
STUNT: Few-shot Tabular Learning with
Self-generated Tasks from Unlabeled Tables

Jaehyun Nam1, Jihoon Tack1, Kyungmin Lee1, Hankook Lee2, Jinwoo Shin1,2

1Kim Jaechul Graduate School of AI, KAIST
2School of Electrical Engineering, KAIST

{johnnam513,jihoontack,kyungmnlee,hankook.lee,jinwoos}@kaist.ac.kr

Abstract

Learning with few labeled tabular samples is often an essential requirement for
industrial machine learning applications as varieties of tabular data suffer from
high annotation costs or have difficulties in collecting new samples for novel tasks.
Despite the utter importance, such a problem is quite under-explored in the field
of tabular learning, and existing few-shot learning schemes from other domains
are not straightforward to apply, mainly due to the heterogeneous characteristics of
tabular data. In this paper, we propose a simple yet effective framework for few-
shot semi-supervised tabular learning, coined Self-generated Tasks from UNlabeled
Tables (STUNT). Our key idea is to self-generate diverse few-shot tasks by treating
randomly chosen columns as a target label. We then employ a meta-learning
scheme to learn generalizable knowledge with the constructed tasks. Moreover, we
introduce an unsupervised validation scheme for hyperparameter search (and early
stopping) by generating a pseudo-validation set using STUNT from unlabeled data.
Our experimental results demonstrate that our simple framework brings significant
performance gain under various tabular few-shot learning benchmarks, compared
to prior semi- and self-supervised baselines.

1 Introduction

Learning with few labeled samples is often an essential ingredient of machine learning applications
for practical deployment. However, while various few-shot learning schemes have been actively
developed over several domains, including images [8] and languages [26], such research has been
under-explored in the tabular domain despite its practical importance in industries [13, 49, 39]. In
particular, few-shot tabular learning is a crucial application as varieties of tabular datasets (i) suffer
from high labeling costs, e.g., the credit risk in financial datasets [10], and (ii) even show difficulties
in collecting new samples for novel tasks, e.g., a patient with a rare or new disease [27] such as an
early infected patient of COVID-19 [50].

To tackle such limited label issues, a common consensus across various domains is to utilize unlabeled
datasets for learning a generalizable and transferable representation, e.g., images [6] and languages
[31]. Especially, prior works have shown that representations learned with self-supervised learning are
notably effective when fine-tuned or jointly learned with few labeled samples [37, 28, 23]. However,
contrary to the conventional belief, we find this may not hold for tabular domains. For instance,
recent state-of-the-art self-supervised tabular learning methods [48, 38] do not bring meaningful
performance gains over even a simple k-nearest neighbor (kNN) classifier for few-shot tabular
learning in our experiments (see Table 1 for more details). We hypothesize that this is because the gap
between trained self-supervised tasks and the applied few-shot task is large due to the heterogeneous
characteristics of tabular data.

Table Representation Learning Workshop at NeurIPS 2022.

Select random columns Run k-means clustering Self-generated task

x x̃ ỹ

Figure 1: An overview of the proposed Self-generated Tasks from UNlabeled Tables (STUNT): we
generate the task label by running a k-means clustering over the randomly selected column features
of the table, then perturb the selected columns to prevent from generating a trivial task.

Instead, we ask whether one can utilize the power of meta-learning to reduce the gap via fast adaption
to unseen few-shot tasks; meta-learning is indeed one of the most effective few-shot learning strategies
across domains [11, 12, 44]. We draw inspiration from the recent success in unsupervised meta-
learning literature, which meta-learns over the self-generated tasks from unlabeled data to train an
effective few-shot learner [15, 21]. It turns out that such an approach is quite a promising direction
for few-shot tabular learning: a recent unsupervised meta-learning scheme [14] outperforms the
self-supervised tabular learning methods in few-shot tabular classification in our experiments (see
Table 1). In this paper, we suggest to further exploit the benefits of unsupervised meta-learning into
few-shot tabular learning by generating more diverse and effective tasks compared to the prior works
using the distinct characteristic of the tabular dataset’s column feature.

Contribution. We propose a simple yet effective framework for few-shot semi-supervised tabular
learning, coined Self-generated Tasks from UNlabeled Tables (STUNT); see the overview in Figure
1. Our key idea is to generate a diverse set of tasks from the unlabeled tabular data by treating the
table’s column feature as a useful target, e.g., the ‘blood sugar’ value can be used as a substituted
label for ‘diabetes’. Specifically, we generate pseudo-labels of the given unlabeled input by running
a k-means clustering on randomly chosen subsets of columns. Moreover, to prevent generating a
trivial task (as the task label can be directly inferred by the input columns), we randomly replace
the chosen column features with a random value sampled from the columns’ respective empirical
marginal distributions. We then apply a meta-learning scheme, i.e., Prototypical Network [33], to
learn generalizable knowledge with the self-generated tasks.

We also find that the major difficulty of the proposed meta-learning with unlabeled tabular datasets
is the absence of a labeled validation set; the training is quite sensitive to hyperparameter selection
or even suffers from overfitting. To this end, we propose an unsupervised validation scheme by
utilizing STUNT to the unlabeled set. We find that the proposed technique is highly effective for
hyperparameter searching (and early stopping), where the accuracy of the pseudo-validation set and
the test set show a high correlation.

We verify the effectiveness of STUNT through extensive evaluations on various datasets in the
OpenML-CC18 benchmark [40, 5]. Overall, our experimental results demonstrate that STUNT
consistently and significantly outperforms the prior methods, including unsupervised meta-learning
[14], semi- and self-supervised learning schemes [36, 48, 38] under few-shot semi-supervised learning
scenarios. In particular, our method improves the average test accuracy from 59.89%→63.88% for
1-shot and from 72.19%→74.77% for 5-shot, compared to the best baseline. Furthermore, we show
that STUNT is effective for multi-task learning scenarios where it can adapt to new tasks without
retraining the network.

Remark that learning with few labeled samples has been an important element for building practical
machine learning applications, while such problems for tabular datasets were under-explored. We
hope that our work will guide new intriguing directions in the field of tabular learning in the future.

2

2 Related work

Learning with few labeled samples. To learn an effective representation with few labeled samples,
prior works suggest leveraging the unlabeled samples. Such works can be roughly categorized as
(i) semi-supervised [16, 1] and (ii) self-supervised [6, 7] approaches. For semi-supervised learning
approaches, a common way is to produce a pseudo-label for each unlabeled data by using the model’s
prediction and then train the model with the corresponding pseudo-label [22]. More advanced schemes
utilize the momentum network [20, 36] and consistency regularization with data augmentations [4, 34]
to generate a better pseudo-label. On the other hand, self-supervised learning schemes aim to pre-train
the representation by using domain-specific inductive biases (e.g., the spatial relationship of image
augmentations), then fine-tune or adapt with a few labeled samples [37, 28]. In particular, previous
studies have shown the effectiveness of self-supervised learning in the transductive setting compared
to the few-shot methods [9]. While recent works on both approaches heavily rely on augmentation
schemes, it is unclear how to extend such methods to the tabular domain due to the heterogeneous
characteristics of tabular datasets, i.e., there is no clear consensus on which augmentation is globally
useful for the tabular dataset. Instead, we train the unlabeled dataset with an unsupervised meta-
learning framework that does not rely on the effect of augmentation.

