𝜇+ on 𝜇− with respect to a reference policy 𝜋
ref

if:

log

𝜋𝜃 (𝑎+ |𝑥+)
𝜋
ref

(𝑎+ |𝑥+)
≥
SD

log

𝜋𝜃 (𝑎- |𝑥−)
𝜋
ref

(𝑎- |𝑥−)
.

Remark 1. Note that in DPO[27] the dataset is paired, and hence
we have 𝑎+, 𝑎- for the same 𝑥 . In the above constraint replaces 𝑥+, 𝑥−

are replaced by 𝑥 in that setting. Thus we get an alternative inter-
pretation of DPO and related methods [2, 31] as imposing the above
constraint in the form of imposing a pointwise preference1 order for
𝑎+ over 𝑎-.

The expected utility version while theoretically sound is not

amenable for direct optimization. As the reward model changes, we

would need to learn a new utility function, leading to an minimax

optimization problem. Instead we can use the following classic

theorem from decision theory connects the utility functions to the

problem related to quantiles of the distribution [20]

Theorem 3.1. (Proposition 6.D.2 inMas-Colell et al. [20]) Let 𝐹+ (𝑧)
and 𝐹− (𝑧) represent the cumulative distribution functions (CDFs) of
the datasets 𝜇+ and 𝜇− , respectively. The condition for 𝜇+ to stochas-
tically dominate 𝜇− as in Equation (3) is equivalent to:∫ 𝑠

−∞
𝐹+ (𝑡) 𝑑𝑡 ≤

∫ 𝑠

−∞
𝐹− (𝑡) 𝑑𝑡 for all 𝑠 ∈ R.

This integral condition ensures that, under any concave utility

function, the expected utility of 𝜇+ is greater than or equal to that

of 𝜇− . The integrated quantiles provide a more intuitive way of

comparing the distributions, capturing the idea that the “cumulative

utility” from 𝜇+ is at least as large as from 𝜇− at all points along

1
We are not the first to notice this, and Melnyk et al. [22] have suggested such an

interpretation as well

the distribution. This definition also provides a direct way to both

measure and optimize violations via:

L(𝜇+, 𝜇−) =
∫ ∞

−∞
ℎ(𝐹 (2)

+ (𝑡) − 𝐹 (2)
− (𝑡)) 𝑑𝑡, (4)

where ℎ(.) is the 0/1 loss I(𝑥 > 0) and 𝐹 (2)
is the integrated CDF

i.e. 𝐹 (2) (𝑡) =
∫ 𝑡

−∞ 𝐹 (𝑡)𝑑𝑡 . It is easy to see that 𝐿 is 0 iff Theorem 3.1

holds, which by Theorem 1 means 𝜇+ stochastically dominates 𝜇− .
Since the 0/1 objective has a gradient of 0 almost everywhere,

it is not suitable for optimization. Instead, we can replace it with

a smoother convex approximation, such as the hinge loss ℎ(𝑥) =
(1−𝑥)+ or the logistic loss ℎ(𝑥) = log(1+exp(−𝑥)). Note that if we
scale the input to the logistic loss by 𝛽 , the expression becomes very

similar to the DPO loss objective (Equation (1))
2
. Other objectives

like the squared hinge loss has also been suggested [1] in this

context for learning preferences.

We propose adding the empirical version of Equation (4) as a

minimization objective when tuning the model with additional un-

paired data. Let𝜓 (𝑎, 𝑥) = 𝜋 (𝑎 |𝑥 )
𝜋ref (𝑎 |𝑥 ) . The overall objective becomes:

𝜋 = argmax

𝜋 ∈Π
E𝜋

[
𝑟𝑚 (𝑥, 𝑎) − 𝛽 log𝜓 (𝑎, 𝑥 ) + 𝜆L(D+, D− )

]
, (5)

where L(D+,D−) is the empirical version of Equation (4). Since

this loss involves empirical CDFs, which are weighted sums of step

functions, back-propagation through it is challenging. Hence, we

rely on ideas from optimal transport [4, 9]. Specifically, Blondel

et al. [4] provided a differentiable version of sorting using entropic

optimal transport. This can be used to differentiably ‘count’ the

number of values less than
3 𝑡 to get a differentiable empirical CDF.

