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ABSTRACT

Graph Neural Networks (GNNs) have emerged as a prominent graph learning
model in various graph-based tasks over the years. Nevertheless, due to the vulner-
abilities of GNNS, it has been empirically proved that malicious attackers could
easily corrupt the fairness level of their predictions by adding perturbations to the
input graph data. In this paper, we take crucial steps to study a novel problem
of certifiable defense on the fairness level of GNNs. Specifically, we propose a
principled framework named ELEGANT and present a detailed theoretical cer-
tification analysis for the fairness of GNNs. ELEGANT takes any GNNs as its
backbone, and the fairness level of such a backbone is theoretically impossible to
be corrupted under certain perturbation budgets for attackers. Notably, ELEGANT
does not have any assumption over the GNN structure or parameters, and does
not require re-training the GNNs to realize certification. Hence it can serve as
a plug-and-play framework for any optimized GNNs ready to be deployed. We
verify the satisfactory effectiveness of ELEGANT in practice through extensive
experiments on real-world datasets across different backbones of GNNs, where
ELEGANT is also demonstrated to be beneficial for GNN debiasing.

1 INTRODUCTION

Graph Neural Networks (GNN5s) have emerged among the most popular models to handle learning
tasks on graphs (Kipf & Welling, 2017; Velickovi¢ et al., 2018) and made remarkable achievements in
various domains (Feng et al., 2022; Li et al., 2022). Nevertheless, as GNNs are increasingly deployed
in real-world decision-making scenarios, there has been an increasing societal concern on the fairness
of GNN predictions. A primary reason is that most traditional GNNs do not consider fairness, and
thus could exhibit bias against certain demographic subgroups. Here the demographic subgroups are
usually divided by certain sensitive attributes, such as gender and race. To prevent GNNs from biased
predictions, multiple recent studies have proposed fairness-aware GNNs (Agarwal et al., 2021; Dai &
Wang, 2021; Kang et al., 2022a) such that potential bias could be mitigated.

Unfortunately, despite existing efforts towards fair GNNS, it remains difficult to prevent the corruption
of their fairness level due to their common vulnerability of lacking adversarial robustness. In fact,
malicious attackers can easily corrupt the fairness level of GNNs by perturbing the node attributes
(i.e., changing the values of node attributes) and/or the graph structure (i.e., adding and deleting
edges) (Hussain et al., 2022), which could lead to serious consequences in the test phase (Dai
& Wang, 2021; Hussain et al., 2022). For example, GNNs have been leveraged to perform bail
decision-making on the graph of defendants, where an edge between two defendants represents high
profile similarity (Agarwal et al., 2021). Yet, by simply injecting adversarial links in the graph data,
attackers can make GNNs deliver advantaged predictions for a subgroup (e.g., individuals with a
certain nationality) while damaging the interest of others (Hussain et al., 2022). Hence achieving
defense over the fairness of GNNS is crucial for the purpose of safe deployment.

It is worth noting that despite the abundant empirical defense strategies for GNNs (Zhang & Zitnik,
2020; Entezari et al., 2020; Jin & Zhang, 2019; Jin et al., 2020c; Wu et al., 2019b), they are always
subsequently defeated by novel attacking techniques (Schuchardt et al., 2020; Carlini & Wagner,
2017), and the defense over the fairness of GNNs also faces the same problem. Therefore, an
ideal way is to achieve certifiable defense on fairness (i.e., certified fairness defense). A few recent
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works aim to certify the fairness for traditional deep learning models (Khedr & Shoukry, 2022;
Kang et al., 2022b; Jin et al., 2022; Mangold et al., 2022; Borca-Tasciuc et al., 2022; Ruoss et al.,
2020). Nevertheless, most of them require specially designed training strategies (Khedr & Shoukry,
2022; Jin et al., 2022; Ruoss et al., 2020) and thus cannot be directly applied to optimized GNNs
ready to be deployed. More importantly, they mostly rely on assumptions on the optimization
results (Khedr & Shoukry, 2022; Jin et al., 2022; Borca-Tasciuc et al., 2022; Ruoss et al., 2020) or
data distributions (Kang et al., 2022b; Mangold et al., 2022) over a continuous input space. Hence
they can hardly be generalized to GNNs due to the binary nature of the input graph topology. Several
other works propose certifiable GNN defense approaches to achieve theoretical guarantee (Wang
et al., 2021; Bojchevski & Giinnemann, 2019; Bojchevski et al., 2020; Jin et al., 2020a; Ziigner &
Giinnemann, 2019; 2020). However, they mainly focus on securing the GNN prediction for a certain
individual node to ensure model utility, ignoring the fairness defense over the entire population.
Therefore, despite the significance, the study in this field still remains in its infancy.

It is worth noting that achieving certifiable defense on the fairness of GNNs is a daunting task
due to the following key challenges: (1) Generality: different types of GNNs could be designed
and optimized for different real-world applications (Zhou et al., 2020). Correspondingly, our first
challenge is to design a plug-and-play framework that can achieve certified defense on fairness for
any optimized GNN models that are ready to be deployed. (2) Vulnerability: a plethora of existing
studies have empirically verified that most GNNs are sensitive to input data perturbations (Zhang &
Zitnik, 2020; Ziigner et al., 2020; Xu et al., 2019). In other words, small input perturbations may
cause significant changes in the GNN output. Hence our second challenge is to properly mitigate the
common vulnerabilities of GNNs without changing its structure or re-training. (3) Multi-Modality:
the input data of GNNs naturally bears multiple modalities. For example, there are node attributes
and graph topology in the widely studied attributed networks. In practice, both data modalities may
be perturbed by malicious attackers. Therefore, our third challenge is to achieve certified defenses of
fairness on both data modalities for GNNGs.

As an early attempt to address the aforementioned challenges, in this paper, we propose a principled
framework named ELEGANT (cEtifiabLE GNNs over the fAirNess of PredicTions). Specifically,
we focus on the widely studied task of node classification and formulate a novel research problem
of Certifying GNN Classifiers on Fairness. To handle the first challenge, we propose to develop
ELEGANT on top of an optimized GNN model without any assumptions over its structure or
parameters. Hence ELEGANT is able to serve as a plug-and-play framework for any optimized GNN
model ready to be deployed. To handle the second challenge, we propose to leverage randomized
smoothing (Wang et al., 2021; Cohen et al., 2019) to defend against malicious attacks, where most
GNNs can then be more robust over the prediction fairness level. To handle the third challenge, we
propose two different strategies working in a concurrent manner, such that certified defense against
the attacks on both the node attributes (i.e., add and subtract attribute values) and graph topology
(i.e., flip the existence of edges) can be realized. Finally, we evaluate the effectiveness of ELEGANT
on multiple real-world network datasets. In summary, our contributions are three-fold: (1) Problem
Formulation. We formulate and make an initial investigation on a novel research problem of
Certifying GNN Classifiers on Fairness. (2) Algorithm Design. We propose a framework ELEGANT
to achieve certified fairness defense against attacks on both node attributes and graph structure
without relying on assumptions about any specific GNNs. (3) Experimental Evaluation. We
perform comprehensive experiments on real-world datasets to verify the effectiveness of ELEGANT.

2 PROBLEM DEFINITION

Preliminaries. Let G = {V, £} be an undirected attributed network, where V = {vy, ..., v, } is the
set of n. nodes; £ C V x V is the set of edges. Let A € {0,1}"*" and X € R"*? be the adjacency
matrix and attribute matrix of G, respectively. Assume each node in G represents an individual,
and sensitive attribute s divides the population into different demographic subgroups. We follow a
widely studied setting (Agarwal et al., 2021; Dai & Wang, 2021) to assume the sensitive attribute is
binary, i.e., s € {0,1}. We use s; to denote the value of the sensitive attribute for node v;. In node
classification tasks, we use Vi, and Vige Vi, Vit € V) to represent the training and test node set,
respectively. We denote the GNN node classifier as fg parameterized by 0. fg takes A and X as
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input, and outputs Y as the predictions for the nodes in G. Each row in Y is a one-hot vector flagging
the predicted class. We use fg~ to denote the GNN with optimal parameter 6*.

Threat Model. We focus on the attacking scenario of model evasion, i.e., the attack happens
in the test phase. In particular, we assume that the victim model under attack is an optimized
GNN node classifier fg-. We follow a widely adopted setting (Bojchevski & Giinnemann, 2019;
Ziigner & Giinnemann, 2019; Ma et al., 2020; Mu et al., 2021) to assume that a subset of nodes
Vi € Vi are vulnerable to attacks. Specifically, attackers may perturb their links (i.e., flip the
edge existence) to other nodes and/or their node attributes (i.e., change their attribute values). We
denote the perturbations on adjacency matrix as A @ A 4. Here @ denotes the element-wise XOR
operator; A 4 € {0, 1}™*™ is the matrix representing the perturbations made by the attacker, where 1
only appears in rows and columns associated with the vulnerable nodes while 0 appears elsewhere.
Correspondingly, in A 4, 1 entries represent edges that attackers intend to flip, while O entries are
associated with edges that are not attacked. Similarly, we denote the perturbations on node attribute
matrix as X + A x, where A x € R™*" is the matrix representing the perturbations made by the
attacker. Usually, if the total magnitude of perturbations is within certain budgets (i.e., |[Aallo < €a
for A and ||Ax |2 < ex for X), the perturbations are regarded as unnoticeable. The goal of an
attacker is to add unnoticeable perturbations to nodes in V,y;, such that the GNN predictions for nodes
in Vi based on the perturbed graph exhibit as much bias as possible. In addition, we assume that the
attacker has access to any information about the victim GNN (i.e., a white-box setting). This is the
worst case in practice, which makes it even more challenging to achieve defense.

To defend against the aforementioned attacks, we aim to establish a node classifier on top of an
optimized GNN backbone, such that this classifier, theoretically, will not exhibit more bias than a
given threshold no matter what unnoticeable perturbations (i.e., perturbations within budgets) are
added. We formally formulate the problem of Certifying GNN Classifiers on Fairness below.

Problem 1. Certifying GNN Classifiers on Fairness. Given an attributed network G, a test node set
Vist, @ vulnerable node set V,,; € Vi, a threshold n for the exhibited bias, and an optimized GNN
classifier fg~, our goal is to achieve a classifier on top of fg~ associated with budgets € o and €x,
such that this classifier will bear comparable utility with fg~ but provably not exhibit more bias
than n on the nodes in V,,, no matter what unnoticeable node attributes and/or graph structure
perturbations (i.e., perturbations within budgets) are made over the nodes in V,,;.

3 METHODOLOGY

Here we first introduce the modeling of attack and defense on the fairness of GNNs, then discuss how
we achieve certified defense on node attributes. After that, we propose a strategy to achieve both types
of certified defense (i.e., defense on node attributes and graph structure) at the same time. Finally, we
introduce strategies to achieve the designed certified fairness defense for GNNs in practice.

3.1 BIAS INDICATOR FUNCTION

We first construct an indicator g to mathematically model the attack and defense on the fairness of
GNNs. Our rationale is to use g to indicate whether the predictions of fg- exhibit a level of bias
exceeding a given threshold. We present the formal definition below.

Definition 1. (Bias Indicator Function) Given adjacency matrix A and node attribute matrix X,
a test node set Vi, a threshold n for the exhibited bias, and an optimized GNN model fg+, the
bias indicator function is defined as g(fo, A, X , 0, Vi) = 1 (7n(fo (A, X), Vi) < 1), where 1(-)
takes an event as input and outputs 1 if the event happens (otherwise 0); 7 (-, -) denotes any bias
metric for GNN predictions (taken as its first parameter) over a set of nodes (taken as its second
parameter). Traditional bias metrics include Agp (Dai & Wang, 2021; Dwork et al., 2012) and
Ago (Dai & Wang, 2021; Hardt et al., 2016).

Correspondingly, the goal of the attacker is to ensure that the indicator g outputs O for an 7 as large
as possible, while the goal of certified defense is to ensure for a given threshold 7, the indicator g
provably yields 1 as long as the attacks are within certain budgets. Note that a reasonable 1 should
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ensure that g outputs 1 based on the clean graph data (i.e., graph data without any attacks). Below we
first discuss the certified fairness defense over node attributes to maintain the output of g as 1.

