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Abstract

In computer vision, it has achieved great success in adapting large-scale pretrained
vision models (e.g., Vision Transformer) to downstream tasks via fine-tuning. Com-
mon approaches for fine-tuning either update all model parameters or leverage
linear probes. In this paper, we aim to study parameter-efficient fine-tuning strate-
gies for Vision Transformers on vision tasks. We formulate efficient fine-tuning as a
subspace training problem and perform a comprehensive benchmarking over differ-
ent efficient fine-tuning methods. We conduct an empirical study on each efficient
fine-tuning method focusing on its performance alongside parameter cost. Further-
more, we also propose a parameter-efficient fine-tuning framework, which first
selects submodules by measuring local intrinsic dimensions and then projects them
into subspace for further decomposition via a novel Kronecker Adaptation method.
We analyze and compare our method with a diverse set of baseline fine-tuning
methods (including state-of-the-art methods for pretrained language models). Our
method performs the best in terms of the tradeoff between accuracy and parameter
efficiency across three commonly used image classification datasets.

1 Introduction

In the last few years, large-scale vision models and language models pretrained on ultra large-scale
data have seen a great surge of interest with promising performance [1–4]. Meanwhile, aided by
the rapid gains in hardware, their sizes keep growing rapidly. Currently, Vision Transformer (ViT)
models with billions of parameters such as ViT-Large [5] have been released. It is expected that
pretrained vision models with even larger orders of magnitude will emerge in the foreseeable future.

These large-scale pretrained models are powerful when transferred to downstream vision tasks.
However, deploying many independent instances of fine-tuned models can also cause substantial
storage and deployment costs and hinder the applicability of large-scale Vision Transformers to real-
world problems. Motivated by this and the importance of parameter-efficient learning [6–10], we aim
to study the parameter-efficient fine-tuning strategy for vision transformers. Conventional wisdom for
transfer learning in our computer vision community is fine-tuning all model parameters or leveraging
linear probes. However, performing full-model fine-tuning of pretrained Vision Transformers may
incur both financial and environmental costs [11], and requires a high computational budget and
becomes increasingly infeasible as the model size continuously grows. Another go-to strategy is
performing linear probing by stacking an additional trainable multi-layer perceptron (MLP) layer in
the end. It is parameter-efficient yet suboptimal in terms of performance. Ideally, we hope to design
fine-tuning strategies that can achieve the best tradeoff between efficiency and effectiveness (see
Fig. 1)—optimizing fine-tuning parameter-efficiency while allowing for the model to maintain the
effectiveness of transfer learning on downstream vision tasks, especially the image classification.

To this end, an essential question to ask is, what are the general guidelines one should adopt while
fine-tuning large-scale pretrained vision models on the downstream datasets? This work aims to
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Figure 1: The tradeoff between accuracy and parameter efficiency of various fine-tuning methods.
The accuracy and parameter efficiency are measured using the Vision Transformer (ViT-B-224/16)
via supervised pretraining across the average of three image classification datasets. Our method
places in the topleft corner and achieves the best tradeoff between accuracy and parameter efficiency.

answer the question by building a benchmark for fine-tuning Vision Transformers and proposing
a better and more parameter-efficient fine-tuning method. We choose Vision Transformers as the
pretrained vision models for efficient fine-tuning, which are representative mainstream state-of-the-art
(SOTA) models on a wide range of downstream vision tasks. Specifically, we experiment with two
types of Vision Transformers in the remainder of this paper: the one via Contrastive Language-
Image Pretraining (also known as CLIP) [12], and the one via supervised pretraining (we refer to as
Supervised ViT) [13]. In addition to Full-model Fine-tuning and linear probing, we re-implement
several SOTA efficient fine-tuning methods [6, 14, 7, 8, 15] (originally proposed for pretrained
language models) on vision tasks, and propose various baseline methods for comparison.

