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Abstract

When solving ill-posed inverse problems, one often desires to explore the space of
potential solutions rather than be presented with a single plausible reconstruction.
Valuable insights into these feasible solutions and their associated probabilities
are embedded in the posterior distribution. However, when confronted with data
of high dimensionality (such as images), visualizing this distribution becomes
a formidable challenge, necessitating the application of effective summarization
techniques before user examination. In this work, we introduce a new approach
for visualizing posteriors across multiple levels of granularity using tree-valued
predictions. Our method predicts a tree-valued hierarchical summarization of
the posterior distribution for any input measurement, in a single forward pass
of a neural network. We showcase the efficacy of our approach across diverse
datasets and image restoration challenges, highlighting its prowess in uncertainty
quantification and visualization. Our findings reveal that our method performs
comparably to a baseline that hierarchically clusters samples from a diffusion-based
posterior sampler, yet achieves this with orders of magnitude greater speed. Code
and examples are available at our webpage.

1 Introduction

Communicating prediction uncertainty is a crucial element in advancing the reliability of machine
learning models. This is particularly important in the realm of imaging inverse problems, in which a
given input can typically be associated with a multitude of plausible solutions. In such cases, it is
advantageous to equip users with efficient tools for exploring and visualizing the set of admissible
solutions. Such tools may be of high value especially in safety-critical domains, such as scientific
and medical image analysis [1–4], where inaccuracies in predictions could impact human lives.

Information about the plausible solutions and their respective likelihoods is encapsulated within
the posterior distribution. However, high-dimensional posteriors are challenging to visualize. One
popular approach for communicating uncertainty is to generate samples from the posterior [5–14].
Yet, in complex domains with high uncertainty levels, users may need to sift through hundreds of
posterior samples per input to be able to confidently validate or refute suspicions about the unobserved
ground-truth image [15]. Several methods have been proposed for generating a concise set of samples
that highlight posterior diversity [15, 16]. However, choosing this set to be small is often insufficient
for summarizing the posterior, while choosing it to be large hinders the user’s ability to properly
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Figure 1: Hierarchical decomposition of the minimum-MSE predictor into prototypes in the
task of mouth inpainting. The predicted tree explores the different options of bigger/smaller lips,
mouth opening/closing, round/square jawline, etc.

inspect all solutions in the set. Other methods proposed to visualize uncertainty by allowing the user
to navigate along the principal components (PCs) of the posterior [17–20]. While more interactive in
nature, the projection onto a low dimensional principal subspace commonly accounts for only a small
fraction of the reconstruction error.

In this work, we propose to model posterior uncertainty through hierarchical clustering, by using
tree-structured outputs. In stark contrast to all existing methods, our approach supports efficient
user interaction, allowing examination of only a small number of hypotheses en route to accepting
or refuting a hypothesis about the unknown image. Specifically, our model receives a degraded
measurement and outputs a hierarchy of predictions that cluster the solution set at multiple levels
of granularity, each accompanied by their probability. This allows us to visualize the likelihood of
different posterior modes, facilitating an informed visual exploration of posterior uncertainty (Fig. 1).
Our method, which we coin posterior trees, is a generic technique for uncertainty visualization that is
seamlessly transferable across tasks and datasets. Compared to the popular practice of training point
estimators with mean square error (MSE) minimization, our method is an ideal drop-in replacement.
This is because it adds a minor additional computational burden, while simultaneously accompanying
the point estimate with its decomposition to the constituting clusters, revealing the underlying modes
of variation and disclosing posterior uncertainty.

We showcase our method on multiple inverse problems in imaging, demonstrating the practical
benefit of tree-valued predictions. We also quantitatively compare our learned posterior trees to a
two-step baseline that generates samples using a diffusion-based posterior sampler and then applies
hierarchical K-means clustering. Our approach achieves a comparable performance across tasks and
datasets while enjoying a significantly faster runtime.

2 Related Work

The common avenue for probing data uncertainty (also known as aleatoric uncertainty [6–8, 21–
23]) involves posterior sampling using conditional generative models like [5–14, 24–27], with the
dominance of score-based/diffusion models [28–31] in recent years. While posterior sampling
theoretically offers a sizable solution set per input, allowing useful uncertainty estimates through
summarization methods like PCA [18] or K-means, its implementation proves impractically slow
for contemporary state-of-the-art models. Despite attempts to enhance speed [32–35], the strategy
remains plagued by extended run times.

In an effort to expedite inference, some studies proposed approximating posteriors with simpler
distributions considering pixel correlations, such as correlated Gaussians [36–39]. More recently,
two approaches emerged, directly outputting the top principal components (PCs) of the posterior
distribution without imposing distributional assumptions [17, 19]. Additionally, subsequent work by
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Yair et al. [20] visualized the projected posterior distribution onto the subspace spanned by the top
PCs, unveiling its multi-modal nature at heightened uncertainty levels.

Multiple choice learning (MCL) [40–50] was proposed as a framework that can provide a multi-modal
set of predictions when confronted with ambiguous inputs. The idea was originally proposed by
Guzman-Rivera et al. [40] using structured support vector machines, and was later introduced to deep
models in [42, 43]. The main working principle of MCL is to train an architecture with multiple
output heads using the oracle loss, such that for a given input, only the head that is closest to the
desired output gets updated. This winner-takes-all strategy encourages each head to specialize in
a different mode of the output space, effectively predicting the centers of a Voronoi tessellation of
all possible outputs [45]. Later works such as [48, 50] proposed to complement each prediction in
the set with its likelihood. Nonetheless, existing multi-hypothesis methods are mainly tailored to
classification settings, and are still limited in their ability to organize the predicted set of hypotheses
effectively. Categorizing the solution set hierarchically, as we propose here, can significantly
accelerate uncertainty exploration. For example, it allows iterative user interaction, focusing user
efforts on the examination of a small number of hypotheses (not necessarily the most likely ones) to
confirm/refute a suspicion about the signal. Moreover, the hierarchical structure can regularize the
number of prototypes devoted to high-density modes, highlighting rare cases.

3 Method

Our goal is to predict a clean signal x ∈ X ⊆ Rdx , given some degraded measurements y ∈ Y ⊆ Rdy .
We assume that x and y are realizations of random vectors x and y with an unknown joint distribution
px,y(x,y), from which we have a training set of i.i.d. samples D = {(xi,yi)}Ni=1. The objective of
our predicted trees is therefore to visualize the uncertainty in the posterior distribution px|y(x|y) via
a hierarchical set of a few prototypes.

3.1 Multiple Output Prediction

Many image restoration methods output a single prediction x̂ for any given input y. A common
choice is to aim for the posterior mean x̂ = E[x|y = y], which is the predictor that minimizes the
MSE. However, a single prediction does not convey to the user the uncertainty in the restoration,
especially if the solution set is multi-modal. When confronted with such ambiguous tasks, it is more
natural to predict a small set of prototypical restorations {x̂1, . . . , x̂K} that portray the different
options. In MCL, this is achieved by minimizing the so-called oracle/winner-takes-all loss given by

LMCL

(
x, {x̂i}Ki=1

)
= min

i=1,...,K
ℓ(x, x̂i), (1)

where ℓ(·, ·) is a loss function that measures prediction distance. Note that LMCL is minimized
as long as one restoration in the predicted set is close to x. This encourages prediction diversity,
such that each restoration specializes in a different mode of the posterior. Rupprecht et al. [45]
proposed a probabilistic interpretation of MCL, showing that the optimal minimizers of Eq. (1) form
a centroidal Voronoi tessellation (CVT) of the posterior, where {x̂⋆

i }Ki=1 are given by the conditional
means/centroids of the resulting K Voronoi cells (see Appendix E). In a discrete setting where we are
given samples from px|y(x|y), CVT with the Euclidean distance is equivalent to K-means clustering.