Learning with unlabeled tabular data. Various attempts have been made to train a generalizable
representation for tabular datasets using unlabeled samples. [48] is the first to target self-supervised
learning on the tabular dataset by corrupting random features and then predicting the corrupted
location (i.e., row and columns). As a follow-up, [3] directly adopts contrastive learning frameworks
[6] by corrupting randomly selected features to create positive views, and [38] shows that using
effective three pretext task losses (i.e., reconstruction loss, contrastive loss, and distance loss) can
achieve the state-of-the-art performance on the linear evaluation task (training a linear classifier with
a labeled dataset upon the learned representation). However, while prior works have shown their
effectiveness mainly on linear evaluation, we find that these methods may not be effective for few-shot
learning scenarios (see Table 1). In this regard, we suggest utilizing the power of meta-learning
for training an effective few-shot learner by proposing an unsupervised meta-learning framework
for tabular data. Moreover, while some works have proposed a self-supervised learning framework
[35, 25] based on Transformer architectures [41], we believe a new approach is needed for few-shot
learning (given the observations of prior self-supervised learning works in Table 1) and introduce an
architecture-agnostic method that can be used for a wide range of applications.

Unsupervised meta-learning. Meta-learning, i.e., learning to learn by extracting common knowledge
over a task distribution, has emerged as a popular paradigm for enabling systems to adapt to new
tasks in a sample-efficient way [43, 11, 33]. Recently, several works have suggested unsupervised
meta-learning schemes that self-generate a labeled task from the unlabeled dataset, as various few-
shot learning applications suffer from high annotation costs. To self-generate the tasks, CACTUs
[14] run a clustering algorithm on a representation trained with self-supervised learning, Ye et al.
[47] and UMTRA [15] assumes the augmented sample as the same pseudo-class, (Ye et al. [47]
also introduces effective strategies for unsupervised meta-learning: sufficient episodic sampling,
hard mixed supports, and task specific projection head), and Meta-GMVAE [21] utilize a variational
autoencoder (VAE; [18]) for clustering. However, despite the effectiveness of prior works on image
datasets, we find that applying each method to the tabular domain is highly non-trivial; they assume
high-quality self-supervised representation, data augmentations, or sophisticated generative models
like VAE which are quite cumbersome to have in the tabular domain, e.g., see the work by [45].
Nevertheless, we have tried the prior methods for tabular learning using various techniques, e.g.,
several augmentations such as noise and permutation, but only CACTUs has shown its effectiveness;
we find that Meta-GMVAE underperforms the baseline with the lowest performance that we consider.
In this paper, we propose a new unsupervised meta-learning that is specialized for tabular datasets.

3 STUNT: Self-generated tasks from unlabeled tables

In this section, we develop an effective few-shot tabular learning framework that utilizes the power
of meta-learning in an unsupervised manner. In a nutshell, our framework meta-learns over the
self-generated tasks from the unlabeled tabular dataset, then adapt the network to classify the few-shot
labeled dataset. We first briefly describe our problem setup (Section 3.1), and then the core component,
coined Self-generated tasks from UNlabeled Tables (STUNT), which generates effective and diverse

3

tasks from the unlabeled tabular data (Section 3.2). Moreover, we introduce a pseudo-validation
scheme with STUNT, where one can tune hyperparameters (and apply early stopping) even without a
labeled validation set on few-shot scenarios (Section 3.3).

3.1 Problem setup: few-shot semi-supervised learning

We first describe the problem setup of our interest, the few-shot semi-supervised learning for clas-
sification. Formally, our goal is to train a neural network classifier fθ : X → Y parameterized by
θ where X ⊆ Rd and Y = {0, 1}C are input and label spaces with C classes, respectively, and
assume that we have a labeled dataset Dl = {xl,i,yl,i}Nl

i=1 ⊆ X × Y and an unlabeled dataset
Du = {xu,i}Nu

i=1 ⊆ X for training the classifier fθ. Note that all the data points are sampled from a
certain data-generating distribution p(x,y) in an i.i.d. manner. We also assume that the cardinality of
the given labeled set is very small, e.g., one sample per class, while we have a sufficient amount of
the unlabeled dataset, i.e., Nu ≫ Nl.

3.2 Unsupervised meta-learning with STUNT

We now describe the core algorithm we propose, STUNT. To obtain a good classifier fθ under the
proposed setup, we suggest using an unsupervised meta-learning method, which (i) self-generates
diverse tasks {T1, T2, . . .} from the unlabeled dataset Du where each Ti contains few samples with
pseudo-labels; (ii) meta-learns fθ to generalize across the tasks; and, (iii) adapts the classifier fθ
using the labeled dataset Dl. Algorithm 1 in Appendix D provides the detailed training process.

BMI Age

43.1

30.5

33

53

Positive

Positive

28.1 21 Negative

… … …

Diabetes

137

197

89

…

Blood Sugar

x y

Figure 2: Example data from the diabetes
dataset [5]. The red column indicates the origi-
nal target, and the green column indicates the
possible alternative label.

Task generation from unlabeled tables. Our key
idea is to generate a diverse set of tasks from the un-
labeled data by treating a column feature of tabular
data as a useful pseudo-label. Intuitively speaking,
as any label type can be considered as a tabular col-
umn due to the heterogeneous characteristic of the
tabular data (i.e., each column has a distinct feature),
one can also rethink any column feature as a task
label. In particular, since there exist some columns
that have a high correlation with the original label,
the new task constructed with such a column feature
is highly similar to the original classification task,
e.g., the original task of predicting ‘Diabetes’ through ‘BMI’ and ‘Age’ is similar to a new task
that predicts ‘Blood Sugar’ by ‘BMI’ and ‘Age’ (see Figure 2). With this intuition, we generate
pseudo-labels by running a k-means clustering over the randomly selected columns to improve the
diversity and the possibility of sampling highly correlated columns (with the original label).

Formally, to generate a single task TSTUNT, we sample the masking ratio p from the uniform distribution
U(r1, r2), where r1 and r2 are hyperparameters with 0 < r1 < r2 < 1, and generate a random binary
mask m := [m1, . . . ,md]

⊤ ∈ {0, 1}d where
∑

i mi = ⌊dp⌋ and ⌊·⌋ is the floor function, i.e., the
greatest integer not exceeding the input. Then, for a given unlabeled data Du, we select columns
with the mask index with the value of one, i.e., sq(x ⊙m) ∈ R⌊dp⌋ where ⊙ is the element-wise
product and sq(x⊙m) is a squeezing operation that removes the elements with the mask value of
zero. Based on the selected columns, we run a k-means clustering to generate the task label ỹu,i:

min
C∈R⌊dp⌋×k

1

N

N∑
i=1

min
ỹu,i∈{0,1}k

∥sq(xu,i ⊙m)−Cỹu,i∥22 such that ỹ⊤
u,i1k = 1, (1)

where k is the number of centroids, 1k ∈ Rk is a vector of ones, and C is the centroid matrix.

Since the task label ỹu is generated from the data itself, the classifier can easily infer the label from
the given clean data xu. To prevent such an issue, we suggest perturbing the selected column features
by x̃u := m⊙ x̂u + (1−m)⊙ xu where each column feature element of x̂u is sampled from the
empirical marginal distribution of each column feature. Finally, the generated task from STUNT is
defined as follows: TSTUNT := {x̃u,i, ỹu,i}Nu

i=1.

Meta-learning with STUNT. Based on the generated task, we suggest to meta-learn the network
by utilizing Prototypical Network (ProtoNet; [33]): performs a non-parametric classifier on top

4

of the network’s embedding space. Specifically, ProtoNet learns this embedding space in which
classification can be performed by computing distances to prototype vectors of each class, i.e.,
the average embedding vector of the class samples. The reason why we consider ProtoNet as a
meta-learning framework is three-fold. First, the number of classes can be different for training and
inference on ProtoNet, which allows us to search the effective centroid number k rather than fixing
it to the class size C. Second, the method is model- and data-agnostic, where it can be used for
the tabular domain without any modification. Finally, despite the simplicity, ProtoNet is known to
outperform advanced meta-learning schemes under various datasets [46].