Aghajanyan et al. [16] show that pretrained language models have a low intrinsic dimension and can
still learn efficiently despite a low-dimensional reparameterization. Motivated by this observation, we
reformulate the task of efficient fine-tuning as a subspace training problem. Within this framework,
we measure the local intrinsic dimension of each module in Vision Transformers, which empirically
shows that the attention module dominates the training progress. Moreover, we propose a novel
parameter-efficient fine-tuning strategy named Kronecker Adaptation, where during fine-tuning,
pretrained weights are frozen, and only the updates to weights receive gradients. The weight updates
are decomposed to a set of Kronecker products, with the slow weights [17] shared across layers and
fast weights [17] further decomposed into low-rank matrices product to improve parameter efficiency.
We apply Kronecker Adaptation to attention weights, and it achieves the best average accuracy among
efficient fine-tuning methods while containing much less trainable parameters, e.g., 0.17% of all the
model parameters in Supervised ViT.

The contributions of this paper are summarized below:

• We build a benchmark1 for parameter-efficient fine-tuning of Vision Transformers on image
classification tasks by introducing our new baseline methods and several state-of-the-art
efficient fine-tuning strategies inspired from the NLP community. To our best knowledge,
this is the first empirical study of efficient fine-tuning of Transformers to date that considers
vision tasks.

• We formulate efficient fine-tuning as a subspace training problem and propose a novel frame-
work to solve it. We first choose submodules by measuring the local intrinsic dimension.
Then we employ the proposed Kronecker Adaptation method to decompose the weight
updates of submodules for trainable parameter deduction.

• We experiment our approach on three commonly used image classification datasets: CIFAR-
10 [18], CIFAR-100 [18], and SUN-397 [19]. The results demonstrate the effectiveness of

1We will release implementations of all the methods studied in this work.
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our method, which achieves the best tradeoff between accuracy and parameter efficiency, as
shown in Fig. 1.

2 Related Work

2.1 Transformers

Transformer [13] is a sequence-to-sequence architecture that makes heavy use of self-attention
mechanisms to replace the recurrence and convolution operations. It is initially used for machine
translation [20] and has shown outstanding performance in a wide range of natural language process-
ing (NLP) tasks, including reading comprehension [21], question answering [22], vision-and-language
tasks [23], etc. Since Radford et al. [1] first applied a stack of Transformer decoders to autoregres-
sive language modeling, Transformer-based language models have dominated NLP, achieving the
state-of-the-art in many tasks. A trend surfaced that using larger pretrained Transformers generally
results in better performance. Pretraining huge Transformer models like GPT-3 [24], which is an
autoregressive language model with 175 billion parameters, remains an active research direction.

At the same time, various types of Vision Transformers have gained attraction for computer vision
tasks. Dosovitskiy et al. [5] demonstrated state-of-the-art performance on image classification datasets
by large-scale pretraining and fine-tuning of a vanilla Vision Transformer. End-to-end models based
on Vision Transformers have also shown prominence on object detection [25]. Recently, there are
also other variants, including hierarchical Vision Transformers with varying resolutions and spatial
embeddings [26, 27] been proposed. Beyond doubt, the recent progress of large Transformer-alike
models posts great demands for developing efficient fine-tuning strategies.

2.2 Pretraining

In computer vision, fine-tuning pretrained models, e.g. [28, 29], has come to the forefront of deep
learning techniques due to its success in downstream tasks that can substantially outperform tuning
models with random initialization. For downstream tasks, such as image classification, image
retrieval [30, 31] and object detection [32], the resulting models after pretraining can extract feature
representations for input images, which will be further used in following task-specific models.
Pretraining in NLP [4, 2], has also achieved state-of-the-art performances in many downstream
tasks [33, 34]. Other pretrained models such as VLBERT [35, 36] demonstrate their effectiveness on
downstream vision-and-language tasks, e.g., recent works on vision-and-language pretraining such as
OSCAR [23] perform cross-modal alignment in their pretraining models. It is widely deemed that
fine-tuning on downstream datasets after pretraining on general domain data [2, 1] could provide a
substantial performance gain compared to training on task-specific data directly. In this paper, we
will mainly focus on the parameter-efficient fine-tuning of pretrained ViT.

