
Under review as submission to TMLR

Accelerating Non-Conjugate Gaussian Processes
By Trading Off Computation For Uncertainty

Anonymous authors
Paper under double-blind review

Abstract

Non-conjugate Gaussian processes (NCGPs) define a flexible probabilistic framework to
model categorical, ordinal and continuous data, and are widely used in practice. However,
exact inference in NCGPs is prohibitively expensive for large datasets, thus requiring
approximations in practice. The approximation error adversely impacts the reliability of the
model and is not accounted for in the uncertainty of the prediction. We introduce a family
of iterative methods that explicitly model this error. They are uniquely suited to parallel
modern computing hardware, efficiently recycle computations, and compress information
to reduce both the time and memory requirements for NCGPs. As we demonstrate on
large-scale classification problems, our method significantly accelerates training compared to
competitive baselines by trading off reduced computation for increased uncertainty.

1 Introduction

Non-conjugate Gaussian processes1 (NCGPs) form a fundamental interpretable model class widely used
throughout the natural and social sciences. For example, NCGPs are applied to count data in biomedicine,
categorical data in object classification tasks, and continuous data in time series regression. A NCGP assumes
the data is generated from an exponential family likelihood with a Gaussian process (GP) prior over the
latent function. Such a probabilistic approach is essential in domains where critical decisions must be made
based on limited information, such as in public policy, medicine or robotics.

Unfortunately, even the conjugate Gaussian case, where fitting a NCGPs reduces to GP regression, naively
has cubic time complexity OpN3q in the number of training data N and requires OpN2q memory, which
is prohibitive for modern large-scale datasets. For non-Gaussian likelihoods, inference has to be done
approximately, which generally exacerbates this problem. For example, inference via the Laplace approximation
(LA) boils down to finding the mode of the log posterior via Newton’s method, which is equivalent to solving
a sequence of regression problems (Bishop, 2006; MacKay, 1992; Spiegelhalter & Lauritzen, 1990).

Due to limited computational resources, large-scale problems often require approximations. The resulting
error affects a model’s predictive accuracy but also its uncertainty quantification. Hence, the question arises:
Can NCGPs be efficiently trained on extensive data without compromising reliability?

Recently, iterative methods have emerged which in the conjugate Gaussian case allow an explicit, tunable
trade-off between reduced computation and increased uncertainty (Trippe et al., 2019; Wenger et al., 2022b).
This computational uncertainty quantifies the inevitable approximation error in the sense of probabilistic
numerics (Cockayne et al., 2019b; Hennig et al., 2015; 2022; Oates & Sullivan, 2019).

Contributions. In this work, we take a similar approach and extend Wenger et al. (2022b)’s IterGP
(that assumes a conjugate Gaussian likelihood) to non-conjugate exponential family likelihoods. This is a
non-trivial extension, as the posterior is no longer Gaussian and multiple related regression problems have to

1Such a model is also called Generalized Gaussian Process Model (Chan & Dong, 2011) or Generalized Linear Model (Nelder
& Wedderburn, 1972). The latter name is sometimes used only for latent Gaussian models, which can lead to confusion. The
models studied in this work are generally of nonparametric nature. The resulting large linear problems are the main reason why
the algorithms we propose are relevant in the first place.

1

Under review as submission to TMLR

i=0, j=1

It
e
rN

C
G

P
-C

h
o
l ¶

i=0, j=5

·

i=1, j=0

¸

i=3, j=5

¹

0.01 0.02 0.03

Runtime in s

0.3

0.4

0.5

0.6

0.7

Loss

Train

Test

¶

It
e
rN

C
G

P
-C

G
(r

e
c
y
c
le

&
c
o
m

p
re

ss
)

· ¸ ¹

Figure 1: Binary Classification with IterNCGP. Comparison of two IterNCGP variants: (Top)
IterNCGP variant corresponding to data subsampling and solving each regression problem exactly in each
Newton step i. (Bottom) IterNCGP variant with a more informative policy (details in Section 3.2), recycling
of computations between Newton steps (details in Section 3.3) and compression to reduce memory (details in
Section 3.4). The panels show the marginal uncertainty () over the latent function at Newton step i and
solver iteration j. Using recycling, the current belief is efficiently propagated between mode-finding steps i
(❷ Ñ ❸) without performance drops (Right). Details in Appendix C.1.

be solved. Specifically, we propose (i) IterNCGP: a family of efficient inference algorithms for NCGPs with
a tunable trade-off between computational savings and added uncertainty (Section 3.1) with (ii) mechanisms
to tailor the inference algorithm to a specific downstream application (Section 3.2). In response to the specific
computational challenges in the non-conjugate setting, we develop (iii) novel strategies to optimally recycle
costly computations (Section 3.3) and (iv) to restrict the memory usage, with minimal impact on inference
(Section 3.4). Figure 1 illustrates the effectiveness of (ii), (iii) and (iv) on a binary classification task.

2 Background

Let pX,yq be a dataset of N input vectors txn P XuN
n“1 stacked into X “ px1, . . .xN qJ P RNˆD and

corresponding outputs y “ py1, . . . , yN qJ P YN , where X “ RD and Y “ R or Y “ N0 (regression) or
Y “ t1, . . . , Cu (classification).

2.1 Non-conjugate Gaussian Processes (NCGPs)

We consider the probabilistic model ppy,f | Xq “ ppy | fq ppf | Xq, where the vector f :“ fpXq P RNC is
given by a latent function f : X Ñ RC evaluated at the training data.

Prior. Assume a multi-output Gaussian process prior GP pm, Kq over the latent function with mean
function m : X Ñ RC and kernel function K : X ˆ X Ñ RCˆC . Therefore the latent vector has density
ppf | Xq “ N pf ;m,Kq with mean m :“ mpXq P RNC and covariance K “ KpX,Xq P RNCˆNC defined
by N2 blocks Kpxi,xjq P RCˆC . Each such block represents the covariance between the C latent functions
evaluated at inputs xi and xj .

Likelihood. Assume iid data, which depends on the latent function via an inverse link function λ : RC Ñ RC ,
s.t. ppy | fq “

śN
n“1 ppyn | λpfnqq, where ppyn | λpfnqq is a log-concave likelihood, e.g. any exponential

2

Under review as submission to TMLR

family distribution.2 For example, for Poisson regression the inverse link function is given by λpfnq “ exppfnq

and for multi-class classification by λpfnq “ softmaxpfnq.

For nonlinear inverse link functions, the posterior ppf | X,yq and predictive distribution ppy˛ | X,y,x˛q “
ş

ppy˛ | f˛qppf˛ | X,y,x˛qdf˛ are computationally intractable, requiring approximations.

2.2 Approximate Inference via Laplace

A popular way to perform approximate inference in a NCGP is to use a Laplace approximation (LA) (Bishop,
2006; MacKay, 1992; Spiegelhalter & Lauritzen, 1990). The idea is to approximate the posterior

ppf | X,yq « qpf | X,yq :“ N pf ;fMAP,Σq, (1)

with a Gaussian with mean given by the mode fMAP of the log posterior and covariance Σ :“ ´p∇2 log ppfMAP |

X,yqq´1 given by the negative inverse Hessian (with respect to f) at the mode. Due to the assumed GP
prior over the latent function, the log posterior is given by

Ψpfq :“ log ppf | X,yq
c
“ log ppy | fq ` log ppf | Xq

c
“ log ppy | fq ´

1
2 pf ´ mqJK´1pf ´ mq (2)

We use c
“ to denote equality up to an additive constant.

Mode-Finding via Newton’s Method. To find the mode fMAP, one typically uses Newton steps, i.e.

fMAP « fi`1 “ fi ´ ∇2Ψpfiq
´1 ¨ ∇Ψpfiq, (3)

where ∇Ψpfiq “ ∇ log ppy | fiq ´ K´1pfi ´ mq and ∇2Ψpfiq “ ´W pfiq ´ K´1. The negative Hessian
W pfiq :“ ´∇2 log ppy | fiq of the log likelihood at fi is positive definite for all f , since we assumed a
log-concave likelihood. Therefore Ψ is concave and the Newton updates are well-defined.

2.3 Predictions

Using the LA at fi « fMAP in place of the posterior, the predictive distribution for the latent function
ppfp¨q | X,yq “

ş

ppfp¨q | fq qpf | X,yq df is a Gaussian process GP pmi,˚, Ki,˚q, with mean and covariance
functions

mi,˚p¨q :“ mp¨q ` Kp¨,XqK´1pfi`1 ´ mq, (4)
Ki,˚p¨, ¨q :“ Kp¨, ¨q ´ Kp¨,XqK̂pfiq

´1KpX, ¨q, (5)

where K̂pfiq :“ K ` W pfiq
´1 (cf. Eq. 3.24; Rasmussen & Williams, 2006). We obtain the predictive

distribution for y˛ at test input x˛ by integrating this approximative posterior against the likelihood, i.e.

ppy˛ | X,y,x˛q “

ż

ppy˛ | f˛q ppf˛ | X,y,x˛q df˛.

This C-dimensional integral can be approximated via quadrature, MC-sampling or specialized approaches
(like the probit method (MacKay, 1992) for a categorical likelihood and softmax inverse link function).

3 Computation-Aware Inference in NCGPs

While Newton’s method typically converges in a few steps for a log-concave likelihood, each step in (3)
requires linear system solves with symmetric positive (semi-)definite matrices of size NC ˆ NC. Naively
computing these solves via Cholesky decomposition is problematic even for moderately sized datasets due to
its cubic time OpN3C3q and quadratic memory complexity OpN2C2q. We will demonstrate in the following
how to circumvent this issue by reducing the computations in exchange for increased uncertainty about the
latent function.

2The Hessian of an exponential family likelihood is the negative Hessian of its log-partition function, which equals the positive
definite covariance matrix of its sufficient statistics.

3

Under review as submission to TMLR

−2.5 0.0 2.5 5.0

X

−5

0

5

i=0

−2.5 0.0 2.5 5.0

X

i=1

−2.5 0.0 2.5 5.0

X

i=2

Latent function f

y

ŷ(fi)±2
√

diag(W (fi)−1)

Prior GP(m,K)

Posterior GP(mi,∗, Ki,∗)

Figure 2: Approximate Inference in NCGPs as Sequential GP Regression. Performing a LA at a
Newton iterate fi results in a posterior GP that coincides with the posterior to a GP regression problem
with pseudo targets ŷpfiq observed with Gaussian noise N

`

0,W pfiq
´1˘

. The plot shows an illustration of
this connection for binary classification on a toy problem with the latent function drawn from a GP. Notice
how similar the posteriors are between Newton steps. This motivates our proposed strategy for recycling
computations between steps in Section 3.3. Details in Appendix C.1.

3.1 Derivation of the IterNCGP Framework

As a first step, we reinterpret the Newton iteration as a sequence of GP regression problems and solve each of
them efficiently via an iterative, computation-aware method.