For a given task TSTUNT, we sample two disjoint sets from TSTUNT, i.e., S and Q, which are used
for constructing the classifier, and training the constructed classifier, respectively. Concretely, we
construct the ProtoNet classifier fθ over the parameterized embedding zθ : X → RD by using the
prototype vectors of each pseudo-class pc̃ :=

1
|Sc̃|

∑
(x̃u,ỹu)∈Sc̃

zθ(x̃u) where Sc̃ contains samples
with pseudo-class c̃ in S:

fθ(y = c̃|x;S) = exp(−∥zθ(x)− pc̃∥2)∑
c̃′ exp(−∥zθ(x)− pc̃′∥2)

. (2)

We then compute the cross-entropy loss LCE on the conducted classifier fθ with set Q, i.e.,
Lmeta(θ,Q) :=

∑
(x̃u,ỹu)∈Q LCE

(
fθ(x̃u;S), ỹu

)
, where we train the network to minimize the meta-

learning loss Lmeta over the diverse set of tasks {TSTUNT,1, TSTUNT,2, . . . }.
Adapting with labeled samples. After meta-learning the parameter θ with self-generated tasks, we
use the labeled set Dl to construct the classifier for the few-shot classification by using ProtoNet, i.e.,
fθ(·;Dl) where the each prototype vector pc is computed with samples of the label c in Dl.

3.3 Pseudo-validation with STUNT

We find that the difficulty of the proposed unsupervised learning is the absence of a validation set
for selecting the hyperparameters and early stopping the training. To tackle this issue, we introduce
an unsupervised validation scheme where we generate a pseudo-validation set by running STUNT
on the unlabeled set. Here, rather than sampling the columns for generating the cluster, we use all
column features to remove the randomness throughout the validation and further use the clean tabular
input contrary to the perturbed sample as in the original STUNT.

Formally, we sample a certain portion of the unlabeled set Dval
u ⊂ Du, then generate the task label

yval
u by running a k-means clustering over clean samples xval

u ∈ Du where k = C, i.e., Eq. (1) with
m = 1d. Then, for a given validation task T val

STUNT = {xval
u,i ,y

val
u,i }i, we sample two disjoint sets, Sval

and Qval, to evaluate the pseudo-validation performance of the ProtoNet classifier fθ(·;Sval) by
using Eq. (2), i.e., predicting pseudo-class of Qval using prototype vectors made from Sval.

4 Experiments

In this section, we validate the effectiveness of our method on few-shot tabular learning scenarios
under various tabular datasets from the OpenML-CC18 benchmark [5]. Our results exhibit that
STUNT consistently and significantly outperforms other methods, including unsupervised, semi- and
self-supervised methods (Section 4.1). We further demonstrate that our method is even effective for
few-shot multi-task learning (Section 4.2). Finally, we perform an ablation study to verify the effect
of the proposed pseudo-validation scheme of our approach (Section 4.3).

Common setup. For all the datasets, 80% of the data is used for training (unlabeled except for
few-shot labeled samples) and 20% for testing, except for the income dataset, since split training and
test data are provided. For STUNT, we use 20% of training data for pseudo-validation. We one-hot
encode categorical features following the preprocessing of SubTab [38] then apply normalization
by subtracting the mean and dividing by the standard deviation for the income dataset and min-max
scaling for other datasets, respectively. All baselines and STUNT are trained for 10K steps, while
we follow the original training setting for CACTUs [14]. For all methods, we train a 2-layer multi-
layer perceptron (MLP) with a hidden dimension of 1024. We provide additional information in the
Appendix A.

5

Table 1: Few-shot test accuracy (%) on 8 datasets from the OpenML-CC18 benchmark [5]. We report
the mean test accuracy over 100 different seeds. Checkmark ✓ indicates the use of 100 additional
labeled samples for validation (Val.), including hyperparameter searching and early stopping. The
bold denotes the highest mean score.

Type Method Val. income cmc karhunen optdigit diabetes semeion pixel dna Avg.

shot = 1

CatBoost ✓ 57.00 34.60 55.67 61.32 60.02 43.21 59.16 41.35 52.06
MLP ✓ 60.52 35.06 48.67 61.02 57.25 40.88 55.62 44.39 50.43
LR ✓ 59.64 35.08 55.05 65.19 57.61 42.90 59.71 44.28 52.43Sup.

kNN - 61.22 34.99 54.42 65.58 58.56 44.35 61.48 42.67 52.82

Mean Teacher ✓ 60.63 35.58 54.57 66.10 58.05 43.56 61.02 46.58 53.26
ICT ✓ 61.83 36.53 58.37 69.12 58.08 43.48 60.88 46.55 54.36
Pseudo-Label ✓ 60.52 34.97 49.44 61.50 57.03 41.42 56.12 44.26 50.66
MPL ✓ 60.85 35.13 47.66 61.52 57.39 41.82 56.01 44.22 50.58

Semi-sup.

VIME-Semi ✓ 56.40 32.97 57.40 66.85 58.16 40.43 52.86 39.18 50.53

SubTab + Fine-tune ✓ 59.74 35.65 41.11 49.88 59.35 30.49 42.23 40.86 44.91
SubTab + LR ✓ 61.88 35.68 50.32 67.05 58.06 40.27 60.40 45.68 52.42
SubTab + kNN - 61.58 35.87 48.74 66.05 59.22 39.99 61.30 44.16 52.36
VIME + Fine-tune ✓ 60.50 34.98 47.50 61.31 57.23 41.09 53.79 44.30 50.09
VIME + LR ✓ 61.99 35.30 59.62 70.52 56.95 47.20 64.17 51.36 55.89

Self-sup.

VIME + kNN - 62.16 35.55 58.56 69.31 58.35 46.99 64.62 50.29 55.78

UMTRA - 57.23 35.46 49.05 49.87 57.64 26.33 34.26 25.13 41.87
SES - 56.39 34.59 49.19 56.30 59.97 33.73 49.19 39.56 47.37
CACTUs - 64.02 36.10 65.59 71.98 58.92 48.96 67.61 65.93 59.89Unsup.-Meta.

STUNT (Ours) - 63.52 37.10 71.20 76.94 61.08 55.91 79.05 66.20 63.88
shot = 5

CatBoost ✓ 64.51 39.75 82.38 84.05 65.75 68.69 84.49 63.46 69.14
MLP ✓ 66.25 37.40 77.56 83.30 64.32 66.25 81.97 59.73 67.10
LR ✓ 66.53 37.15 81.02 86.22 64.19 67.87 85.02 58.88 68.36Sup.

kNN - 70.49 38.56 79.98 84.89 67.32 68.33 84.02 61.45 69.38

Mean Teacher ✓ 67.05 37.73 81.08 86.66 65.45 69.67 85.24 61.47 69.29
ICT ✓ 70.13 38.09 84.58 87.01 65.47 70.26 86.12 63.37 70.63
Pseudo-Label ✓ 66.26 37.49 78.60 83.71 64.46 67.49 82.94 60.06 67.63
MPL ✓ 67.61 37.47 77.85 83.70 64.51 67.08 82.39 59.65 67.53

Semi-sup.

VIME-Semi ✓ 65.13 37.32 80.53 87.13 65.39 64.80 82.83 52.08 66.90

SubTab + Fine-tune ✓ 66.01 37.60 67.80 75.40 66.69 56.46 75.34 55.62 62.62
SubTab + LR ✓ 70.12 37.67 73.25 86.07 64.92 61.34 82.14 58.90 66.80
SubTab + kNN - 71.91 39.51 69.56 83.60 68.79 59.87 80.13 61.57 66.87
VIME + Fine-tune ✓ 65.97 37.25 77.82 83.13 64.40 63.63 81.01 59.58 66.60
VIME + LR ✓ 67.80 37.51 82.87 87.42 64.29 71.53 86.79 69.62 70.98

Self-sup.