3.2 CERTIFIED FAIRNESS DEFENSE OVER NODE ATTRIBUTES

We now introduce how we achieve certified defense over the node attributes for the fairness of the
predictions yielded by fg-. Specifically, we propose to construct a smoothed bias indicator function
Ix (for, A, X, Vo, n) via adding Gaussian noise over the node attributes of vulnerable nodes in
Vyu- For simplicity, we use §x (A, X)) to represent the smoothed bias indicator function over node
attributes by omitting V1, fo+ and n. We formally define gx below.

Definition 2. (Bias Indicator with Node Attribute Smoothing) We define the bias indicator with
smoothed node attributes over the nodes in Vyy as x (A, X) = argmax.¢ o 1 Pr(g(fo-, A, X +
vx (Wx, Vour)s 0, Vist) = ¢). Here wx is a (d - |Vyy|)-dimensional vector, where each entry is
a random variable following a Gaussian Distribution N'(0,02); vx (-,-) maps a vector (its first
parameter) to an (n X d)-dimensional matrix, where the vector values are assigned to rows with the
indices indicated by a set of nodes (its second parameter) while other entries are zeros.

We denote I'x = vx (wx, Vvu) and g(A, X +T'x) = g(fo-, A, X +vx (wx, V1), 1, Vist) below
for simplicity. We are then able to derive the theoretical certification for the defense on fairness with
the defined gx in Definition 2. We now present the defense certification on fairness below.

Theorem 1. (Certified Fairness Defense for Node Attributes) Denote the probability for g(A, X +
I'x) to return class c (c € {0,1}) as P(c). Then gx (A, X) will provably return argmax ¢ 1o 1} P(c)
for any perturbations (over the attributes of vulnerable nodes) within an ls radius ex =
2 (@7 (max.eqo,1y P(c)) — @~ (mineego,13 P(c))), where @71 (-) is the inverse of the standard
Gaussian cumulative distribution function.

Correspondingly, for an 7 that enables max.c 9,1} P(c) = 1, it is then safe to say that no matter
what perturbations A x are made on vulnerable nodes, as long as ||Ax |2 < éx, the constructed
gx will provably not yield predictions for Vi with a level of bias exceeding 7. Nevertheless, it is
worth noting that, in GNNs, perturbations may also be made on the structure of the vulnerable nodes,
i.e., adding and/or deleting edges between these vulnerable nodes and any nodes in the graph. Hence
it is also necessary to achieve certified defense against such structural attacks. Here we propose to
also smooth the constructed gx over the graph structure (of the vulnerable nodes) for the purpose of
certified fairness defense on the graph structure. However, the adjacency matrix describing the graph
structure is naturally binary, and thus should be smoothed in a different way.

3.3 CERTIFIED FAIRNESS DEFENSE OVER NODE ATTRIBUTES AND GRAPH STRUCTURE

We then introduce achieving certified fairness defense against attacks on both node attributes and
graph structure. We propose a strategy to leverage noise following Bernoulli distribution to smooth
gx over the rows and columns (due to symmetricity) associated with the vulnerable nodes in A. In
this way, we can smooth both the node attributes and graph structure for g in a randomized manner,
and we denote the constructed function as g4, x. We present the formal definition below.

Definition 3. (Bias Indicator with Attribute-Structure Smoothing) We define the bias indicator
function with smoothed node attributes and graph structure over the nodes in V, as ga, x (A, X) =
argmax c o 13 Pr(gx (A ®va(wa, Vi), X) = ¢). Here w4 is an (n - |Vyul)-dimensional random
variable, where each dimension takes 0 and 1 with the probability of 8 (0.5 < 8 < 1) and 1 — j3,
respectively; function ya (-, ) maps a vector (its first parameter) to a symmetric (n X n)-dimensional
matrix, where the vector values are assigned to rows whose indices associated with the indices of
a set of nodes (its second parameter) and then mirrored to the corresponding columns, while other
values are left as zeros.

WeletT' 4 = ya(wa, Vou) below for simplicity. To better illustrate how classifier §a4,x achieves
certified fairness defense over both data modalities of an attributed network, we provide an ex-
emplary case in Figure 1. Here we assume node v; € V. Considering the high dimen-
sionality of node attributes and adjacency matrix, we only analyze two entries X; ; and A; ;



Under review as a conference paper at ICLR 2025

and omit other entries after noise for simplicity. Here the superscript (¢, j) represents the i-th
row and j-th column of a matrix. Under binary noise, entry A;; only has two possible val-
ues, i.e., A;; ® 0 and A; ; & 1. We denote the two cases as Case (1) and Case (2), respec-
tively. We assume that the area where g returns 1 in the span of the two input random entries
of g (i.e., X;; and A;; under random noise) is an ellipse (marked out with green), where
the decision boundary is marked out with deep green. In Case (1), X; ; under random noise
follows a Gaussian distribution, whose probability density function is marked out as deep red.
We assume that, in this case, the integral of the proba-

Vv bility density function within the range of the ellipse

al ue o f (marked out with shallow red) is larger than 0.5. Cor-

respondingly, according to Definition 2, gx returns
1 in this case. In Case (2), we similarly mark out
the probability density function and the area used for
integral within the range of the ellipse. We assume
that in this case, the integral is smaller than 0.5, and
thus gx returns 0. Note that to compute the output
of ga x, we need to identify the output of gx with
the largest probability. Notice that 5 > 0.5, we have
that A; ; © 0 happens with a larger probability than
A; ; @ 1. Therefore, ga x outputs 1 in this example.
In other words, the bias level of the predictions of
fo~ is satisfying (i.e., smaller than 1) based on ga x.

Below we introduce a desirable property of g4, x,i.e.,
certified fairness defense associated with tractable
budgets over both node attributes and graph topology
can be achieved.

Figure 1: An example illustrating how ELE-
GANT works in the input space.

Lemma 1. (Perturbation-Invariant Budgets Existence) There exist tractable budgets € o and ex,
such that for any perturbations made over the node attributes and graph structure of the vulnerable
nodes within € o and ex, §a,x provably maintains the same classification results.

Correspondingly, for an 7 that enables g4 _x to return 1, we are then able to achieve certified fairness
defense over g4, x against perturbations on both node attributes and graph structure. Below we derive
the certified fairness defense budgets over the graph structure € 4 and node attributes ex for g4 x.
We first introduce the derivation of € 4. Here, our rationale is: considering that g4 _x is a binary
classifier, we need to ensure that under structure attacks, the probability of gx returning 1 (denoted
asPr(gx (A ® Aa @ T4, X) = 1)) is provably greater than 0.5, such that g4 x will still return
1. To this end, we propose to derive a lower bound of Pr(gx (A ® Ax @ T4, X) = 1), which we
denote as Py, —;. Finally, we identify the largest perturbation size that keeps such a lower bound
larger than 0.5, and the identified perturbation size is then the graph structure perturbation budget.
We present the lower bound of Pr(gx (A ® Aa @ T 4,X) = 1) below.

Lemma 2. (Positive Probability Bound Under Noises) There exists a tractable Py, —1 € (0, 1), such
that Pr(ﬁX(A DApA DT 4, X) = 1) > ngzl.

To derive the perturbation budget € 4, we only need to find a A 4 with the largest [p-norm that still
enables P, —; to be greater than 0.5 (according to Definition 3). Correspondingly, we derive the
theoretical perturbation-invariant budget € 4 in Theorem 2 below.

Theorem 2. (Certified Defense Budget for Structure Perturbations) The certified defense budget over
the graph structure € 5 for ga x is given as
€a =maxeqa, s.t. Pi,—1 > 05, V||Aalo <e€a. (1)

To solve the optimization problem in Equation (1), we introduce Theorem 3 to compute Py, —1.
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Theorem 3. (Positive Probability Lower Bound) We have Py, —1 = Pr(A@® A4 ®T o € H). Here
H= U7:|5+11|H1 UH,,; Hi is given by ‘
- Pr(AeT 4 = A) B\ -
=34 = Yo € V\ Vi, [| i = Aillo = 0 p;
and (i is defined over the optimization problem of argmax_,, |y, i<j<n.|v,|J> 5t Pr(gx(A @

v

F'a,X)=1) < Pr (A ®T4 € UZi}}”’ll’Hj). Here ’H:i is any subregion of M, that satisfies
Pr(A@T4 €M) =Pr(jx(A®Ta, X)=1)—Pr (A BT, € uZ"‘?"M"Hj).

=J

We provide detailed steps to solve the optimization problem given in Equation (1) in Appendix. Now
we introduce the theoretical analysis of how to derive e x in Theorem 4.

Theorem 4. (Certified Defense Budget over Node Attributes) Denote A as the set of all possible
(n X n)-matrices, where entries in rows whose indices associate with those vulnerable nodes may
take 1 or 0, while other entries are zeros. The certified defense budget ex for ga, x is given as
€Ex = min{efx : ex is derived with classifier gx (A T a, X), whereT' 4 € A}.

3.4 CERTIFICATION IN PRACTICE

Estimating the Predicted Label Probabilities. According to Definition 3, it is necessary to obtain
Pr(gx(A®Ta,X) = ¢) (c € {0,1}) to determine the output of classifier gx. We propose
to leverage a Monte Carlo method to estimate such a probability. Specifically, we first randomly
pick N samples of T' 4 as A’ (A’ C A). Considering the output of jx is binary, we then follow
a common strategy (Cohen et al., 2019) to consider this problem as a parameter estimation of a
Binomial distribution: we first count the number of returned label 1 and O under noise as /N7 and
Ny (N1 + Ny = N); then we choose a confidence level 1 — « and take the a-th quantile of the beta
distribution with parameters N; and Ny as the estimated probability lower bound for returning label
c = 1. We proved that all theoretical analysis still holds true for such an estimation in Appendix. We
follow a similar strategy to estimate the probability lower bound of yielding 1 for g(A, X + I'x).

Obtaining Fair Classification Results. After achieving certified fairness defense based on g4 x, we
also need to obtain the corresponding node classification results (given by fg+) over V.. We propose
to collect all classification results associated with the sampled I, € A’ that leads to an estimated
lower bound of Pr(jx (A @ Iy, X) = 1) to be larger than 0.5 as ))’. Here )" is a set of output
matrices of fg-, where each matrix consists of the one-hot output classification results (as each row
in the matrix) for all nodes. We propose to take argmin?,w(f” V), s.t. Y' € ) as the final node
classification results. Correspondingly, consider Pr(jx (A & Iy, X) = 1) falls into the confidence
interval characterized by 1 — o, we have a neat probabilistic theoretical guarantee below.

Proposition 1. (Probabilistic Guarantee for the Fairness Level of Node Classification). For Y =
argming, (Y, Vi), s.t. Y' € V', we have Pr(n (Y, Vi) > 1) < 0.5V

Note that for a large enough sample size N, the cardinality of ) also tends to be large in practice.

Hence it is safe to argue that Pr(m(Y, Vi) > 1) tends to be small enough. In other words, we have a
probability that is large enough to obtain results with a bias level lower than threshold 7.

Calculation of Perturbation Budgets. We calculate €4 by solving the optimization problem
given in Equation (1), and we provide the completed procedure in Appendix. For ex, we uti-
lize a Monte Carlo method to estimate its value. More specifically, we leverage min{ex
€x is derived with classifier gx (A @ Iy, X ) , where I, € A’} to estimate the value of ex.

4 EXPERIMENTAL EVALUATIONS

In this section, we aim to answer three research questions: RQ1: How well does ELEGANT perform
in achieving certified fairness defense? RQ2: How does ELEGANT perform under fairness attacks
compared to other popular fairness-aware GNNs? RQ3: How does ELEGANT perform under
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different settings of parameters? We present the main experimental settings and representative results
in this section due to space limits. Detailed settings and supplementary experiments are in Appendix.