Newton’s Method as Sequential GP Regression. The Newton iteration (Equation (3)) can be
understood as a sequence of GP regression problems3 by rewriting the posterior f „ GP pmi,˚, Ki,˚q in step i
as

mi,˚p¨q “ mp¨q ` Kp¨,XqK̂pfiq
´1pŷpfiq ´ mq (6)

Ki,˚p¨, ¨q “ Kp¨, ¨q ´ Kp¨,XqK̂pfiq
´1KpX, ¨q, (7)

where ŷpfiq :“ fi ` W pfiq
´1∇ log ppy | fiq (derivation in Appendix A.1). At each Newton iterate fi, Equa-

tions (6) and (7) define a GP posterior for a GP regression problem with pseudo targets ŷpfiq observed
with Gaussian noise N

`

0,W pfiq
´1˘

. Figure 2 shows an illustration of this interpretation. If W pfiq
´1 does

not exist, e.g. in multi-class classification, we substitute its pseudo-inverse W pfiq
:, which for multi-class

classification can be evaluated efficiently (see Appendix A.6).4

Computation-Aware Sequential GP Regression. Reframing the Newton iteration as sequential GP
regression does not yet solve the need for linear solves with a matrix of size NC ˆ NC. However, we can
leverage recent advances for GP regression. Specifically, Wenger et al. (2022b) propose to use a probabilistic
linear solver (PLS) (Cockayne et al., 2019a; Hennig, 2015; Wenger & Hennig, 2020) to iteratively compute an
approximate GP posterior

mi,jp¨q :“ mp¨q ` Kp¨,Xqvj (8)
Ki,jp¨, ¨q :“ Kp¨, ¨q ´ Kp¨,XqCjKpX, ¨q (9)

where vj “ Cjpŷpfiq ´mq. Their algorithm IterGP, is matrix-free, i.e. only relies on matrix-vector products
s ÞÑ K̂pfiqs, reducing the required memory from quadratic to linear, and efficiently exploits modern parallel
GPU hardware (Charlier et al., 2021). Crucially, by Wenger et al. (2022b, Thm. 2), the posterior covariance
in Equation (9) exactly quantifies the error in each approximate Newton step introduced by only using limited
computational resources, i.e. running the linear solver for j ! NC iterations. This reduces the time complexity
to OpjN2C2q. The approximate precision matrix in Equations (8) and (9),

Cj “ SjpSJ
j K̂pfiqSjq´1SJ

j
jÑNC

ÝÝÝÝÑ K̂pfiq
´1, (10)

3This connection can be interpreted as a function-space viewpoint on iterative reweighted least-squares (Holland & Welsch,
1977), when applied to inference in Generalized Linear Models.

4Alternatively, one can place a prior on the sum of the C latent functions (MacKay, 1998, Eqn. (10)).

4

Under review as submission to TMLR

with Sj “
`

s1, . . . , sj

˘

P RNCˆj has rank j. As in (Wenger et al., 2022b), we refer to the vectors sj Ð

policypq as actions defined by a user-specified policy. We discuss the policy choice for NCGPs in Section 3.2.

Summary. Finding the posterior mode fMAP and the corresponding predictive distributions (Equations (4)
and (5)) can be viewed from different angles. Through an optimization lens, we use Newton updates, each
maximizing a local quadratic approximation of the log posterior. From a probabilistic perspective, we solve a
sequence of related GP regression problems and IterGP enables us to propagate a probabilistic estimate of
the latent function throughout the entire optimization process.

Our IterNCGP Algorithm. Our algorithm’s core structure consists of an outer loop (see Algorithm 2 in
Appendix B.2) of i approximate Newton steps, computed via an inner loop (see Algorithm 3 in Appendix B.3)
of j PLS iterations. For Gaussian likelihoods, the LA (Equation (1)) is exact and a single Newton step suffices.
Consequently, our framework generalizes IterGP to arbitrary log-concave likelihoods (Theorem A.2). We
now explore the role of the policy and its potential for actions tailored to specific problems (Section 3.2). We
also leverage the relatedness of GP regression problems in the outer loop for further speedups (Section 3.3)
and introduce a mechanism to control IterNCGP’s memory usage (Section 3.4).

The Marginal Uncertainty Decreases in the Inner Loop. As we perform more iterations in the inner
loop, the marginal uncertainty captured by the posterior covariance (Equation (9)) contracts, i.e. for each i it
holds (element-wise) that diagpKi,jpx,xqq ě diagpKi,kpx,xqq for any k ě j and arbitrary x. This is because
the approximate precision matrix Cj grows in rank with each solver iteration. For a detailed derivation, see
Appendix A.3.

3.2 Policy Choice: Targeted Computations

Algorithm 3 defines a family of inference algorithms. Its instances, defined by a concrete action policy, generally
behave quite differently. To better understand what effect the sequence of actions Sj “

`

s1, . . . , sj

˘

P RNCˆj

has on IterNCGP, we consider the following examples.

Unit Vector Policy “ Subset of Data (SoD). Choosing the actions sj “ ej to be unit vectors with all
zeros except for a one at entry j, corresponds to (sequentially) conditioning on the first j data points in
the training data in each GP regression subproblem, since Kp¨,XqSj “ Kp¨,X1:jq. Therefore this policy is
equivalent to simply using a subset X1:j P RjˆD of the data and performing exact GP regression (e.g. via
a Cholesky decomposition) in each Newton iteration in Algorithm 2. This basic policy shows how actions
target computation as illustrated in the top row of Figure 3.

(Conjugate) Gradient Policy. Instead of targeting individual data points, we can also specify weighted
linear combinations of them to target the data more globally. E.g. , using the current residual sj “ rj´1 :“
ŷpfiq ´ m ´ K̂pfiqvj´1, approximately targets those data most, where the posterior mean prediction is far
off.5 As Wenger et al. (2022b) show, this corresponds to using conjugate gradients (CG) (Hestenes & Stiefel,
1952) to estimate the posterior mean. This policy is illustrated in the bottom row of Figure 3.

3.3 Recycling: Reusing Computations

Using IterGP with a suitable policy for GP inference allows us to solve each GP regression problem more
efficiently. However, for NCGP inference, we must solve multiple regression problems—one per mode-finding
step. Figure 2 suggests that GP posteriors across steps are highly similar. Leveraging this observation,
we develop a novel approach, designed specifically for the NCGP setting, that efficiently recycles costly
computations between outer loop steps (pseudo-code in Algorithm 1).

The cost of IterNCGP is dominated by repeated matrix-vector products with K (see Section 3.5). However,
these costly operations can be recycled and used over multiple Newton steps: Consider the matrix-vector
products with an action vector s in the first and second mode-finding step as an example:

Step i “ 0: s ÞÑ K̂pf0qs “ Ks ` W pf0q´1s

Step i “ 1: s ÞÑ K̂pf1qs “ Ks ` W pf1q´1s.

5Since rj´1 « ŷpfiq ´ m ´ Kvj´1 “ ŷpfiq ´ mi,j´1pXq.

5

Under review as submission to TMLR

x1

x
2

True posterior mean m0,∗ m0,1 m0,10

It
e
rN

C
G

P
-C

h
o
l

m0,19

It
e
rN

C
G

P
-C

G

Figure 3: Different IterNCGP Policies Applied to GP Classification. (Left) The true posterior
mean m0,˚ () for binary classification (/) and its decision boundary (). (Right) Current posterior
mean estimate after 1, 10, and 19 iterations with the unit vector policy (Top) and the CG policy (Bottom).
Shown are the data points selected by the policy in this iteration with the dot size indicating their relative
weight. For IterNCGP-Chol, data points are targeted one by one and previously used data points are
marked with (). Details in Appendix C.1

Algorithm 1: Recycling: Virtual Solver Run with Optional Compression.

Input: Buffers S,T P RNCˆB , access to products with W´1, compression parameter R ď B (optional)
Output: C0, updated buffers S,T

1 procedure VirtualSolverRun(S,T ,W´1) Time Memory
2 M Ð SJ

pT ` W´1Sq M “SJ
pK ` W´1

qS P RBˆB OpBτW ´1 `B2NCq OpB2
q

3 U ,Λ Ð ED(M), Eigendecomposition M “ UΛUJ OpB3
q OpB2

q

U “pu1,. . . ,uBq,Λ“diagpλ1,. . . ,λBqPRB̂ B , λ1 ě . . .ěλB

4 procedure Compression(U ,Λ, R)
5 U Ð pu1, . . . ,uRq, Λ Ð diagpλ1, . . . , λRq Truncation OpBRq

6 S Ð SU , T Ð TU Update buffers OpBRNCq OpRNCq

7 Q0 Ð SΛ´1{2 Construct root C0 “ Q0Q
J
0 “ SΛ´1SJ OpR2NCq OpRNCq

8 return C0 Ð Q0Q
J
0 and S,T C0 has rank R

C0 is never formed explicitly in memory but evaluated lazily via its root Q0, i.e. w ÞÑ C0w “ Q0pQJ
0 wq.

Since K is independent of fi, the product Ks is shared among both operations.

Virtual Solver Run. Assume we have used B action vectors ps1, . . . , sBq “: S P RNCˆB in step i “ 0, and
buffered the matrix-vector products pKs1, . . . ,KsBq “ KS “: T . In the next Newton step i “ 1 we apply
the same actions to a new linear system of equations. From Equation (10) we obtain

C “ SM´1SJ with M :“ SJpKS ` W pf1q´1Sq “ SJpT ` W pf1q´1Sq. (11)

So, we can imitate a solver run with the previous actions S and construct C without ever having to multiply
with K. The associated computational costs comprise memory for the two buffers S, T as well as the runtime
costs for matrix-matrix products in Equation (11) and inverting M . This virtual solver run is generally
orders of magnitude cheaper, than running the solver from scratch with new actions (details in Appendix B.4).
Within IterGP (Algorithm 3), we can use this matrix as an initial estimate C0 Ð C of the precision matrix.
Subsequently, the algorithm can proceed as usual with new actions.

6

Under review as submission to TMLR

m
1
,0

R = 0 R = 1 R = 3 R = 10
K

1
,0

Figure 4: Compressed Beliefs. Recycled initial
beliefs in the second Newton step (i “ 1) with means
m1,0 (Top) and (co-)variance functions K1,0 (Bot-
tom) using compression with different buffer sizes
R P t0, 1, 3, 10u. Buffer size R “ 0 is equivalent to
not using recycling. The larger the buffer size/rank
of C0, the more expressive the belief. Details in
Appendix C.1.

The presented recycling approach can easily be extended to all Newton steps. Whenever K is multiplied
with an action vector, the vector itself and the resulting vector are appended to the respective buffers S and
T . For each Newton step, an initial C0 can be constructed via Algorithm 1.

Numerical Perspective. Crucially, the above strategy does not affect the solver’s convergence properties:
From a numerical linear algebra viewpoint, the strategy above is a form of subspace recycling (Parks et al.,
2006). Specifically, C0, as described above, defines a deflation preconditioner (Frank & Vuik, 2001): The
projection of the initial residual r0 “ pŷ ´ mq ´ K̂v0 for the first iterate v0 “ C0pŷ ´ mq onto the subspace
spantSu spanned by the actions is zero (see Appendix A.4 for details). That means, the solution within the
subspace spantSu is already perfectly identified at initialization.

Probabilistic Perspective. Via Equation (9), we can quantify the effect of C0 on the total marginal
uncertainty of predictions at the training data TrpKi,0pX,Xqq “ TrpKq´TrpKC0Kq. Assuming observation
noise W´1 “ 0 and all actions in S eigenvectors of K̂ “ K, it simplifies to

TrpKi,0pX,Xqq “ TrpKq ´ TrpMq, (12)

see Appendix A.4. The second term TrpMq describes the reduction of the prior uncertainty due to C0. It
can be maximized (which is our goal) when S contains those eigenvectors of K̂ with the largest eigenvalues.
We take this insight as motivation for a buffer compression approach that we describe next.

3.4 Compression: Memory-Efficient Beliefs

Whenever K is applied to an action vector, the buffers S,T P RNCˆB grow by NC entries. To limit memory
requirements for large-scale data, we propose a compression strategy (see Algorithm 1).

Compression via Truncation. In Algorithm 1, M´1 P RBˆB is computed via an eigendecomposition
M “ UΛU , such that C0 “ Q0Q

J
0 can be represented via its matrix root Q0 :“ SUΛ´1{2 for efficient

storage and matrix-vector multiplies. To limit memory usage, we can use a truncated eigendecomposition of
M . Based on the intuition we gained from Equation (12), it makes sense to keep the largest eigenvalues (to
maximize the trace) and corresponding eigenvectors. Keeping the R largest eigenvalues/-vectors yields a rank
R approximation M̃ “ ŨΛ̃Ũ of M .

Compression as Re-Weighting Actions. Forming C0 “ SM̃´1SJ from the above approximation is
equivalent to a virtual solver run with the modified buffers S̃ “ SU P RNCˆR, T̃ “ KpSUq “ TU P RNCˆR

in Equation (11). This shows that the truncated eigendecomposition effectively re-weights the previous B
actions to form R new ones—and the weights are the eigenvectors from M that maximize the uncertainty
reduction. The limit R on the buffer size controls the memory usage as well as the rank of C0 and thereby
the expressiveness of the associated belief (see Figure 4).

