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ABSTRACT

Backdoor attacks pose a critical concern to the practice of using third-party data
for AI development. The data can be poisoned to make a trained model misbehave
when a predefined trigger pattern appears, granting the attackers illegal benefits.
While most proposed backdoor attacks are dirty-label, clean-label attacks are more
desirable by keeping data labels unchanged to dodge human inspection. However,
designing a working clean-label attack is a challenging task, and existing clean-
label attacks show underwhelming performance. In this paper, we propose a novel
mechanism to develop clean-label attacks with near-perfect attack performance.
The key component is a trigger pattern generator, which is trained together with a
surrogate model in an alternate manner. Our proposed mechanism is flexible and
customizable, allowing different backdoor trigger types and behaviors for either
single or multiple target labels. Our backdoor attacks can reach near-perfect attack
success rates and bypass all state-of-the-art backdoor defenses, as illustrated via
comprehensive experiments on standard benchmark datasets.

1 INTRODUCTION

Deep learning has revolutionized all domains of Artificial Intelligence, bringing a powerful tool
to handle challenging tasks that were thought impossible to solve in classical works. Many deep-
learning-based applications, such as face recognition and self-driving cars, have been widely de-
ployed to change our society deeply. To deal with numerous real-life situations, AI models often
need massive training data, which is hard to collect. Thus the data often comes from various sources
like third parties or open sources. However, recent studies have shown that the data outsourcing
practice can open a loophole for backdoor attacks. An attacker can provide training data that is
partially poisoned with a pre-defined trigger pattern. A model trained on such data exhibits two
properties. First, it performs well on normal, “clean” images like a genuine model. However, when
the trigger pattern is embedded in the input, the model will give an erroneous prediction as designed
by the attacker. This allows the attacker to gain malicious access or cause damage to the user’s side.
For example, attackers can disguise themself as privileged users by breaking a face-recognition-
based security system, or they can fool self-driving cars into misreading the traffic signs and causing
accidents in terror attacks. Therefore, understanding the capability of this security threat is critical,
drawing many research interests in recent years. This paper focuses on backdoor attacks on image
classification, the most studied task, but the discovery should be easily extended to other domains.

Data-poisoning-based backdoor attacks are often classified as “dirty-label” or “clean-label”. In
dirty-label attacks, the adversary poisons some data and changes its labels to the attack’s target
class. It could be easily spotted by humans, e.g., a poisoned dog image could be labeled as a “cat”.
In contrast, in clean-label attacks, the attacker only poisons data without changing its labels, making
this attack mechanism more stealthy and desirable.

However, one critical drawback of most existing clean-label attacks is their low efficiency. For
dirty-label ones, the poisoned examples have a fixed label regardless of the image content, forcing
the classifier to associate the backdoor trigger with the attack’s target class, leading to an almost
100% attack success rate. Meanwhile, in clean-label attacks, the classifier may just learn the image
content and ignore the trigger since all labels are correct. For example, a naive adaptation to clean-
label style for BadNets (Gu et al., 2017), a common dirty-label method, completely fails. In addition,
most existing clean-label attacks (Turner et al., 2019; Barni et al., 2019) cannot reach an 80% attack
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success rate. Although there are recent works (Ning et al., 2021; Zeng et al., 2022) that manage to
achieve near-perfect attack success rates, they require significant modifications to the training data.
Due to the difficulty in designing a working and effective algorithm, only a few clean-label attacks
have been proposed, and they have not been well studied in backdoor defense research.