2.3 Efficient Fine-tuning in NLP

In the natural language processing domain, existing fine-tuning methods proposed by NLP researchers
can be divided mainly into two categories depending on whether new trainable parameters are
introduced. Specifically, one is to train a subset of the model parameters, where the most common
approach is to use a linear probe on top of pretrained features [12]. The other alternative method
surfaces by including new parameters in between the network [15, 14, 6, 7, 37, 38]. Nevertheless,
two problems arise when adopting these methods for fine-tuning Vision Transformers. First, these
methodologies have not been investigated in the computer vision scenario, and it remains unclear
which one is preferred when adapted to vision tasks. It is furthermore uncertain if findings from
NLP tasks (e.g., question answering [39], natural language understanding [40], etc.) will transfer to
downstream vision applications. Second, considering these NLP fine-tuning methodologies are not
architecture-agnostic, there remain many open questions pertaining to the behavior of these methods
when they are applied to Vision Transformers. All these mentioned above comprise the purpose of
our work.
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3 Efficient Fine-tuning with Subspace Training

Given a large pretrained Vision Transformer model M with size |M|. Our goal is to develop a
parameter-efficient fine-tuning technique with trainable parameters θ of size d � |M|, that can
attain comparable performance with fine-tuning the whole model. Our ultimate goal is that one could
achieve satisfactory results in both efficacy and efficiency without the hassle of fine-tuning the full
model.

3.1 Subspace Training

A typical neural network contains numerous dense layers that perform matrix multiplication. The
weight matrices in these layers can be full-rank. When adapting to a specific task, however, Agha-
janyan et al. [16] show that the pretrained language models have a low intrinsic dimension and can
still learn efficiently despite a low-dimensional reparameterization.

Drawing inspiration from their observation and study, we hypothesize that the updates to weights of
Vision Transformers during each step in fine-tuning also have a low intrinsic rank when adapting
to downstream tasks and propose our method based upon this hypothesis. The intuition behind our
method is to perform subspace training on weight updates. In the standard training paradigm of
neural network models, the gradient is first computed, and then a step in the entire parameter space
D is taken. While in subspace training, we instead build a random d-dimensional parameter subspace
fromM, where generally d� |M|, and optimize directly in this subspace.

In fact, most current parameter-efficient NLP fine-tuning strategies perform subspace training. First,
given a large pretrained language model M with size |M|, they either select a submodule from
M or add an additional module toM. Denote the parameter vector from this module as Θ ∈ RD.
Then, they learn a projection P mapping Θ into a random d-dimensional subspace and perform
fine-tuning in that subspace to reduce computational cost. Therefore the efficient fine-tuning problem
is decomposed into two subproblems via subspace training: how to choose these submodules and
how to make the subspace projection.

3.2 The Proposed Kronecker Adaptation

To answer the two fundamental questions of efficient fine-tuning, how to choose these submodules
and how to make the subspace projection, we propose a novel framework that consists of two
corresponding strategies. First, we attempt to select submodules by measuring the local intrinsic
dimension. Second, we propose a Kronecker Adaptation method to perform the subspace projection
on the selected modules by exploiting parameterized hypercomplex multiplication layers (PHM) [41].
Zhang et al. [41] shows that the PHM layer can reduce learnable parameters to 1/n compared with
the fully-connected layer counterpart and achieve comparable performance. n is the user-defined
hyperparameter. Built upon the success of PHM, which uses a sum of Kronecker products that
generalize the vector outer products to higher dimensions in real space, we learn the projection matrix
P as a sum of Kronecker products.

3.2.1 Local Intrinsic Dimension

To measure the local intrinsic dimension, we follow the similar definition of [42] and define Θ in
subspace in the following way

Θ = Θ0 + Pθ, (1)
where Θ0 ∈ RD is the initial parameter vector of Θ when the training begins, P ∈ RD×d is the
projection matrix generated by the Fastfood transform [43], and θ ∈ Rd is the parameter vector in the
subspace. Subspace training proceeds by computing gradients with respect to θ and taking steps in
that subspace. By performing experiments with gradually larger values of d, we can find the subspace
dimension dt at which the performance of the modelM starts to reach a satisfactory solution. We
refer to dt the local intrinsic dimension of the module.