3.5 Cost Analysis of IterNCGP

IterNCGP’s total runtime is dominated by the repeated application of K in Algorithm 3, i.e. OpJτKq,
with J describing the total number of solver iterations over all Newton steps. τK denotes the cost of a
single matrix-vector product with K. Typically, τK is quadratic in the number of training data points. In
terms of memory, the buffers S, T and the matrix root Q are the decisive factors with OpBNCq. Without

7

Under review as submission to TMLR

compression, their final size is B “ J . Otherwise, their maximum size is given by the sum of the rank bound
R and the maximum solver iterations in Algorithm 3 (Appendix B.4 provides an in-depth discussion of
runtime and memory costs).

4 Related Work

The Laplace approximation (Bishop, 2006; MacKay, 1992; Rue et al., 2009; Spiegelhalter & Lauritzen, 1990)
is commonly used for approximate inference in (Bayesian) Generalized Linear Models. Here, we consider
the function-space generalization of Bayesian Generalized Linear Models, namely non-conjugate GPs, for
which a multitude of approximate methods have been proposed, arguably the most popular being variational
approaches (e.g. Khan et al., 2012), such as SVGP (Hensman et al., 2015; Titsias, 2009). In contrast, to
address the computational shortcomings of NCGPs on large datasets, we leverage iterative methods to obtain
and efficiently update low-rank approximations. Similar approaches were used previously to accelerate the
conjugate Gaussian special case (Cunningham et al., 2008; Gardner et al., 2018; Guhaniyogi & Dunson, 2015;
Murray, 2009; Wang et al., 2019; Wenger et al., 2022a), binary classification (Zhang et al., 2014) and general
Bayesian linear inverse problems (Spantini et al., 2015). Trippe et al. (2019) is closest in spirit to our approach
if viewed from a weight-space perspective. Their choice of low-rank projection corresponds to a specific policy
in our framework. Our approach not only enables the use of policies that are more suited to the given link
function, but also saves additional computation, as well as memory, via recycling and compression. In each
Newton iteration, the posterior for the current regression problem is approximated via IterGP (Wenger
et al., 2022b), which internally uses a probabilistic linear solver (Cockayne et al., 2019a; Hennig, 2015; Wenger
& Hennig, 2020). Therefore, IterNCGP is a probabilistic numerical method (Cockayne et al., 2019b; Hennig
et al., 2015; 2022; Oates & Sullivan, 2019): It quantifies uncertainty arising from limited computation.

5 Experiments

We apply IterNCGP to a Poisson regression problem to explore the trade-off between the number of (outer
loop) mode-finding steps and (inner loop) solver iterations (Section 5.1). In Section 5.2, we demonstrate our
algorithm’s scalability and the impact of compression on performance.

5.1 Poisson Regression

Consider count data y P NN
0 generated from a Poisson likelihood with unknown rate λ : X Ñ R`. The log

rate f is modeled by a GP. See Appendix C.2 for details.

Data & Model. We generate a synthetic dataset by (i) sampling the log rate from a GP with an RBF
kernel (ii) transforming it into the latent rate λ by exponentiation, and (iii) sampling counts yn P N0 from
the Poisson distribution with rate λpxnq. The functions f , λ, and the resulting count data are shown in
Figure 5 (Right). Our model uses the same RBF prior GP to avoid model mismatch.

Newton Steps vs. Solver Iterations. From a practical standpoint, the performance achievable within a
given budget of solver iterations is highly relevant: How many linear solver iterations should be performed
for each regression problem before updating the problem to maximize performance? To investigate this, we
use IterNCGP-CG and distribute 100 iterations uniformly over t5, 10, 20, 100u outer loop steps. Each run
uses recycling without compression and is repeated 10 times.

Results. Figure 5 (Left) indicates that the strategy with a single iteration per step is the most efficient. An
explanation might be that there is no reason to spend compute on an “outdated” regression problem that
could be updated instead. Of course, this only applies if recycling is used, such that the effective number of
actions accumulates. As long as B ! N , the cost due to repeated recycling (OpNq) is dwarfed by the cost of
products with K (OpN2q). Figure 5 (Right) shows an IterNCGP-CG run with one iteration per step. As
we spend more computational resources, our estimates approach the underlying latent function and, where
data is available, the uncertainty contracts.

8

Under review as submission to TMLR

0.0 0.1 0.2 0.3 0.4 0.5

Runtime in s

0.0

2.5

5.0

7.5

10.0

12.5

15.0
Test loss

j≤1

j≤5

j≤10

j≤20

−5

0

5

i=0, j=0

0.0 0.5 1.0

X

0

20

i=24, j=0

0.0 0.5 1.0

X

i=47, j=1

0.0 0.5 1.0

X
Latent log rate f

Latent rate λ

Posterior GP(mi,j , ki,j)

Posterior (via MC)

Counts y

Figure 5: Poisson Regression with IterNCGP. (Left) Test loss performance for IterNCGP-CG with
recycling and four schedules (j ď 1, 5, 10 or 20) over 100, 20, 10 or 5 steps (always using the same total budget
of 100 iterations). For each schedule, the median (solid line) and min/max (shaded area) over 10 runs are
reported. The crosses indicate the end of each run. (Right) Posterior GP pmi,j , ki,jq for the latent log rate f
(Top) and the corresponding belief about the rate λ (Bottom) computed via MC at three timepoints during a
run of IterNCGP. The shaded 95% credible intervals show how stopping early trades less computation for
increased uncertainty. Details in Appendix C.2.

5.2 Large-Scale GP Multi-Class Classification

Here, we showcase IterNCGP’s scalability. See Appendix C.3 for details.

Data & Model. We generate N “ 105 data points from a Gaussian mixture model with C “ 10 classes. We
use the softmax likelihood and assume independent GPs (each equipped with a Matérnp 3

2 q kernel) for the C
outputs of the latent function. While this experiment uses synthetic data, the latent function is not drawn
from the assumed GP model and thus the kernel is not perfectly identified. Also note that, if we formed K̂
in (working) memory explicitly, this would require pNCq2 ¨ 8 byte “ 8000 GB (in double precision). Solving
the linear systems precisely, e.g. via Cholesky decomposition, is therefore infeasible, whereas our family of
methods is matrix-free and can still be applied.

Methods. We compare the subset of data (SoD) approach from Section 3.2, the popular variational
approximation SVGP (Hensman et al., 2015; Titsias, 2009) and our IterNCGP-CG. For SoD, we materialize
K̂ in memory and compute its Cholesky decomposition. Four different subset sizes are used—the largest
one Nsub “ 2000 requires 3.2 GB of memory for K̂. For SVGP, we use the implementation provided by
GPyTorch (Gardner et al., 2018). We optimize the ELBO for 104 seconds using Adam with batch size
1024 and determine suitable hyperparameters via grid search over the learning rate α and the number of
inducing points U . Only the best three settings are included in our final benchmark. IterNCGP-CG is
applied to the full training set with recycling and R P t8, 10u. The number of solver iterations is limited by
j ď 5. We use KeOps (Charlier et al., 2021) and GPyTorch for fast kernel-matrix multiplies. For this
work, we consider kernel hyperparameter optimization out of scope—all methods therefore use the same fixed
hyperparameters. The benchmark is run on an NVIDIA A100 GPU.

Results. Figure 6 shows the average performance of each method over five runs that use different random
seeds. Once the matrix is formed in memory, the SoD approaches are very fast—even with Nsub “ 2000,
they converge within 100 s (all SoD runs require only two Newton steps). With increasing Nsub, the runs
reach higher accuracy at the cost of increased memory requirements. To achieve top performance, SVGP
requires a large number of inducing points (at the cost of slower training). Increasing the learning rate
to compensate results in instabilities—these runs do not exhibit competitive performance. Both SoD and
SVGP fall short of IterNCGP-CG in all three performance metrics. Using recycling, IterNCGP-CG
maintains low loss/high accuracy throughout training, even when compression is used. It reaches the lowest
final negative log-likelihood (NLL) and expected calibration error (ECE) demonstrating better uncertainty

9

Under review as submission to TMLR

100 101 102 103 104

Runtime in s

74

76

78

80

82

84
Accuracy in % ↑

100 101 102 103 104

Runtime in s

1.00

1.25

1.50

1.75

2.00

2.25

NLL loss ↓

100 101 102 103 104

Runtime in s

0.0

0.2

0.4

0.6

ECE ↓ SoD

Nsub =250

Nsub =500

Nsub =1,000

Nsub =2,000

SVGP
α=0.001, U=5,000

α=0.01, U=5,000

α=0.001, U=10,000

IterNCGP-CG
j≤5, R=∞
j≤5, R=10

Figure 6: Large-Scale GP Classification. Comparison of SoD, SVGP with learning rate α P

t0.001, 0.01, 0.05u and U P t1000, 2500, 5000, 10000u inducing points (showing only the best three runs)
and IterNCGP-CG with R P t8, 10u on a classification problem with N “ 105 training points and C “ 10
classes in terms of accuracy (Left), NLL loss (Center) and ECE (Right). Performance metrics are averaged
over five runs and are shown as solid (training set) or dashed (test set) lines. IterNCGP-CG performs best
in all three performance metrics, with minimal memory requirements. Details in Appendix C.3.

quantification. It is more memory-efficient than SoD (especially with compression), and, in contrast to SVGP,
does not require extensive tuning.

Extension to MNIST. To demonstrate IterNCGP’s applicability to real-world data, we perform a similar
experiment on MNIST (Lecun et al., 1998), see Appendix C.4 for details. As KeOps scales poorly with the
data dimension (D “ 282 “ 784 for MNIST), we revert to GPyTorch’s standard kernel implementation,
which requires more memory. We thus limit the training data to Nsub “ 20,000 images. The results (Figure 10)
are mostly aligned with Figure 6: IterNCGP-CG outperforms the well-tuned SVGP baselines in terms
of accuracy and NLL loss. Only the ECE of IterNCGP is slightly worse than for SVGP. This is easily
explained, by the fact that one can achieve smaller ECE by accepting lower accuracy—the canonical example
being a random baseline, which is perfectly calibrated.

6 Conclusion

Non-conjugate Gaussian processes (NCGPs) provide a flexible probabilistic framework encompassing, among
others, GP classification and Poisson regression. Training NCGPs on large datasets, however, necessitates
approximations. Our method IterNCGP quantifies and continuously propagates the errors caused by these
approximations, in the form of uncertainty. The information collected during training is efficiently recycled
and compressed, reducing runtime and memory requirements.

A limitation of our method is directly inherited from the Laplace approximation: If the initial linearization
point (the GP prior mean) is not representative, the uncertainty may be over- or underestimated. A simple,
albeit perhaps not perfectly satisfying remedy is to choose reasonable or cautious priors.

So far, we have only explored the policy design space in a limited fashion. The policy controls which areas of
the data space are targeted and accounted for in the posterior. Tailoring the actions to the specific problem
could further increase our method’s efficiency. For classification problems, a good strategy might be not to
spend compute on data points where the prediction is already definitive.

Finally, a promising application for IterNCGP may be Bayesian deep learning. A popular approach to
equip a neural net with uncertainty is via a Laplace approximation (Khan et al., 2019; MacKay, 1991; Ritter
et al., 2018), which is equivalent to a GP classification problem with a neural tangent kernel prior (Immer
et al., 2021; Jacot et al., 2018). There, the SoD approach is regularly used (Immer et al., 2021, Sec. A2.2),
for which our approach might offer significant improvements.

10

Under review as submission to TMLR

References
Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

Antoni B. Chan and Daxiang Dong. Generalized Gaussian process models. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2011.

Benjamin Charlier, Jean Feydy, Joan Alexis Glaunès, François-David Collin, and Ghislain Durif. Kernel
operations on the GPU, with autodiff, without memory overflows. Journal of Machine Learning Research,
2021.

Jon Cockayne, Chris Oates, Ilse C. Ipsen, and Mark Girolami. A Bayesian conjugate gradient method.
Bayesian Analysis, 2019a.