4.1 EXPERIMENTAL SETTINGS

Downstream Task and Datasets. We focus on the widely studied node classification task, which is
one of the most representative tasks in the domain of learning on graphs. We adopt three real-world
network datasets that are widely used to perform studies on the fairness of GNNs, namely German
Credit (Agarwal et al., 2021; Asuncion & Newman, 2007), Recidivism (Agarwal et al., 2021; Jordan
& Freiburger, 2015), and Credit Defaulter (Agarwal et al., 2021; Yeh & Lien, 2009). We provide
their basic information, including how these datasets are built and their statistics, in Appendix.

Evaluation Metrics. We perform evaluation from three main perspectives, including model utility,
fairness, and certified defense. To evaluate utility, we adopt the node classification accuracy. To
evaluate fairness, we adopt the widely used metrics Agp (measuring bias under Statistical Parity) and
Ago (measuring bias under Equal Opportunity). To evaluate certified defense, we extend a traditional
metric named Certified Accuracy (Wang et al., 2021; Cohen et al., 2019) in our experiments, and we
name it as Fairness Certification Rate (FCR). Specifically, existing GNN certification works mainly
focus on a certain individual node, and utilize certified accuracy to measure the ratio of nodes that are
correctly classified and also successfully certified out of all test nodes (Wang et al., 2021). In this
paper, however, we perform certified (fairness) defense for individuals over an entire test set (instead
of for any specific individual). Accordingly, we propose to sample multiple test sets out of nodes that
are not involved in the training and validation set. Then we perform certified fairness defense for
all sampled test sets, and utilize the ratio of test sets that are successfully certified over all sampled
sets as the metric of certified defense. The rationale of FCR is leveraging a Monte Carlo method to
estimate the probability of being successfully certified for a randomly sampled test node set.

GNN Backbones and Baselines. Note that ELEGANT serves as a plug-and-play framework for
any optimized GNNs ready to be deployed. To evaluate the generality of ELEGANT across GNNss,
we adopt three of the most representative GNNs spanning across simple and complex ones, namely
Graph Sample and Aggregate Networks (Hamilton et al., 2017) (GraphSAGE), Graph Convolutional
Networks (Kipf & Welling, 2017) (GCN), and Jumping Knowledge Networks (JK). Note that to the
best of our knowledge, existing works on fairness certification cannot certify the attacks over two
data modalities (i.e., continuous node attributes and binary graph topology) at the same time, and
thus cannot be naively generalized onto GNNs. Hence we compare the usability of GNNs before and
after certification with ELEGANT. Moreover, we also adopt two popular fairness-aware GNNs as
baselines to evaluate bias mitigation, including FairGNN (Dai & Wang, 2021) and NIFTY (Agarwal
et al., 2021). Specifically, FairGNN utilizes adversarial learning to debias node embeddings, while
NIFTY designs regularizations to debias node embeddings.

Threat Models. We propose to evaluate the performance of ELEGANT and other fairness-aware
GNN models under actual attacks on fairness. We first introduce the threat model over graph structure.
To the best of our knowledge, FA-GNN (Hussain et al., 2022) is the only work that performs graph
structure attacks targeting the fairness of GNNs. Hence we adopt FA-GNN to attack graph structure.
In terms of node attributes, to the best of our knowledge, no existing work has made any explorations.
Hence we directly utilize gradient ascend to perform attacks. Specifically, after structure attacks have
been performed, we identify the top-ranked node attribute elements (out of the node attribute matrix)
that positively influence the exhibited bias the most via gradient ascend. For any given budget (of
attacks) on node attributes, we add perturbations to these elements in proportion to their gradients.

4.2 RQ1: FAIRNESS CERTIFICATION EFFECTIVENESS

To answer RQ1, we investigate the performance of different GNNs after certification across different
real-world attributed network datasets over FCR, utility, and fairness. We present the experimental
results across three GNN backbones and three real-world attributed network datasets in Table 1.
Here bias is measured with Agp, and we have similar observations on Agg. We summarize the main
observations as follows: (1) Fairness Certification Rate (FCR). We observe that ELEGANT realizes
values of FCR around or even higher than 90% for all three GNN backbones and three attributed
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Table 1: Comparison between vanilla GNNs and certified GNNs under ELEGANT over three popular
GNNss across three real-world datasets. Here ACC denotes node classification accuracy, and E- prefix
marks out the GNNs under ELEGANT with certification. 1 denotes the larger, the better; | represents
the opposite. Numerical values are in percentage, and the best ones are in bold.

German Credit Recidivism Credit Defaulter

ACC (1) Bias({) FCR(1) ACC (1) Bias() FCR (1) ACC(1) Bias(]) FCR (1)

SAGE 673 1214 50.6 +15.9 N/A 89.8 +0.66 9.36 £3.15 N/A 759 1218 13.0 1401 N/A
E-SAGE 71.0 1127 16.3 +10.9 98.7 +1.80 89.9 10.90 6.39 +2.85 94.3 16.65 73.4 +0.50 8.94 +0.99 94.3 13.30

GCN 59.6 1364374 1324 N/A 905 1073 10.1 1301 N/A 658 1029 11.1 1320 N/A
E-GCN 58.2 41,82 3.52 1377 96.3 £1.89 89.6 +0.74 9.56 1+3.22 96.0 13,56 65.2 £0.99 7.28 1+1.46 92.7 +5.19

JK 633 14114121181 N/A 91.9 1054 10.1 1315 N/A 76.6 10.69 9.24 1060 N/A
E-JK 623 1407 22.4 4195 97.0 £3.00 89.3 10.33 6.26 1278 89.5 105 77.7 10.27 3.37 12,64 99.3 10.47

network datasets, especially for the German Credit dataset, where vanilla GNNs tend to exhibit a high
level of bias. The corresponding intuition is that, for nodes in any randomly sampled test set, we have
a probability around or higher than 90% to successfully certify the fairness level of the predictions
yielded by the GNN model with our proposed framework ELEGANT. Hence ELEGANT achieves a
satisfying fairness certification rate across all adopted GNN backbones and datasets. (2) Utility. We
found that compared with those vanilla GNN backbones, certified GNNs with ELEGANT also exhibit
comparable and even higher node classification accuracy values in all cases. Hence we conclude that
our proposed framework ELEGANT does not significantly jeopardize the utility of the vanilla GNN
models, and those certified GNNs with ELEGANT still bear a high level of usability in terms of
node classification accuracy. (3) Fairness. Although the goal of ELEGANT is not debiasing GNNSs,
we observe that certified GNNs with ELEGANT achieve better performances in all cases in terms
of algorithmic fairness compared with those vanilla GNNs. This demonstrates that the proposed
framework ELEGANT also contributes to bias mitigation. We conjecture that such an advantage of
debiasing could be a mixed result of (1) adding random noise on node attributes and graph topology
(as in Section 3.2 and Section 3.3) and (2) the proposed strategy of obtaining fair classification results
(as in Section 3.4). We provide a more detailed analysis in Appendix B.9.

4.3 RQ2: FAIRNESS CERTIFICATION UNDER ATTACKS

To answer RQ2, we perform attacks on the fairness of GCN, E-GCN, FairGNN (with a GCN back-
bone), and NIFTY (with a GCN backbone). Considering the large size of the quadratic space spanned
by the sizes of perturbations A 4 and A x, we present the evaluation under four representative
(1A allos ||A x ||2) pairs. We set the threshold for bias 7 to be 50% higher than the fairness level of
the vanilla GCN model on clean data, since it empirically helps to achieve a high certification success
rate under large perturbations.

We present the fairness levels of the four models in terms of Agg in Figure 2. Note that we utilize
a vanilla GCN to predict the labels for test nodes to obtain the classification results discussed in
Section 3.4, and we also have similar observations on other GNNs/datasets. (1) Fairness. We found
that the GCN model with the proposed framework ELEGANT achieves the lowest level of bias in
all cases of fairness attacks. This observation is consistent with the superiority in fairness found
in Table 1, which demonstrates that the fairness superiority of ELEGANT maintains even under
attacks within a wide range of attacking perturbation sizes. (2) Certification on Fairness. We now
compare the performance of E-GCN across different attacking perturbation sizes. We observed
that under relatively small attacking perturbation sizes, i.e., (2°,1071), (2!,10°), and (22, 10%),
ELEGANT successfully achieves certification over fairness, and the bias level increases slowly as the
size of attacks increases. Under relatively large attacking perturbation size, i.e., (23, 102), although
the attacking budgets go beyond the certified budgets, GCN under ELEGANT still exhibits a fairness
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Figure 3: Parameter study of o over ex (a) and 3 over € 4 (b). Experimental results are presented
based on GCN over German credit and Credit Defaulter for (a) and (b), respectively. Similar
tendencies can also be observed based on other GNNs and datasets.

level far lower than the given bias threshold 7, and the fairness superiority maintains. Hence the
adopted estimation strategies are safe in achieving fairness certification.

4.4 RQ3: PARAMETER STUDY

To answer RQ3, we propose to perform pa-

rameter study focusing on two most critical 9.04
parameters, o and 3. To examine how o
and [ influence the effectiveness of ELE-
GANT in terms of both FCR and certified
defense budgets, we set numerical ranges
for ex (from O to lel) and € 4 (from O to
24) and divide the two ranges into grids.
In both ranges, we consider the dividing
values of the grids as thresholds for certifi-
cation budgets. In other words, under each @ iO—l) @! '100) @ '101) (23 '102)
threshold, we only consider the test sets ? g ! !
with the corresponding certified defense (HAAHO, ”AX H2)

budget being larger than this threshold as ) )
successfully certified ones, and the values Figure 2: The bias levels of GCN, E-GCN, FairGNN,

of FCR are re-computed accordingly. Our and NIFTY under fairness attacks on German Credit.
rationale here is that with the thresholds 1he shaded bar indicates that certified budget €4 <
(for ex and € 4) increasing, if FCR reduces  ||1Aallo orex < [|Ax||2. The y-axis is in logarithmic
slowly, this demonstrates that most success- S¢ale for better visualization purposes.

fully certified test sets are associated with large certified defense budgets. However, if FCR reduces
fast, then most successfully certified test sets only bear small certified defense budgets.
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Here we present the experimental results of o and 3 with the most widely used GCN model based on
German Credit in Figure 3(a) and Credit Defaulter in Figure 3(b), respectively. We also have similar
observations on other GNNs and datasets. We summarize the main observations as follows: (1)
Analysis on 0. We observe that most cases with larger o are associated with a larger FCR compared
with the cases where o is relatively small. In other words, larger values of ¢ typically make FCR
reduce slower w.r.t. the increasing of ex threshold. This indicates that increasing the value of o
helps realize larger certified defense budgets on node attributes, i.e., the increase of o dominates
the tendency of ex given in Theorem 4. Nevertheless, it is worth mentioning that if ¢ is too large,
the information encoded in the node attributes could be swamped by the Gaussian noise and finally
corrupt the classification accuracy. Hence moderately large values for o, e.g., Se-1 and 5e0, are
recommended. (2) Analysis on 5. We found that (1) for cases with relatively large 3 (e.g., 0.8 and
0.9), the FCR also tends to be larger (compared with cases where J is smaller) at € 4 threshold being
0. Such a tendency is reasonable, since in these cases, the expected magnitude of the added Bernoulli
noise is small. Correspondingly, GNNs under ELEGANT perform similarly to vanilla GNNs, and
thus an 7 larger than the bias level of vanilla GNNS is easier to be satisfied (compared with cases
under smaller values of /3); (2) for cases with relatively large /3, the value of FCR reduces faster (w.r.t.
€ A threshold) than cases where (3 is smaller. Therefore, we recommend that for any test set of nodes:
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(1) if the primary goal is to achieve certification with a high probability, then larger values for 5 (e.g.,
0.8 and 0.9) would be preferred; (2) if the goal is to achieve certification with larger certified defense
budgets on the graph topology, then smaller values for S (e.g., 0.6 and 0.7) should be selected.