Our goal here is to generalize the concept of predicting a set of restorations. Given an input y, instead
of predicting an unordered set {x̂1(y), . . . , x̂K(y)}, we propose to output an input-adaptive tree
T (y) representing a hierarchical clustering of the posterior px|y(x|y). Specifically, we want the tree
nodes to correspond to a hierarchical CVT of the posterior (analogous to a hierarchical K-means
process in the discrete setting), where the children of each node constitute a CVT for the cluster
represented by the node. Such a tree can organize the different restorations in a manner that facilitates
their navigation by a user and can also accompany each node with its relative cluster probability.

3.2 Posterior Trees

As discussed above, training a model to predict a tree of degree K and depth d = 1 with the oracle
loss, results in a CVT of the posterior px|y(x|y) for every y. Let {Ak(y)}Kk=1 denote the resulting
Voronoi cells at d = 1 for some input y = y, such that ∪Kk=1Ak(y) = X , with X ∈ Rdx being the
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Figure 2: Method overview. Our model T (y;θ) receives a degraded image y and predicts
{x̂k1,...,kd

}Kk1,...,kd=1, the bottom Kd leaves, and their probabilities {α̂k1,...,kd
}Kk1,...,kd=1 (faint blue

box; illustrated here for K = 3 and d = 2). Next, the tree is iteratively constructed from the bottom
up using weighted averaging, until we reach the root node which is the minimum MSE predictor
x̂MMSE. During training, starting from the root, the ground truth x is propagated through the tree until
it reaches the leaves (dashed red lines). At tree level d, x is compared to its immediate K children
nodes, and the MSE loss to the nearest child is added to the loss trajectory.

output space. Training with ℓ2 loss, i.e. ℓ(x̂,x) = ∥x̂ − x∥22, the optimal K predicted leaves and
probabilities are given by [45, 50]

x̂⋆
k(y) = E [x|y = y,x ∈ Ak(y)] ,

α̂⋆
k(y) = P (x ∈ Ak(y)|y = y) , k = 1, . . . ,K. (2)

We now want to extend the tessellation to the children of each node at the next level. Let {Ak,q(y)}Kq=1

denote the Voronoi cells at d = 2, partitioning/tessellating the Voronoi cellAk(y) from level 1 into K

sub cells such that ∪Kq=1Ak,q(y) = Ak(y). We want the K2 leaves and their associated probabilities
outputted by our model to be given by

x̂⋆
k,q(y) = E [x|y = y,x ∈ Ak,q(y)] ,

α̂⋆
k,q(y) = P (x ∈ Ak,q(y)|y = y) , k, q = 1, . . . ,K. (3)

For simplicity of notation, in the following, we omit the dependence of the Voronoi cells on y, and
write Ak/Ak,q instead. Equations (2) and (3) expose an interesting connection between tree levels.
First, recall that since {Ak,q}k,q is a tessellation, it satisfies∪Kq=1Ak,q = Ak, andAk1,q1∩Ak2,q2 = ∅
for (k1, q1) ̸= (k2, q2). Invoking the law of total expectation we can write

E [x|y = y,x ∈ Ak] =

K∑
q=1

E [x|y = y,x ∈ Ak,x ∈ Ak,q]P (x ∈ Ak,q|y = y,x ∈ Ak) . (4)

Equation (4) can be simplified by noting that Ak ∩ Ak,q = Ak,q, hence the expectation in the
summand is given by E[x|y = y,x ∈ Ak,q]. Moreover, we further simplify the probability in Eq. (4)
by writing

P (x ∈ Ak,q|y = y,x ∈ Ak) =
P (x ∈ Ak|y = y,x ∈ Ak,q)P(x ∈ Ak,q|y = y)

P(x ∈ Ak|y = y)

=
P(x ∈ Ak,q|y = y)∑K
j=1 P(x ∈ Ak,j |y = y)

, (5)

where the first equality follows from Bayes’ rule and the second equality is by the law of total
probability and the fact that Ak,q ⊆ Ak, which implies that P(x ∈ Ak|y = y,x ∈ Ak,q) = 1.
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Substituting Eq. (5) and the simplified expectation in Eq. (4) with the notations of Eqs. (2) and (3),
we obtain that

x̂⋆
k(y) =

K∑
q=1

x̂⋆
k,q(y)

α̂⋆
k,q(y)∑K

j=1 α̂
⋆
k,j(y)

, (6)

α̂⋆
k(y) =

K∑
q=1

α̂⋆
k,q(y), k = 1, . . . ,K, (7)

where Eq. (7) is by the law of total probability. Note that Eqs. (6) and (7) expose the redundancy
in predicting both {x̂⋆

k(y), α̂
⋆
k(y)} and {x̂⋆

k,q(y), α̂
⋆
k,q(y)}, as given the latter, we can compute the

former in closed form. Furthermore, although our derivation assumed a tree of depth d = 2, the
result trivially generalizes to a tree of depth d. Given the leaves and their probabilities at level d,
{x̂⋆

k1,...,kd
(y), α̂⋆

k1,...,kd
(y)}Kk1,...,kd=1, we can compose their parents at the upper d − 1 levels, by

employing Eqs. (6) and (7) iteratively from the bottom up.

Here, this is precisely the property we exploit to output an input-adaptive tree T (y) of degree K
and depth d, using a single model. Specifically, we train a model T (y;θ) ≜ (X̂d(y;θ), α̂d(y;θ))
that outputs Kd prediction leaves X̂d(y;θ) = {x̂n(y;θ)}K

d

n=1 and their accompanying probabilities
α̂d(y;θ) = {α̂n(y;θ)}K

d

n=1 (see Fig. 2). Next, starting from the bottom leaves at depth d, the rest of
the tree is composed level by level, recursively employing Eqs. (6) and (7) from the bottom up.

During training, the tree hierarchy is enforced through our loss function. Given some input yi, the
model T (y;θ) outputs are used as explained earlier to construct the full tree, where the root of the
tree approximates the posterior mean E[x|y = yi]. Next, the label xi is first compared to the tree
root with an ℓ2 loss to ensure our decomposition recovers the MMSE estimator. At each successive
level, the label xi is compared to the children of the parent with minimal loss, and the closest child is
added to the loss trajectory (Fig. 2). This process is repeated until we arrive at the bottom leaves.

Note that the described training scheme serves two purposes. First, it induces the desired tree
structure by employing an amortized hierarchical version of the oracle loss in Eq. (1). Second,
the loss employed on the root node enables predicting branch probability, mitigating the need for
supervising the probabilities with explicit targets. See Appendix D for more details on our training
algorithm and hierarchical oracle loss function.

3.3 Architecture

The approach presented in Section 3.2 is general, and can be used to augment any architecture
outputting Kd images and probabilities. Here, we choose to adapt the U-Net architecture [51] as a
generic established choice for image-to-image regression tasks. The number of output images is Kd

to accommodate a tree of degree K and depth d. In case all features are shared in the architecture,
this amounts to changing the number of output filters at the last layer. However, in challenging tasks
such as image inpainting, we found that sharing all parameters leads to reduced prediction diversity.
In such cases, to trade off feature sharing and output diversity, we use group convolutions [52] in
the decoder, such that each prediction has a disjoint set of channels learned separately from other
outputs. As for the skip connections from the encoder, the concatenated features are interleaved
equally per level such that each prediction has an equal share. In addition to the output images,
our architecture also predicts Kd probabilities (see Figs. 2 and A2). This is achieved by (global)
average pooling all feature maps from the decoder, and feeding their concatenation to an additional
lightweight multi-layer perceptron (MLP), with four linear layers and a softmax at the output.