Jon Cockayne, Chris Oates, Tim J. Sullivan, and Mark Girolami. Bayesian probabilistic numerical methods.
SIAM Review, 2019b.

John P Cunningham, Krishna V Shenoy, and Maneesh Sahani. Fast Gaussian process methods for point
process intensity estimation. In International Conference on Machine Learning (ICML), 2008.

Nicki Skafte Detlefsen, Jiri Borovec, Justus Schock, Ananya Harsh Jha, Teddy Koker, Luca Di Liello, Daniel
Stancl, Changsheng Quan, Maxim Grechkin, and William Falcon. TorchMetrics - measuring reproducibility
in PyTorch. Journal of Open Source Software, 2022.

Jason Frank and Cornelis Vuik. On the construction of deflation-based preconditioners. SIAM Journal on
Scientific Computing, 2001.

Jacob R Gardner, Geoff Pleiss, David Bindel, Kilian Q Weinberger, and Andrew Gordon Wilson. GPyTorch:
Blackbox matrix-matrix Gaussian process inference with GPU acceleration. In Advances in Neural
Information Processing Systems (NeurIPS), 2018.

Rajarshi Guhaniyogi and David B. Dunson. Bayesian compressed regression. Journal of the American
Statistical Association, 2015.

Philipp Hennig. Probabilistic interpretation of linear solvers. SIAM Journal on Optimization, 2015.

Philipp Hennig, Mike A. Osborne, and Mark Girolami. Probabilistic numerics and uncertainty in computations.
Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2015.

Philipp Hennig, Michael A. Osborne, and Hans P. Kersting. Probabilistic Numerics: Computation as Machine
Learning. Cambridge University Press, 2022.

James Hensman, Alexander Matthews, and Zoubin Ghahramani. Scalable Variational Gaussian Process
Classification. In International Conference on Artificial Intelligence and Statistics (AISTATS), 2015.

Magnus Rudolph Hestenes and Eduard Stiefel. Methods of conjugate gradients for solving linear systems.
Journal of Research of the National Bureau of Standards, 1952.

Paul W Holland and Roy E Welsch. Robust regression using iteratively reweighted least-squares. Communi-
cations in Statistics-theory and Methods, 1977.

Alexander Immer, Maciej Korzepa, and Matthias Bauer. Improving predictions of Bayesian neural nets via
local linearization. In International Conference on Artificial Intelligence and Statistics (AISTATS), 2021.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and generalization
in neural networks. In Advances in Neural Information Processing Systems (NeurIPS), 2018.

Emtiyaz Khan, Shakir Mohamed, and Kevin P Murphy. Fast Bayesian Inference for Non-Conjugate Gaussian
Process Regression. In Advances in Neural Information Processing Systems (NeurIPS), 2012.

11

Under review as submission to TMLR

Mohammad Emtiyaz Khan, Alexander Immer, Ehsan Abedi, and Maciej Korzepa. Approximate inference
turns deep networks into gaussian processes. In Advances in Neural Information Processing Systems
(NeurIPS), 2019.

Ananya Kumar, Percy S Liang, and Tengyu Ma. Verified uncertainty calibration. In Advances in Neural
Information Processing Systems (NeurIPS), 2019.

Yann Lecun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 1998.

David MacKay. Bayesian model comparison and backprop nets. In Advances in Neural Information Processing
Systems (NeurIPS), 1991.

David J. C. MacKay. The evidence framework applied to classification networks. Neural Computation, 1992.

David J.C. MacKay. Choice of basis for laplace approximation. Machine Learning, 1998.

Iain Murray. Gaussian processes and fast matrix-vector multiplies. In Numerical Mathematics in Machine
Learning Workshop (ICML), 2009.

J. A. Nelder and R. W. M. Wedderburn. Generalized linear models. Journal of the Royal Statistical Society.
Series A (General), 1972.

Chris Oates and Tim J. Sullivan. A modern retrospective on probabilistic numerics. Statistics and Computing,
2019.

Michael L. Parks, Eric de Sturler, Greg Mackey, Duane D. Johnson, and Spandan Maiti. Recycling krylov
subspaces for sequences of linear systems. SIAM Journal on Scientific Computing, 2006.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. PyTorch: An imperative style, high-performance deep learning library. In Advances in
Neural Information Processing Systems (NeurIPS), 2019.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning. MIT
Press, 2006.

Hippolyt Ritter, Aleksandar Botev, and David Barber. A scalable laplace approximation for neural networks.
In International Conference on Learning Representations (ICLR), 2018.

Håvard Rue, Sara Martino, and Nicolas Chopin. Approximate Bayesian inference for latent Gaussian models
by using integrated nested Laplace approximations. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 2009.

Alessio Spantini, Antti Solonen, Tiangang Cui, James Martin, Luis Tenorio, and Youssef Marzouk. Optimal
low-rank approximations of Bayesian linear inverse problems. SIAM Journal on Scientific Computing, 2015.

David J. Spiegelhalter and Steffen L. Lauritzen. Sequential updating of conditional probabilities on directed
graphical structures. Networks, 1990.

Michalis Titsias. Variational learning of inducing variables in sparse Gaussian processes. In International
Conference on Artificial Intelligence and Statistics (AISTATS), 2009.

Brian L. Trippe, Jonathan H. Huggins, Raj Agrawal, and Tamara Broderick. LR-GLM: High-dimensional
Bayesian inference using low-rank data approximations. In International Conference on Machine Learning
(ICML), 2019.

Ke Alexander Wang, Geoff Pleiss, Jacob R Gardner, Stephen Tyree, Kilian Q Weinberger, and Andrew Gordon
Wilson. Exact Gaussian processes on a million data points. Advances in Neural Information Processing
Systems (NeurIPS), 2019.

12

Under review as submission to TMLR

Jonathan Wenger and Philipp Hennig. Probabilistic linear solvers for machine learning. In Advances in
Neural Information Processing Systems (NeurIPS), 2020.

Jonathan Wenger, Geoff Pleiss, Philipp Hennig, John P. Cunningham, and Jacob R. Gardner. Preconditioning
for scalable Gaussian process hyperparameter optimization. In International Conference on Machine
Learning (ICML), 2022a.

Jonathan Wenger, Geoff Pleiss, Marvin Pförtner, Philipp Hennig, and John P. Cunningham. Posterior and
computational uncertainty in Gaussian processes. In Advances in Neural Information Processing Systems
(NeurIPS), 2022b.

Lijun Zhang, Mehrdad Mahdavi, Rong Jin, Tianbao Yang, and Shenghuo Zhu. Random projections for
classification: A recovery approach. IEEE Transactions on Information Theory, 2014.

13

Under review as submission to TMLR

Supplementary Materials
The supplementary materials contain derivations for our theoretical framework and proofs for the mathematical
statements in the main text. We also provide implementation specifics and describe our experimental setup
in more detail.

A Mathematical Details 15

A.1 Newton’s Method as Sequential GP Regression . 15

A.2 Our Algorithm is an Extension of IterGP . 16

A.3 The Marginal Uncertainty Decreases in the Inner Loop . 16

A.4 Virtual Solver Run . 17

A.5 Derivatives of the Poisson Log Likelihood . 19

A.6 Pseudo-Inverse of Negative Hessian of the Log Likelihood for Multi-Class Classification . . . 19

B Implementation Details 21

B.1 Ordering within Vectors & Matrices . 21

B.2 IterNCGP Outer Loop . 21

B.3 IterNCGP Inner Loop: IterGP with a Virtual Solver Run 21

B.4 Cost Analysis of IterNCGP . 22

B.4.1 Matrix-Vector Products . 23

B.4.2 Cost Analysis Algorithms 1, 2 and 3 . 23

C Experimental Details 24

C.1 Binary Classification . 24

C.2 Poisson Regression . 25

C.3 Large-Scale GP Multi-Class Classification . 26

C.4 GP Multi-Class Classification on MNIST . 28

14

Under review as submission to TMLR

A Mathematical Details

A.1 Newton’s Method as Sequential GP Regression

In Section 3.1, we reinterpret the Newton iteration as a sequence of GP regression problems. More specifi-
cally, we rewrite the posterior predictive mean (Equation (4)) as a GP posterior for a regression problem
(Equation (6)). Here, we provide a proof for this connection.

Proposition A.1 (Reformulation of the Newton Step)
Let W pfiq be invertible. Using the transform g :“ f ´ m and consequently gi “ fi ´ m, the Newton step
(Equation (3)) can be written as

gi`1 “ KpK ` W pfiq
´1q´1 `

gi ` W pfiq
´1∇ log ppy | fiq

˘

.

Proof. Recall from Equation (3) that

fi`1 “ fi ´ ∇2Ψpfiq
´1 ¨ ∇Ψpfiq, with ∇Ψpfiq “ ∇ log ppy | fiq ´ K´1pfi ´ mq

∇2Ψpfiq “ ´W pfiq ´ K´1,

where W pfiq “ ´∇2 log ppy | fiq denotes the negative Hessian (with respect to f) of the log likelihood
evaluated at fi. It holds

fi`1 “ fi ´ ∇2Ψpfiq
´1 ¨ ∇Ψpfiq

“ fi ` pW pfiq ` K´1q´1 ¨
`

∇ log ppy | fiq ´ K´1pfi ´ mq
˘

By substracting m from both sides we obtain

gi`1 “ gi ` pW pfiq ` K´1q´1 ¨
`

∇ log ppy | fiq ´ K´1gi

˘

“ pW pfiq ` K´1q´1 `

pW pfiq ` K´1qgi ` ∇ log ppy | fiq ´ K´1gi

˘

“ pW pfiq ` K´1q´1 pW pfiqgi ` ∇ log ppy | fiqq

“ pW pfiq ` K´1q´1W pfiq
`

gi ` W pfiq
´1∇ log ppy | fiq

˘

“ pI ` W pfiq
´1K´1q´1 `

gi ` W pfiq
´1∇ log ppy | fiq

˘

“ pKK´1 ` W pfiq
´1K´1q´1 `

gi ` W pfiq
´1∇ log ppy | fiq

˘

“ KpK ` W pfiq
´1q´1 `

gi ` W pfiq
´1∇ log ppy | fiq

˘

“ KK̂pfiq
´1 `

gi ` W pfiq
´1∇ log ppy | fiq

˘

,

with K̂pfiq :“ K ` W pfiq
´1.

Newton’s Method as Sequential GP Regression. Using the LA at fi, we obtain a GP posterior (see
Equations (4) and (5) in Section 2). With Proposition A.1 (i.e. assuming that W pfiq

´1 exists), we can
rewrite Equation (4) as

mi,˚p¨q “ mp¨q ` Kp¨,XqK´1pfi`1 ´ mq

“ mp¨q ` Kp¨,XqK´1gi`1

“ mp¨q ` Kp¨,XqK´1KK̂pfiq
´1 `

gi ` W pfiq
´1∇ log ppy | fiq

˘

“ mp¨q ` Kp¨,XqK̂pfiq
´1`

fi ` W pfiq
´1∇ log ppy | fiq ´ m

˘

“ mp¨q ` Kp¨,XqK̂pfiq
´1pŷpfiq ´ mq,

where ŷpfiq :“ fi ` W pfiq
´1∇ log ppy | fiq. This proves Equation (6). Together with Equation (5), mi,˚

defines a GP posterior for a GP regression problem with pseudo targets ŷpfiq observed with Gaussian noise
N

`

0,W pfiq
´1˘

(Rasmussen & Williams, 2006, Eqs. (2.24) and (2.38)).

15

Under review as submission to TMLR

Equation (6) requires solving the linear system K̂pfiq ¨ v “ ŷpfiq ´ m of size NC. Then, mi,˚p¨q “

mp¨q ` Kp¨,Xqv. In Proposition A.1, we can write gi`1 as gi`1 “ Kv, i.e. fi`1 “ Kv ` m. So, both
the predictive mean mi,˚ and the Newton update fi`1 follow directly from the solution v. In that sense,
performing inference and computing Newton iterates are equivalent.