5 RELATED WORK

Algorithmic Fairness in GNNs. Existing GNN works on fairness mainly focus on group fairness and
individual fairness (Dong et al., 2022b). Specifically, group fairness requires that each demographic
subgroup (divided by sensitive attributes such as gender and race) in the graph should have their fair
share of interest based on predictions (M. et al., 2021). Adversarial training is among the most popular
strategies (Dai & Wang, 2021; Dong et al., 2022b). In addition, regularization (Agarwal et al., 2021;
Fan et al., 2021; Zhang et al., 2021), topology modification (Dong et al., 2022a; Spinelli et al., 2021),
and orthogonal projection (Palowitch & Perozzi, 2020) are also commonly used strategies. On the
other hand, individual fairness it requires that similar individuals should be treated similarly (Dwork
et al., 2012), where such similarity may be determined in different ways (Kang et al., 2020; Dong
et al., 2021). Designing optimization regularization terms to promote individual fairness for GNNs is
a common strategy (Fan et al., 2021; Dong et al., 2021; Song et al., 2022). Nevertheless, despite the
research advancements in the field of algorithmic fairness on GNNs, the adversarial defense against
fairness attacks still remains in its infancy and has not been thoroughly explored. To the best of our
knowledge, our paper serves as the first comprehensive study dedicated to addressing this important
research problem, paving the way for future investigations in this under-explored area.

GNN Defense Against Attacks. Existing works on GNN defense are mainly categorized into four
mainstreams, namely adversarial training (Xu et al., 2019; Dai et al., 2019; Wang et al., 2019),
graph data purification (Entezari et al., 2020; Jin et al., 2020c; Wu et al., 2019a; Kipf & Welling,
2016), perturbation detection (Xu et al., 2018; Ioannidis et al., 2019; Jin et al., 2020b), and certified
defense (Schuchardt et al., 2020; Wang et al., 2021; Bojchevski & Giinnemann, 2019; Ziigner &
Giinnemann, 2020; Jia et al., 2020). Adversarial training aims to inject adversarial examples (e.g.,
edges) during training, such that the GNN tends to yield correct predictions for adversarial examples
during inference (Xu et al., 2019; Dai et al., 2019; Wang et al., 2019). Graph data purification
also works during training, where graph data is purified during learning to weaken the influence of
adversarial examples (Entezari et al., 2020; Jin et al., 2020c; Wu et al., 2019a; Kipf & Welling, 2016).
Perturbation detection is mostly applied in the pre-processing stage, where adversarial edges or nodes
can be identified before training (Xu et al., 2018; loannidis et al., 2019; Jin et al., 2020b). Different
from them, certified defense is the only approach that secures GNNs theoretically, such that attackers
cannot find any adversary to fool the GNNs (Schuchardt et al., 2020; Wang et al., 2021; Bojchevski
& Giinnemann, 2019; Ziigner & Giinnemann, 2020; Jia et al., 2020). Note that most certified defense
approaches only secure the prediction for a specific data point (e.g., a node in node classification).
Different from them, ELEGANT enables us to secure the fairness level for GNNs, which naturally
entwines with all predictions in the test set.

6 CONCLUSION

In this paper, we study a novel problem of certifying GNN node classifiers on fairness. To address
this problem, we propose ELEGANT, a framework designed to achieve certification on top of any
optimized GNN node classifier associated with certain perturbation budgets, ensuring that it is
impossible for attackers to degrade the fairness level of predictions within such budgets. Notably,
ELEGANT is designed to serve as a plug-and-play framework for any optimized GNNs and does not
rely on any assumptions regarding GNN structures or re-training processes. Extensive experiments
verify the strong effectiveness and generalizability of ELEGANT across multiple GNN architectures
and real-world datasets. While this paper primarily focuses on the widely studied node classification
task, we also highlight the potential for extending this study to other graph-related tasks as a future
research direction. We expect positive broader impacts including deploying fairness-safe GNNs in
applications, and no significant negative broader impact needs to be highlighted here.

10
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A PROOFS

For better clarity, for a matrix X, we use X [i, j] to denote the element at the i-th row and the j-th
column; for a vector x, we use x[i] to denote its i-th component.

A.1 PROOF OF THEOREM 1

To prove Theorem 1, we formulate the theoretical prerequisite that Theorem 1 relies on as Lemma
A 1. Similarly, the proof of Lemma A 1 relies on the results in Lemma A 2, and the proof of Lemma
A 2 1is based on Lemma A 3.

Proof. For simplification, we reshape the matrix X € R"* to the vector x € R"?. We denote
he(x) = Pr(g(fo«, A, X + vx(wx, Vou), N, Vist) = ¢) as the function that returns P(c). Without
loss of generality, we assume argmax.¢ o 13 £(c) = 1, so we have argmin ¢ 13 P(c) = 0 conse-
quently. We use A x to denote a perturbation on X that satisfies Ax < ex, and A, to denote
the reshaped vector of A x. Denote ®~1(-) as the inverse of the standard Gaussian cumulative
distribution function. According to Lemma A 1, we have ®~1(h.(x)) as a Lipschitz continuous
function with a Lipschitz constant of % where o is the standard deviation of the Gaussian noise wx.
Based on the property of Lipschitz continuous functions, we have

7 (el + Ag)) — @7 (o)) < X

Correspondingly, we have the following bounds for the output probabilities of class 0 and 1

27 (@ + Az)) — & (I (@) = -, @)
2 (ho( + Ag)) — 7 (ho(a) < X 3)

Combine Equation (2) and Equation (3), and we have i
2 (@ + A) 8 (ho(e + Aa)) > 7 (@) ~ B olw) - 2. @)

Recall that ex = (P '(max.c(o1} P(c)) — @ '(mincego,13 P(c))) = (@ 1(P(1) —
®~1(P(0)) = (P (h1(x)) — @ (ho(x))), combine this condition with Equation (4), we
have

O (hi(z + Ag)) — D (ho(x + Ag)) > 0. ©)

Based on the strictly non-decreasing property of ®(-), we have
hi(z+ Ag) > ho(x + Ag). (6)

In Equation (6), hi(x + Ag) and ho(x + Ay) stand for the output probabilities of class 1 and
0 after the perturbation, correspondingly. Hence, the output for gx will not change after the
perturbation (still class 1). Noting that the exact probabilities max.c (0,1} P(c) and min.c o1} P(c)
are difficult to calculate in practice, we can use a tractable lower bound pp.x and upper bound
Pmin such that maxccgo,1} P(¢) > Pmax = Pmin > Mingego,13 P(c) to replace them in ex as

ex = 5(® ! (Pmax) — ! (Pmin))- Because the practical perturbation budget ex derived by tractable

bounds is smaller than the true budget, we can still obtain the same result as Equation (6). O

Lemma A 1. Denote h.(x) = Pr(g(fo-, A, X + vx (wx, Vour), 1, Vi) = ) as the function that
returns P(c). Then, the function ®~(h.(x)) is a Lipschitz continuous function with respect to x
with a Lipschitz constant Ly = % where ®~1(.) is the inverse of the standard Gaussian cumulative
distribution function.
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Proof. To prove the Lipschitz continuity of ®~!(h.(x)), we should find an upper bound of the norm
of the gradient ||V, ® ! (h.(x))| 2, denoted as Lg. The gradient V@~ (h.(x)) is computed as

- _ Vahe()
Va®™ (he(®) = G a1 ()

- \/ﬁexp(%@fl(hc(w))2)vmhc(w)'

Therefore, the norm ||V ®~!(h.(x))]||2 is computed as
_ 1.
IVa@ ™ (he(@))ll2 = V2mexp(527" (he(®))*) | Vahe(@) 2.

According to Lemma A 2, the upper bound of ||V zh.(z)||2 is —= Uexp(flCID’1 (he(z))?). Conse-
quently, we have

V2@~ (he(®)]]2 <

Finally, we have obtained the Lipschitz constant of ®~* (h.(x)) as Ly = < and verified its Lipschitz
continuity.

O

Lemma A 2. Denote h.(x) = Pr(g(fo-, A, X + vx(wx, Vour); N, Vist) = ¢) as the function that
returns P(c). Then, the function h.(x) is a Lipschitz continuous function with respect to x with a
Lipschitz constant Ly, = —2 Gexp(féfbfl (he(x))?), where ®~1(-) is the inverse of the standard

V2T
Gaussian cumulative distribution function.

Proof. To prove the Lipschitz continuity of h.(x), we should prove that the norm of the gradi-
ent |Vghe(x)||2 is bounded by some constant Ly, i.e. Lp = supy||Vghe(x)ll2. Let wyy =
Yx (Wx, Vo) € R™ where wyy[i] ~ N(0,02) when i € V,y and wyy[i] = 0 otherwise. Conse-
quently, we have h.(x) = Pr(g(fe-, A, + wyu, 1, Vi) = 1). Then, we compute the gradient
Vzhe(x) as follows.

Vazhe(x) = VePr(g(fo, A, T + wy, n, Vist) = ¢)

= VzEo,, [g(fG* VA, T+ w1, Vtst)]

V,
= vm - g(fa* ) Av x + Wyul, 17, vlst)(27r02)_ 2 20_2 )dwvul-
RVl
Substituting t =  + wyy into the above integration, we have
Yyl t—x|?
thc(m) = Vm g(f9*7A7t7777Vtst)<27702)_ 21 exp(_H 2 ||2>dt
R Vol 20
Vil t — x||2
= / g(for, A, t, 1, Viy) (2m0?) en Vmexp(—w)dt
RIVvull 20
_ [t —z|3 t -2
= « At 210> 2 ——) ——dt
/]R\Vvuﬂg(fe ) b 7777Vlst)( uxe ) eXP( 202 ) 02
_ Vwl Wyl 2w 1
= / g(f9*7A733 +qul7n;Vtsl)(27TU2) 2 eXP(—W) v2u dwyy
RVl 20 o

1
- ;vaul [wvulg(fe* 5 A7 T + Wy, m, Vtsl)]

= %Ewcu, [wilulg(fe* VA T+ O-w\//ula UE Vlst)]'
Here, w),, is a normalized random vector that w,[¢] ~ N(0,1) when i € Vyy and w/,[i] = 0
otherwise. Next, we compute the norm of the gradient ||V h.(x)]|2 as

[Vahe(®)]l2 = upjujs_1 | Vahe()

(N

1
= —supjy =1 By, [0 wlag(for, A, @ + owly, 7, Via))-
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To find L, we should consider the worst case (with the largest Lipschitz constant) among all
possible classifiers. We let g(A, w!,) = g(fo+, A, © + ow!,;, N, Vist). Then, we have the following
optimization problem for solving Lj,

Supg]waul [UTw\lluLa(Av wy )}

vul

st §(A,wiy) €[0,1], [|vllz = 1, Euy [G(A, wiy)] = he().

vul vul

®)

The rationale of this optimization problem is that we aim to find the function with the largest
Lipschitz constant (objective) among all possible classifiers g with the same smoothing output A (x)
(constraints) when fixing the variable v. After solving this problem, we can find the largest objective
among all possible v as Lj. To solve this problem, we have the following lemma.

Based on Lemma A 3, we have §*(A,w! ;) = 1(v'w!,; > —£,® ! (h.(x))) as the solution of the
optimization problem in Equation (8). Next, we can compute the maximal objective when fixing the

variable v as . . )
Eur [0 wiy - L(v wyy > —£027 " (he()))]

:EwwN(O,s%)[w . ]l(w > _qu)_l(hc(m)))]

—Eurnonleow’ - 1w > —@ (he(@)))] (letw = £,0)
o ©)

cv wexp(fg)dw

- V2r Jeeni (@)
Ev 1.4 2
=——exp(—=P " (he(x))?).
(50 (@)
Therefore, we have sup;E. [vw(,3(A,w],)] = %exp(—%q)_l(hc(w))2). Combining this
result with Equation (7), we have
Ly =supy,[|Vahe(z)]|2

vul

:SUPg,HvHQ:l;Ew’, [va\//ulg(A7w\//ul)]
v | 2
:Supl\vl\zqﬁexp(*iq’ (he(2)))
1 1
= exp(—=0 H(ho(x))?).