The module with the lowest local intrinsic dimension is selected. After selecting the attention weight
matrices as submodules, we project them into subspace for fine-tuning with the proposed Kronecker
Adaptation method. It trains attention weight matrices indirectly by optimizing decomposition
matrices of the update of attention weight matrices. We compute the decomposition as the sum of
Kronecker products while keeping the original matrices frozen to reduce the parameter cost.
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Figure 2: An illustration of Kronecker Adaptation. Ai denotes the shared weight matrix, with
i ∈ {1, . . . , n}. Bi is decomposed into two low-rank matrices ui and vi. h is the output of the
selected ViT submodule. x is the input to the ViT submodule. During fine-tuning process, only
matrices Ai, ui, and vi receive gradients so that to improve parameter efficiency.

3.2.2 Kronecker Product

The Kronecker product between matrix A ∈ Rm×n and B ∈ Rp×q , denoted by A⊗B ∈ Rmp×nq ,
is mathematically written in the following form:

A⊗B =

 a11B · · · a1nB
...

. . .
...

am1B · · · amnB,

 (2)

where aij shows the element in the i-th row and j-th column of A.

3.2.3 Kronecker Adaptation

Low-rank methods [16, 42] have demonstrated that strong performance can be achieved by optimizing
a task in a low-rank subspace. Similarly, we hypothesize that for an update matrix ∆W ∈ Rk×d in
the ViT, it can also be effectively adapted by learning transformations in a low-rank subspace. We
compute ∆W as the sum of n Kronecker products as follows:

∆W =

n∑
i=1

Ai ⊗Bi, (3)

where n is a hyperparameter representing the number of Kronecker products, Ai ∈ Rn×n, and Bi ∈
R k

n×
d
n . The proposed representation of the weight updates is composed of a sum of Kronecker

products between shared slow weights Ai and independent fast weights Bi, with i ∈ {1, . . . , n}. Bi

is of low rank and it is further decomposed into two low-rank matrices. We propose to parameterize
Bi ∈ R k

n×
d
n as the product of ui ∈ R k

n×r and vi ∈ Rr× d
n , where r is the rank of the matrix.

Overall, the expression of ∆W is:

∆W =

n∑
i=1

Ai ⊗Bi =

n∑
i=1

Ai ⊗
(
uiv

>
i

)
. (4)

The illustration of the Kronecker Adaptation method is shown in Fig. 2.

4 Analysis of Efficient Fine-tuning Methods

4.1 Discussion of SOTA methods

Adapter-tuning [6] is the first efficient fine-tuning work in the NLP community. It brings in an
additional trainable set of modules by adding a trainable bottleneck layer after the feedforward
network in each Transformer layer of the pretrained language models. A bottleneck layer consists of
a down and up projection pair that shrinks and recovers the size of token hidden states.
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Table 1: Parameter count in Adapter-tuning, LoRA, Compacter, and Kronecker Adaptation. L is the
number of layers in Transformer. k is the size of the input dimension to the Adapter layer. d is the
bottleneck dimension in the Adapter layer. dmodel is the Transformer hidden size. r denotes the rank
in the low-rank decomposition step. n is the number of Kronecker products. n is a hyperparameter
and usually very small, e.g., the number is 4 in our experiments.

Method # of parameters Complexity

Adapter-tuning [6] 4Lkd O (kd)
LoRA [7] 2Lrdmodel O (rdmodel)
Compacter [9] 4L( k

n
+ d

n
) + n3 O

(
k+d
n

)
Ours 2L( dmodel

n
+ r

n
) + n3 O

(
r+dmodel

n

)

Similar to the Adapter-tuning method where they use the bottleneck structure in the additional
layer, our method implements low-rank decomposition on the fast rank-one matrices [17]. The
critical functional difference is that our learned weights can be merged with the main weights during
inference, thus not introducing any latency, which is not the case for the Adapter layers.