What If W pfiq Is Not Invertible? For multi-class classification, W has rank NpC ´ 1q and thus W´1

does not exist. Therefore, we use its pseudo-inverse W : instead. We derive an explicit expression for W : in
Appendix A.6 which allows for efficient matrix-vector multiplies.

A.2 Our Algorithm is an Extension of IterGP

Our algorithm IterNCGP uses IterGP as a core building block. IterNCGP’s outer loop (Algorithm 2)
can be understood as a sequence of GP regression problems and we use IterGP (that implements the
inner loop, see Algorithm 3) for finding approximate solutions to each of these problems. In the case of GP
regression (i.e. with a Gaussian likelihood), the outer loop collapses to a single iteration and IterNCGP
coincides exactly with IterGP, as we show in the following.

Theorem A.2 (Generalization of IterGP)
For a Gaussian likelihood ppy | fq “ N py;f ,Λq, IterNCGP converges in a single Newton step (i.e.
f1 “ fMAP) and IterNCGP (Algorithm 2) coincides exactly with IterGP (Algorithm 3).

Proof. Since the likelihood is Gaussian ppy | fq “ N py;f ,Λq, the log likelihood is given by

log ppy | fq
c
“ ´

1
2 pf ´ yqJΛ´1pf ´ yq.

This gives rise to a log posterior (Equation (2))

Ψpfq :“ log ppf | X,yq

c
“ log ppy | fq ´

1
2 pf ´ mqJK´1pf ´ mq

“ ´
1
2 pf ´ yqJΛ´1pf ´ yq ´

1
2 pf ´ mqJK´1pf ´ mq

that is quadratic in f . The first Newton iterate f1 therefore coincides with log posterior’s maximizer
f1 “ fMAP. The outer loop of IterNCGP thus reduces to a single iteration.

How does this step look from the perspective of the IterNCGP algorithm? First note that W pfq “

´∇2 log ppy | fq ” Λ´1. Given an initial f0, IterNCGP computes the observation noise W´1pf0q “ Λ
and pseudo regression targets ŷpf0q “ f0 ` W pf0q´1∇ log ppy | f0q “ f0 ´ ΛΛ´1pf0 ´ yq “ y. Both
these quantities are independent of the initialization f0. Thus, the first (and only) regression problem
that IterNCGP forms in the outer loop is the original regression problem (defined by labels y and the
observation noise Λ) and IterGP is applied to solve that regression problem. This shows that our framework
recovers IterGP in the case of a Gaussian likelihood and our algorithm can thus be regarded as an extension
thereof.

A.3 The Marginal Uncertainty Decreases in the Inner Loop

We claim in Section 3.1 that the marginal uncertainty captured by Ki,jpx,xq P RCˆC (see Equation (9))
within a Newton step decreases with each solver iteration j. Here, we provide the proof for this statement.

Proposition A.3 (The Uncertainty Decreases in the Inner Loop)
For each i it holds (element-wise) that diagpKi,jpx,xqq ě diagpKi,kpx,xqq for any k ě j and arbitrary x.

16

Under review as submission to TMLR

Proof. To see this, we rewrite Cj as a sum of j rank-1 matrices Cj “
řj

ℓ“1 dℓd
J
ℓ and substitute this into

Equation (9). It holds that

diagpKi,jpx,xqq “ diagpKpx,xqq ´

j
ÿ

ℓ“1
diagpKpx,Xqdℓ

“:d̂ℓ

dJ
ℓ KpX,xq

“d̂J
ℓ

q

“ diagpKpx,xqq ´

j
ÿ

ℓ“1
d̂ 2

ℓ The square is applied element-wise.

ě diagpKpx,xqq ´

k
ÿ

ℓ“1
d̂ 2

ℓ for k ě j

“ diagpKi,kpx,xqq

for any x P X.

A.4 Virtual Solver Run

In Section 3.3, we showed that it is possible to imitate a solver run using the previous actions on the new
problem, without ever having to multiply by K. The pseudo code is given in Algorithm 1. Here, we discuss
the numerical and probabilistic perspective on that procedure in more detail and provide derivations for the
statements in the main text.

Numerical Perspective. Let S “ ps1, . . . , sBq the matrix of stacked linearly independent actions. We use
C0 “ SpSJK̂Sq´1SJ (see Equation (10)) as an initial estimate of the precision matrix in Algorithm 3. The
corresponding initial residual (see Algorithm 3) r0 “ pŷ ´ mq ´ K̂v0 for the first iterate v0 “ C0pŷ ´ mq

can be decomposed into PSr0 and pI ´ PSqr0. PS “ SpSJSq´1SJ is the orthogonal projection onto the
subspace spantSu spanned by the actions.

Proposition A.4 (Residual in spantSu Is Zero)
The orthogonal projection PSr0 of the initial residual r0 onto spantSu is zero.

Proof. It holds that

PSr0 “ PSpŷ ´ mq ´ PSK̂v0

“ PSpŷ ´ mq ´ PSK̂C0pŷ ´ mq

“ PSpŷ ´ mq ´ SpSJSq´1pSJ

“PS

K̂ SqpSJK̂Sq´1SJ

“C0

pŷ ´ mq

“ PSpŷ ´ mq ´ SpSJSq´1SJ

“PS

pŷ ´ mq

“ 0.

Proposition A.4 shows that the residual in spantSu is zero. In that sense, the solution within this subspace
is already perfectly identified at initialization. The remaining residual thus lies in the orthogonal complement
of spantSu which can be targeted through additional actions. If we measure the error in the representer
weights v ´ v0, a similar results holds, as we show in the following.

Proposition A.5 (Error in Representer Weights in spantSu Is Zero)
The K̂-orthogonal projection of the representer weights approximation error P̂Spv ´ v0q onto spantSu is zero.

Proof. The K̂-orthogonal (orthogonal with respect to the inner product x¨, ¨yK̂) projection onto the subspace
spantSu spanned by the actions is given by P̂S “ C0K̂ (Wenger et al., 2022b, Section S2.1). It holds that

P̂Spv ´ v0q “ C0K̂pv ´ v0q

17

Under review as submission to TMLR

“ C0K̂K̂´1pŷ ´ mq ´ C0K̂C0 pŷ ´ mq

“K̂v

“ C0pŷ ´ mq ´ C0K̂

“P̂S

C0K̂

“P̂S

v

“ C0pŷ ´ mq ´ C0 K̂v
“ŷ´m

“ 0,

where we used that v “ K̂´1pŷ ´ mq is the solution of the GP regression linear system, v0 “ C0pŷ ´ mq

and the idempotence of the projection matrix P̂S “ P̂SP̂S .

Probabilistic Perspective. Equation (9) describes the effect of C0 from a probabilistic perspective.
Initializing C0 “ 0 in step i results in mi,0 “ mp¨q (prior mean) and Ki,0 “ Kp¨, ¨q (prior covariance) since
the reduction of uncertainty Kp¨,XqC0 KpX, ¨q is zero. This case, where no information from past steps is
included, is illustrated in the first column R “ 0 in Figure 4.

Special Case. We consider a special case, where the general intricate form of the total marginal variance
from Section 3.4

TrpKi,0pX,Xqq “ TrpKq ´ TrpKC0Kq (13)

collapses. Let λ1, . . . , λNC ą 0 denote the eigenvalues of K̂ and b1, . . . , bNC the corresponding (pairwise
orthogonal) eigenvectors. We make the following two assumptions: (A1): We assume W´1 “ 0, i.e.
K̂ “ K. (A2): We assume that the actions coincide with a subset L Ď t1, . . . , NCu of K̂’s eigenvectors
S “ pblqlPL P RNCˆ|L|.

Proposition A.6 (Total Marginal Uncertainty)
Under assumptions (A1) and (A2) it holds that

TrpKi,0pX,Xqq “ TrpKq ´ TrpMq.

Proof. Let S “ pblqlPL P RNCˆ|L| and Λ “ diagppλlqlPLq P R|L|ˆ|L| contain a subset L Ď t1, . . . , NCu of
K̂’s eigenpairs. The remaining eigenvectors and eigenvalues are given by S` “ pblqlRL P RNCˆNC´|L| and
Λ` “ diagppλlqlRLq P RNC´|L|ˆNC´|L|. First note that we can write the eigendecomposition of K̂ “ K as a
sum of two components K̂ “ SΛSJ ` S`Λ`S

J
`, each of which covers one part of the spectrum. It holds

SJS “ I, SJ
`S` “ I, SJS` “ 0 and SJ

`S “ 0

since K̂ is symmetric and its eigenvectors are thus pairwise orthogonal. It follows

KS “ pSΛSJ ` S`Λ`S
J
`qS “ SΛ

SJK “ SJpSΛSJ ` S`Λ`S
J
`q “ ΛSJ

M “ SJKS “ SJpSΛSJ ` S`Λ`S
J
`qS “ Λ.

Plugging those expressions into Equation (13) yields

TrpKi,0pX,Xqq “ TrpKq ´ TrpKC0Kq

“ TrpKq ´ TrpKS pSJK̂Sq´1

“M´1

SJKq

“ TrpKq ´ TrpSΛΛ´1ΛSJq

“ TrpKq ´ TrpSJSΛq

“ TrpKq ´ TrpΛq

“ TrpKq ´ TrpMq

“
ÿ

lRL
λl.

18

Under review as submission to TMLR

The last equation is due to

TrpKq “ TrpSΛSJq ` TrpS`Λ`S
J
`q “ TrpSJSΛq ` TrpSJ

`S`Λ`q “ TrpΛq ` TrpΛ`q.

Proposition A.6 shows that the reduction of the marginal uncertainty is determined by the sum of M ’s
eigenvalues

ř

lPL λl. If S contains the eigenvectors bl to the largest eigenvalues (i.e. S is “aligned” with
the high-variance subspace of K̂), the remaining uncertainty

ř

lRL λl is small. In contrast, if S covers the
low-variance subspace of K̂, the uncertainty remains largely unaffected.

A.5 Derivatives of the Poisson Log Likelihood

One of our main experiments in Section 5 is Poisson regression (see Appendix C.2 for details). In order to
apply IterNCGP, we have to formulate the problem within the NCGP framework. In particular, we have to
specify the derivatives of the log likelihood.

The Poisson likelihood is given by

ppy | fq “

N
ź

n“1

λyn
n expp´λnq

yn! ,

where yn P N0 and λ :“ λpXq “ exppfpXqq “ exppfq. Taking the logarithm yields

log ppy | fq “

N
ÿ

n“1
log

ˆ

λyn
n expp´λnq

yn!

˙

“

N
ÿ

n“1
pyn logpλnq ´ λn ´ logpyn!qq .

The log likelihood’s gradient and Hessian with respect to f are therefore given by

∇ log ppy | fq “ y ´ exppfq and ∇2 log ppy | fq “ ´ diagpexppfqq,

where the exponential function is applied element-wise. This implies that the log likelihood is concave which
was one of the prerequisites of our algorithm (see Section 2.1). It follows that W pfq´1 “ diagpexpp´fqq.

A.6 Pseudo-Inverse of Negative Hessian of the Log Likelihood for Multi-Class Classification

For multi-class classification (see Appendix C.3 for details), we need access to the pseudo inverse W :. For
this to be efficient, we derive an explicit form of W : in the following and show that matrix-vector multiplies
can be implemented efficiently in OpNCq. Since the ordering (see Appendix B.1) of W plays an important
role in the derivation, we use an explicit notation in this section.

Lemma A.7 (Explicit Pseudo-Inverse for Multi-Class Classification)
Consider multi-class classification, such that the log likelihood log ppy | fq is given by a categorical likelihood
with a softmax inverse link function, then the pseudoinverse rW pfqs

:

CN P RNCˆNC of W pfq in CN -ordering
is given by

rW pfqs
:

CN “

¨

˚

˝

pI ´ 1
C11Jq diagpπ´1

1 qpI ´ 1
C11Jq

. . .
pI ´ 1

C11Jq diagpπ´1
N qpI ´ 1

C11Jq

˛

‹

‚

,

where πn “ pπ1
n, ..., πC

n qJ P RC denotes the output of the softmax for xn, i.e. πc
n :“ exppf c

nq{
ř

c1 exppf c1

n q.
The cost of one matrix-vector multiplication v ÞÑ rW pfqs

:

CNv with the pseudo-inverse is OpNCq.