3.4 Preventing Tree Collapse

Vanilla training with the oracle loss is known to suffer from “hypotheses collapse”, where some of
the predictions are implausible [40, 42, 43, 45, 46, 50, 53, 54]. This phenomenon occurs when some
predictions are initialized worse than others in stochastic training, and therefore receive little to no
gradient updates due to not being chosen in the oracle loss. This results in degenerate outputs that are
not encouraged to produce meaningful results. Previous works proposed various regularizations to
remedy this undesired effect. For example, Rupprecht et al. [45] relaxed the argmin operator with a
small constant ε, such that predictions with non-minimal loss get updated with ε-scaled gradients.
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Figure 3: 2D Gaussian mixture denoising. (a) Underlying signal prior px(x) (blue heatmap),
and training samples (xi,yi) ∼ px,y(x,y). (b) K-means with K = 4 applied to 10K samples
xi ∼ px|y(x|yt), for a given test point yt (red circle). The resulting cluster centers (blue markers)
partition the underlying posterior px|y(x|yt) (red heatmap), resulting in cluster probabilities p(yt).
(c) Hierarchical K-means applied twice with K = 2 on 10K samples xi ∼ px|y(x|yt). At depth
d = 1, the posterior is partitioned by the dashed blue line (blue triangles mark cluster centers). The
resulting half spaces are subsequently halved by the dashed orange and green lines respectively. (d)
Posterior trees (ours) with degree K = 2 and depth d = 2. Note that in all cases the estimated
posterior mean µ̂(x|yt) (black star) coincides with the analytical mean µ(x|yt) (red star), while in
(c)-(d) the lowest density mode is better represented. T (yt)/p(yt) are drawn at the bottom of (b)-(d).

Moreover, Makansi et al. [54] proposed an evolving version of the oracle loss, where the top-k
predictions are updated in each step, with k being annealed down to k = 1 during training, such that it
starts with equal weights to all predictions and gradually shifts to updating only the best one towards
convergence. Here, we employ a strategy that combines the simplicity of [45] with the adaptivity
of [54]. Specifically, we scale the gradients of non-performing predictions with a constant ε that is
annealed during training according to

εt = ε0 exp{−[t− t0]+/2}, (8)

where t is the epoch number, and we fixed ε0 = 1 and t0 = 5 for all experiments. At the beginning
of training, this has the benefit of bringing all predictions to a reasonable starting point, alleviating
sensitivity to initialization and top prediction domination. As training progresses, this regularization
is decayed, and only the relevant prediction is chosen for each sample, hence converging to the
desired MCL behavior (see Appendix B).

3.5 Weighted Sampling

Albeit the regularization mentioned in Section 3.4, for tasks with highly imbalanced posteriors,
training with Adam [55] leads to trees with a large disparity in leaf quality. This is because less likely
leaves get chosen with lower frequency during training, resulting in transient gradients that highly
affect the adaptive normalization in Adam. This hypothesis was also validated in matched settings
by using SGD with an appropriate learning rate which resulted in significantly slower, yet improved
convergence (see Appendix A.3). Therefore, to keep the speed advantage provided by Adam, in
the task of image inpainting, we opted for a weighted sampler during training. The purpose of this
sampler is to roughly balance out the overall number of occurrences at the bottom leaves during
training. This is achieved by keeping track of an association matrix A ∈ RKd×N , where Ai,j counts
the number of times sample xj was associated with leaf ci over some time window. This allows us
to estimate the conditional probability pc|x(ci|xj), and subsequently derive an optimized sample
probability to achieve a roughly uniform marginal leaf probability across the entire training set. The
loss of each sample is then adjusted to account for this intervention, avoiding tampering with the
original posterior probabilities. See Appendix C for more details.

4 Experiments

Here we demonstrate our method in several settings. In all experiments except for the toy example,
we used variants of the U-Net architecture [51], with a custom number of output images, adjusted
to accommodate Kd predictions according to the desired tree layout. Moreover, as explained in
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Section 3.3, each model was also complemented with a small MLP for predicting leaf likelihood.
Full details regarding the architectures, optimizer, and per-task settings are in Appendix A.

Toy Example. As a warm-up, we demonstrate posterior trees on a 2D denoising task. Here, x
is sampled from a mixture of four Gaussians (arranged in a rhombus-like layout), and y is a noisy
version of x. The prior distribution px(x) and exemplar samples from px,y(x,y) are presented in
Fig. 3(a). For this simple case, the posterior distribution px|y(x|y) can be calculated analytically
(see Appendix G for the derivation) and is also a mixture of Gaussians. Therefore, this task can
serve as a sanity check enabling us to benchmark our results. To demonstrate our method on this
toy example, we train a model T (y;θ) outputting a tree of depth d = 2 and degree K = 2. The
results are compared against an approximate “ground truth” in Fig. 3(c). Note that even though we
have a closed-form expression for the posterior density, we still have to approximate the “ground
truth” posterior tree by applying hierarchical K-means clustering to samples for every y. As seen
in Fig. 3(d), our method resulted in highly accurate posterior trees both in terms of cluster centers
and cluster likelihoods. Moreover, this result was achieved while being presented only with a single
posterior sample per y in training. In contrast, the approximate ground truth was computed with 10K
samples. Moreover, it is important to note that besides trivial cases, our result could not have been
achieved with a “flat” K-means clustering with K = 4 (Fig. 3(b)). This is because K-means tends to
focus on high-density modes, whereas our hierarchical trees better convey rare cases of the posterior.
See Appendix G for more details and examples.

Handwritten Digits, Edges→Shoes, and Human Faces. Figure 2 demonstrates posterior trees on
inpainting the top 70% of handwritten digits from the MNIST dataset. As can be seen, at depth d = 1,
the learned tree exposes the two likely modes averaged in the mean estimate x̂, being either a “7”
or a “9”. In addition, at deeper tree levels, the different modes are further refined to reveal intricate
intra-digit variations. More examples are available in Appendix M. We also applied posterior trees
to the edges-to-shoes dataset taken from pix2pix [56, 57]. Here, the task is to convert an image of
black and white edges to an output RGB image of a shoe. As shown in Fig. 4(a), our tree is capable
of representing diverse shoe colors, in an adaptive manner to the input contours.

Next, we tested posterior trees on face images from the CelebA-HQ dataset, using the split from
CelebA [58]. Figure 4(b) demonstrates our method applied to image colorization, where the input is
a grayscale image and the desired output is its RGB version. The resulting trees hierarchically refine
the output predictions by background, skin tone, and hat color. We also tested our method on the task
of image inpainting. Figures 1 and 4(c) show the resulting trees for mouth/eye inpainting respectively.
For example, the predicted tree in Fig. 4(c) explores the different options of eye-opening/closing,
eyebrow-raising/lowering, eyeglasses, etc. This demonstrates that even shallow trees can still depict
diverse reconstruction characteristics, showcasing the benefit of outputting multiple predictions.

Bioimage Translation. Transforming images from one domain to match the statistics of images
from another is commonly referred to as the task of image-to-image translation [57]. In the realm of
bioimaging, such transformations were utilized to predict fluorescence from bright-field images [1],
“virtually stain” unstained tissue [3], and transfer the images of one fluorescent dye to appear as if
they were imaged with another [59]. The common scenario in image-to-image translation is the task
being highly ill-posed with a wide range of plausible transformations satisfying the desired statistics.
For general image editing/style transfer, this is a desired property adding to the artistic excitement;
However, in bioimaging, this is highly problematic as the result often informs a downstream task
with high stakes, and therefore output uncertainty should be communicated.

Here, we applied our method to a dataset of migrating cells, imaged in a spinning-disk microscope,
simultaneously with two different fluorescent dyes (one staining the nuclei and one staining actin
filaments) [59]. The task was to predict the image of one fluorescent dye (nuclear stain) from another
(actin stain). Figure 5 demonstrates the predicted tree for a 128× 128 test patch. The tree conveys
important information to the user exposing uncertain cells, and exploring optional cell shapes. These
can for example affect downstream tasks such as cell counting and morphological cell analysis.
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(c) Eyes inpainting

Figure 4: Diverse applications of posterior trees. The predicted trees represent inherent task
uncertainty: e.g., (a) Refining the mean estimate by color, grouping similar colors, while still
depicting unlikely ones (e.g., the blue boot); (b) Presenting various plausible colorizations varying by
hat color, skin tone, and background; and (c) Exploring the diverse options of eyebrows/eyeglasses.
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Figure 5: Bioimage translation. Here we explored posterior trees for the task of translating the image
of a tissue from one fluorescent dye to another. The resulting trees expose important information
regarding uncertain cells (yellow/red arrows), e.g., ones that do not consistently appear in all branches,
and additionally explore different plausible cellular morphology consistent with the input.