LoRA[7] is another line of work for parameter-efficient language model tuning: it treats the model
parameters after fine-tuning as an addition of the pretrained parameters Θpretrained and task-specific
differences θtask , where Θpretrained is fixed and a new subset of model parameters are added on top.
Given a pretrained weight matrix W 0 ∈ Rd×k, they constrain its update by performing low-rank
decomposition on it: W0 + ∆W = W 0 + BA, where A ∈ Rr×k, B ∈ Rd×r, and the rank
r � min(d, k). By doing this, the weight matrices are split into two parts, where during training,
W 0 is frozen and does not receive gradient updates, while only A and B contain trainable parameters.

Our work differs from LoRA in that apart from performing low-rank decomposition on weight
updates, we also decompose weight updates to a set of Kronecker product decomposition. The
decomposed slow weight are shared across layers, further reducing the parameter cost.

Compacter [9] is a method for fine-tuning large-scale language models with an excellent tradeoff
between the number of trainable parameters, memory footprint, task performance compared to
existing methods. The Compacter method builds on ideas from Adapters [6] and it also brings in an
additional trainable set of modules by modifying the standard Adapter layer. It inserts task-specific
weight matrices into weights of pretrained models. Each Compacter weight matrix is computed as
the sum of Kronecker products between shared slow weights and fast rank-one matrices defined per
Compacter layer.

In a similar vein to Compacter, we also leverage the Kronecker product in our method to further
reduce parameter cost. Yet, apart from application domains, our method differs from Compacter in
that we do not bring additional trainable layers and introduce no latency. We first select submodules
by measuring the local intrinsic dimension and perform decomposition over these submodules. In
addition, all of our decomposition operations are implemented on the updates to weights rather than
weights themselves.

4.2 Analysis of Parameter Efficiency

We compute the parameter-efficiency of those fine-tuning methodologies, including ours as below:

• Adapter-tuning: In the standard setting, two Adapters are added per layer of a Transformer
model [44]. Each Adapter layer consists of 2 × k × d parameters for the down and up-
projection matrices respectively, where k is the size of the input dimension and d is the
Adapter’s bottleneck dimension. In the standard setting, the total number of parameters
for Adapters for a Transformer model with L layers of both an encoder and a decoder is,
therefore, |Θ| = 2× L× 2× k × d, which scales linearly with all three variables.

• LoRA: LoRA adds trainable pairs of rank decomposition matrices to existing weight matrices.
The number of trainable parameters is determined by the rank r and the shape of the original
weights: |Θ| = 2× L× dmodel × r, where dmodel is Transformer hidden size.
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• Compacter: Compacter shares the trained weight matrices {Ai}ni=1 consisting of n3 pa-
rameters across all layers, where n is the number of Kronecker products. Compacter also
has two rank-one weights for each Adapter layer consisting of k

n + d
n parameters, where

the Adapter layers are of size k × d, resulting in a total of 2 ×
(
k
n + d

n

)
parameters for

down and up-projection weights. Therefore, the total number of parameters of Compacter is
4× L×

(
k
n + d

n

)
+ n3 for a Transformer with L layers in the encoder and decoder.

• Our approach: In our approach, similarly, we decompose the updates to weights into a sum
of Kronecker products first and then further perform low-rank decomposition for the fast
weights. Because it is conducted on the weight updates, the total number of parameters in
this scenario will be: 2× L×

(
r+dmodel

n

)
+ n3.

The overall comparison of parameter counts is shown in Table 1. Our method has a complexity of
O
(
r+dmodel

n

)
with r being a small integer. This is lower than the other three SOTA methods, and our

approach greatly reduces the number of parameters. The exact numbers of fine-tuned parameters are
present in Table 2.

4.3 Explanations with Local Intrinsic Dimension

Measuring the intrinsic dimension of an objective function was first proposed in [42]. It is extended
in analyzing the quality of pretrained language models in Aghajanyan et al. [16]. They find that
analyzing fine-tuning through the lens of intrinsic dimension can offer empirical and theoretical
intuitions. Both of them study the intrinsic dimension of the entire model.