Proof. By Eq. (3.38) in Rasmussen & Williams (2006), the matrix W pfq in NC-ordering is given by

rW pfqsNC “ rdiagpπqsNC ´ ΠΠJ,

19

Under review as submission to TMLR

where rdiagpπqsNC “ diagpπ1
1 , . . . , π1

N , . . . , πC
1 , . . . πC

N q and

Π “

¨

˚

˝

diagpπ1
1 , . . . , π1

N q

...
diagpπC

1 , . . . , πC
N q

˛

‹

‚

P RNCˆN .

Rewriting W pfq in the CN -ordering, we obtain using rdiagpπqsCN “ diagpπ1
1 , . . . , πC

1 , . . . , π1
N , . . . , πC

N q that

rW pfqsCN “ rdiagpπqsCN ´

¨

˚

˝

π1
. . .

πN

˛

‹

‚

¨

˚

˝

πJ
1

. . .
πJ

N

˛

‹

‚

“ blockdiagpdiagpπnq ´ πnπ
J
n q.

Now the pseudoinverse of a block-diagonal matrix is the block-diagonal of the block pseudoinverses, i.e.
blockdiagpAnq: “ blockdiagpA:

nq which can be shown by simply checking the definition criteria of the
pseudo-inverse and using basic properties of block matrices. Therefore it suffices to show that the block
pseudoinverses are given by

pdiagpπnq ´ πnπ
J
n q: “ pI ´

1
C
11Jq diagpπ´1

n qpI ´
1
C
11Jq

for n P t1, . . . , Nu. We do so by checking the definition criteria of a pseudoinverse. Let An “ diagpπnq´πnπ
J
n .

We begin by showing the following intermediate result:

AnpI ´
1
C
11Jq “ An ´

1
C

pdiagpπnq ´ πnπ
J
n q11J “ An ´

1
C

pπn ´ πnpπJ
n1qq1J “ An. (14)

Now let’s verify the first criterion in the definition of the pseudoinverse. We have

AnpI ´
1
C
11Jq diagpπ´1

n qpI ´
1
C
11JqAn “ An diagpπ´1

n qAn

“ An diagpπ´1
n qpdiagpπnq ´ πnπ

J
n q

“ AnpI ´ 1πJ
n q

“ An ´ pdiagpπnq ´ πnπ
J
n q1πJ

n

“ An,

where we used (14). Next, we’ll verify the second criterion.

pI ´
1
C
11Jq diagpπ´1

n qpI ´
1
C
11JqAnpI ´

1
C
11Jq diagpπ´1

n qpI ´
1
C
11Jq

“ pI ´
1
C
11Jq diagpπ´1

n qAn diagpπ´1
n qpI ´

1
C
11Jq

“ pI ´
1
C
11Jqpπ´1

n qpI ´
1
C
11Jq

where we used
diagpπ´1

n qAn “ I “ An diagpπ´1
n q (15)

as shown above. Finally, we verify the symmetry of the product of An and its pseudoinverse. Observe that
both An and pI ´ 1

C11Jq diagpπ´1
n qpI ´ 1

C11Jq are symmetric. Therefore we have

pAnpI ´
1
C
11Jq diagpπ´1

n qpI ´
1
C
11Jqq˚ “ pI ´

1
C
11Jq diagpπ´1

n qpI ´
1
C
11JqAn

and

ppI ´
1
C
11Jq diagpπ´1

n qpI ´
1
C
11JqAnq˚ “ AnpI ´

1
C
11Jq diagpπ´1

n qpI ´
1
C
11Jq.

20

Under review as submission to TMLR

Thus if we can show that An and pI ´ 1
C11Jq diagpπ´1

n qpI ´ 1
C11Jq commute we have shown the remaining

symmetry criteria of the pseudoinverse. It holds that

AnpI ´
1
C
11Jq diagpπ´1

n qpI ´
1
C
11Jq

(14)
“ An diagpπ´1

n qpI ´
1
C
11Jq

(15)
“ pI ´

1
C
11Jq

as well as

pI ´
1
C
11Jq diagpπ´1

n qpI ´
1
C
11JqAn

(14)
“ pI ´

1
C
11Jq diagpπ´1

n qAn
(15)
“ pI ´

1
C
11Jq

This completes the proof for the form of the pseudoinverse. For the complexity of multiplication, note that
multiplying with pI´ 1

C11Jq diagpπ´1
n qpI´ 1

C11Jq has cost OpCq, since it decomposes into two multiplications
with pI ´ 1

C11Jq which is linear and one elementwise scaling. Therefore the cost of multiplication with the
pseudoinverse consisting of N blocks has complexity OpNCq.

B Implementation Details

B.1 Ordering within Vectors & Matrices

Ordering within Vectors. By default, we assume all vectors and matrices to be represented in CN -ordering.
For example, the mean vector was introduced as the aggregated outputs of the mean function m : X Ñ RC

for all data points m “ mpXq “ pmpx1qJ, . . . , mpxN qJqJ. With mpxnqJ “ pm1
n, . . . , mC

n q denoting the
C outputs for data point xn, we can write m as m “ pm1

1, m2
1, . . . , mC

1 , . . . , m1
N , m2

N , . . . , mC
N q. We call

that representation CN -orderingbecause the superscript c moves first and the subscript n moves second.
Consecutively, pm1

1, m1
2, . . . , m1

N , . . . , mC
1 , mC

2 , . . . , mC
N q corresponds to NC-ordering.

Ordering within Matrices. The same terminology can be applied to matrices, where the rows and columns
can be represented in CN or NC-ordering. Depending on the context, different representations are beneficial.
For example, in CN -ordering, W is block-diagonal (due to our iid assumption, see Section 2.1) with N
blocks of size C ˆ C on the diagonal. In contrast, when the C outputs of the hidden function are assumed to
be independent of each other, K is block diagonal only in NC-ordering. So, based on the chosen ordering,
different structures arise that we can exploit in subsequent computations (e.g. when we compute the inverse
of W , see Appendix B.4).

B.2 IterNCGP Outer Loop

Our algorithm IterNCGP approximates the posterior mode through a sequence of (approximate) Newton
steps. Algorithm 2 describes this outer loop.

The StoppingCriterion() we use for our experiments is based on the relative change of the vector
gi “ fi ´ m. When }gi ´ gi´1} }gi}

´1 ď δ falls below the convergence tolerance δ (by default, δ “ 1%),
the loop over i terminates. Of course, other convergence criteria are also conceivable. Depending on the
application one might want to customize the criterion and, for example, include the marginal uncertainty at
the training data.

B.3 IterNCGP Inner Loop: IterGP with a Virtual Solver Run

The core of IterNCGP is IterGP (Wenger et al., 2022b): IterGP is used to approximate the Newton
updates defined in the outer loop. Our version of the algorithm, given in Algorithm 3, adds a virtual solver
run (see Algorithm 1) for efficient recycling between outer loop steps.

We use the same StoppingCriterion() as in (Wenger et al., 2022b, Section S3.2): The loop over j terminates
if the norm of the residual }rj} ă maxtδabs, δrel}ŷ ´ m}u is below an absolute tolerance δabs or below the
scaled norm of the right-hand side ŷ ´ m of the linear system. By default, both tolerances are set to 10´5.
Additionally, we typically specify a maximum number of iterations. The solver is also terminated when the
normalization constant ηj ď 0. This can happen due to numerical imprecision if the linear system is badly
conditioned, e.g. if some eigenvalues of the linear system are close to zero.

21

Under review as submission to TMLR

Algorithm 2: IterNCGP Outer loop.

Input: GP prior GP pm, Kq, training data pX,yq, ∇ppy|f ,Xq and access to products with K and W pfq
´1

Output: GP posterior GP pmi,j , Ki,jq

1 procedure IterNCGP(m, K,X,y,f0 “ m) Time Memory
2 m Ð mpXq, Prior mean vector Opτmq OpNCq

3 Provide access to w ÞÑ Kw Prior covariance/kernel matrix OpµKq

4 Initialize buffers S,T P RNCˆ0 S: actions, T : products with K

5 for i “ 0, 1, 2, . . . while not StoppingCriterion() do
6 Provide access to w ÞÑ W pfiq

´1w Observation noise OpµW ´1 q

7 ŷpfiq Ð fi ` W pfiq
´1∇ log ppy|fi,Xq OpτW ´1 `NCq OpNCq

8 mi,j , Ki,j Ð IterGP(m, K,X,y,m,K,W pfiq
´1, ŷpfiq,S,T), see Alg. 3

9 fi`1 Ð Kv ` m Approximate Newton update OpτK `NCq OpNCq

10 return GP pmi,j , Ki,jq

Instructions in blue are needed for recycling (see Section 3.3). The matrices K and W´1
pfiq are evaluated lazily. We

thus report the runtime costs when the matrix-vector products are actually computed. For an in-depth discussion of
the computational costs, see Appendix B.4.

Algorithm 3: IterNCGP Inner Loop: IterGP with a Virtual Solver Run.

Input: GP prior GP pm, Kq, training data pX,yq, m, access to products with K and W´1, pseudo targets ŷ, buffers
S,T
Output: GP posterior GP pmi,j , Ki,jq

1 procedure IterGP(m, K,X,y,m,K,W´1, ŷ,S,T) Time Memory
2 C0,S,T Ð VirtualSolverRun(S,T ,W´1) , see Algorithm 1
3 v0 Ð C0pŷ ´ mq Consistent initial iterate OpRNCq OpNCq

4 for j “ 1, 2, 3, . . . while not StoppingCriterion() do
5 rj´1 Ð pŷ´mq´Kvj´1 ´W´1vj´1 Residual OpτK `τW ´1 `NCq OpNCq

6 sj Ð Policypq Select action via policy Opτpolicyq OpNCq

7 Append sj to buffer S Ð pS, sjq P RNCˆB OpBNCq

8 αj Ð sJ
j rj´1 Observation via information operator OpNCq Op1q

9 tj Ð Ksj First term in K̂sj “Ksj `W´1sj OpτKq OpNCq

10 Append tj to buffer T Ð pT , tjq P RNCˆB OpBNCq

11 zj Ð tj `W´1sj Second term in K̂sj “Ksj `W´1sj OpτW ´1 `NCq OpNCq

12 dj Ð sj ´ Cj´1zj Search direction OpBNCq OpNCq

13 ηj Ð zJ
j dj Normalization constant OpNCq Op1q

14 Qj Ð pQj´1, 1{?
ηj djq P RNCˆB Append column OpNCq OpBNCq

15 Cj Ð QjQ
J
j Rank B approximation Cj «K̂´1

16 vj Ð vj´1 `
αj

ηj
dj Representer weights estimate OpNCq OpNCq

17 mi,jp¨q Ð mp¨q ` Kp¨,Xqvj Equation (8) OpNN˛C2
q OpN˛Cq

18 Ki,jp¨, ¨q Ð Kp¨, ¨q ´ Kp¨,XqCjKpX, ¨q Equation (9) OpBpN `N˛qN˛C2
q OpN2

˛ C2
q

19 return GP pmi,j , Ki,jq

Instructions in blue are needed for recycling (see Section 3.3). Cj is represented via its root Qj and evaluated lazily.
We thus report the runtime costs when the matrix-vector products are actually computed. The costs for evaluating
the posterior GP GP pmi,j , Ki,jq are based on N˛ test data points X˛ P RN˛ˆD. For an in-depth discussion of the
computational costs, see Appendix B.4.

B.4 Cost Analysis of IterNCGP

In this section, we investigate the computational costs of IterNCGP in more detail. We start with a
discussion of the computational costs for matrix-vector products with K, W´1 and Cj and then analyze the
runtime and memory costs of the individual algorithms (Algorithms 1, 2 and 3).