Table 1: Comparison to the proposed baseline on 100 test images from the FFHQ dataset. Hierarchical
K-means was applied to 100 posterior samples per test image. Runtime is reported as both the speed
of a forward pass (sec) and the memory usage (GB) required to infer a single test image with a batch
of 1 on an A6000 GPU. The NLL at the root node (d = 0) is trivial and therefore omitted. Blue and
Red indicate best and second best respectively.

Task Method Optimal PSNR (↑) NLL (↓) Speed
(sec ↓)

Memory
(GB ↓)d = 0 d = 1 d = 2 d = 1 d = 2

Color.
DDNM 24.6±3.8 25.5±3.6 26.1±3.6 0.9±0.4 2.0±0.6 340 18500
DDRM 22.7±2.7 24.0±3.0 24.8±3.0 1.1±0.4 2.0±0.5 68 3700
Ours 24.6±4.1 25.7±3.9 26.4±4.0 0.9±0.4 2.0±0.7 0.014 1.3

Mouth
inpaint

DDNM 19.3±2.6 19.9±2.2 20.2±2.0 1.1±0.4 2.1±0.6 340 18500
RePaint 19.8±2.7 20.5±2.3 20.7±2.3 1.0±0.3 1.9±0.4 15538 845450
MAT 19.2±2.3 19.4±2.3 19.6±2.3 1.2±0.3 2.5±0.6 15 300
Ours 20.1±2.4 20.5±2.3 20.4±2.2 0.9±0.4 2.0±0.8 0.014 1.3

Eyes
inpaint

DDNM 19.3±2.7 19.6±2.5 19.5±3.7 1.1±0.7 2.1±0.6 340 18500
RePaint 20.1±2.8 20.4±2.8 20.6±2.8 1.0±0.4 1.9±0.5 15538 845450
MAT 19.0±3.0 19.2±3.0 19.3±3.0 1.2±0.3 2.4±0.6 15 300
Ours 19.6±2.7 19.9±2.5 19.8±2.4 1.3±0.6 2.5±0.7 0.014 1.3

4.1 Quantitative Comparisons

Baseline. Building on the notion of clustering from Section 3.1, we propose a simple baseline to
benchmark our results. As shown in Fig. 3(d), our predicted trees are constructed out of prototypes
that yield a hierarchical clustering of the posterior. In discrete settings, this is equivalent to applying
Hierarchical K-means on samples from px|y(x|y). Therefore, given a method to sample from the
posterior (e.g., using [7, 8, 10, 11]), a natural baseline in our case is a two-step procedure: (i) Generate
Ns samples from the posterior, and (ii) Apply hierarchical K-means d times to generate a tree of
degree K and depth d. Note that due to computational reasons, the comparison is performed over a
random subset of 100 test images from FFHQ, where for each image we generate Ns = 100 samples,
and apply hierarchical K-means with K = 3 and d = 2. To ensure a fair comparison, at each
clustering step, K-means was run 5 times, keeping only the clusters with the best objective.

Metrics. To compare our predicted trees to the proposed baseline, we opted for two different
metrics. The first metric is the PSNR (equivalent to MSE) between the ground truth test image and
the tree nodes along the optimal path starting from the root and ending at the leaves. Intuitively, an
accurate posterior clustering implies our tree nodes should maximize the PSNR, representing the
ground truth test image with increasingly higher accuracy (lower MSE) as a function of (optimal)
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node depth. The second metric we adopt is the sample negative log-likelihood (NLL) (using the
natural logarithm) of the ground truth test image under the predicted posterior partitioning. Here,
an accurate tree is expected to maximize the sample log-likelihood. This metric serves the purpose
of verifying the predicted probabilities, as in practice we do not have access to the ground truth
posterior distribution, and estimating cluster probability based on posterior samples becomes worse
as a function of depth. Table 1 compares posterior trees to the proposed baseline, implemented with
various state-of-the-art samplers. The results suggest that our method yields comparable performance
in both the PSNR along the optimal path and in sample log-likelihood while requiring a single
forward pass (≈ 14 ms with a 1.3 GB memory footprint on a A6000 GPU). This is 103− 107× faster
than the competition without considering our wide advantage in memory footprint. In case we do
consider a batched setting with a sizable test set, our advantage becomes even more pronounced,
where our method enables the inference of ≈ 430 test images in a single second. See Appendices I
to L for more details and visual comparisons.

5 Discussion and Conclusion

We demonstrated the wide applicability of posterior trees across diverse tasks and datasets. However,
our method is not free of limitations. First, the optimal hyper-parameters K and d are task-dependent,
with no rule of thumb for determining them a-priori (see Appendix H). Second, in this work, we
focused on balanced trees with a fixed degree K which might be sub-optimal for certain posteriors.
Devising a strategy for an input-adaptive tree layout is an exciting direction for future research. Third,
our method is limited in the number of output leaves, as we amortize the entire tree inference to
a single forward pass. For predicting significantly deeper trees, an iterative inference procedure
conditioning the model on the node index (in an analogous fashion to the timestep in diffusion
models) is required. Finally, our method is tailored towards visualizing uncertainty and not sampling
realistic-looking images. Although with increased depth our prototypes become increasingly sharper,
they are nonetheless still cluster centers that average multiple plausible solutions and hence are not
expected to lie on the image data manifold for shallow trees. A possible solution is to apply posterior
trees in the latent space of an autoencoder such as VQ-VAE [60, 61], however, this is beyond the
scope of this paper.

To conclude, in this work, we proposed a technique to output a hierarchical quantization of the
posterior in a single forward pass. We discussed key design choices underlying our approach,
including bottom-up tree construction, a principled training scheme, and proper regularization
techniques to prevent tree collapse. We further demonstrated the benefit of hierarchical clustering
over flat trees and discussed the intuition behind it on a toy example. In our experiments, we
applied our method to highly ill-posed inverse problems and showed that diverse (prototypical)
reconstructions are possible with a simple training scheme exposing uncertainty. Additionally, we
also proposed an appropriate baseline based on posterior sampling, and quantitatively compared our
approach to several strong samplers. Our method demonstrated at least comparable results while
being orders of magnitude faster. Finally, we applied our method to the challenging task of bioimage
translation, demonstrating its practical relevance in a real-world application.
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Appendices

A Experimental Details

A.1 Architectures

As mentioned in Section 3.3, in our experiments we adopted the U-Net [51] architecture. Our
architecture consisted of 4 downsampling/upsampling blocks. Downsampling by 2× was performed
using average pooling, and upsampling by 2× was implemented with a nearest-neighbor interpolation.
In both cases, the feature maps at the updated spatial resolution were processed by 2 convolution
blocks consisting of 2D convolution, group normalization, and LeakyReLU activation with a negative
slope of 0.2. The number of features at each spatial resolution was adapted to the predicted tree
layout, i.e., for predicting a tree of degree K and depth d, the initial number of channels before
downsampling was set to cinitK

d, where Kd is the number of output leaves and cinit ∈ {4, 8}. At each
successive encoder block, the number of channels was doubled, reaching 16cinitK

d at the bottleneck.
For example, assuming a tree with degree K = 3 and depth d = 2, and setting cinit = 4, the number
of channels per level in the encoder is given by [36, 72, 144, 288, 576].

Similarly, in the decoder, the number of channels was halved at each upsampling step in a symmetric
fashion. However, as mentioned in Section 3.3, in some tasks (e.g., image inpainting), we noticed
that fully sharing parameters between all leaves led to reduced diversity between predictions (see
Fig. A1). On the other hand, learning a separate U-Net for each prediction leaf is computationally
intensive, and highly inefficient as it is expected that the initial feature extraction stage for predicting
the different leaves would be similar. Therefore, as a middle ground between these two extremes, we
opted for an architecture that shares the encoder between the different leaves, while having disjoint
decoders, each with a dedicated set of weights {φn}K

d

n=1, learned separately from others. As for the
skip connections from the encoder, the concatenated feature maps are interleaved equally per level
such that each prediction has an equal share.