We propose to measure the intrinsic dimension of each module to show which components in ViT
are more critical empirically. We define the intrinsic dimension of each module as local intrinsic
dimension, to distinguish it from the intrinsic dimension of the whole model. We presume the
local intrinsic dimension is indicative of the contribution of each module during fine-tuning. The
conventional standard method of measuring the intrinsic dimensionality of an objective [42] asks
for performing grid search over different subspace dimensions d, training using standard SGD [45]
over the subspace reparameterization, and selecting the smallest d which can produce a satisfactory
solution (e.g., 90% of the full training metric). Likewise, we measure the local intrinsic dimension
via finding the smallest d for the measured module that can reach 90% of the full accuracy.

5 Experiments

Datasets We summarize the results by computing the average performance on CIFAR-10 [18],
CIFAR-100 [18], and SUN-397 [19]. CIFAR-10 contains 10 classes, and CIFAR-100 contains 100
classes. Both these datasets contain 60K images, with each class having the same number of images.
SUN-397 contains 130,519 images from 397 scene categories, including the abbey, balcony, cafeteria,
etc. Each category has more than 100 images. We use the official split for each of these datasets.
More results are given in the supplementary materials.

Implementation Details For benchmark experiments, we use the SGD [45] optimizer with the
learning rate and weight decay being automatically searched for all methods so that these two
hyperparameters will have the optimum combination. The batch size is set to 64. Training epochs are
set via grid search. We use different learning rates during Full-model Fine-tuning: lower learning rate
for the pretrained part (image encoder) than the randomly initialized part (linear head). We test two
types of pretrained 12-layer Vision Transformers: the one via unsupervised pretraining (CLIP) and
the one via supervised pretraining (Supervised ViT).

For intrinsic dimension experiments, we use the AdamW [46] as the optimizer, with the weight decay
of 10−8, learning rate of 10−5, and batch size of 32. The Fastfood transform [43] is applied to the
attention and multi-layer perceptron (MLP) module in the first layer of Supervised ViT, respectively.
The dimension d is measured from 0 − 1000 in both scenarios. Each model is fine-tuned for 300
epochs.

7



Table 2: Experimental result comparison on CIFAR-10 [18], CIFAR-100 [18], SUN-397 [19] datasets
in terms of accuracy (%) and number of fine-tuning parameters (#params). Two Vision Transformers
are evaluated, CLIP [12] and Supervised ViT [5]. We compare the proposed Kronecker Adaptation
method with three baseline categories: (1) commonly-used fine-tuning methods for vision models
(Full-model Fine-tuning and Linear-probing); (2) the re-implementation of SOTA methods for NLP
models; (3) various baseline methods introduced in this work. Our method achieves the best tradeoff
between accuracy and parameter efficiency: it obtains the best average accuracy among all efficient
fine-tuning methods, which is also comparable to Full-model Fine-tuning, while updating only 0.07%
of the model parameters in CLIP and 0.17% in Supervised ViT.

Method CLIP Supervised ViT

CIFAR-10 CIFAR-100 SUN-397 Average #params CIFAR-10 CIFAR-100 SUN-397 Average #params

Commonly-used fine-tuning methods for vision models

Full-model Fine-tuning 97.7 85.4 73.8 85.6 151,364,010 99.0 92.4 75.0 88.8 86,697,617
Linear-probing 94.8 80.1 72.4 82.4 86,697 96.3 87.7 70.1 84.7 86,697

SOTA methods for NLP models

BitFit [8] 92.1 76.0 70.8 79.6 233,873 92.3 81.0 71.8 81.7 349,701
Adapter-tuning [6] 94.7 81.4 77.1 84.4 190,545 98.4 90.6 74.2 87.7 1,813,929
AdapterDrop [14] 93.3 78.3 71.4 81.0 95,351 96.8 88.4 72.3 85.8 230,633
LoRA [7] 95.1 78.1 80.8 84.7 185,001 98.7 90.6 73.6 87.6 277,417