22

Under review as submission to TMLR

B.4.1 Matrix-Vector Products

IterGP is an iterative matrix-free algorithm and our algorithm IterNCGP inherits that property: The
matrices K, W´1 and Cj are evaluated lazily, i.e. matrix-vector products are evaluated without forming
the matrices in memory explicitly. This enables our algorithm to scale to problems where a naive approach
causes memory overflows. In Algorithms 1, 2 and 3, the memory and runtime cost for matrix-vector products
with K are denoted by µK and τK and by µW ´1 and τW ´1 for products with W´1.

Products with K. Matrix-vector products with K can be decomposed into products with its sub-matrices.
The associated memory costs OpµKq can thereby be reduced basically arbitrarily and the runtime can be
improved by using specialized software libraries such as KeOps (Charlier et al., 2021) and parallel hardware
(i.e. GPUs). Still, products with K are computationally relatively expensive, since this operation is typically
quadratic in the number of training data points N .

Products with W´1 (General Case). Under the assumptions on the likelihood from Section 2.1, W is
block-diagonal with N blocks of size C ˆ C (in CN -ordering, see Appendix B.1). Here, we denote these
blocks by W1, . . . ,WN . It can be easily verified that W´1 is also a block-diagonal matrix and the blocks on
its diagonal are the inverses of W1, . . . ,WN .

Consider the matrix-vector product v ÞÑ W´1v “: w P RNC . In the vectors v and w, we repeatedly group
C consecutive entries which results in segments wn,vn P RC for n “ 1, ..., N , i.e.

¨

˚

˝

W´1
1

. . .
W´1

N

˛

‹

‚

“W ´1

¨

¨

˚

˝

v1
...

vN

˛

‹

‚

“v

“

¨

˚

˝

w1
...

wN

˛

‹

‚

.

“w

It holds that wn “ W´1
n vn, i.e. each segment in w is the product of a single C ˆ C block from W´1 with

one segment from v. Computing wn thus amounts to solving a linear system of size C with cost OpC3q. The
total cost for all N segments is thus OpNC3q. However, the N linear systems are independent of each other
and can thus be solved in parallel. So, if appropriate computational resources are available, the total runtime
complexity can be reduced to OpC3q.

In general, W´1 requires OpNC2q in terms of memory consumption. If needed, these costs can be reduced
further to OpC2q because (as explained above), products with W´1 can be broken down into products with
the individual blocks of W´1. We can perform those products sequentially such that only a single block is
present in memory at a time.

Products with W´1 (Special Cases). In many cases, we can multiply with W´1 more efficiently. In the
multi-class classification case, the runtime and memory costs for multiplication with the pseudo inverse W :

can be reduced to OpNCq (see Appendix A.6). In the regression case (C “ 1), W´1 is a diagonal matrix of
size N ˆ N . The memory and runtime costs are thus in OpNq. An example is Poisson regression, for which
we derive the explicit form of W´1 in Appendix A.5.

Products with Cj. Cj “ QjQ
J
j is represented via its matrix root Qj P RNCˆB. This allows for efficient

storage and matrix-vector multiplies v ÞÑ Cjv “ QjpQJ
j vq in OpBNCq.

B.4.2 Cost Analysis Algorithms 1, 2 and 3

The runtime and memory complexity for the operations in Algorithms 1, 2 and 3 is given directly in the
pseudo code. Here, we provide some additional information for the costs that depend on the user’s choices
and put the costs of the individual algorithms into perspective.

Algorithm 3 (IterGP). The runtime cost for selecting an action Opτpolicyq depends on the underlying
policy. For Cholesky actions (sj “ ej) or CG (sj “ rj´1), the runtime cost is insignificant since no additional
computations are required at all.

One iteration’s total computational cost (without prediction) is dominated by two matrix-vector products
with K in terms of runtime and OpBNCq in terms of storage requirements (for the buffers S and T as well

23

Under review as submission to TMLR

as the matrix root Qj). The initial size (i.e. the number of columns) of S, T and Qj is given by the rank
limit R used in Algorithm 1. Henceforth, one column is added to each of the buffers and matrix root in each
solver iteration, increasing their size to B “ R ` j in iteration j. It is thus reasonable to include an upper
bound on the iteration number in the stopping criterion of Algorithm 3.

Algorithm 1 (Virtual Solver Run with Optional Compression). The total runtime complexity of
Algorithm 1 is OpBτW ´1 ` B2NCq, i.e. dominated by matrix-matrix products involving the buffers and W´1.
In terms of memory requirements, the buffers S, T , and Q0 are the decisive contributors with OpRNCq. The
truncation of the eigendecomposition provides a way to control that bound by resetting the current buffer
size B to an arbitrary number R ď B. In comparison to Algorithm 3, the computational costs are practically
of minor importance since no multiplications with K are necessary.

Algorithm 2 (IterNCGP Outer Loop). The costs Opτmq for evaluating m on the training data depends
on the choice of mean function. For a constant mean function, no computations are necessary, so runtime
costs are negligible. This can be different e.g. for applications in Bayesian deep learning, where evaluating m
requires forward passes through a neural network.

C Experimental Details

Throughout the paper, we use binary classification as an illustrative and supporting example (Figures 1 to 4).
The two main experiments follow in Section 5: Poisson regression (Section 5.1, Figure 5) and large-scale GP
multi-class classification (Section 5.2, Figure 6). In the following, we provide additional details for all those
experiments.

C.1 Binary Classification

Binary Classification with one latent function. Consider a binary classification task, i.e. C “ 2. Being
able to report the probability for one of the two classes is sufficient because they have to add up to one for
every data point. Thus, while C “ 2, N -dimensional vectors are typically used to describe this problem
(Rasmussen & Williams, 2006, Section 3.4). Using only a single latent function is convenient for illustrative
purposes, as e.g. the action vectors s in Algorithm 3 are N -dimensional (not 2N -dimensional) and thus easier
to visualize.

1D Data. We use a one-dimensional training set in Figure 2. X is created by sampling N “ 50 data points
between ´3 and 5. The hidden function f is a draw from a GP with mean zero and a GPyTorch (Gardner
et al., 2018) RBF kernel with lengthscale = 1.0 and outputscale = 5.0. For each datapoint xn, we
sample the positive label with probability logisticpfpxnqq.

2D Data. Two-dimensional data is used in Figures 1, 3 and 4. The data-generating process is analogous to
the 1D data, only now, the N “ 100 training inputs are in the 2D plane: The first coordinate is sampled
uniformly between ´3 and 5, the second between ´4 and 1. The hyperparameters of the RBF kernel are
lengthscale = 1.0, outputscale = 10.0 for Figures 3 and 4 and outputscale = 20.0 for Figure 1.

Details Figure 1. In this figure, we compare two versions of our algorithm: IterNCGP-Chol without
recycling and IterNCGP-CG with recycling and with compression (R “ 10). Both runs were conducted on
a CPU. The computation of the NLL loss is not included in the runtime measurement. A description of how
the NLL loss can be computed for arbitrary C is given in Appendix C.3.

Details Figure 2. For Figure 2, we compute a sequence of precise Newton steps by using IterNCGP with
unit vector actions and j ď N solver iterations. Note that the Newton linear system is N -dimensional, i.e.
we actually obtain fi as defined by Equation (3).

Details Figure 3. In this plot, we compare unit vector actions (IterNCGP-Chol) and residual actions
(IterNCGP-CG) for the first Newton step (i “ 0) at three solver iterations j P t1, 10, 19u. The true posterior
mean function m0,˚ and covariance function K0,˚ are computed by using IterNCGP-Chol and j ď N “ 100
iterations. Figure 7 shows the covariance functions corresponding to the mean functions in Figure 3.

24

Under review as submission to TMLR

x1

x
2

True posterior variance K0,∗ K0,1 K0,10

It
e
rN

C
G

P
-C

h
o
l

K0,19

It
e
rN

C
G

P
-C

G

Figure 7: Different Policies of IterNCGP Applied to GP Classification. (Left) The true posterior
covariance K0,˚ () for a binary classification task (/). (Right) Current estimate of the posterior
covariance after 1, 10, and 19 iterations with the unit vector policy (Top) and the CG policy (Bottom). Shown
are the data points selected by the policy in this iteration with the dot size indicating their relative weight.
For IterNCGP-Chol, data points are targeted one by one and previously used data points are marked with
().

The actions are visualized by scaling the training data points according to their relative weight: First, we
take the absolute value of the action vector s from Algorithm 3 (element-wise) and then scale its entries
linearly such that the smallest entry is 0 and the largest is 1.

Details Figure 4. In this figure, we show the initial mean function m1,0 and covariance function K1,0 in
the second Newton step for different buffer sizes R P t0, 1, 3, 10u. We use CG actions for the first Newton
step and let the solver run until convergence (this takes 19 iterations).

C.2 Poisson Regression

In Section 5.1, we apply IterNCGP to Poisson regression to demonstrate our algorithm’s ability to generalize
to other (log-concave) likelihoods and to explore the trade-off between the number of (outer loop) mode-finding
steps and (inner loop) solver iterations.

Poisson Likelihood. We consider count data y P NN
0 that is assumed to be generated from a Poisson

likelihood with unknown positive rate λ : X Ñ R`. Modeling λ with a GP which may take positive and
negative values, would therefore be inappropriate. However, we can use a GP for the log rate f : X Ñ R and
regard this as the unknown latent function. With λ :“ λpXq “ exppfpXqq “ exppfq, the likelihood is given
by

ppy | fq “

N
ź

n“1

λyn
n expp´λnq

yn! .

The gradient and (inverse) Hessian of the log likelihood can be derived in closed form, see Appendix A.5.

Data & Model. First, we create X by linearly spacing N “ 100 points between 0 and 1. For the count
data y, we sample from a GP with zero mean and a GPyTorch (Gardner et al., 2018) RBF-kernel with
lengthscale = 0.1 and outputscale = 5.0. That GP f represents the log Poisson rate. We then draw
counts from a Poisson distribution with rate λpxnq “ exppfpxnqq for each data point in the training set. In
this experiment, we conduct multiple IterNCGP runs on different training sets. These sets are created by
re-drawing from the Poisson distributions with the same rates, i.e. the underlying GP for the log rate does
not change. Our NCGP’s prior uses the same RBF kernel to avoid model mismatch.

25

Under review as submission to TMLR

IterNCGP-CG Approaches. We consider IterNCGP-CG with four different schedules: A fixed budget
of 100 iterations is distributed uniformly over 5, 10, 20 or 100 outer loop steps (see Algorithm 2), which limits
the number of inner loop iterations (see Algorithm 3) to j ď 20, 10, 5 or 1. For each schedule, we perform 10
runs with different training sets, see above. Each run uses recycling without compression. For this experiment,
the convergence tolerance in Algorithm 2 is set to δ “ 0.001. All runs are performed on a single NVIDIA
GeForce RTX 2080 Ti 12 GB GPU.

Tracking of Performance Metrics. As a performance metric, we use the NLL loss. The computation of
the NLL loss for the test and training set is not included in the runtime reported in the results. For the NLL
loss, we approximate the integral from Section 2.3 with MC samples: For each test datum x˛, we draw 105

MC samples from N pmi,jpx˛q, Ki,jpx˛,x˛qq, map those samples tf˛,ku105

k“1 through the likelihood ppy˛ | f˛,kq

and average. This yields a loss value for x˛ and we obtain the training/test NLL loss by averaging these loss
values for all data points in the training/test set.

Approximate Rate Distribution. Using IterNCGP-CG for the Poisson regression problem results in a
sequence of posteriors GP pmi,j , ki,jq. By drawing MC samples from those posterior GPs and mapping them
through the exponential, we obtain an approximated (skewed) distribution for the rate λ. In Figure 5 (Right),
we report its median and a 95 % confidence interval between the 2.5 % and 97.5 % percentile.

C.3 Large-Scale GP Multi-Class Classification

In this experiment, we empirically evaluate IterNCGP on a large-scale GP multi-class classification problem
to exhibit its scalability. We also investigate the impact of compression on performance.