In addition to the output images, our architecture also predicts Kd scalars, which are the probabilities
of the different leaves. This is achieved by global average pooling of all feature maps from the
decoder, and feeding their concatenation to an additional lightweight MLP. This MLP has four linear
layers with dimensions [df , 256, 64,K

d], where df is the dimension of the concatenated pooled
features from the decoder. Each linear layer is followed by a 1D batch normalization and SiLU
non-linearity, and the output is passed through a softmax layer to produce a valid probability vector.
Figure A2 summarizes our architecture.

A.2 Per-task Details

In all tasks, we only learned the required residual from the input to produce the predictions. For
MNIST experiments, the images were padded to 32 × 32 to enable proper downsampling in the
encoder. For Edges→Shoes experiments, the images were kept the same as in the pix2pix [57] paper,
with a resolution of 256× 256. For CelebA-HQ experiments, the images were resized to 256× 256.
Finally, for the bioimage translation dataset, we trained on 128× 128 patches cropped from the full
1024× 1024 images, as cell information tends to be local.

A.3 Optimization

We used the Adam optimizer [55] with β1 = 0.9, β2 = 0.999 for all experiments. For the U-Net
predicting the output leaves, we used an initial step size of 0.001. For the MLP predicting leaf
probability, however, we found it beneficial to use a smaller initial step size of 0.0002. This is because
at the initial training phase, the predicted leaves are still not converged; hence, the MLP can easily
“classify” which leaf is the most likely. This collapses the predicted probabilities to a sparse vector,
leading to leaves with zero probability. Hence, to avoid this instability, we used a lower step size for
the probabilities such that the leaves are first allowed to converge, leading to the desired learning
dynamics. For both components, the step size was reduced by a factor of 10 if the validation loss
stagnated for more than 10 epochs, and the minimum step size was set to 5 · 10−6. We used a batch
size of 32 for 70 epochs for all tasks. This resulted in training times of ≈40 mins, 10 hrs, 5 hrs, and 7
hrs for MNIST, Edges→Shoes, CelebA-HQ, and the bioimage datasets respectively.
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Figure A1: Leaf weight sharing strategy. (a) Fully shared architecture, with all leaves predicted
jointly. (b) Leaves only share encoder (see Fig. A2).

Global Average 

Pooling

MLP

Input Shared encoder Separate decoders Predicted leaves

Predicted probs.

Predicted tree

Input 

features

Out 1 Out 2 Out 3

Figure A2: Model architecture. Our model receives a degraded image y and predicts the bottom Kd

leaves and their probabilities {x̂k1,...,kd
, α̂k1,...,kd

}Kk1,...,kd=1 (illustrated here for K = 3 and d = 1).
The encoder is shared between all leaves, however, in the decoding stage, each leaf has a separate
decoder (e.g., with parameters φ1,φ2,φ3) to enable diverse outputs. To predict leaf probability,
all features from the decoder are passed through a global average pooling layer, and the resulting
concatenated vector is passed to a lightweight MLP with a softmax layer at the output. Afterward, as
explained earlier, the output tree is constructed iteratively from the bottom up (right).
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B Role of εt From Eq. (8)

As explained in Section 3.4, the convergence of MCL is strongly affected by initialization. This is
because leaves that are better initialized are more likely to be chosen in the oracle loss, and hence
will dominate the remaining leaves in training. This results in output leaves that practically do not
train, and therefore give meaningless results at test time. To remedy this, we scale the gradients of
non-performing predictions with a constant ε that is annealed during training according to Eq. (8).
For the first t0 = 5, our training degenerates to standard MSE minimization, bringing all leaves
to a reasonable starting point near the posterior mean (Fig. A3(c)). This results in all prediction
leaves having roughly the same initialization, with a similar number of associated training samples.
Afterward, ε is gradually decayed, and the leaves start to specialize in their respective posterior mode,
converging to the desired MCL behavior (Fig. A3(d)). In this research, we identified this strategy as a
simple yet effective method of regularization. However, it is important to highlight that a parallel
study by Perera et al. [62] presents a potentially improved solution that combines soft assignments
with deterministic annealing. This new approach could be easily integrated with our method, and it
would be intriguing to explore this in future work.
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Figure A3: Role of εt. (a) εt. (b) Distances of leaf predictions {x̂i} from the GT x throughout
epochs. For the first t0 = 5 epochs all predictions are brought to the vicinity of the MMSE estimator.
Afterward, εt is decayed and each of the leaves is free to specialize in a subset of the posterior,
leading to higher distances on average for the entire test set. (c) Predicted tree at epoch t = t0 = 5
where all leaves are near the MMSE estimator. (d) Predicted tree at convergence (epoch t = 22)
where each leaf specializes in a different posterior mode (e.g., a “3” or a “5”).
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C Weighted Sampler

For imbalanced posteriors where the dominant mode is significantly more likely than the weakest
mode (e.g., 10×), we found that an additional regularization complementary to the one provided
by εt is needed. This is because even if we eliminate the dependence of training on leaf initialization,
still, leaves associated with (much) less likely posterior modes will be chosen with a lower frequency
during training, resulting in transient gradients that highly affect the adaptive normalization in Adam.
To test this hypothesis, we trained two models on the task of image inpainting: (i) one with Adam
using an initial learning rate of 0.001, and (ii) one with SGD using a momentum of 0.9 and an initial
learning rate of 0.1. Figure A4 demonstrates the results of this experiment. As evident in the resulting
trees, Adam leads to highly implausible predictions in leaves with low likelihoods (e.g., p = 0.0 in
Fig. A4(c)). SGD, On the other hand, does not lead to nonsensical predictions; however, it requires
significantly longer training time and is more challenging to converge (Fig. A4(d))

Therefore, in our method, we proposed a novel non-stochastic weighted sampling scheme as a simple
fix (Fig. A4(e)). The proposed weighted sampler enables us to still enjoy the convergence speed of
Adam while tackling the aforementioned optimization deficiency of MCL training for posteriors that
are far from uniform. The goal of our sampler is to ensure that on average the number of occurrences
at each output leaf during training is roughly the same (Fig. A4(b)). This is done by undersampling
training samples associated with leaves that represent probable posterior modes while oversampling
training samples associated with leaves that represent rare posterior modes.

Formally, let ci denote the ith prediction leaf (i = 1, . . . ,Kd), and sj = (xj ,yj) denote the jth
(paired) training sample. We assume we are given a training setD = {sj}Nj=1 of N i.i.d. samples, such
that ps(sj) = 1

N . The goal of the sampler is to manipulate ps(sj) via oversampling/undersampling,
such that the new sample probability in training qs(sj), leads to a uniform marginal leaf distribution,
i.e., qc(ci) = 1

Kd . To estimate the marginal leaf probability during training, we keep track of an
association matrix A ∈ RKd×N , where Ai,j counts the number of times sample sj was associated
with leaf ci. Specifically, after each training batch bτ of size B = |bτ |, the association matrix is
updated with momentum µ = 1− 2−

B
N , such that

AEMA
0 = 0, AEMA

τ = µAEMA
τ−1 + (1− µ)Aτ , (A1)

where Aτ is a binary matrix that encodes the sample-leaf association for the batch bτ . This smoothing
is necessary to accumulate statistics across epochs, making sample probability change gracefully
while avoiding large changes to the probability of uncertain samples that switch leaf association
between batches. Next, given the updated association matrix AEMA

τ , we can normalize it to obtain an
estimate of the current joint distribution pc,s(ci, sj) as

pc,s(ci, sj) =
AEMA

i,j∑Kd

p=1

∑N
ℓ=1 A

EMA
p,ℓ

. (A2)

Manipulating the sample probability ps(sj) will affect this statistic. Here we can assume that the
conditional distribution over the leaves {ci}K

d

i=1 given a sample sj stays the same under the change
of distribution for the samples. This insight can then be leveraged as follows. First, we obtain the
current conditional leaf probability via marginalization

pc|s(ci|sj) =
pc,s(ci, sj)∑Kd

i=1 pc,s(ci, sj)
. (A3)