VIME + kNN - 72.16 39.28 79.15 83.86 66.94 68.45 84.07 71.09 70.63

UMTRA - 65.78 38.05 67.28 73.29 64.41 35.90 51.32 25.08 52.64
SES - 68.27 39.04 74.80 78.46 66.61 52.74 74.80 52.25 63.37
CACTUs - 72.03 38.81 82.20 85.92 66.79 65.00 85.25 81.52 72.19Unsup.-Meta.

STUNT (Ours) - 72.69 40.40 85.45 88.42 69.88 73.02 89.08 79.18 74.77

4.1 Few-shot classification

Dataset. We select 8 datasets from the OpenML-CC18 benchmark [5, 2]. The income [19] and cmc
dataset consists of both categorical and numerical features. The mfeat-karhunen (karhunen), optdigits,
diabetes, semeion, mfeat-pixel (pixel) contain only numerical features. The dna dataset consists of
only categorical features. We demonstrate the performance of STUNT on all types, as described
in Appendix G. For dataset selection, we consider the following attributes: (i) whether the dataset
consists of both categorical and numerical features, (ii) consists only of numerical or categorical
features, (iii) type of task (i.e., binary classification or multi-way classification task). We validate that
STUNT is generally applicable to arbitrary tabular data by performing experiments across datasets
with the above properties.

Baselines. To validate our method, we compare the performance with four types of baselines: (i)
supervised, (ii) semi-supervised, (iii) self-supervised, and (iv) unsupervised meta-learning methods.
First, we compare with supervised learning methods such as CatBoost [30], 2-layer MLP, k-nearest
neighbors (kNN), and logistic regression (LR). kNN denotes the nearest neighbor classifier according
to the prototype of the input data. Second, we compare our method to semi-supervised learning
methods such as Mean Teacher (MT) [36], Interpolation Consistency Training (ICT) [42], Pseudo-
Label (PL) [22], Meta Pseudo-Label (MPL) [29]. We also have considered PAWS [1], the state-of-the-
art semi-supervised learning method in the image domain, but observe that it is not effective for tabular
datasets: we conjecture that the performance highly deviates from the choice of augmentation where

6

Table 2: 10-shot test accuracy (%) on 8 datasets from the OpenML-CC18 benchmark [5]. We report
the mean test accuracy over 20 different seeds for each dataset. The bold indicates results within 1%
from the highest mean score.

Method \ Dataset income cmc karhunen optdigit diabetes semeion pixel dna Avg.

kNN 74.27 41.07 85.63 87.44 71.32 74.64 87.52 71.15 74.13
ICT 71.56 38.00 88.25 90.84 67.63 74.67 89.13 69.55 73.70
VIME + LR 69.17 37.92 86.63 89.63 66.56 77.66 88.71 74.73 73.88
CACTUs 73.63 42.14 85.48 87.92 70.75 68.22 87.21 84.40 74.97

STUNT (Ours) 74.08 42.01 86.95 89.91 72.82 74.74 89.90 80.96 76.42

tabular augmentation is not very effective compared to image augmentations. Third, we consider
the recent state-of-the-art self-supervised method for tabular data, SubTab [38] and VIME [48]
are pre-trained, then performance is evaluated with a few-shot labeled samples using fine-tuning,
logistic regression, and kNN. Finally, we include CACTUs [14], UMTRA [15], and SES [47] (along
with semi-normalized similarity) as an unsupervised meta-learning baseline. Even though it is not
clear how to design the augmentation strategy when applying UMTRA and SES to tabular data, we
use marginal distribution masking, which are simple augmentation strategies used in SubTab. We
provide additional results in Appendix I. We exclude Meta-GMVAE [21] since in our experiments,
it lags behind the baseline with the lowest performance that we consider. This is because training a
variational auto-encoder (VAE; [18]) for tabular datasets is highly non-trivial [45].

Few-shot classification. For the few-shot classification, we evaluate the performance when one
and five labeled samples are available per class, respectively. We find that some baselines, such as
CatBoost and ICT, require a validation set as they are highly sensitive to hyperparameters.Therefore,
we perform a hyperparameter search and early stopping with 100 additional labeled samples for
all baseline except for kNNs and unsupervised meta-learning methods. We note that using more
labeled samples for validation than training is indeed unrealistic. On the other hand, we use the
proposed pseudo-validation scheme for hyperparameter searching and early stopping of STUNT. One
surprising observation is that CatBoost even lags behind kNN despite careful hyperparameter search.
This implies that gradient boosting decision tree algorithms may fail in few-shot learning, while they
are one of the most competitive models in fully-supervised settings [32]. In addition, semi-supervised
learning methods achieve relatively low scores, which means that in tabular domain, pseudo-label
quality goes down when the number of labeled samples is extremely small. Also, unlike the results of
the image domain, UMTRA and SES perform worse than CACTUs. We believe that the failures of
them are mainly due to the absence of effective augmentation strategies for tabular data.

As shown in Table 1, STUNT significantly improves the few-shot tabular classification performance
even without using a labeled validation set. For instance, STUNT outperforms CACTUs from
67.61%→79.05% in the 1-shot classification of the pixel dataset. In particular, STUNT achieves the
highest score in 7 of 8 datasets in both 1-shot and 5-shot classification problems, performing about
4% and 2% better than CACTUs in 1-shot and 5-shot cases, respectively. This is because STUNT
is a tabular-specific unsupervised learning method that generates myriad meta-training tasks than
CACTUs because we randomly select a subset of the column features for every training iteration.

Low-shot classification. We also validate our method when more labels are available, i.e., 10-shot. For
baselines, we choose kNN, ICT, VIME+LR, and CACTUs because they show the best performance
among supervised, semi-supervised, self-supervised, and unsupervised meta-learning methods in
1-shot and 5-shot classifications, respectively. Since a sufficient number of labeled training samples
are available, we use the 2-shot sample from the 10-shot training sample for validation if the baseline
requires hyperparameter search and early stop. In contrast, STUNT still does not use the labeled
validation set, i.e., we utilize the proposed pseudo-validation scheme. As shown in Table 2, STUNT
achieves the best score on average accuracy even under the low-shot classification setup.

While STUNT outperforms the baselines in the few- and low-shot learning setups, we find ensembles
of decision trees or other semi-supervised learning methods, e.g., CatBoost or ICT, achieve a better
performance when more labeled samples are provided, e.g., 50-shot. Although the few-shot learning
scenario is of our primary interest and our current method is specialized for the purpose, we think
further improving our method under many-shot regimes would be an interesting future direction.

7

Table 3: Few-shot multi-task test accuracy (%) on the emotions dataset [40], consists of 6 binary
classification tasks. We report the mean test accuracy over 100 different seeds for each task. The bold
indicates the highest mean score.