Data. We consider a Gaussian mixture problem with C “ 10 classes in 3D. For each class, we sample a mean
vector uniformly in r´1, 1s3 and a positive definite covariance matrix. For the covariance matrix, we first
create a 3 ˆ 3 matrix C with entries between 0 and 1 (sampled uniformly) and compute the eigenvectors
U of CCJ. Then, we create three eigenvalues tλdudPt1,2,3u uniformly between 0.001 and 0.1 and form the
covariance matrix from the eigenvectors U and these eigenvalues, i.e. U diagpλ1, λ2, λ3qUJ. For each class,
104 data points are sampled from the respective Gaussian distribution. This amounts to N “ 105 data points
in total. For testing, N˛ “ 104 data points are used (103 per class).

Our benchmark (Figure 6) uses multiple runs for each method. The runs differ in the seed that is used to
sample from the Gaussians, i.e. the training and test set are different for each run (the underlying Gaussians
distributions remain the same). Both the training and test set used in the first run are shown in Figure 8.

Model. We use a softmax likelihood (see Appendix A.6 for the details on the pseudo inverse W :) and
assume independent GPs for the C outputs of the latent function. Each of these GPs uses the zero function as
the prior mean and a Matérnp 3

2 q kernel. We use the KeOps (Charlier et al., 2021) version of the GPyTorch
(Gardner et al., 2018) kernel with lengthscale = 0.05 and outputscale = 0.05.

SoD Approaches. For the SoD approaches, we create a random subset of the training data (sampling
without replacement) of a specific subset size Nsub. We then explicitly form K̂pfiq for every Newton step and
compute its Cholesky decomposition via PyTorch’s (Paszke et al., 2019) torch.linalg.cholesky (instead
of using IterGP in Algorithm 2 to ensure a competitive baseline implementation). In our experiment, we use
four different subset sizes Nsub P t250, 500, 1000, 2000u. Each setting is run five times with different random
seeds (see above).

SVGP. SVGP (Hensman et al., 2015; Titsias, 2009) is a commonly used variational method for approximative
inference in non-conjugate GPs. We use GPyTorch’s (Gardner et al., 2018) SVGP implementation
and optimize the ELBO for 104 seconds using Adam with batch size “ 1024. The learning rate α P

t0.001, 0.01, 0.05u and the number of inducing points U P t1000, 2500, 5000, 10000u are tuned via grid search
(using only a single run). We use U{C inducing points per class (C “ 10 classes) and initialize them as
a random subset of the training data. Within the given runtime budget, SVGP performs between 6000
(U “ 1000) and 600 (U “ 10000) epochs.

For each of the 12 runs, we extract 6 performance indicators: lowest training/test NLL loss during training,
highest training/test accuracy during training and training/test expected calibration error (ECE) at the very

26

Under review as submission to TMLR

−1.0
−0.5

0.0
0.5

1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

Training data (C = 10, N = 100,000)

−1.0
−0.5

0.0
0.5

1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

Test data (C = 10, N = 10,000)

Figure 8: Gaussian Mixture Training and Test Data. Training data (Left) and test data (Right) for
the first run. Note that the underlying Gaussians are the same for training and test set and for all runs.

end of training. For each of those 6 categories, we determine those two runs with the best performance. This
procedure results in a set of 3 runs in total, that are considered the “best” runs for SVGP. Only for those 3
settings, we perform 5 runs each and report their mean performance in Figure 6.

IterNCGP-CG Approaches. For comparison, we apply our matrix-free algorithm IterNCGP with
residual actions to the full training set. We use two configurations: The first one uses recycling without
compression (i.e. R “ 8), the second one uses recycling with compression (R “ 10). The number of solver
iterations per step is limited by j ď 5. For both settings, we perform 5 runs with different random seeds (see
above) and report their mean performance in Figure 6.

Tracking of Performance Metrics. As performance metrics, we use accuracy, the negative log likelihood
(NLL) loss and the expected calibration error (ECE) (Kumar et al., 2019) on both the training and test
set. The computation of those six metrics is not included in the runtime reported in the results (Figure 6).
First, we compute the predictive mean mi,jpx˛q and marginal variance diagpKi,jpx˛,x˛qq (see Equations (8)
and (9)) for each test input x˛. Then, we use the probit approximation (MacKay, 1992) to obtain the
predictive probabilities

π˛ “ softmax
˜

mi,jpx˛q
a

1 ` π
8 diagpKi,jpx˛,x˛qq

¸

P RC ,

where the vector division is defined element-wise. This is an approximation of the integral from Section 2.3.
All three performance metrics are based on the predictive probabilities.

• Accuracy. The prediction for x˛ is given by arg maxcprπ˛scq, i.e. by the class with the largest
predictive probability. The accuracy is defined as the ratio of correctly classified data.

• NLL Loss. The NLL loss for x˛ is defined as the log probability for the actual class y˛, i.e.
logprπ˛sy˛

q. We obtain the NLL training and test loss by averaging the individual loss values for the
entire training/test set.

• ECE. The expected calibration error (ECE) (Kumar et al., 2019) is a measure for the calibration of
the predictive probabilities. It groups the probabilities of the predicted classes (i.e. the classification
confidences) into bins and, within these bins, compares the average confidence with the actual
accuracy. We use MulticlassCalibrationError from torchmetrics (Detlefsen et al., 2022) with
default parameter n_bins=15.

27

Under review as submission to TMLR

Individual runs. Figure 6 shows the average performance for each of the nine methods/variants over
five runs. In order to show, that the observed performance differences are not due to chance, we show the
individual runs in Figure 9.

100 101 102 103 104

Runtime in s

76

78

80

82

84
Accuracy in % ↑

100 101 102 103 104

Runtime in s

1.00

1.25

1.50

1.75

2.00

2.25

NLL loss ↓

100 101 102 103 104

Runtime in s

0.0

0.2

0.4

0.6

ECE ↓ SoD

Nsub =250

Nsub =500

Nsub =1,000

Nsub =2,000

SVGP
α=0.001, U=5,000

α=0.01, U=5,000

α=0.001, U=10,000

IterNCGP-CG
j≤5, R=∞
j≤5, R=10

Figure 9: Large-Scale GP Classification. Same as Figure 6, but showing all runs individually (instead
of just their average).

C.4 GP Multi-Class Classification on MNIST

To demonstrate IterNCGP’s applicability to real-world datasets, we perform an additional experiment
(similar to the experiment described in Appendix C.3) on a subset (Nsub “ 20,000) of the MNIST (Lecun
et al., 1998) dataset. In the following, we describe the experiment and results in more detail.

Remark. For the experiment on synthetic data, we use KeOps on top of GPyTorch for fast kernel-matrix
multiplies. However, KeOps scales poorly with the data dimension (D “ 282 “ 784 for MNIST)6. We
therefore revert to GPyTorch’s standard implementation. This implementation of the kernel matrix-vector
product is fast but causes out-of-memory errors for large datasets, which is why we limit our benchmark to
Nsub “ 20,000 training data. To fully realize the potential of our method using KeOps, it might be advisable
to apply it only to problems with data dimensions smaller than around 100.

Data & Model. We use 20,000 training and 10,000 test images from the MNIST dataset and the softmax
likelihood. Our model for the latent function is a multi-output GP which uses C “ 10 independent GPs, each
of which is equipped with a Matérnp 3

2 q kernel.

Kernel Hyperparameters. As a first step, we determine suitable hyperparameters (the outputscale and
lengthscale) for the Matérnp 3

2 q kernel by running GPyTorch’s SVGP implementation. We use 1000 inducing
points per class, a batch size of 1024 and optimize the ELBO using Adam with learning rate 0.001 for
30 epochs (this results in lengthscale = 1.550934 and outputscale = 0.451591). Note that choosing
hyperparameters with SVGP may give SVGP an advantage in what performance it can reach, making it a
competitive baseline.

SVGP and IterNCGP-CG Approaches. We compare IterNCGP-CG and SVGP both using the
same fixed kernel hyperparameters (see above). IterNCGP-CG is applied with recycling and R “ 8, i.e.
without compression. We exclude compression since both IterNCGP runs converge within three iterations,
see below. The number of inner loop iterations is limited by j ď 1 or j ď 5, i.e. two runs are performed.
For the SVGP approach, we optimize the ELBO using Adam with batch size 1024 for 200 seconds. The
number of inducing points and the learning rate are tuned via grid search. As in Appendix C.3, we use
U P t1000, 2500, 5000, 10000u inducing points and three different learning rates α P t0.001, 0.01, 0.05u. All 14
runs are performed on a single NVIDIA GeForce RTX 2080 Ti 12 GB GPU.

Results. The results are shown in Figure 10. They show the two IterNCGP runs and the best four SVGP
runs (these include the best two runs for each of the six performance metrics training/test accuracy/NLL/ECE).

6https://www.kernel-operations.io/keops/_auto_benchmarks/plot_benchmark_high_dimension.html (accessed May
2024)

28

 https://www.kernel-operations.io/keops/_auto_benchmarks/plot_benchmark_high_dimension.html

Under review as submission to TMLR

Our observations are mostly consistent with the results on the synthetic data (Figure 6): Both IterNCGP
runs significantly outperform the best SVGP runs in terms of NLL loss and accuracy. Only the ECE achieved
by IterNCGP is slightly worse than for SVGP. However, as explained in Section 5.2, a small ECE on
its own is not conclusive since we can easily construct a classifier with perfect ECE by randomly sampling
predictions.

10−1 100 101 102

Runtime in s

20

40

60

80

100

Accuracy in % ↑

2.290

2.295

2.300

NLL loss ↓

10−1 100 101 102

Runtime in s

1.9

2.0

2.1

10−1 100 101 102

Runtime in s

0.0

0.2

0.4

0.6

0.8

ECE ↓ SVGP
α=0.05, U=1,000

α=0.05, U=2,500

α=0.01, U=10,000

α=0.05, U=10,000

IterNCGP-CG
j≤1, R=∞
j≤5, R=∞

Figure 10: GP Classification on MNIST. Comparison of SVGP with learning rate α P t0.001, 0.01, 0.05u

and U P t1000, 2500, 5000, 10000u inducing points (showing only the best four runs) and IterNCGP-CG on
a classification problem with N “ 20,000 training points and C “ 10 classes in terms of accuracy (Left), NLL
loss (Center) and ECE (Right). Performance metrics are shown as solid (training set) or dashed (test set)
lines. For IterNCGP, the dots mark the start of a new outer-loop iteration. IterNCGP-CG performs best
in terms of accuracy and NLL loss but slightly worse in terms of ECE.

29

	1 Introduction
	2 Background
	2.1 Non-conjugate Gaussian Processes (NCGPs)
	2.2 Approximate Inference via Laplace
	2.3 Predictions

	3 Computation-Aware Inference in NCGPs
	3.1 Derivation of the IterNCGP Framework
	3.2 Policy Choice: Targeted Computations
	3.3 Recycling: Reusing Computations
	3.4 Compression: Memory-Efficient Beliefs
	3.5 Cost Analysis of IterNCGP

	4 Related Work
	5 Experiments
	5.1 Poisson Regression
	5.2 Large-Scale GP Multi-Class Classification

	6 Conclusion
	A Mathematical Details
	A.1 Newton's Method as Sequential GP Regression
	A.2 Our Algorithm is an Extension of IterGP
	A.3 The Marginal Uncertainty Decreases in the Inner Loop
	A.4 Virtual Solver Run
	A.5 Derivatives of the Poisson Log Likelihood
	A.6 Pseudo-Inverse of Negative Hessian of the Log Likelihood for Multi-Class Classification

	B Implementation Details
	B.1 Ordering within Vectors & Matrices
	B.2 IterNCGP Outer Loop
	B.3 IterNCGP Inner Loop: IterGP with a Virtual Solver Run
	B.4 Cost Analysis of IterNCGP
	B.4.1 Matrix-Vector Products
	B.4.2 Cost Analysis alg:inner,alg:outer,alg:virtualsolverrun

	C Experimental Details
	C.1 Binary Classification
	C.2 Poisson Regression
	C.3 Large-Scale GP Multi-Class Classification
	C.4 GP Multi-Class Classification on MNIST