Let P ∈ RKd×N denote the matrix where Pi,j = pc|s(ci|sj). Recall that our goal is to dictate a
new sample probability qs(sj) such that the induced marginal leaf probability qc(ci) is uniform. Let
Qc|s ∈ RKd×N denote the conditional distribution matrix under probability q such that Qc|s

i,j =

qc|s(ci|sj). In matrix form, we are looking for a probability vector over the samples qs ∈ RN , that
satisfies Qc|sqs = qc = 1

Kd1Kd×1. Since the conditional probability of the leaves is assumed to be
not affected by the change from ps to qs, we have that Qc|s = P . Therefore, in simpler notations,
we are searching for a probability vector q ∈ RN for which

Pq =
1

Kd
1Kd×1. (A4)
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Naturally, since Kd ≪ N , there are infinitely many different options q that satisfy this constraint.
Note that some of them can correspond to an imbalanced distribution, where some samples associated
with a certain leaf have high probability, while other samples that are associated with the same leaf
have low probability. Therefore, among all the different options that satisfy Eq. (A4), we want the one
that has the flattest probability. The flattest distribution minimizes the ℓ2 loss, namely ∥q∥22. However,
minimizing this objective under the constraint in Eq. (A4) can be problematic for ill-conditioned
cases. Nevertheless, we can achieve similar results by solving the following Tikhonov-regularized
relaxed problem:

min
q∈RN

1

2
∥Pq − 1

Kd
1∥22 +

λ

2
∥q∥22

s.t. qj ≥ 0, j = 1, . . . , N

q⊤1N×1 = 1

(A5)

One can obtain an exact solution q⋆ to Eq. (A5) using standard methods for convex optimization,
e.g. algorithms in CVXPY [63]. However, in typical settings, this results in longer training times.
Therefore, we opted to use an approximation. Specifically, if we drop the positivity constraint
qj ≥ 0,∀j, and solve Eq. (A5) accounting only for the constraint q⊤1N×1 = 1, we obtain the
following closed-form solution

q̃ =
(
IN×N − P⊤ (

PP⊤ + λIKd×Kd

)−1
P
)
1N×1

q⋄ =
1

q̃⊤1N×1
q̃.

(A6)

In practice, in most cases, the positivity constraints are inactive, and therefore q⋄ = q⋆. In the
rare cases where Eq. (A6) resulted in negative values, we clipped entries below zero in q⋄ and
renormalized the result.

Given the desired sampling distribution qs(sj) we pick for the next batch bτ+1 the B distinct samples
that their selection will minimize the maximal distance between the future statistics at time τ + 1
and qs. Specifically, at each training step, the next batch of samples is chosen such that the maximal
difference between the next iteration estimated sample probability ps(sj) =

∑Kd

i=1 pc,s(ci, sj) and
the desired sample probability qs(sj), i.e., ∥ps − qs∥∞, is minimized. In practice, fetching the
samples for future batches is done in advance to speed up the training time. Therefore, to prevent the
training from waiting for the successor samples, we use a buffer of m batches ahead and adjust the
implementation accordingly. During training, we activated our weighted sampler one epoch after εt
started decaying to 0.

Finally, note that switching from ps to qs during training effectively changes the dataset by repeti-
tion/omission, and if not accounted for will distort the learned posterior probabilities. Therefore,
to undo this undesired effect while still maintaining an increased number of optimization steps for
weak posterior modes, we scaled the loss of sample sj by the factor γj = 1

Nqs(sj)
. Hence, we

effectively only changed the number of optimization steps taken per output leaf, enabling all leaves
to continuously receive gradients and train equally as well with Adam.
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(b) Weighted sampling
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Figure A4: Weighted sampling effect. Optimization with Adam requires weighted sampling to train
properly (see text in Appendix C).
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D Tree Loss Function and Training Scheme

Our tree training algorithm is summarized in Algorithm 1. Throughout this work, we used the
MSE loss ℓ(x, x̂) = ∥x− x̂∥22 to both determine the closest tree node and as our optimization loss.
However, in general, a distinction should be made between the measure ℓ(·, ·) used for the clustering
(i.e. determining the associations of samples to clusters) and the loss used within each cluster to
determine the cluster representative. In theory, our approach can work without modification with
any association measure (e.g. LPIPS [64], some domain-specific classifier [65], etc.). However,
changing the within-cluster loss requires some modifications. Specifically, the use of the MSE loss is
what provides us with the hierarchical decomposition of the posterior mean (see Eqs. (2) to (7)). In
particular, when using the MSE/L2 loss, each cluster representative becomes the posterior cluster
mean, and a weighted combination of those representatives gives the overall posterior mean (which is
the tree root). This allows us to have the network output only the leaves of the tree, which implicitly
defines the entire tree (as the nodes of each level are obtained as linear combinations of the nodes of
its children).

One natural extension to investigate using our approach is to take the association measure to be
ℓ(x̂,x) = ∥f(x̂)− f(x)∥22, where f(·) is some relevant domain-specific feature extractor. Specif-
ically, we experimented with the deep features of the AnyCostGAN attribute predictor [65], and
employed it in the task of eyes inpainting using the CelebAHQ dataset (Fig. A5). This preliminary
result indicates that our method could potentially be used with other association metrics. However,
further in-depth analysis is necessary to ensure semantically meaningful results, which will be
addressed in future work.

Algorithm 1 Tree Training

Require: Tree degree K, Tree depth d, Network architecture T (·;θ), Training set D = {(xi,yi)},
Distance measure ℓ(·, ·), Loss weights β ∈ Rd+1.

1: repeat
/* Sample data and infer leaves */

2: (xi,yi) ∼ D ▷ Sample paired training example
3: {x̂n(yi;θ), α̂n(yi;θ)}K

d

n=1 ← T (yi;θ) ▷ Infer tree leaves and their probabilities

/* Bottom-up tree construction using Eqs. (6) and (7) */
4: Run BottomUp({x̂n(yi;θ), α̂n(yi;θ)}K

d

n=1) to get:

x̂MMSE(yi), {x̂k1
(yi), α̂k1

(yi)}Kk1=1, . . . , {x̂k1,...,kd
(yi), α̂k1,...,kd

(yi)}Kk1,...,kd=1

/* Accumulate x̂ along min path */
5: X̂ ← {}
6: x̂k⋆(yi)← x̂MMSE(yi) ▷ Initialize closest tree node to root
7: repeat d times
8: X̂ ← X̂ ∪ x̂k⋆(yi) ▷ Add closest node to min path
9: {x̂k(yi)}Kk=1 ← GetChildren(x̂k⋆(yi)) ▷ Get K children of closest node

10: k⋆ ← argmin
k=1,...,K

ℓ(xi, x̂k(yi)) ▷ Update closest node to closest child

11: end
12: X̂ ← X̂ ∪ x̂k⋆(yi) ▷ Include also the closest leaf

/* Take gradient step on weighted MSE loss to update θ */

13: L(θ) =
d+1∑
j=1

βj∥X̂j − xi∥22
14: θ ← Optimizer(θ,∇θL)
15: until converged
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Figure A5: Different association metrics ℓ(·, ·). (a)-(b) Predicted tree in the task of eye inpainting
with an MSE association loss in pixel-space/feature-space respectively.
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E Centroidal Voronoi Tessellations

Consider a domain X ⊆ Rd and let ρ : X → R+ be a weight function over this domain. Additionally,
let {xi}Ki=1 denote any set of K points belonging to X and let {Vi}Ki=1 denote any tessellation of X
into K regions. Using these notations, we can define the following loss function,

L
(
{(xi, Vi)}Ki=1

)
=

K∑
i=1

∫
x∈Vi

ρ(x)∥x− xi∥2dx. (A7)

This formalism arises in various applications such as data compression, optimal quantization, clus-
tering, and other applications [66]. In all of these applications, our goal is the same; we want to
minimize Eq. (A7) to obtain optimal performance.