Method \ Task amazed-surprised happy-please relaxing-calm quiet-still sad-lonely angry-aggressive Avg.

shot = 1

kNN 59.04 47.14 55.77 66.86 55.96 59.47 57.37
SubTab + kNN 63.32 48.88 56.46 62.56 54.34 57.99 57.26
VIME + kNN 60.07 49.51 55.62 64.74 53.95 60.29 57.36
CACTUs 61.58 50.67 55.63 63.18 55.10 59.39 57.59

STUNT (Ours) 62.71 51.63 59.28 69.34 56.38 63.43 60.46

shot = 5

kNN 70.71 53.48 66.34 81.03 68.51 68.07 68.02
SubTab + kNN 74.41 52.23 64.90 72.70 62.32 63.30 64.98
VIME + kNN 70.71 53.10 66.24 79.54 66.34 67.76 67.28
CACTUs 71.41 53.64 65.18 77.57 64.15 66.57 66.42

STUNT (Ours) 72.38 55.09 67.39 83.10 68.61 70.10 69.45

4.2 Multi-task learning

In this section, we introduce another application of STUNT, the few-shot multi-task learning. As
STUNT learns to generalize across various self-generated tasks, it can instantly be adapted to multiple
tasks at test-time without further training the network. Formally, we consider xl and xu are sampled
from a same marginal distribution p(x), where the label space Y differs.

Dataset. We use the emotions dataset from OpenML [40], consisting of a variety of audio data with
multiple binary labels and 72 numerical features. In particular, the emotion dataset aims to classify
the multiple properties: amazed-surprised, happy-please, relaxing-calm, quiet-still, sad-lonely, or
angry-aggressive. Because it is multi-labeled, data can have multiple attributes simultaneously, such
as amazed-surprised and relaxing-calm audio.

Baselines. We compare STUNT with four baselines: kNN, SubTab + kNN, VIME + kNN, and
CACTUs. All four baselines are chosen because they can adapt to multiple tasks with only one
training procedure. On the other hand, methods such as ICT are excluded because they need a training
procedure for each task. For example, in the case of the emotions dataset, six models are required.

Multi-task learning. As shown from Table 3, STUNT outperforms 5 out of 6 tasks in both 1-
shot and 5-shot multi-task adaptation. In particular, STUNT outperforms the best baseline from
57.59%→60.46% in 1-shot multi-task, and 68.02%→69.45% in 5-shot. This is because STUNT
generates a wide variety of meta-training tasks based on the fact that there are myriad ways to
randomly select subsets of column features. In addition, it makes sense to treat column features as
alternate labels, especially in tabular data, because each column feature has a different meaning.
Considering the presence of critical real-world few-shot multi-task scenarios, such as patients with
more than one disease, we conclude that STUNT is a promising way to mitigate these problems.

4.3 Effectiveness of pseudo-validation

In this section, we perform further analysis of the proposed pseudo-validation with STUNT. For the
analysis, we use four datasets from the OpenML-CC18 benchmark: two datasets containing both
categorical and numerical features (i.e., income, cmc) and two datasets with only numerical features
(i.e., semeion, pixel). We validate the model by constructing a number of 1-shot meta-validation tasks,
i.e., |Sval| = C, with an unlabeled validation set for all experiments in this section.

Hyperparameter search. To validate that the proposed pseudo-validation scheme is useful for
hyperparameter search, we show the correlation between the pseudo-validation accuracy and the test
accuracy (achieved from the early stop point by the highest pseudo-validation accuracy). As shown in
Figure 3, pseudo-validation accuracy and test accuracy have a positive correlation, which means that
the higher the best pseudo-validation accuracy, the higher the test accuracy. Therefore, we use the
pseudo-validation technique to search the hyperparameters of STUNT. Specifically, for the income,
semeion, and pixel datasets, we find hyperparameters in eight combinations of hyperparameters. For
the cmc dataset, we find hyperparameters in four combinations (indicated by blue dots in Figure 3).

8

1-
sh

ot
 te

st
 a

cc
 (%

)

61

62

63

64

Pseudo-validation acc (%)
79.0 79.5 80.0 80.5 81.0 81.5 82.0 82.5 83.0

income

1-
sh

ot
 te

st
 a

cc
 (%

)

36.3

36.6

36.9

37.2

Pseudo-validation acc (%)
73 74 75 76 77 78 79 80

cmc

1-
sh

ot
 te

st
 a

cc
 (%

)

52.8

54

55.2

56.4

Pseudo-validation acc (%)
61.5 62.0 62.5 63.0 63.5 64.0 64.5 65.0

semeion

1-
sh

ot
 te

st
 a

cc
 (%

)

69

72

75

78

Pseudo-validation acc (%)
75.0 76.5 78.0 79.5 81.0 82.5 84.0

pixel

Figure 3: Correlation between the pseudo-validation accuracy (%) and the 1-shot test accuracy (%).
The 1-shot test accuracy is achieved from the early stopped point by the highest pseudo-validation
accuracy. Blue dots represent models trained with different hyperparameters. Red lines are the result
of linear regression result of pseudo-validation accuracy and 1-shot test accuracy.

Table 4: Early stopping performance with the pseudo-validation set. We report 1-shot and 5-shot
test accuracy (%) of fully trained (Last) and early stopped models (Early). We report the mean test
accuracy of 100 different seeds. The bold indicates the highest mean score.

income cmc semeion pixel

Problem Last Early Last Early Last Early Last Early

1-shot 61.58 63.52 36.94 37.10 51.94 55.91 74.92 79.05
5-shot 70.84 72.69 40.43 40.40 71.55 73.02 87.60 89.08

Although the best validation score may not guarantee the optimal hyperparameters, our method still
gives reasonable hyperparameters. Additional information are reported in Appendix E.

Early stopping. As shown in Table 4, our pseudo-validation method is also useful for relaxing the
overfitting issue. For example, on the pixel dataset, evaluating with the early stop model achieves
4.13% better accuracy than evaluating with the model after 10K training steps. Sometimes it is better
to evaluate the model after a full training step, such as the cmc dataset, but our method still provides
a reasonable early stopping rule when we see that the performance of the early stopped model by the
highest pseudo-validation result only performs about 0.03% lower on the cmc dataset. In addition,
the optimal required training steps are not known and often vary widely across datasets, especially
in the tabular domain. For example, Levin et al. [24] uses different fine-tuning epochs for different
training setups (e.g., if 4 downstream training samples are available, use 30 fine-tuning epochs, and if
20 samples are available, use 60 fine-tuning epochs). However, since we use the pseudo-validation
approach for early stopping, all we have to do is train the model for enough training steps (e.g., 10K
training steps in our case) and use the model that achieves the best pseudo-validation score.

5 Conclusion

In this paper, we tackle the few-shot tabular learning problem, which is an under-explored but
important research question. To this end, we propose STUNT, a simple yet effective framework that
meta-learns over the self-generated tasks from unlabeled tables. Our key idea is to treat randomly
selected columns as target labels to generate diverse few-shot tasks. The effectiveness of STUNT is
validated by various few-shot classification tasks on different types of tabular datasets, and we also
show that the representations extracted by STUNT apply well in multi-task scenarios. We hope that
our work will guide new interesting directions in tabular learning field in the future.

9

References
[1] M. Assran, M. Caron, I. Misra, P. Bojanowski, A. Joulin, N. Ballas, and M. Rabbat. Semi-

supervised learning of visual features by non-parametrically predicting view assignments with
support samples. In IEEE International Conference on Computer Vision, 2021.

[2] A. Asuncion and D. Newman. Uci machine learning repository, 2007.

[3] D. Bahri, H. Jiang, Y. Tay, and D. Metzler. Scarf: Self-supervised contrastive learning using
random feature corruption. In International Conference on Learning Representations, 2022.

[4] D. Berthelot, N. Carlini, I. Goodfellow, N. Papernot, A. Oliver, and C. A. Raffel. MixMatch: A
holistic approach to semi-supervised learning. In Advances in Neural Information Processing
Systems, 2019.

[5] B. Bischl, G. Casalicchio, M. Feurer, P. Gijsbers, F. Hutter, M. Lang, R. G. Mantovani, J. N.
van Rijn, and J. Vanschoren. Openml benchmarking suites. In Advances in Neural Information
Processing Systems Track on Datasets and Benchmarks, 2021.