Finally, we have proved that the function h.(x) = Pr(g(fe-, A, X + vx(wx, Veu),n, Vist) = ) is
a Lipschitz continuous function with respect to variable x. O

Lemma A 3. The solution to the optimization problem in Equation (8) is §*(A,w!,) = 1(v'w!, >
£, (he(x))), where e, = 3,0, wli]>.

Proof. First, we clarify the rationale for solving this problem. We note that v "w/ , ~ N(0,2)
(based on the property of independent and identically distributed Gaussian), this optimization problem
can be regarded as the reweighting of a Gaussian distribution where the range of the weight function
G(A,wyy) is [0, 1] and the constraint of the weight function is given by E,/ [§(A, wyy)] = he(z).
A straightforward solution here is to let the weight function at a large value of v'w! ; as large
as possible. We let §(A,w! ;) = 1 where v' > —, @ (he(z))(w!,) and §(A,w! ) = 0
otherwise. Here ®(-) is the cumulative distribution function of (0, 1).

/
Wyl

Next, we prove that §*(A,w! ;) = L(v'w!, > —e,® (h.(x))) is the exact solution of the
optimization problem in Equation (8). We first verify that g* is a solution. It is obvious that g*
suffices the first two constraints because the range of the indicator function is {0, 1}. For the last
constraint, E,,r [1(v"w{, > —,® ' (hc(x)))] is actually the probability of v 'w/,, being larger

than —&,®~!(h.(x)), which equals to (h.(z) apparently because v ' w! /e, ~ N(0,1). Therefore,
g* satisfies all three constraints. We then prove that §* is the optimal solution. We assume § # §* is
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another classifier that also suffices the constraints in the optimization problem in Equation (8). We use
S to denote the support set {s | §* (A, w,,;) # 0}. Based on the final constraint in the optimization
problem in Equation (8), we have

Ew [ (A wvul) (A wvul)] 0.

We divide this equation into two parts as
C
Ew\u [( (A wvul) (A wvul)) (wiful € S)]—’—Ew\’u [( (A wvul) (A wvul)) ( \//ul €S )] = 07
(10)
where SC denotes the complement set of S. We know that §* (A, wy) = 1forw),; € S. We also
know that §(A,w/,) < 1and §(A,w,,) cannot always equal to 1 for w/ € S because § # §*.

Therefore, we have
vau [( (A wvul) (A wvul)) (wilul € S)] >0

va [( (A wvul) g(A, wvul)) (wilu] S SU)] < 0.

T

Y

Moreover, we have v'w; > v wg forany w; € Sand wy € S C, Finally, combine this result
with Equation (10) and Equation (11), we have
Ewé [Uvaul( (A wvul) (A wvul)) (w;ul € 8)]

+Eo [07 Wl (75 (A, why) — §(A, wly)L(why € S8 > 0.

Consequently, we have E,s [va;ulg*(A Wiy = Eur [0 w],G(A,wi,)] > 0. Therefore, we
have proved that §* (A, wvul) =1(v'w!, > —,® 1 (h.(x))) is the exact optimal solution of the

vul
optimization problem in Equation (8). O

A.2 PROOF OF LEMMA 1

Proof. The tractable perturbation budgets €4 and ex can be obtained according to Theorem 2
and Theorem 4, correspondingly. O

A.3 PROOF OF LEMMA 2

Proof. The tractable probability lower bound P, —; can be obtained according to Theorem 3. [

A.4 PROOF OF THEOREM 2

Proof. To certify the fairness level, we assume that g4 x (A, X)) = 1. Refer to Lemma 2, we have
Pr(gx(A® Aa® T4, X) =1) > P;,—1. For any structure perturbation ||A 4]0 < €4, we
combine this result with Equation (1) and obtain that

Pr(gx(AEBAAEBI‘A,X)ZI)Zpgle > 0.5, (12)
As a consequence, we have Ga x (A ® Aa,X) = ga,x (A, X) for any structure perturbation
[Aallo < €a. O

A.5 PROOF OF THEOREM 3

Proof. To prove Theorem 3, we formulate the theoretical prerequisite that Theorem 3 relies on as
Lemma A 4. The following Lemma A 4 indicates the relation between A @T'y and A § A4 BT 4.

Lemma A 4. Let X and' Y be two random vectors in the discrete space {0, 1}" with prabability
distributions Pr(X) and Pr(Y'), correspondingly. Let h : {O 1}™ — {0,1} be a random or
deterministic function. Let &, = {z € {0,1}" : l;gf 5 > r}and So = {z € {0,1}" :

Eigg:g = r} for somer > 0. Assume S3 C Sy and S = S$;USs. IfPr(h(X) =1) > Pr(X € S),

then Pr(h(Y) =1) > Pr(Y € S).
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Pr(X=z)
Pr(Y=z2)

Pr(X=z)
Pr(Y=z2)

Proof. Note that we have <rforanyz e S C, Assuming

h is random, we have
Pr(h(Y)=1)—-Pr(Y €8)

= Y Pr(h(z) =1)Pr(Y =2) - > _Pr(Y =2)

> rforany z € S and

€01} zes
- :{SPi(h(z) =1)Pr(Y = 2) + ZC Pr(h(z) = 1)Pr(Y = 2)
B — 3 Pr(h(z) = )Pr(Y j:) — > Pr(h(z) = 0)Pr(Y = z)
= z;c Prz(i;z) =1)Pr(Y =2) — ;SPr?Z?z) = 0)Pr(Y = 2)
zli 3" Pr(h(z) = )Pr(X = z) — Y Pr(h(z) = 0)Pr(X = 2))
et es
ey Zc Pr(h(z) = 1)Pr(X = 2) + ;SPr(h(z) — 1)Pr(X = z)
s %Pr(h(z) — 0)Pr(X = 2) - ;Spr(h(z) — 1)Pr(X = 2))
==( Y Pr(h(z) =1)Pr(X =2) - > Pr(X = 2))
scfon)n zes

Based on the definition of H, we have Pr(gx (A ® Aa, X) =1) > Pr(A® A 4 € H) distinctly.
According to Lemma A4 (letY = AP AL DPTA, X = AP AH S=H,and h = gx), we
have Pr(gx (A® Aa ®Ta, X)=1)>Pr(A® Ap T4 € H) (X can be seen as a constant
here), correspondingly. Noting that the exact probability Pr(gx (A @ T' 4, X) = 1) is difficult to
calculate, we use a practical lower bound Py, —1" < Pr(jx(A @ T4, X) = 1) to replace it in
practice. Because we also have Pr(gx (A ® Aa, X)=1) > Pr(A® A4 € H) for H derived by
Pj,=1", the proof still holds.

O
A.6 SOLVING THE OPTIMIZATION PROBLEM IN THEOREM 2
We can compute Pr(A @ Ap ® T4 € H) as
n| Vol
PrlA© A a0TacH)= Y Pr(AoA 0TacH,))
J=p+1 (13)
nlvvul‘ /8
+(Pix=t” = 3 PrABTAEH))/(725)"
J=p+l
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To compute Equation (13), we calculate the probability Pr(A®T' 4 € H,,) and Pr(AD A, DT 4 €
H.m) as
min{n|Vl,n|Vya|+m} .
Pr(AEBI‘A € Hm) = Z ﬁnlvvul\—(j—m)(l _ﬂ)(]_m)t(m’j)v (14)
j=max{0,m}
min{n|Vyl|,n|Vyu|+m}

Pr(A© Ay @Ta €M) = > B~ (1 = B) t(m, ), (15)
j=max{0,m}
where —n|Vyu| < m < n|Vl, |Aallo < k, and t(m, j) is defined as
0, if (m + k) mod 2 # 0,
t(m,j) =4 0, if 2j —m < k, (16)

(glﬁvfﬂf )( klz ), otherwise.
2
With Equation (13), we can traverse the perturbation budget ||A a]|o over 1,2,... until Pr(A @&
Apa®dT 4 eH)<05.

A.7 PROOF OF THEOREM 4

Proof. Recall that ga,x (A, X) = argmax,.c(13Pr(gx(A & Ta, X) = ¢) and gx (A, X) =
argmax.co,13Pr(9(fo<, A, X + T'x,1,Via) = ¢). To certify the fairness level, we assume that
ga,x (A, X) = 1, which means that
Pr(ix(A® T4, X)=1) > 0.5. (17)
For any perturbation ||[Ax |2 < ex < ex,wehave gx(A®Ta, X + Ax) =gx(A®T4, X)
for any I' 4 € A where €X is derived with classifier Gx (A @ T' 4, X). Regarding the randomness of
I' o, we have
Pr(ix(A®Ta, X +Ax)=1) =Pr(jx(A®T4,X)=1) > 05. (18)
Hence we obtain that j4 x (A, X + Ax) = §a,x (A, X) for any perturbation |[Ax |2 <ex. O

A.8 PROOF OF PROPOSITION 1

Proof. For the practical certification, we add perturbations within certified budgets and derive

independent identically distributed output samples V by Monte Carlo. For each sample Y'e), we

have Pr(7(Y’, Viq) > 1) < 0.5 according to Theorem 4 and Theorem 2. (Y, Vi) > 7 indicates
that (Y, Vi) > 71 forany Y’ € ). Consequently, we have

Pr(n(Y, Vi) > 1) = g5 Pr(m(Y', Vi) > 1) < 05771, (19)

O

A.9 RATIONALE OF EACH THEORETICAL RESULT

Here we provide an explanation below about the rationale of each theoretical result in this paper.

Theorem 1. (Certified Fairness Defense for Node Attributes): This theorem gives a way to
compute the perturbation-invariant budget (i.e., the budget within which the fairness level will not
reduce under a certain threshold) of node attributes. However, since we consider both input data
modalities could be attacked, we still need to extend the analysis over the span of node attributes and
graph topology (see Theorem 4).

Theorem 2. (Certified Defense Budget for Structure Perturbations): This theorem formulates an
optimization problem, whose solution is the perturbation-invariant budget (i.e., the budget within
which the fairness level will not reduce under a certain threshold) of graph topology under the
smoothed node attributes. However, to solve this optimization problem, we need to explicitly
compute Pj, —1 (see Theorem 3).
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Theorem 3. (Positive Probability Lower Bound): This theorem provides a way to explicitly
compute P;, —1, which directly enables us to solve the optimization problem in Theorem 2.

Theorem 4. (Certified Defense Budget for Attribute Perturbations): This theorem is built upon
Theorem 1 and provides a way to explicitly compute the perturbation-invariant budget of node
attributes over the span of node attributes and graph topology.

Lemma 1. (Perturbation-Invariant Budgets Existence): This lemma claims the existence and
tractability of the perturbation-invariant budgets on both data modalities, which is further detailed by
Theorem 2 and Theorem 4.

Lemma 2. (Positive Probability Bound Under Noises): This lemma claims the existence and
tractability of Pj, —y, which is further detailed by Theorem 3.

Proposition 1. (Probabilistic Guarantee for the Fairness Level of Node Classification): This
proposition provides a neat probabilistic theoretical guarantee — we have a probability that is large
enough to successfully achieve certified defense on fairness.

B REPRODUCIBILITY AND SUPPLEMENTARY ANALYSIS

In this section, our primary emphasis is on ensuring the replicability of our experiments, which serves
as an extension to Section 4. To begin with, we offer a comprehensive introduction of the three
real-world datasets adopted in our experiments. Subsequently, we introduce the detailed experimental
settings, as well as the implementation details of our proposed framework, ELEGANT, alongside
GNNs and baseline models. Moreover, we outline those essential packages, including their versions,
that were utilized in our experiments. Lastly, we elaborate on the supplementary analysis on the time
complexity of ELEGANT.

B.1 DATASETS

In our experiments, we adopt three real-world network datasets that are widely used to perform
studies on the fairness of GNNs, namely German Credit (Asuncion & Newman, 2007; Agarwal et al.,
2021), Recidivism (Jordan & Freiburger, 2015; Agarwal et al., 2021), and Credit Defaulter (Yeh &
Lien, 2009; Agarwal et al., 2021). We introduce their basic information below.

(1) German Credit. Each node is a client in a German bank (Asuncion & Newman, 2007), while
each edge between any two clients represents that they bear similar credit accounts. Here the gender
of bank clients is considered as the sensitive attribute, and the task is to classify the credit risk of the
clients as high or low.