A fundamental result in this setting is that for Eq. (A7) to be minimized, it is necessary that {Vi}Ki=1

are the Voronoi regions corresponding to {xi}Ki=1 and, simultaneously, {xi}Ki=1 are the centroids of
the corresponding {Vi}Ki=1. Namely, {(xi, Vi)}Ki=1 form a special tessellation of space, commonly
referred to as a Centroidal Voronoi Tessellation (CVT). Specifically, it can be shown that the optimal
centroids of the resulting CVT are given by

xi =

∫
x∈Vi

xρ(x)dx∫
x∈Vi

ρ(x)dx
, (A8)

where {Vi}Ki=1 form a Voronoi tessellation of X w.r.t. {xi}Ki=1, and are defined as

Vi = {x : ∥x− xi∥2 < ∥x− xj∥2, ∀j ̸= i}. (A9)

In general, the solution to Eq. (A7) is not unique, and no existing algorithm is guaranteed to converge
to an optimal solution. Nevertheless, efficient algorithms like Lloyd’s algorithm (Voronoi Iteration)
are known to converge to a local minimum, which frequently produces satisfactory results in practice.
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F Unconditional Hierarchical K-means

In Section 3.1 we mentioned that in a discrete setting, our approach is equivalent to a hierarchical
K-means clustering. Here, we describe the hierarchical K-means algorithm and review its properties
in the standard (unconditional) setting.

Given a set of N data points {xi} where xi ∈ Rdx , the goal of K-means is to partition the data
points into K clusters/sets {C1, . . . , CK}, such that each data point belongs to the cluster with the
nearest mean/centroid serving as a prototype of the cluster. This results in a partitioning/tessellation
of the data space into centroidal Voronoi cells, where for each cluster the within-cluster variances
(squared Euclidean distances) are minimized. Formally, the objective function for finding the clusters
is given by

argmin
C1,...,CK

K∑
k=1

∑
xi∈Ck

∥xi − µk∥22, (A10)

where µk is the mean/centroid of cluster Ck, given by µk = 1
|Ck|

∑
xi∈Ck

xi. While in general
Problem (A10) is NP-hard, given some initial means/centroids, the K-means algorithm (also known
as Lloyd’s method) finds a local minimum by alternating between (i) assigning each data point to the
cluster with the nearest mean, and (ii) updating the cluster means based on the new assignment.

Extending K-means hierarchically is rather straightforward. Starting from a single cluster comprised
of all data points {xi}, at each level of the hierarchy, the data points belonging to the kth cluster
Ck are split further into K sub-clusters {Ck,1, . . . , Ck,K} by applying K-means. We refer to this
extended algorithm as hierarchical K-means. The result of applying hierarchical K-means d times is
a dendrogram/top-down balanced tree T of degree K, depth d, and breadth (final number of leaves)
Kd. Note that this successive process is different from applying K-means with Kd clusters once.
This is because the hierarchical memberships are enforced, restricting data points in subclusters
{Ci,1, . . . , Ci,K} from being assigned to subclusters {Cj,1, . . . , Cj,K} if i ̸= j.

Hierarchical K-means enjoys several advantages compared to the standard (“Flat”) K-means al-
gorithm. One of these advantages is increased robustness to initialization as demonstrated in Ap-
pendix G.3.
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G Toy Example

G.1 Model Architecture

The model used to produce our results in Fig. 3 consisted of two 5-layer MLPs with 256 hidden units,
one for predicting the leaves and one for predicting the likelihoods. Both MLPs consisted of linear
layers interleaved with the SiLU activation. In addition, the output of the second MLP was passed
through a softmax to represent a valid probability distribution.

G.2 Analytical Posterior

In Fig. 3, we plotted the posterior trees on the (unknown) ground truth posterior. Here we provide
the closed-form expression for the analytically derived posterior for completeness. The denoising
task we assumed was y = x + n, where x comes from a mixture of L = 4 Gaussians, px(x) =∑L

ℓ=1 πℓN (x;µℓ,Σℓ), and n ∼ N (·;0, σ2
εI) is a white Gaussian noise. Specifically, in our toy

example we used equally probable spherical Gaussians (i.e., πℓ =
1
4 ,Σℓ = I), with the following

means

µ1 =

(
−6.0
+2.5

)
, µ2 =

(
+1.0
+2.5

)
, µ3 =

(
−2.5
+6.0

)
, µ4 =

(
−2.5
−1.5

)
. (A11)

Let c be an auxiliary random variable taking values in {1, . . . , L} with probabilities {π1, . . . , πL}.
Then we can write the posterior by invoking the law of total probability conditioned on the event
c = ℓ,

p(x|y) =
L∑

ℓ=1

px|y,c(x|y, ℓ)pc|y(ℓ|y)

=

L∑
ℓ=1

px|y,c(x|y, ℓ)
py|c(y|ℓ)pc(ℓ)

py(y)

=

L∑
ℓ=1

N (x; µ̃ℓ, Σ̃ℓ)
qℓπℓ∑L

ℓ′=1 qℓ′πℓ′
, (A12)

where the first step is by Bayes rule, and in the result we denoted

qℓ = N (y;µℓ,Σℓ + σ2
εI),

µ̃ℓ = µℓ +Σℓ(Σℓ + σ2
εI)

−1(y − µℓ)

Σ̃ℓ = Σℓ −Σℓ(Σℓ + σ2
εI)

−1Σℓ, ℓ = 1, . . . , L. (A13)

In Fig. A6, in a similar fashion to Fig. 3 from the main text, we visualize posterior trees for additional
test inputs yt. As clearly evident in all cases, our method recovers the (approximated) ground truth
posterior tree with high accuracy.

G.3 Stability of “Flat” vs. Hierarchical K-means

As mentioned earlier, the hierarchical K-means algorithm has several advantages over the classical
“Flat” K-means algorithm. Here, we examine the effect of the random initialization on the resulting
clusters found by “Flat”/Hierarchical K-means. In both cases, we applied the respective method
to 10K posterior samples to avoid errors resulting from an insufficient sample size. Figure A7
demonstrates the resulting clusters for 3 different seeds. As can be seen by the result, despite using
the widely adopted K-means++ initialization for both algorithms, “Flat” K-means was less resilient
to a bad initialization compared to its hierarchical counterpart. This is yet another advantage of
working with trees of depth bigger than d = 1.
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(a) “Flat” K-means

T (yt)

p(yt)

[0.23, 0.26, 0.27, 0.24]

µ(x|yt) µ̂(x|yt) yt

(b) Hier. K-means
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Figure A6: Additional test points yt. Each row above shows the results for a different test point
yt (red dot) when clustering with (a) “Flat” K-means, (b) Hierarchical K-means, (c) Posterior trees
(ours). In (d) we show the resulting partition/clustering induced by each method by coloring 10K
samples from the posterior px|y(x|yt) according to their nearest cluster. Our method consistently
recovers the result of hierarchical K-means in all cases. Moreover, other than trivial cases such as
the bottom row, the hierarchy better represents weaker modes compared to “Flat” K-means.
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Figure A7: Resilience to initialization. Here we inspect the effect of the seed used for initialization,
on the resulting clusters recovered by (a) “Flat” K-means and (b) Hierarchical K-means. The
hierarchy results in a more resilient algorithm that recovers the same result regardless of the seed
used for initialization.
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H Tree Width vs. Depth

Throughout Section 4 we presented results with trees of degree K = 3 and depth d = 2. This was
done only for the convenience of the exposition and our method is not restricted to this specific
layout. Here we examine the effect of tree width compared to tree depth. Figures A8 and A9 presents
the resulting trees for four different model configurations on the task of digit inpainting. For a fair
comparison between model pairs, we fix the number of output leaves which dictates the number of
model parameters, and only change the hierarchical structure. Figure A8(a) compares a layout of
K = 4, d = 1 to K = 2, d = 2. As evident in the result, the hierarchy better organizes the different
options, presenting the “4” cluster more faithfully than the flat tree which presents a cluster midway
between a “4” and a “1”. Figure A9 repeats this experiment for deeper trees comparing K = 4, d = 2
to K = 2, d = 4. A couple of remarks are in order regarding the results. First, in both cases, the
“4” cluster has a similar probability relative to the “1” cluster. This indicates that our method is
consistent in the predicted posterior modes and their likelihoods, with the only change between
different layouts being the chosen tessellation of the output space. Second, the degree K controls the
emphasis/over-representation devoted to weaker posterior modes. A smaller degree leads to more
emphasis on weaker modes as tree depth grows. Lastly, it is important to note that the optimal layout
K and d is task and input-dependant, and setting these adaptively is an interesting direction for future
research.