[6] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive learning
of visual representations. In International Conference on Machine Learning, 2020.

[7] T. Chen, S. Kornblith, K. Swersky, M. Norouzi, and G. Hinton. Big self-supervised models are
strong semi-supervised learners. In Advances in Neural Information Processing Systems, 2020.

[8] W. Chen, Y. Liu, Z. Kira, Y. F. Wang, and J. Huang. A closer look at few-shot classification. In
International Conference on Learning Representations, 2019.

[9] Z. Chen, S. Maji, and E. Learned-Miller. Shot in the dark: Few-shot learning with no base-
class labels. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2668–2677, 2021.

[10] J. M. Clements, D. Xu, N. Yousefi, and D. Efimov. Sequential deep learning for credit risk
monitoring with tabular financial data. arXiv preprint arXiv:2012.15330, 2020.

[11] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In International Conference on Machine Learning, 2017.

[12] J. Gu, Y. Wang, Y. Chen, K. Cho, and V. O. Li. Meta-learning for low-resource neural machine
translation. In Conference on Empirical Methods in Natural Language Processing, 2018.

[13] H. Guo, R. Tang, Y. Ye, Z. Li, and X. He. Deepfm: A factorization-machine based neural
network for ctr prediction. In International Joint Conferences on Artificial Intelligence, 2017.

[14] K. Hsu, S. Levine, and C. Finn. Unsupervised learning via meta-learning. In International
Conference on Learning Representations, 2018.

[15] S. Khodadadeh, L. Bölöni, and M. Shah. Unsupervised meta-learning for few-shot image
classification. In Advances in Neural Information Processing Systems, 2019.

[16] J. Kim, Y. Hur, S. Park, E. Yang, S. J. Hwang, and J. Shin. Distribution aligning refinery of
pseudo-label for imbalanced semi-supervised learning. In Advances in Neural Information
Processing Systems, 2020.

[17] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2014.

[18] D. P. Kingma and M. Welling. Auto-encoding variational bayes. In International Conference
on Learning Representations, 2014.

[19] R. Kohavi et al. Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid. In
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1996.

[20] S. Laine and T. Aila. Temporal ensembling for semi-supervised learning. In International
Conference on Learning Representations, 2017.

10

[21] D. B. Lee, D. Min, S. Lee, and S. J. Hwang. Meta-GMVAE: Mixture of gaussian VAE for
unsupervised meta-learning. In International Conference on Learning Representations, 2021.

[22] D.-H. Lee. Pseudo-label: The simple and efficient semi-supervised learning method for deep
neural networks. ICML Workshop : Challenges in Representation Learning (WREPL), 2013.

[23] H. Lee, K. Lee, K. Lee, H. Lee, and J. Shin. Improving transferability of representations via
augmentation-aware self-supervision. In Advances in Neural Information Processing Systems,
2021.

[24] R. Levin, V. Cherepanova, A. Schwarzschild, A. Bansal, C. B. Bruss, T. Goldstein, A. G. Wilson,
and M. Goldblum. Transfer learning with deep tabular models. arXiv preprint arXiv:2206.15306,
2022.

[25] K. Majmundar, S. Goyal, P. Netrapalli, and P. Jain. Met: Masked encoding for tabular data.
arXiv preprint arXiv:2206.08564, 2022.

[26] S. Min, M. Lewis, H. Hajishirzi, and L. Zettlemoyer. Noisy channel language model prompting
for few-shot text classification. In Annual Conference of the Association for Computational
Linguistics, 2022.

[27] M. Peplow. The 100,000 genomes project. British Medical Journal, 2016.

[28] E. Perez, D. Kiela, and K. Cho. True few-shot learning with language models. In Advances in
Neural Information Processing Systems, 2021.

[29] H. Pham, Z. Dai, Q. Xie, M.-T. Luong, and Q. V. Le. Meta pseudo labels. In IEEE Conference
on Computer Vision and Pattern Recognition, 2021.

[30] L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin. Catboost: unbiased
boosting with categorical features. In Advances in Neural Information Processing Systems,
2018.

[31] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. Language models are
unsupervised multitask learners. OpenAI blog, 2019.

[32] R. Shwartz-Ziv and A. Armon. Tabular data: Deep learning is not all you need. Information
Fusion, 2022.

[33] J. Snell, K. Swersky, and R. S. Zemel. Prototypical networks for few-shot learning. In Advances
in Neural Information Processing Systems, 2017.

[34] K. Sohn, D. Berthelot, C. Li, Z. Zhang, N. Carlini, E. D. Cubuk, A. Kurakin, H. Zhang, and
C. Raffel. Fixmatch: Simplifying semi-supervised learning with consistency and confidence. In
Advances in Neural Information Processing Systems, 2020.

[35] G. Somepalli, M. Goldblum, A. Schwarzschild, C. B. Bruss, and T. Goldstein. Saint: Improved
neural networks for tabular data via row attention and contrastive pre-training. arXiv preprint
arXiv:2106.01342, 2021.

[36] A. Tarvainen and H. Valpola. Mean teachers are better role models: Weight-averaged consistency
targets improve semi-supervised deep learning results. In Advances in Neural Information
Processing Systems, 2017.

[37] Y. Tian, Y. Wang, D. Krishnan, J. B. Tenenbaum, and P. Isola. Rethinking few-shot image
classification: a good embedding is all you need? In European Conference on Computer Vision,
2020.

[38] T. Ucar, E. Hajiramezanali, and L. Edwards. Subtab: Subsetting features of tabular data for
self-supervised representation learning. In Advances in Neural Information Processing Systems,
2021.

[39] D. Ulmer, L. Meijerink, and G. Cinà. Trust issues: Uncertainty estimation does not enable
reliable ood detection on medical tabular data. In Machine Learning for Health, 2020.

11

[40] J. Vanschoren, J. N. Van Rijn, B. Bischl, and L. Torgo. Openml: networked science in machine
learning. ACM SIGKDD Explorations Newsletter, 2014.

[41] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and
I. Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems,
2017.

[42] V. Verma, K. Kawaguchi, A. Lamb, J. Kannala, Y. Bengio, and D. Lopez-Paz. Interpolation
consistency training for semi-supervised learning. In International Joint Conferences on
Artificial Intelligence, 2019.

[43] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al. Matching networks for one shot learning.
In Advances in Neural Information Processing Systems, 2016.

[44] A. Xie, A. Singh, S. Levine, and C. Finn. Few-shot goal inference for visuomotor learning and
planning. In Conference on Robot Learning, 2018.

[45] L. Xu, M. Skoularidou, A. Cuesta-Infante, and K. Veeramachaneni. Modeling tabular data using
conditional GAN. In Advances in Neural Information Processing Systems, 2019.

[46] H.-J. Ye, H. Hu, D.-C. Zhan, and F. Sha. Few-shot learning via embedding adaptation with
set-to-set functions. In CVPR, 2020.

[47] H.-J. Ye, L. Han, and D.-C. Zhan. Revisiting unsupervised meta-learning via the characteristics
of few-shot tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.

[48] J. Yoon, Y. Zhang, J. Jordon, and M. van der Schaar. Vime: Extending the success of self- and
semi-supervised learning to tabular domain. In Advances in Neural Information Processing
Systems, 2020.

[49] S. Zhang, L. Yao, A. Sun, and Y. Tay. Deep learning based recommender system. Association
for Computing Machinery (ACM) Computing Surveys, 2020.