(2) Recidivism. Each node denotes a defendant released on bail at the U.S state courts during
1990-2009 (Jordan & Freiburger, 2015), and defendants are connected based on the similarity of their
past criminal records and demographics. Here the race of defendants is considered as the sensitive
attribute, and the task is to classify defendants into more likely vs. less likely to commit a violent
crime after being released.

(3) Credit Defaulter. This dataset contains credit card users collected from financial agencies (Yeh
& Lien, 2009). Specifically, each node in this network denotes a credit card user, and users are
connected based on their spending and payment patterns. The sensitive attribute is the age period
of users, and the task is to predict the future default of credit card for these users. We present the
statistics pf the three datasets above in Table 2.
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Table 2: The statistics and basic information about the six real-world datasets adopted for experimental
evaluation. Sens. represents the semantic meaning of sensitive attribute.

Dataset German Credit Recidivism Credit Defaulter
# Nodes 1,000 18,876 30,000

# Edges 22,242 321,308 1,436,858

# Attributes 27 18 13

Avg. degree 44.5 34.0 95.8

Sens. Gender Race Age
Label Credit status Bail decision Future default

For the three real-world datasets used in this paper, we adopt the split rate for the training set and
validation set as 0.4 and 0.55, respectively. The input node features are normalized before they
are fed into the GNNs and the corresponding explanation models. For the downstream task node
classification, only the labels of the nodes in the training set is available for all models during the
training process. The trained GNN models with the best performance on the validation set are
preserved for test and explanation.

B.2 DETAILED EXPERIMENTAL SETTINGS

Implementation of GNN Models. In our experiments, all GNN models are implemented in Py-
Torch (Paszke et al., 2017) with PyG (PyTorch Geometric) (Fey & Lenssen, 2019). For the corre-
sponding hyper-parameters, we set the value of weight decay as 5e-4, with the hidden dimension
number and dropout rate being 64 and 0.6, respectively. In addition, we set the learning rate and
epoch number as 5e-2 and 200 for training.

Implementation of ELEGANT. ELEGANT is implemented in PyTorch (Paszke et al., 2017) with
MIT license and all GNNs under ELEGANT are optimized through Adam optimizer (Kingma & Ba,
2015) on Nvidia A6000. In our experiments, the sampling sizes of Gaussian noise and Bernoulli
noise are 150 and 200, respectively. All hyper-parameters for GNNs under ELEGANT are set as the
same values as the hyper-parameters adopted for vanilla GNNs. We propose to add Gaussian and
Bernoulli noise (to node attributes and graph topology) during training, which empirically leads to
better certification performance, i.e., larger certification budgets over both node attributes and graph
topology. Specifically, we set the entry-wise probability of flipping the existence of an edge and the
standard deviation of the added Gaussian noise as 2e-4 and 2e-5, respectively. In addition, we set the
confidence level as 0.7 for estimation, since a lower confidence level helps exhibit a clearer tendency
of the change of certified budgets w.r.t. other parameters under a limited number of sampling size,
considering the computational costs. In the test phase, we set the sampled ratio for certification (from
the nodes out of training and validation set) to be 0.9 to make the sampled size relatively large, in
which way we include more nodes in the set of nodes to be certified. In each run, we sample 100
times, and the value of FCR is averaged across three runs with different seeds. Finally, considering
the sizes of the three datasets, we set the nodes that are vulnerable to be 5% for German Credit and
1% for others.

Selection of ¢ and 5. There are two critical parameters, ¢ and 3, that could affect the effectiveness
of ELEGANT. These two parameters control the level of randomness for the added Gaussian and
Bernoulli noise, respectively. Intuitively, larger € and 8 will induce more randomness in the node
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attributes and graph structure, which could make ELEGANT more robust to perturbations with larger
sizes and thus achieve larger e x and € 4. However, if ex and €4 are too large, the randomness could
go beyond what the GNN classifier can manage and could finally cause failure in certification. Hence
it is necessary to first determine appropriate values of ex and € 4 for ELEGANT. Here we propose a
strategy for parameter selection to realize as large certified defense budgets as possible. Specifically,
we first set an empirical 7 to be 25% higher than the fairness level of the corresponding vanilla GNN
model. Such a threshold calibrates across different GNNs and can be considered as a reasonable
threshold for the exhibited bias. Then we determine two wide search spaces for o and [, respectively,
and compute the averaged e x and € 4 from multiple runs over each pair of o and 3 values. We now
rank (o, ) pairs based on the averaged ex and € 4 in a descending order, respectively. Finally, we
truncate the obtained two rankings from their most top-ranked (o, 3) pair to the tail, until the two
truncated rankings have the first overlapped (o, 8) pair. Such an identified (o, 8) pair can achieve
large and balanced certification budgets over both A and X, and hence they are recommended.

Implementation of Baseline Models. In this paper, we include two fairness-aware GNNs as the
baselines for comparison, namely FairGNN and NIFTY. We introduce the details below. (1) FairGNN.
For FairGNN, we adopt the official implementations from (Dai & Wang, 2021). Hyper-parameters
corresponding to the GNN model structure (such as the number of hidden dimensions) are ensured
to be the same as the vanilla GNNs for a fair comparison. Other parameters are carefully tuned
under the guidance of the recommended training settings. (2) NIFTY. For NIFTY, we use the official
implementations provided from (Agarwal et al., 2021). We ensured that the parameters related to the
GNN model structure stay the same as the original GNNs for a fair comparison. We also adjust other
parameters based on the suggested training settings for better performance.

Packages Required for Implementations. We list those key packages and their corresponding
versions adopted in our experiments below.

* Python ==3.8.8

* torch ==1.10.1

* torch-geometric == 2.1.0
* torch-scatter == 2.0.9
* torch-sparse == 0.6.13
e cuda==11.1

* numpy == 1.20.1

* tensorboard ==2.10.0
* networkx ==2.5

* scikit-learn == 0.24.2
* pandas==1.2.4

* scipy==1.6.2

B.3 ALGORITHMIC ROUTINE

Now we introduce the pipeline of the proposed framework ELEGANT to obtain the node classification
results in facing of the graph data that could have been perturbed by malicious attackers. We present
the algorithmic routine in Algorithm 1. Note that ABSTAIN refers to the case where certification fails.
Correspondingly, FCR measures the ratio of not returning ABSTAIN for the proposed framework
ELEGANT, which generally reflects the usability of the certification defense.
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B.4 EVALUATION OF MODEL UTILITY

In Section 4.3, we present the comparison be-
1 E-GON I FairgNN =INiFTYy m=cen tween ELEGANT and baseline models over the
80 fairness level under attacks. We now present

O 60 the comparison over the utility under attacks.
G 40 Specifically, we utilize node classification accu-
20 racy as the indicator of model utility, and we

0 9, 10—1) L, ioo) 22, ‘101) 23, ‘102) present the results in Figure 4. The fairness-

(1A Allos [[AXx]l2) aware GNNs are found to exhibit better utility
compared with the vanilla GNNs, which is a

Figure 4: The utility of GCN, E-GCN, FairGNN, common observation consistent with a series of

and NIFTY under fairness attacks on German
Credit. The shaded bar indicates that certified bud-
getea < [|[Aalloorex < ||Ax]2.

existing works (Agarwal et al., 2021; Dong et al.,
2022a). More importantly, we observe that the
ELEGANT does not jeopardize the performance
of GNN compared with the utility of the vanilla GNN. This demonstrate a high level of usability for
ELEGANT in real-world applications.

B.5 CERTIFICATION UNDER DIFFERENT FAIRNESS METRICS

In Section 4.2, we present the experimental results based on the fairness metric of Agp, which
measures the exhibited bias under the fairness notion of Statistical Parity. We also perform the
experiments based on Aggp, which measures the exhibited bias under the fairness notion of Equal
Opportunity. We present the experimental results in Table 3. We summarize the observations below.
(1) Fairness Certification Rate (FCR). We observe that ELEGANT realizes large values of FCR
(larger than 80%) for all three GNN backbones and three attributed network datasets. Similar to
our discussion in Section 4.2, this demonstrate that for nodes in any randomly sampled test set,
we have a probability around or larger than 80% to successfully certify the fairness level of the
predictions yielded by the GNN model with our proposed framework ELEGANT. As a consequence,
we argue that ELEGANT also achieves a satisfying fairness certification rate across all adopted GNN
backbones and datasets on the basis of Agg. In addition, we also observe that the German Credit
dataset bears relatively larger values of FCR, while the values of FCR are relatively smaller with
relatively larger standard deviation values on Recidivism and Credit Defaulter datasets. A possible
reason is that we set the threshold (i.e., ) as a value 25% higher than the bias exhibited by the vanilla
GNNs. Consequently, if the vanilla GNNs already exhibit a low level of bias, the threshold determined
with such a strategy could be hard to satisfy under the added noise. This evidence indicates that the
proposed framework ELEGANT tends to deliver better performance under scenarios where vanilla
GNNss exhibit a high level of bias with the proposed strategy. (2) Utility. Compared with vanilla
GNNs, certified GNNs with ELEGANT exhibit comparable and even higher node classification
accuracy values in all cases. Therefore, we argue that the proposed framework ELEGANT does
not significantly jeopardize the utility of the vanilla GNN models in certifying the fairness level
of node classification. (3) Fairness. We observe that certified GNNs with ELEGANT are able to
achieve better performances in terms of algorithmic fairness compared with those vanilla GNNs. This
evidence indicates that the proposed framework ELEGANT also helps to mitigate the exhibited bias
(by the backbone GNN models). We conjecture that such bias mitigation should be attributed to the
same reason discussed in Section 4.2.
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Table 3: Comparison between vanilla GNNs and certified GNNs under ELEGANT over three popular
GNNs across three real-world datasets. Here ACC is node classification accuracy, and E- prefix
marks out the GNNs under ELEGANT with certification. 1 denotes the larger, the better; | denotes
the opposite. Different from the table in Section 4.2 (where the bias is measured with Agp), the bias
is measured with Agp here. Numerical values are in percentage, and the best ones are in bold.

German Credit Recidivism Credit Defaulter
ACC (1) Bias(l) FCR(1) ACC(?) Bias(/) FCR(f) ACC(?) Bias(/) FCR ()

SAGE 673 1214418 1110 N/A 89.8 +0.66 6.09 £3.10 N/A 75.9 12158104 1159 N/A
E-SAGE 72.2 +1.26 8.63 +6.15 100 +0.00 90.8 +0.97 3.12 +3.64 81.0 +13.0 73.4 +0.61 7.18 +1.06 88.7 +6.02
GCN 59.6 13643501477 N/A 90.5 1073635 1165 N/A 65.8 10.29 13.5 1423 N/A
E-GCN 58.8 +£3.74 29.8 16.82 93.3 £58.73 89.3 £0.92 3.93 £3.12 96.0 £4.97 63.5 +0.37 9.12 10.95 80.5 +14.5
JK 6334411377 +159 N/A 91.9 +0.54 526 +3.25 N/A 76.6 +0.69 8.04 1057 N/A

E-JK 63.4 1365 31.2 4155 93.7 +8.96 90.1 +0.55 2.54 +1.62 83.7 +8.96 76.9 +0.86 2.90 +2.04 95.7 +4.80

Algorithm 1 Certified Defense on the Fairness of GNNs

Input:
G: graph data with potential malicious attacks; fg+: an optimized GNN node classifier; Virain, Wvatidations
Viest € V: the node set for training, validation, and test, respectively; Viu € Ve the set of vulnerable
nodes that may bear attacks (on node attributes and/or graph topology); N1, N2: sample size for the set of

Bernoulli and Gaussian noise, respectively; n: a given threshold for the exhibited bias; a: the parameter
to indicate the confidence level (1 — «) of the estimation; o: the std of the added Gaussian noise; 3: the
probability of returning zero of the added Bernoulli noise;

Output:
ea: the certified defense budget over the adjacency matrix A; ex: the certified defense budget over the
node attribute matrix X ; Y': the output node classification results from the certified classifier;