GT Input
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p=0.07 p=0.19 p=0.29 p=0.45

(a) Tree with K = 4, d = 1

MMSE

p=0.31

p=0.15 p=0.17
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p=0.40 p=0.29

(b) Tree with K = 2, d = 2

Figure A8: Flat vs. hierarchical trees. (a) Flat tree with K = 4, d = 1. (b) Binary tree with
K = 2, d = 2, with overall 4 leaves. The binary tree categorizes the leaves and better represents the
“4” mode.
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Figure A9: Tree depth vs. width. (a) Tree with K = 4, d = 2. (b) Binary tree with K = 2, d = 4
also resulting in 16 leaves. The binary tree emphasizes more the “4” mode relative to the “1” mode,
although in both cases the probability mass associated with the “4” is ≈ 20%.
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I GAN-based Posterior Samplers

In Section 4 we compared our method mainly to diffusion-based posterior samplers (e.g., [7, 8,
11]). While these samplers often lead to state-of-the-art sample quality, they are known to be
computationally intensive. In theory, GAN-based samplers such as MAT [10], can significantly
speed up the proposed two-step baseline of sampling followed by hierarchical K-means; however, as
evident in Fig. A10, even top-performing GAN-based samplers often collapse to a single mode of the
posterior, producing samples with little variability that do not faithfully reflect the full distribution.
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Figure A10: GAN-based posterior sampler. (a)-(b) Posterior trees constructed with MAT, by
applying hierarchical K-means to 100 samples in the tasks of mouth/eyes inpainting respectively. As
evident in both cases, the resulting tree exhibits little to no variance due to mode collapse.
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J Visual Comparison to Baselines

In Table 1 we reported quantitative comparisons to the proposed baseline implemented with various
samplers. In Figs. A11 and A12, we include two sample visual comparisons of the resulting trees
with our method and the baselines for the tasks of face colorization and mouth inpainting.
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Figure A11: Tree comparison in colorization.
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Figure A12: Tree comparison in mouth inpainting.
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K Runtime Comparison as a Function of Batch Size

In Table 1 we reported the runtime and memory footprint assuming a batch of size 1. However, in
GPU computing, memory footprint and hardware parallelization ultimately determine the overall
runtime. We tried to refrain from factoring these in our calculation in Table 1 as these numbers
are hardware-specific depending on the available GPU. Nonetheless, it is important to note that our
method is not only faster than the competing approaches with a batch of size 1, it also has a lower
memory footprint and is therefore more amenable to parallelization. Table 2 benchmarks the speed
of the forward pass and the GPU memory usage as a function of the batch size on an A6000 GPU
with 48 GB. For each method, we tested three different batch sizes: 1, 10, and the maximal number
of samples that fit in memory. The forward pass speed and the memory usage in each setting were
tested 100 times using CUDA events (reported as mean ± std). Our method is extremely fast and
parallelizable, enabling the inference of 430 test images with a single forward pass of 1.15 seconds.

Even in the case of a single test image, our method is far superior. For simplicity let us assume the
cost of running hierarchical K-means is negligible, and that we can squeeze a batch size of ≈ 100
samples for the diffusion-based samplers, and ≈“33.33” samples for MAT. Sampling Ns = 100
posterior samples with DDRM (fastest diffusion baseline, requires only 20 denoising steps) lasts 46.3
seconds, and with MAT lasts 7.8 seconds. In comparison, our method requires only 0.014 seconds,
leading to a 557× speedup compared to the fastest baseline.

Table 2: Runtime comparison as a function of batch size on an Nvidia A6000 GPU. Note that unlike
Table 1, here we report the speed of a forward pass separately from the number of required forward
passes to infer a posterior tree for a single test image.

Method Batch
Size

Forward pass
speed (ms)

Memory
(GB)

Forward passes
per tree

Total time
per tree (sec)

Diffusion
1 34±0.4 1.85

2,000-
456,000

68-15,504
10 24.5±0.1 7.5 49-11,172
97 23.9±0.6 46.8 48-10,898

MAT
1 150±0.8 3.0

100
15

10 86.7±1.2 16.0 8.67
30 86.6±2.5 47.2 8.66

Ours
1 14±0.2 1.3

1
0.014

10 3.9±0.1 2.1 0.0039
430 2.67±0.1 46.9 0.00267
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L Baselines Performance as a Function of Compute

As mentioned in Section 4.1, baseline trees were computed using a two-step procedure: (1) Sampling
Ns images from the posterior, and (2) performing hierarchical K-means d times to build a tree of
degree K and depth d. Therefore, saving computation in this process requires sampling fewer images
Ns per test input. However, in our experiments with K = 3, d = 2 (i.e. a tree with 9 leaves), we
noticed that using less than Ns = 100 images often led to degenerate trees with one or more leaves
having 1 sample or less. For example, consider the case of using Ns = 9 samples. Even if the
posterior is perfectly balanced (often not the case), each leaf will have only 1 sample to “average”
at depth 2. Figure A13 plots the success probability of building a tree with Kd = 9 leaves as a
function of the number of sampled images Ns in the different tested tasks. A tree is considered to
be successfully constructed if each of its leaves has at least 2 samples to average. As evident in the
results (e.g., Fig. A13(b)), it is likely that to achieve the optimal performance with the baselines
more than Ns = 100 samples are needed, which would be even more computationally demanding.
Moreover, the number of samples needed to successfully construct trees with more than 9 leaves is
expected to be significantly larger rendering this baseline impractical, especially when considering a
sizable test set.
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Figure A13: Tree success rate vs. number of posterior samples Ns. (a)-(b) Success rate of building
a (posterior) tree by applying hierarchical K-means to Ns samples in the tasks of colorization and
eyes inpainting respectively.
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M More Results

Here we include more results for each of the tasks presented in Section 4 from the main text.
Additionally, we also include colorization results on the AFHQ(v2) dataset [67], with a similar
performance to that obtained on CelebA-HQ.
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Figure A14: More digit inpainting results.
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Figure A15: More Edges→Shoes results.
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Figure A16: AFHQ(v2) colorization results.
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Figure A17: More CelebA-HQ colorization results.
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Figure A18: More mouth inpainting results.
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Figure A19: More eyes inpainting results.
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Figure A20: More Bioimage translation results.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the abstract and introduction are reflected in our theoretical
and experimental results found in Sections 3 and 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our method in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Our results in Section 3 are followed by a proper theoretical justification where
applicable.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Both the main text (Section 3) and the appendix (Appendices A, C and G)
provide all essential details to replicate our experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All datasets used in the paper are publicly available and can be retrieved from
the cited papers. Our code is made publicly available on GitHub.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/

guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Our settings are discussed in detail in the main text (Section 4) and in Ap-
pendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In Table 1 we report the standard error of the mean over the test images for
both MSE and NLL.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The per-task training times are detailed in Appendix A.3. In terms of inference
times and memory usage, we discussed these extensively in Tables 1 and 2 and Appendices K
and L.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: the paper fully conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In Section 1 we discussed the potential positive societal impact of our method,
and in Section 4 we demonstrated its practical use for properly visualizing reconstruction
uncertainty in safety-critical tasks such as bioimage translation.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All dataset papers are properly cited. Licenses are as follow: MNIST (CC
BY-SA 3.0), Edges→Shoes (CC BY-NC 4), AFHQ(v2) (CC BY-NC 4), CelebA-HQ (CC
BY-NC 4), Bioimage Translation (CC BY 4).
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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