[50] P. Zhou, X.-L. Yang, X.-G. Wang, B. Hu, L. Zhang, W. Zhang, H.-R. Si, Y. Zhu, B. Li, C.-L.
Huang, H.-D. Chen, J. Chen, Y. Luo, H. Guo, R.-D. Jiang, M.-Q. Liu, Y. Chen, X.-R. Shen,
X. Wang, X.-S. Zheng, K. Zhao, Q.-J. Chen, F. Deng, L.-L. Liu, B. Yan, F.-X. Zhan, Y.-Y. Wang,
G.-F. Xiao, and Z.-L. Shi. A pneumonia outbreak associated with a new coronavirus of probable
bat origin. Nature, 2020.

12

A Baseline details

In this section, we provide brief explanations of the considered baselines and the hyperparameter
search space of the baselines. In common, we use Adam optimizer [17] with learning rate 1e− 3,
and weight decay 1e− 4. All baselines are trained with batch size 100 for all experiments.

CatBoost. CatBoost [30] is one of gradient boosted decision tree algorithms. CatBoost consecutively
builds decision trees in a way that reduces loss compared to previous trees. We search hyperparameters
as shown in Table 5.

Table 5: Hyperparameter search space of Catboost [30].
Hyperparameter Search space

iterations {10, 100, 200, 500, 1000}
max depth {4, 6, 8, 10}
learning rate {0.001, 0.01, 0.1, 0.03}
bagging temperature {0.6, 0.8, 1.0}
l2 leaf reg {1, 3, 5, 7}
leaf estimation iterations {1, 2, 4, 8}

Mean Teacher (MT). MT [36] is semi-supervised learning method which uses the consistency
loss between the teacher output and student output. The teacher model weights are updated as an
exponential moving average of the student weights. We use the decay rate as 0.999 for exponential
moving average. We search for weight of consistency loss in {0.1, 1, 10, 20, 50, 100}.
Interpolation Consistency Training (ICT). ICT [42] is a semi-supervised learning method uses MT
framework while the student parameters are updated to encourage the consistency between the output
of mixed samples and the mixed output of the samples. We use the decay rate as 0.999, and search
for the weight of consistency loss in {0.1, 1, 10, 20, 50, 100}. We find the β for Beta distribution in
{0.1, 0.2, 0.5, 1}.
Meta Pseudo-Label (MPL). MPL [29] is a semi-supervised learning method which utilizes the
performance of the student on the labeled dataset to inform the teacher to generate better pseudo-labels.
In particular, the student model learns from pseudo-labeled data given from the teacher model. We use
the decay rate as 0.999, and search for the weight of the unsupervised loss in {0.1, 1, 10, 20, 50, 100}.
VIME. VIME [48] is a self-supervised learning method which extracts useful representation by
corrupting random features and then predicting the corrupted location. For VIME pre-training, we
follow the best hyperparameters suggested from original paper. Using VIME representations, we
perform k-nearest neighbor classify, logistic regression, and fine-tuning. Early stop is done for logistic
regression and fine-tuning.

SubTab. SubTab [38] is a self-supervised learning method using effective three pretext task losses
(i.e., reconstruction loss, contrastive loss, and distance loss). For SubTab pre-trianing, we follow the
best hyperparameters suggested from original paper. Using SubTab representations, we perform k-
nearest neighbor classify, logistic regression, and fine-tuning. Early stop is done for logistic regression
and fine-tuning.

CACTUs. CACTUs [14] is an unsupervised meta-learning method which runs a clustering algorithm
on a representation trained with self-supervised learning in order to self-generate the tasks. We follow
the hyperparameters suggested in the original paper.

For rest of the baselines, i.e., 2-layer multi-layer perceptron, logistic regression, pseudo-label [22],
we use labeled validation set (i.e., additional 100 samples for 1-shot, 5-shot learning, and 2-shot
samples for 10-shot learning) only for early stopping.

13

B Experimental details

In this section, we provide hyperparameters of STUNT in Table 6 for each dataset found through the
proposed pseudo-validation scheme. Shot indicates the number of sample per pseudo-class in S , and
query indicates the number of sample per pseudo-class in Q. Way indicates the number of centroids
in Eq. (1).

Table 6: Hyperparameters of STUNT
income cmc karhunen optdigit diabetes semeion pixel dna emotions

shot 1 1 1 1 1 1 1 1 1
query 15 5 15 15 15 15 15 15 5
way 10 3 20 20 5 20 10 10 16

Except for shot, query, and way, we use full batch when self-generating STUNT tasks, and then use
meta-training task batch size 4, r1 = 0.2, r2 = 0.5 and Adam optimizer with learning rate 1e− 3.

C Dataset details

In this section, we provide brief explanations of the considered datasets from the OpenML-CC18
benchmark [40, 5].

Income. The task of the income [19, 5] dataset is to classify whether a person makes less than 50K a
year or more than 50K a year.

Cmc. Cmc [2, 5] is an abbreviation for Contraceptive Method Choice. Literally, the target task is to
predict the contraceptive method choice (i.e., no use, long-term or short-term).

Mfeat-karhunen (karhunen), mfeat-pixel (pixel). The karhunen and pixel [2, 5] datasets describe
features of handwritten numbers. In particular, the karhunen dataset aims to find the correlation
between 64 features obtained through the Karhunen-Loeve Transform and the 10 handwritten numbers
drawn from the Dutch utility maps. On the other hand, the pixel dataset consists of 240 features by
averaging 2×3 windows.

Optdigit. The optdigit [2, 5] is the dataset that describes the optical recognition of handwritten digits.

Diabetes. Literally, the diabetes [2, 5] dataset aims to predict whether the patient is tested positive for
diabetes or not. In particular, the dataset features are composed of 8 numerical features, including
diastolic blood pressure and body mass index.

Semeion. Semeion [2, 5] dataset is drawn by scanning and documenting handwritten digits from
around 80 people.

Dna. The task of the dna [5] dataset is to classify the boundaries between exons and introns with 180
indicator binary variables.

14

D Algorithm

Algorithm 1 STUNT: Self-generated Tasks from UNlabeled Tables

Require: Unlabeled dataset Du = {xu,i}Nu
i=1, Labeled dataset Dl = {xl,i,yl,i}Nl

i=1,
task batch size Mt, learning rate β, mask ratio hyperparameters r1, r2.

1: Initialize θ using the standard initialization scheme.
2: // Step 1: Unsupervised meta-learning with STUNT
3: while not done do
4: for j = 1 to Mt do
5: Sample mask ratio p ∼ U(r1, r2).
6: m = [m1, . . . ,md]

⊤ ∈ {0, 1}d s.t.
∑

i mi = ⌊dp⌋.
7: Run a k-means clustering: Eq. (1) with xu ∈ Du and m to generate the task label ỹu.
8: TSTUNT,j = {x̃u,i, ỹu,i}Nu

i=1 where x̃u,i := m⊙ x̂u,i + (1−m)⊙ xu,i.
9: Sample two disjoint sets Sj and Qj from a given task TSTUNT,j .

10: Lmeta(θ,Qj) =
∑

(x̃u,ỹu)∈Qj
LCE

(
fθ(x̃u;Sj), ỹu

)
.

11: end for
12: θ ← θ − β

Mt
· ∇θ

∑Mt

j=1 Lmeta(θ,Qj).
13: end while
14: // Step 2: Adapt classifier with the labeled dataset
15: Conduct a ProtoNet classifier fθ(·;Dl) using Dl.

E Ablation study

As shown in Table 3, this section provides the search space of hyperparameters of ablation study
in Section 4.3. Shot indicates the number of sample per pseudo-class in S, and query indicates the
number of sample per pseudo-class in Q. Way indicates the number of centroids in Eq. (1).