1: Sample a set of Bernoulli noise Qp containing N1 samples;
2: Sample a set of Gaussian noise Qg containing N2 samples;
3: for wa € Op do
4: for wx € Og do
5: Calculate and collect the output of fg= under the noise of wa and wx;
6: Calculate and collect the output of g based on the output of fg«;
7:  end for
8:  Under Qg, collect the number of g returning 1 and 0 as n; and no, respectively;
9:  Estimate the lower bound of returning c as P;—. determined by the larger one between 71 and no;
10: if n1 > no and P,—, is larger than 0.5 with a confidence level larger than 1 — e or n1 < ng and Py—g
is larger than 0.5 with a confidence level larger than 1 — « then S
11: Calculate and collect the value of €x;
12:  else
13: return ABSTAIN
14:  endif
15: end for

16: Collect the number of cases where n1 > ng and estimate the lower bound of returning 1 as Py, —1;
17: if Py, —1 is larger than 0.5 with a confidence level larger than 1 — o then

18:  Calculate ex (out of the collected €x) and € 4 (based on the estimated Py, —1);
19:  Find Y out of the collected output of fo-;

20: returnY’, ex,and ea;

21: else

22:  return ABSTAIN

23: end if
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B.6 ORDERING THE INNER AND OUTER DEFENSE

We first review the general pipeline to achieve certified fairness defense. Specifically, we first model
the fairness attack and defense by formulating the bias indicator function g. Then, we achieve certified
defense over the node attributes for g, which leads to classifier gx . Finally, we realize certified de-
fense for gx over the graph topology, which leads to classifier g4, x . In general, we may consider the
certified defense over node attributes and graph topology as the inner certified classifier and outer cer-
tified classifier, respectively. Now, a natural question is: is if possible to achieve certified defense in a
different order, i.e., first achieve certified defense over the graph topology (as the inner classifier), and
then realize certified defense over the node attributes (as the outer classifier)? Note that this is not the
research focus of this paper, but we will provide insights about this question. In fact, it is also feasible
to achieve certified defense in the reversed order compared with the approach presented in our paper.
We provide an illustration in Figure 5. We follow a similar setting to plot this figure as in Section 3.3.
Specifically, in case (1), both A; ; © 0 and A; ; @ 1 lead to a positive outcome for g; in case (2), both
A; ; ®0and A; ; ® 1 lead to a negative outcome. However, considering the Gaussian distribution
around X; ;, samples will fall around case (1) with a much higher number compared with case (2).
Hence, in this example, it would be reasonable to
assume that the classifier with Bernoulli noise over
graph topology (the inner certified classifier) will
return 1 with a higher probability. This example
thus illustrates how certification following a different
order returns 1.

However, such a formulation bears higher computa-
tional costs in calculating the certified budgets. The
reason is that we are able to utilize a closed-form solu-
tion to calculate € x based on a set of Gaussian noise
and the corresponding output from the bias indicator
function. However, based on a set of Bernoulli noise
and the corresponding output from the bias indica-
tor function, we will need to solve the optimization
problem given in Theorem 2 to calculate € 4, which
bears a higher time complexity than calculating e x .
If we follow the strategy provided in Section 3.4 to
calculate the inner and outer certification budgets, the
certified budget of the inner certification will always
be calculated multiple times, while the certified budget of the outer certification will only be calcu-
lated once. Considering the high computational cost of calculating € 4, we thus argue that it is more
efficient to realize the certification over graph topology as the outer certified classifier.

Figure 5: An example illustrating how ELE-
GANT works with a different order to achieve
certified defense.

B.7 CERTIFICATION WITH ESTIMATED PROBABILITIES

In Section 3.4, we proposed to utilize estimated lower bounds of the probabilities (including P(c) in
Theorem 1 and Pr(gx (A & T' 4, X ) = 1) in Theorem 3) to perform certification in practice, consid-
ering the exact probability values are difficult to compute. In Appendix A.1 and Appendix A.5, we
have discussed that both theorems hold no matter exact probability values or estimated lower bounds
(of the probabilities above) are used. Now we present a brief review of other theoretical analysis
to show that they also hold. (1) for Lemma 2, note that taking a lower bound estimation to replace
the exact Pr(gx (A @ IT'a, X)) = 1) reduces the total size of H in Theorem 3. Correspondingly, the
formulated P;, —1 based on the estimated Pr(§x (A @& T 4, X) = 1) is smaller than that based on
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the exact Pr(gx (A @ I'a, X)) = 1). Hence Lemma 2 still holds when P;, —; is replaced with one
calculated based on the estimated Pr(gx (A @ T 4, X) = 1). (2) For Theorem 2, it holds no matter
how P(c) in Theorem 1 and Pr(gx (A @ T 4, X) = 1) in Theorem 3 are obtained. (3) For Theorem
4, according to Appendix A.7, it still holds as long as Theorem 1 holds. (4) For Proposition 1, in
all cases where Pr(g(A @& Iy, X + I'x) = 1) is identified to be larger than 0.5 with an estimated
lower bound, the (underlying) exact Pr(g(A & I',, X + I'x) = 1) will be larger than the estimated
probability value under the given confidence level, and thus will also be larger than 0.5. Here I, is a
sampled Bernoulli noise, i.e., Iy € A’. According to Appendix A.8, Proposition 1 still holds in this
case. (5) Finally, we conclude that Lemma 1 still holds since Theorem 1, Lemma 2, Theorem 3, and
Theorem 4 hold.

B.8 TIME COMPLEXITY ANALYSIS

We now present a comprehensive analysis on the time complexity of ELEGANT. We present the
analysis from both theoretical and experimental perspectives.

Theoretical. The time complexity is linear w.r.t. the total number of the random perturbations N, i.e.,
O(N). We perform 30,000 random perturbations over the span of node attributes and graph structure.
We note that the actual running time is acceptable since the certification does not require re-training
(which is the most costly process). In addition, all runnings do not rely on the prediction results from
each other. Hence they can be paralleled altogether theoretically to further reduce the running time.

Experimental. We perform a study of running time, and we present the results in Table 4. Specifically,
we compare the running time of a successful certification under 30,000 random noise samples and
a regular training-inference cycle with vanilla GCN. We observe that (1) although ELEGANT
improves the computational cost compared with the vanilla GNN backbones, the running time
remains acceptable; and (2) ELEGANT has less running time growth rate on larger datasets. For
example, E-SAGE has around 10x running time on German Credit (a smaller dataset) while only
around 4x on Credit Default (a larger dataset) compared to vanilla SAGE. Hence we argue that
ELEGANT bears a high level of usability in terms of complexity and running time.

B.9 ADDITIONAL RESULTS ON DIFFERENT GNN BACKBONES & BASELINES

We perform additional experiments over two popular GNNS, including APPNP (Klicpera et al., 2019)
and GCNII (Chen et al., 2020), to evaluate the generalization ability of ELEGANT onto different
backbones. We present all numerical results in Table 5 (in terms of accuracy), Table 6 (in terms of
fairness), and Table 7 (in terms of FCR). We observe that ELEGANT achieves comparable utility,
a superior level of fairness, and a large percentage of FCR. This verifies the satisfying usability of
ELEGANT, which remains consistent with the paper.

In addition, we provide a detailed fairness comparison between ELEGANT and robust GNNs from
(Jin et al., 2021) and (Wu et al., 2019b) in Table 8. We observe that the best performances still come
from the GNNs equipped with ELEGANT on all datasets. Hence we argue that ELEGANT exhibits
satisfying performance in usability, which remains consistent with the discussion in the paper.

Why ELEGANT Improves Fairness? We note that improving fairness is a byproduct of ELEGANT,
and our focus is to achieve certification over the fairness level of the prediction results. We now
provide a detailed discussion about why fairness is improved here. First, existing works found that
the distribution difference in the node attribute values and edge existence across different subgroups
is a significant source of bias (Dong et al., 2022a; Dai & Wang, 2021; Fan et al., 2021). However,
adding noise on both node attributes and graph topology may reduce such distributional divergence
and mitigate bias. Second, As mentioned in Section 3.4, the proposed strategy to obtain the output

27



Under review as a conference paper at ICLR 2025

predictions in ELEGANT is to select the fairest result among the output set ), where each output
is derived based on a sample I, € A’ (i.e., argmin};,w(ff’, Vi) s.t. Y’ € V'). Such a strategy
provides a large enough probability to achieve certification in light of Proposition 1. Meanwhile, we
point out that such a strategy also helps to significantly improve fairness since highly biased outputs
are excluded.

B.10  COMPLEMENTARY RESULTS

We provide the results in terms of Ago for Table 1 in Table 9, and we present the results of the
baselines for Figure 2 in Table 10, Table 11, Table 12, and Table 13. For Table 9, we observe that
ELEGANT does not constantly show a lower value of Ago. This is because the certification goal
in Table 1 is Agp instead of Ago. In addition, we note that debiasing existing GNN models is not
the goal of this paper. In addition, we provide the corresponding results in terms of accuracy for
Figure 3 in Table 14 and Table 15. We observe that although most performance remains stable, a
stronger noise (i.e., larger o and smaller 5) generally leads to worse but still comparable performance.
This is consistent with the discussion in Section 4.4, and this has been taken into consideration in the
discussion of the parameter selection strategy in Section 4.4.

Table 4: Comparison of running time (in seconds) on different datasets using different methods.

German Recidivism Credit
SAGE 5.27 £0.38 34.14 £1.08 40.11 £ 0.36
E-SAGE 53.23 +1.31 137.12 4+ 58.66 157.51 + 37.21
GCN 5.59 £+ 0.37 3494 + 1.16 40.59 + 0.32
E-GCN 53.79 + 30.19 212.94 + 10.38 214.11 + 10.31
JK 5.78 £0.43 34.68 4+ 0.88 39.44 + 1.56
E-JK 59.99 + 25.01 238.37 + 1.81 252.99 + 17.03

Table 5: Performance comparison of classification accuracy. Numbers are in percentage.

German Recidivism Credit
SAGE 673 +2.14 89.8 + 0.66 759 £ 2.18
E-SAGE 71.0 = 1.27 89.9 + 0.90 73.4 £ 0.50
GCN 59.6 + 3.64 90.5 +£0.73 65.8 +0.29
E-GCN 58.2 +1.82 89.6 + 0.74 65.2 +0.99
JK 633 +4.11 919+ 0.54 76.6 £+ 0.69
E-JK 62.3 + 4.07 89.3 + 0.33 77.7 £ 0.27
APPNP 69.9 +£2.17 95.3 £0.78 74.4 £+ 3.05
E-APPNP 69.4 + 0.83 95.9 £+ 0.02 74.6 + 0.32
GCNII 60.9 + 1.00 90.4 £+ 0.95 77.7+0.22
E-GCNII 60.4 + 4.45 88.8 + 0.24 77.6 + 0.02

C ADDITIONAL DISCUSSION

C.1 WHY CERTIFY A CLASSIFIER ON TOP OF AN OPTIMIZED GNN?

We note that the rationale of certified defense is to provably maintain the classification results against
attacks. Under this context, most existing works on certifying an existing deep learning model focus
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Table 6: Comparison of fairness (measured with Agp). Numbers are in percentage.

German Recidivism Credit
SAGE 50.6 = 15.9 9.36 + 3.15 13.0 £ 4.01
E-SAGE 16.3 = 10.9 6.39 + 2.85 8.94 + 0.99
GCN 374 +324 10.1 +3.01 11.1 +£3.22
E-GCN 3.52 +3.77 9.56 + 3.22 7.28 + 1.46
JK 41.2 £ 18.1 10.1 £3.15 9.24 4+ 0.60
E-JK 22.4 +1.95 6.26 + 2.78 3.37 +2.64
APPNP 27.4 +4.81 9.71 + 3.57 123+ 3.14
E-APPNP 13.1 +£5.97 2.23 + 0.04 10.8 + 0.07
GCNII 51.440.36 9.70 + 3.37 7.62 +0.29
E-GCNII 24.9 + 0.47 3.78 £ 0.93 1.72 + 0.81

Table 7: Performance in FCR on different datasets and backbone GNNs. Numbers are in percentage.