Baseline methods developed in this work

Transformer-probing 95.6 80.1 74.3 83.3 3,236,521 96.5 86.9 76.7 86.7 3,236,521
LoRA-Fix 92.5 77.1 60.0 76.5 135,849 96.2 88.3 72.0 85.5 203,689
LayerNorm Tuning 82.5 76.6 66.7 75.2 89,769 92.2 71.7 72.0 78.6 131,497
Attention Tuning 96.8 81.8 73.1 83.9 41,042,601 93.9 85.7 73.8 84.4 284,783,77
LePE Tuning 95.1 78.9 68.0 80.7 148,137 93.7 90.8 73.2 85.8 207,801
RPB Tuning 94.7 77.1 68.4 80.1 102,921 96.7 87.0 72.4 85.3 201,704

Kronecker Adaptation (Ours) 95.9 84.8 74.0 84.9 107,727 97.9 91.2 75.1 88.1 144,396

5.1 Baselines

Apart from our proposed method, for other researchers to benchmark with, we tested the following
baselines using both the Supervised ViT and CLIP:

First are commonly-used fine-tuning methods for vision models.

• Full-model Fine-tuning: it fine-tunes all the parameters of the model.

• Linear-probing: all parameters are fixed except for the task-specific classification layer.

The second types are SOTA methods borrowed from the NLP community.

• BitFit [8]: BitFit freezes all ViT parameters except for the bias-terms and the task-specific
classification layer.

• Adapter-tuning [6]: two Adapters are added in each Transformer layer.

• AdapterDrop [14]: Adapterdrop is an extension of Adapter-tuning methods where it drops
Adapters from lower Transformer layers during training and inference. In our experiments,
we dropped Adapters from all layers except for the last layer in ViT.

• LoRA [7]: LoRA adds trainable pairs of low rank decomposition matrices to pretrained
weight matrices. During fine-tuning, only the low rank decomposition matrices and task-
specific classification layers are updated. Similar to Hu et al. [7], we apply LoRA to W q

and W v matrices in the attention module.

The third types are the new baseline methods we developed.

• Transformer-probing: we stack an additional trainable Transformer block before the task-
specific classification layer. During fine-tuning, we keep the original pretrained model
parameters frozen and only tune the additional Transformer block and the task-specific
classification layers in the ViT and fix all other blocks.

• LoRA-Fix: we fix the matrix A in LoRA and only the matrix B receives gradients. B will
be updated along with the task-specific classification layer.
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• LayerNorm Tuning: we only tune the layernorm layers and the task-specific classification
layers in the ViT and fix all other blocks.

• Attention Tuning: we only tune the attention layers and the task-specific classification layers
in the ViT and fix all other blocks.

• LePE Tuning: We refer to the work in Dong et al. [27] by adding an additional locally-
enhanced positional encoding (LePE) in the pretrained Vision Transformer, and implement
it with a depthwise convolution operator [47] applying on matrix V in the attention layer:

Attention(Q,K,V ) = SoftMax
(
QKT /

√
d
)
V + DWConv(V ). (5)

During fine-tuning, we keep the original pretrained model parameters frozen and only tune
the LePE and the task-specific classification layer in the ViT and fix all other blocks.

• Relative Position Bias (RPB) Tuning: resorting to the SWIN Transformer [26], where they
include a relative position bias B in computing self-attention in the Vision Transformer:

Attention(Q,K,V ) = SoftMax
(
QKT /

√
d+ B

)
V . (6)

During fine-tuning, we keep the original pretrained model parameters frozen and only tune
the relative position bias and the task-specific classification layers in the ViT and fix all
other blocks.

LayerNorm Tuning, Attention Tuning, and BitFit shed light on which parameters in ViT matter more
during fine-tuning. Among all modules in ViT, multi-layer perceptron (MLP) tuning is not considered
a baseline because it is too parameter-expensive compared to others. Given that the special structure
of ViT and its variants, e.g., depthwise convolution operator and relative position bias, are different
from the NLP transformer, we actually made the first step towards parameter-efficient fine-tuning for
ViT via LePE Tuning and Relative Position Bias Tuning.