Table 7: Hyperparameter search space of datasets used in Section 4.3
Dataset Hyperparameter Search space

income (shot, query) {(1, 5), (1, 15), (5, 10), (5, 20)}
way {5, 10}

cmc (shot, query) {(1, 5), (1, 15), (5, 10), (5, 20)}
way {3}

semeion (shot, query) {(1, 5), (1, 15), (5, 10), (5, 20)}
way {10, 20}

pixel (shot, query) {(1, 5), (1, 15), (5, 10), (5, 20)}
way {10, 20}

15

F Few-shot tabular regression

Table 8: Few-shot regression tasks on 5 datasets from the OpenML [40]. We report the mean squared
error over 100 different seeds for each dataset. The bold indicates the lowest mean error.

Input news abalone cholesterol sarcos boston

shot = 5

Raw 2.74E-04 1.75E-02 1.37E-02 1.05E-02 3.65E-02
VIME 2.69E-04 1.70E-02 1.37E-02 1.06E-02 3.53E-02
CACTUs 2.75E-04 1.72E-02 1.46E-02 1.06E-02 3.76E-02

STUNT (Ours) 2.68E-04 1.66E-02 1.35E-02 1.06E-02 3.70E-02

shot = 10

Raw 2.53E-04 1.49E-02 1.13E-02 9.21E-03 2.88E-02
VIME 2.53E-04 1.49E-02 1.13E-02 9.24E-03 2.78E-02
CACTUs 2.54E-04 1.51E-02 1.21E-02 9.16E-03 2.94E-02

STUNT (Ours) 2.53E-04 1.46E-02 1.12E-02 9.16E-03 2.90E-02

We evaluate the capability of STUNT in few-shot regression tasks by replacing the ProtoNet classifier
with a kNN regressor at the adaptation stage (i.e., after unsupervised meta-learning with STUNT).

We consider 5 tabular regression datasets in OpenML [40], where we preprocess the input and target
features with min-max scaling. For comparison, we evaluate the performance of the kNN regressor
on VIME [48] and CACTUs [14] representations. Also, we report the performance of naive kNN
regressor on the raw input. We use k = 5 and k = 10 for 5-shot and 10-shot experiments, respectively,
where k is the number of nearest neighbors.

In the Table 8, we report the average of mean-squared-errors (MSEs) over 100 different seeds of each
method and dataset. The results indicate that STUNT is a competitive approach in a few-shot tabular
regression task. However, the performance gap is often vacuous or marginal compared to the few-shot
classification tasks. We believe that this is because STUNT meta-train networks with classification
tasks, thus, can be more easily adapted to classification test-tasks. Therefore, extending STUNT by
self-generating target-regression tasks with distinct column features could be effective in few-shot
regression tasks, which we leave for future works.

G Dataset description

Table 9: Dataset description. We select 8 tabular datasets from the OpenML-CC18 benchmark [5] for
extensive evaluation. The selected dataset consists of (i) both numerical and categorical features, (ii)
only numerical features, and (iii) only categorical features.

Property \ Dataset income cmc karhunen optdigits diabetes semeion pixel dna

Columns 14 9 64 64 8 256 240 180
Numerical 6 2 64 64 8 256 240 0
Categorical 8 7 0 0 0 0 0 180
Classes 2 3 10 10 2 10 10 3

16

H Effectiveness of the marginal distribution masking

Table 10: Few-shot test accuracy (%) on 4 datasets from the OpenML-CC18 benchmark [5] according
to the masking type. We report the mean test accuracy over 100 different seeds. The bold denotes the
highest mean score.

Masking type income cmc semeion pixel Avg.

shot = 1

No-masking 59.18 36.23 54.04 75.99 56.36
Zero-masking 61.88 35.47 54.44 77.49 57.32
Gaussian noise 60.34 36.49 55.45 78.39 57.67

Marginal distribution 63.52 37.10 55.91 79.05 58.90

shot = 5

No-masking 70.94 38.76 72.12 86.38 67.05
Zero-masking 71.25 40.36 71.46 87.62 67.67
Gaussian noise 69.91 40.04 73.64 87.93 67.88

Marginal distribution 72.69 40.40 73.02 89.08 68.80

We compare marginal distribution masking with widely used masking strategies in the tabular domain;
the zero-masking (i.e., replace the masked column feature with a zero value) and Gaussian noise (i.e.,
add gaussian noise to the masked column feature used in SubTab [38]). For comparisons, we also use
4 datasets from the OpenML-CC18 benchmark [5] that are used for experiments in Section 4.3. As
shown in the Table 10, all masking strategies show meaningful improvement over the no-masking
case, where our marginal distribution masking shows the best result.

Note that marginal distribution masking is a popular masking (and augmentation) scheme in many
tabular models, such as SubTab [38], VIME [48], and SCARF [3]. On the other hand, zero-masking
and Gaussian noise may have higher chances of generating unrealistic data points. For example,
zero-masking makes the data too sparse, and adding Gaussian noise to one-hot encoded categorical
features is unrealistic.

17

I Augmentation based unsupervised meta-learning

Table 11: Few-shot test accuracy (%) on 8 datasets from the OpenML-CC18 benchmark [5]. We
report the mean test accuracy over 100 different seeds. The bold denotes the highest mean score.

Method income cmc karhunen optdigit diabetes semeion pixel dna Avg.

shot = 1

UMTRA + Gaussian noise 60.15 34.37 47.80 38.85 58.38 25.00 32.77 23.25 40.07
UMTRA + Marginal distribution masking 57.23 35.46 49.05 49.87 57.64 26.33 34.26 25.13 41.87
SES + Gaussian noise 58.85 34.98 38.95 57.63 59.45 36.38 40.99 35.80 45.38
SES + Marginal distribution masking 56.39 34.59 49.19 56.30 59.97 33.73 49.19 39.56 47.37
CACTUs 64.02 36.10 65.59 71.98 58.92 48.96 67.61 65.93 59.89

STUNT (Ours) 63.52 37.10 71.20 76.94 61.08 55.91 79.05 66.20 63.88
shot = 5

UMTRA + Gaussian noise 64.90 36.59 68.06 58.91 64.27 32.48 50.14 23.20 49.82
UMTRA + Marginal distribution masking 65.78 38.05 67.28 73.29 64.41 35.90 51.32 25.08 52.64
SES + Gaussian noise 64.28 38.70 60.50 77.55 67.32 56.70 57.96 40.39 57.93
SES + Marginal distribution masking 68.27 39.04 74.80 78.46 66.61 52.74 74.80 52.25 63.37
CACTUs 72.03 38.81 82.20 85.92 66.79 65.00 85.25 81.52 72.19

STUNT (Ours) 72.69 40.40 85.45 88.42 69.88 73.02 89.08 79.18 74.77

We evaluate UMTRA [15] and SES [47] (also utilizing SNS proposed by Ye et al. [47]) on few-shot
tabular learning tasks, where we use augmentation strategies used in SubTab [38] (i.e., Gaussian
noise and marginal distribution masking). Here, we tried our best to improve the performance of
SES and UMTRA (e.g., tune variance of Gaussian noise). However, unlike the image domain, they
performed worse than CACTUs [14], as shown in the Table 11. We believe that the failures of SES
and UMTRA are mainly due to the absence of effective augmentation strategies for tabular data, and
developing them will be an interesting future direction.

18

	Introduction
	Related work
	STUNT: Self-generated tasks from unlabeled tables
	Problem setup: few-shot semi-supervised learning
	Unsupervised meta-learning with STUNT
	Pseudo-validation with STUNT

	Experiments
	Few-shot classification
	Multi-task learning
	Effectiveness of pseudo-validation

	Conclusion
	Baseline details
	Experimental details
	Dataset details
	Algorithm
	Ablation study
	Few-shot tabular regression
	Dataset description
	Effectiveness of the marginal distribution masking
	Augmentation based unsupervised meta-learning