From the empirical CDF we can compute the integrated CDF by:

2
We used the scaled sigmoid in our experiments

3
SoftRank is available in the library torchsort

3
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𝐹 (2) (𝑡 ) =
∫

𝐹 (𝜓 )𝑑𝜓 ≈
∑︁

𝜓𝑖+1<𝑡

𝐹 (𝜓𝑖+1 ) + 𝐹 (𝜓𝑖 )
2

(𝜓𝑖+1 −𝜓𝑖 )

≈
∑︁

𝜓𝑖+1<𝑡

𝑆𝑜 𝑓 𝑡𝑅𝑎𝑛𝑘 (𝜓𝑖+1 ) + 𝑆𝑜𝑓 𝑡𝑅𝑎𝑛𝑘 (𝜓𝑖 )
2𝑁

(𝜓𝑖+1 −𝜓𝑖 )

The values of 𝑡 for evaluating the integral are chosen based on

quantiles of all𝜓 values.
4
.

Regularizing Objectives. Compared to the standard RLHF frame-

work of [24], working with unpaired preferences is more subtle.

RLHF is also known to overfit the reward model, but without paired

data, the reward model is even more unconstrained and can lead to

massive overfitting. To prevent this we constrain the model, to say

even closer to the base SFT model than allowed under DPO/RLHF.

To accomplish this we include an additional term of
𝜋 (𝑎 |𝑥 )
𝜋ref (𝑎 |𝑥 ) as

a regularizer in the objective. This terms more strongly penalizes

deviations of 𝜋 from 𝜋ref than just the KL divergence. An astute

reader might also note that this term is equivalent to regulariz-

ing with the order-2 Tsallis divergence. Thus we get the following

maximization objective:

𝜋 = argmax

𝜋 ∈Π
E𝜋

[
𝑟𝑚 (𝑥, 𝑎) − 𝛽 log𝜓 (𝑎, 𝑥 ) − 𝛽𝜓 (𝑎, 𝑥 )

+ 𝜆L(D+, D− )
]
, (6)

where 𝛽, 𝜆 are hyperparameters. Since the data source is limited

and training a full LLM requires significant compute resources, we

use LORA [13] based training for the above objective using the

PEFT [19] library.

4 Experiments
Dataset. We experiment with a public datases obtained from real-

life A/B testing scenarios [21]. The data consists of several versions

of headlines created by an editorial teams for various articles. Each

user was exposed to only one of these headlines article pair, and

the clicks were recorded for each pair. We remove any duplicates

or image linked headlines (so we focus only on textual content).

We only considered text only content and restricted to treatments

that have statistically different CTRs ( at p=0.10).

Baselines and Methodology. Recent research [3, 17] suggests that

using an LLM based embedding model is a strong performer, espe-

cially on treatment rating [28]. Thus, we include GPT3 embedding

as a baseline. Since this is a classifier, it can only use A/B data. In

addition to Llama we also train our proposed approach of using AA

data with a smaller LMs, specifically BERT [11]. Finally, to assess

the efficacy of having the additional A/A data, we train the model

with only A/B data, and labeled GenLLMAB. We also train BERT

with the distributional loss (called BERT+AA). Since our dataset

does not inherently include A/A data for evaluation, we simulate

such a setting by providing only a fraction of the full training data

as A/B data. For the remaining portion of the training data, we

randomly select one treatment as data from an A/A test, ignoring

all other treatments. This process naturally creates dataset splits

with 𝑝% A/B data and (100 − 𝑝)% A/A data.

4
In practice we also regularized with |ED+ [𝜓 ] − ED− [𝜓 ] |

Results. In Figure 2, we plot the accuracy of the different models

across varying availability of unpaired data. We can see that when

we have only a little A/B data, the generative approach can overfit,

and using embeddings is a better approach. However when aug-

mented with the additional data, the model can do better by almost

5% accuracy points in the low data regime. From the figure we can

see also that BERT based model does not improve much with our

proposed training . This is because to generalize across different

context using the distributional loss needs a stronger model.
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Figure 2: Plot of accuracy of different models as the amount
of A/B data decreases. The x-axis is the fraction of A/A (or
unpaired) data.

5 Conclusion
In this work, we address the limitations of traditional A/B test-

ing in fast-paced industries by proposing a novel framework to

incorporate unpaired A/A data into content evaluation systems.

Our experiments demonstrate that Large Language Models (LLMs),

when suitably trained, can effectively leverage A/A data to improve

predictive performance, while smaller models like BERT struggle

to achieve similar gains. This highlights the importance of model

scale and capability in handling unpaired datasets. Furthermore, in

low-data regimes, our approach shows significant promise, with up

to a 5% increase in predictive power when A/A data is utilized. By

introducing a utility-theoretic framework, we provide a principled

method for translating LLM rewards into distributional utilities,

enabling the integration of unpaired data into preference alignment

and content optimization tasks. Future work could explore the appli-

cation of this framework to broader contexts, such as personalized

recommendations and adaptive user interfaces.
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