5.2 Results and Analysis

The experimental results of measured average accuracy across the three datasets are shown in Table 2.
In our analytical experiments, we first observe that Full-model Fine-tuning has the highest accuracy in
both scenarios, serving as a performance upperbound. Second, different efficient fine-tuning methods
exhibit diverse characteristics and perform differently on the same task. Third, the results from CLIP
are mostly consistent with the results from Supervised ViT. This suggests that the pretraining strategy
may not affect the selection of downstream fine-tuning strategy much. Fourth, previous methods
such as Adapter-tuning [6] and LoRA [7] are still effective, and their accuracy is substantially higher
than naive baselines, including BitFit and Attention-tuning regardless of the pretrained checkpoint.
Fifth, among naive baselines where only submodules or task-specific classification heads are tuned,
tuning the parameters of the attention layer turns out to be a surprisingly effective approach even
compared to some SOTA methods, though its parameter cost is significantly higher. This further
validates the effectiveness of our method by applying Kronecker Adaptation to attention weights.
Finally, our method outperforms all the SOTA methods borrowed from the NLP community as well as
their variants in both scenarios.

Furthermore, the average number of trainable parameters across three datasets is also shown in
Table 2. As can be seen, our Kronecker Adaptation method contains the lowest parameter cost
compared with other SOTA methods. This phenomenon is obviously noticeable when compared with
Full-model Fine-tuning, where our method takes less than 0.17% trainable parameters of end-to-end
Full-model Fine-tuning but it is capable of achieving comparable performance.

5.3 Intrinsic Dimension

Measuring intrinsic dimension [42] allows us to perform some comparison across the importance
of fine-tuning each module in the Transformer block. In this section, we measure the intrinsic
dimension of the two most fundamental modules in the Vision Transformer — the MLP module and
the attention module. The checkpoint we evaluate is the ViT-B-224/16 via supervised pretraining.
The MLP module and the attention module we evaluated are both in the first layer of ViT. The
results are representative and other layers follow the same trend. We use the remarkable Fastfood
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Figure 3: Validation Accuracy vs. Subspace Dimension d of MLP and the attention module for
Supervised ViT on CIFAR-100. The local intrinsic dimension dt of the attention module is lower
than that of the MLP.

Table 3: Kronecker Adaptation and Adapter-tuning ablation experiments with Supervised ViT on
CIFAR-10 [18], CIFAR-100 [18], and SUN-397 [19]. We report the average accuracy (%) across the
three datasets.

Method Average Accuracy

Kronecker Adaptation 88.1
Kronecker Adaptation to MLP modules 86.6
Adapters on attention layer 54.1
Standard Adapter-tuning 87.7

transform [43] to do the projection. The results are shown in Fig. 3. As a substantiating point to
performing Kronecker Adapting on attention layers, we can see the attention module has a lower
intrinsic dimension than the MLP module.

5.4 Ablation Studies

We ablate our method and Adapter-tuning using the settings in Table 2. Several intriguing properties
are observed. We first test the variant of our method by applying Kronecker Adaptation to MLP
modules. As can be seen, it performs worse than the original method where we apply Kronecker
Adaptation to attention modules. This phenomenon is consistent with our findings from naive baseline
experiments and intrinsic dimension experiments. Second, we test another variant of Adapter-tuning.
Instead of inserting two Adapters after the attention and feedforward modules respectively following
Houlsby et al. [6], we add Adapters in the attention layers. It can be observed that the standard
Adapter-tuning outperforms this variance, which suggests the effectiveness of the vanilla Adapter-
tuning when it is adapted to vision tasks.

6 Conclusion

In this paper, we conduct the first comprehensive comparison of efficient fine-tuning on the image
classification tasks using Vision Transformers. We also propose a better parameter-efficient fine-
tuning strategy in the principle of subspace training and parameterized hypercomplex multiplication,
which achieves the best tradeoff between accuracy and parameter efficiency. Looking into the future,
we plan to explore the generalization of our method to other tasks, especially in the vision-and-
language domain. We will release a benchmark by providing the implementation of all the methods
studied in this paper, which could be directly used in developing future efficient fine-tuning strategies
and will hopefully facilitate research in this area.
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