German Recidivism Credit
E-SAGE 98.7 +1.89 94.3 + 6.65 943+ 3.3
E-GCN 96.3 +1.89 96.0 & 3.56 92.7 +£5.19
E-JK 97.0 +3.00 89.5 £ 10.5 99.3 +0.47
E-APPNP 97.8 &+ 3.14 87.1 £3.79 95.54+6.43
E-GCNII 947 +5.27 92.9 +9.93 99.0 4+ 1.41

on certifying a specific predicted label over a given data point. Here, the prediction results to be
certified are classification results. Correspondingly, these works are able to certify the model itself.

However, the strategy above is not feasible in our studied problem. This is because we seek to
certify the level of fairness of a group of nodes. The value of such a group-level property cannot be
directly considered as a classification result, and thus they are not feasible to be directly certified.
Therefore, we proposed to first formulate a classifier on top of an optimized GNN. As such, achieving
certification becomes feasible. In fact, this also serves as one of the contributions of our work.

C.2 WHAT IS THE DIFFERENCE BETWEEN THE ATTACKING PERFORMANCE OF GNNS AND
THE FAIRNESS OF GNNSs?

In traditional attacks over the performance of GNNs, the objective of the attacker is simply formulated
as having false predictions on as many nodes as possible, such that the overall performance is
jeopardized. However, in attacks over the fairness of GNNs, whether the goal of the attacker can be
achieved is jointly determined by the GNN predictions over all nodes. Such node-level dependency in
achieving the attacking goal makes the defense over fairness attacks more difficult, since the defense
cannot be directly performed at the node level but at the model level instead. Correspondingly,
this necessitates (1) constructing an additional classifier as discussed in the previous reply, and (2)
additional theoretical analysis over the constructed classifier as in Theorem 1, 2, and 3 to achieve
certification.
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Table 8: Comparison of fairness (measured with Agp). Numbers are in percentage.

German Recidivism Credit
SAGE 50.6 + 15.9 9.36 + 3.15 13.0 +4.01
E-SAGE 16.3 +10.9 6.39 + 2.85 8.94 £+ 0.99
GCN 374+3.24 10.1 £3.01 11.1 £3.22
E-GCN 3.52 £3.77 9.56 + 3.22 7.28 + 1.46
JK 41.2 £ 18.1 10.1 £3.15 9.24 £+ 0.60
E-JK 22.4 + 1.95 6.26 + 2.78 3.37 + 2.64
(Jin et al., 2021) 14.8 +18.3 9.59 + 0.65 3.84 +0.17
(Wu et al., 2019b) 3.66 £+ 0.52 8.04 +2.97 7.10 £5.10

Table 9: The Ago of Table 1 in the paper. All numerical numbers are in percentage.

German Recidivism Credit
SAGE 30.43 £+ 0.07 3.71 £ 0.01 5.56 +0.03
E-SAGE 12.21 + 0.04 6.95 £+ 0.02 7.18 £+ 0.01
GCN 35.19 £ 0.07 5.06 £ 0.01 11.9 £0.02
E-GCN 8.32 £ 0.03 1.39 + 0.01 6.24 £+ 0.02
JK 18.10 £ 0.13 3.02 + 0.01 9.47 +£0.02
E-JK 23.68 + 0.02 2.74 + 0.01 2.55 +0.01

C.3 CERTIFICATION WITHOUT CONSIDERING THE BINARY SENSITIVE ATTRIBUTE

We utilize the most widely studied setting to assume the sensitive attributes are binary. However, our
certification approach is not designed to be tailored to the sensitive attributes. Therefore, our approach
can be easily extended to scenarios where the sensitive attributes are multi-class and continuous by
adopting the corresponding fairness metric as the function 7(+) in Definition 1.

C.4 How DO THE MAIN THEORETICAL FINDINGS DIFFER FROM EXISTING WORKS ON
ROBUSTNESS CERTIFICATION OF GNNS ON REGULAR ATTACKS?

Most existing works for robustness certification can only defend against attacks on either node
attributes or graph structure. Due to the multi-modal input data of GNNS, existing works usually fail
to handle the attacks over node attributes and graph structure at the same time. However, ELEGANT
is able to defend against attacks over both data modalities. This necessitates using both continuous
and discrete noises for smoothing and the analysis for joint certification in the span of the two input
data modalities (as shown in Figure 1).

Table 10: The results under (2°, 10~ 1) in terms of node classification accuracy, AUC score, F1 score,
Agp, and Agp Figure 2. All numerical numbers are in percentage.

2% 107Y Accuracy AUC F1 Score Asp Aro
GCN 58.4% 66.4% 63.9% 41.4% 33.4%
NIFTY 61.2% 68.1% 66.2% 33.9% 13.3%
FairGNN 55.2% 62.2% 61.4% 16.4% 5.99%
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Table 11: The results under (2!, 10°) in terms of node classification accuracy, AUC score, F1 score,
Agp, and Ago Figure 2. All numerical numbers are in percentage.

(24, 10% Accuracy AUC F1 Score Asp Ago
GCN 58.4% 66.4% 63.9% 41.4% 33.4%
NIFTY 61.2% 68.2% 66.2% 36.1% 13.3%
FairGNN 55.2% 62.2% 61.4% 16.8% 7.77%

Table 12: The results under (22, 10') in terms of node classification accuracy, AUC score, F1 score,
Agp, and Ao for Figure 2. All numerical numbers are in percentage.

(22,10 Accuracy AUC F1 Score Asp AEro
GCN 58.0% 66.6% 63.7% 41.4% 37.8%
NIFTY 61.2% 68.1% 66.0% 42.1% 13.3%
FairGNN 55.6% 62.1% 61.9% 16.0% 9.56%

C.5 DISCUSSION: DIFFERENCE WITH EXISTING SIMILAR WORKS

Here we mainly focus on discussing the difference between this work and (Bojchevski et al., 2020).

We note that (1) the randomized smoothing technique adopted in (Bojchevski et al., 2020) is different
from the proposed randomized smoothing approach on the graph topology in this paper and (2) the
techniques in (Bojchevski et al., 2020) tackle a different problem from this paper. We elaborate on
more details below.

The techniques in (Bojchevski et al., 2020) are different from this paper. Although both randomized
smoothing approaches are able to handle binary data, we note that the randomized smoothing
approach proposed in (Bojchevski et al., 2020) is data-dependent. However, the proposed randomized
smoothing approach in this paper is data-independent. We note that in practice, a data-independent
approach enables practitioners to pre-generate noises, which significantly improves usability.

The studied problem in (Bojchevski et al., 2020) is different from this paper. Although the authors
claimed to achieve a joint certificate for graph topology and node attributes in (Bojchevski et al.,
2020), all node attributes are assumed to be binary, which can only be applied to cases where these
attributes are constructed as bag-of-words representations (as mentioned in the second last paragraph
in the Introduction of (Bojchevski et al., 2020)). However, in this work, we follow a more realistic
setting where only graph topology is assumed to be binary while node attributes are considered as
continuous. This makes the problem more difficult to handle, since different strategies should be
adopted for different data modalities. In summary, compared with (Bojchevski et al., 2020), the
problem studied in this paper is more realistic and more suitable for GNNs.

Table 13: The results under (23, 102) in terms of node classification accuracy, AUC score, F1 score,
Agp, and Ao for Figure 2. All numerical numbers are in percentage.

(2%, 10%) Accuracy AUC F1 Score Asp AEgo
GCN 58.0% 67.7% 63.7% 42.6% 45.7%
NIFTY 58.8% 67.3% 63.1% 44.5% 19.4%
FairGNN 54.4% 61.4% 61.0% 16.9% 23.8%
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Table 14: Classification accuracy in Figure 3(a) with different settings. Numbers are in percentage.

5e-3 5e-2 5e-1 5e0

0 57.50 + 1.50 57.51 £+ 1.63 57.50 £ 1.58 55.67 +2.00
le-3 57.50 + 1.51 57.51 £+ 1.63 57.50 + 1.58 55.67 +2.00
5e-3 5749 + 1.52 57.50 + 1.64 57.50 + 1.58 55.67 +2.00
le-2 57.55 £1.50 57.51 £ 1.65 57.50 £+ 1.58 55.67 £ 2.00
5e-2 N/A 57.57 £1.59 57.50 + 1.58 55.67 £ 2.00
le-1 N/A 57.53 £ 1.57 57.50 + 1.59 55.67 +2.00
Se-1 N/A N/A 57.49 + 1.60 55.67 +2.00
1e0 N/A N/A 57.40 + 1.58 55.67 +2.00
5e0 N/A N/A N/A 55.76 + 1.86

Table 15: Classification accuracy in Figure 3(b) with different settings. Numbers are in percentage.

0.6 0.7 0.8 0.9
0 63.71 + 0.64 64.03 £ 0.66 65.87 £+ 0.49 64.88 + 0.46
20 63.71 + 0.64 64.03 + 0.66 65.87 £ 0.49 64.88 + 0.46
2! 63.67 + 0.64 64.04 + 0.67 N/A N/A
22 63.69 + 0.67 N/A N/A N/A
28 N/A N/A N/A N/A
24 N/A N/A N/A N/A

Based on the discussion above, we would like to note that no existing work can be directly adopted to
tackle the studied problem in this paper.

C.6 ADDITIONAL EXPERIMENTS ON DIFFERENT DATASETS

To further validate the performance of the proposed method, we also perform experiments with the
same commonly used popular GNN backbone models (as Section 4.2) on two Pokec datasets, namely
Pokec-z and Pokec-n. We present the experimental results in Table 16, where all numerical numbers
are in percentage. We observe that (1) the GNNs equipped with ELEGANT achieve comparable
node classification accuracy; (2) the GNNs equipped with ELEGANT achieve consistently lower
levels of bias; and (3) the values of the Fairness Certification Rate (FCR) for all GNNs equipped with
ELEGANT exceed 90%, exhibiting satisfying usability. All three observations are consistent with
the experimental results and the corresponding discussion presented in Section 4.2. Therefore, we
argue that the effectiveness of the proposed approach is not determined by the dataset and is well
generalizable over different graph datasets.

C.7 SCALABILITY OF ELEGANT

In this subsection, we discuss the scalability of ELEGANT. Specifically, we note that if the Gaussian
and Bernoulli noise is directly added over the whole graph, scaling to larger graphs would be difficult.
However, the proposed approach can be easily extended to the batch training case, which has been
widely adopted by existing scalable GNNs. Specifically, a commonly adopted batch training strategy
of scalable GNNs is to only input a node and its surrounding subgraph into the GNN, since the
prediction of GNNs only depends on the information of the node itself and its multi-hop neighbors,
and the number of hops is determined by the layer number of GNNs. Since the approach proposed in
our paper aligns with the basic pipeline of GNNs, the perturbation can also be performed for each
specific batch of nodes. In this case, all theoretical analyses in this paper still hold, since they also do
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Table 16: Experimental results on Pokec-z and Pokec-n datasets.

Pokec-z Pokec-n
ACC (1) Bias () FCR (1) ACC (1) Bias ({) FCR (1)
SAGE 63.13 £ 0.37 6.29 +0.20 - 57.60 +2.74 6.43 £ 1.08 -
E-SAGE 62.09 £2.22 4.18+1.87 94.00 £5.66 60.74 +1.87 5.23 £0.13 91.50 + 7.78
GCN 64.89+£093 3.44+0.16 - 59.86 + 0.09 4.26 + 0.40 -
E-GCN 6238+ 0.26 1.524+0.49 90.50 £0.71 59.83 £4.16 3.23 + 1.20 94.00 + 8.49
JK 63.06 + 1.00 7.89 + 3.05 - 57.70 £ 1.05 8.81 +2.46 -

E-JK 61.49+255 3.63£2.18 87.50+2.12 61.19+£0.50 5.60 £ 0.01 93.00 £ 9.90

not rely on the assumption of non-batch training. Therefore, we would like to argue that the proposed
approach can be easily scaled to large graphs.
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