The challenges in clean-label attacks lead us to believe that designing a backdoor trigger based on
its poisoning effect measured on the poisoned model could be an approach to solve the problem.
Therefore, we propose a novel clean-label attack mechanism called Clean-label OptiMize Backdoor
Alternated Training, or COMBAT for short. It aims to learn a generator that can generate an effec-
tive, input-dependent backdoor trigger. As indicated in its name, COMBAT employs an alternated
training process to alternatively optimize the generator and a surrogate model, aiming to maximize
the generator’s poisoning effectiveness. In the surrogate model training step, COMBAT mimics the
real data poisoning and backdoor modeling process. In the generator training step, it updates the
generator to maximize the attack success rate on the surrogate model. More loss functions can be
freely added in this step to define other desired properties of the attack, such as imperceptibility and
defense nullification. After training, we obtain an optimized generator with known and transferable
poisoning effectiveness. COMBAT can reach the attack success rates of 98-99% while using exceed-
ingly small triggers on various datasets, including CIFAR-10, GTSRB, and CelebA. Our clean-label
attacks are also stealthy, breaking all backdoor defense mechanisms.

Besides its effectiveness, COMBAT is also flexible, allowing various customizations. We demon-
strate this advantage by designing different variants, including input-aware, warping-based, and
multi-target attacks. COMBAT is sufficient to train these extremely-different backdoor methods to
all reach high attack success rates. We believe it will define a general training procedure for future
clean-label backdoor attacks, stimulating the development of this critical security research.

2 BACKGROUND

2.1 THREAT MODEL

In backdoor attacks, the attacker can provide a poisoned dataset (dataset-poisoning) or a poisoned
network (model-poisoning). We focus on the dataset-poisoning scheme. In this attack scenario, the
attacker acts as a data provider that supplies a victim with a dataset for image classification training
via a commercial transaction or an open-source release. He or she secretly poisons the data before
releasing it, using a backdoor injection function with a pre-defined trigger pattern and a target attack
label. The trigger pattern can be in any form, such as noise, image patch, blended content, or pixel
shifts. The victim will train a classifier on the poisoned dataset and then obtains a backdoored
model that disguises itself as a rightful model by returning correct prediction from clean input and
producing the target class from any poisoned datum. The victim does not recognize this behavior
and deploys it in his or her system, allowing the attacker to gain illegal benefits.

Data poisoning techniques can be divided into two groups: dirty-label and clean-label. In this work,
we focus on the clean-label attacks, in which the attacker poisons only some images and keeps their
labels unchanged. The attacker should poison a minimum amount of data, so normally only a portion
of the target-class images are injected with the backdoor.

2.2 PREVIOUS BACKDOOR ATTACKS

The earliest backdoor attack is BadNets (Gu et al., 2017), which uses a fixed image patch as a trigger
embedded into a small portion of data and changes their labels to the target class. Despite its simple
scheme, BadNets highly succeeded on various datasets. After BadNets, many methods have been
proposed in which some (Liu et al., 2018b; Yao et al., 2019; Rakin et al., 2020; Chen et al., 2021;
Bober-Irizar et al., 2022) try to inject a trigger by modifying the model, and others try to have a
stealthy and effective backdoor injection function. In this study, we only consider the latter.

The majority of proposed backdoor attacks are dirty-label, and we can only name a few here. Chen
et al. (2017) blended a fixed image as the backdoor trigger. Salem et al. (2020) allowed randomly
choosing the backdoor trigger from a set of locations and patterns. Nguyen & Tran (2020) employed
input-dependent trigger patterns to dodge the common backdoor defenses that relied on the fixed-
trigger assumption. Nguyen & Tran (2021b) designed a novel, imperceptible backdoor trigger based
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on image warping. Doan et al. (2021b) optimized the backdoor trigger function during the training
process towards imperceptible trigger in the input space, while later works (Doan et al., 2021a;
Zhong et al., 2022) further made backdoors imperceptible in the latent space. Recent approaches
(Wang et al., 2021; Hammoud & Ghanem, 2021) exploited the frequency domain for stealthy attacks.

As mentioned, dirty-label attacks are not realistic in the dataset-providing scenario due to the easy-
to-detect inconsistency between image contents and labels. Turner et al. (2019) first time discussed
this issue and proposed the clean-label attack scheme. They pointed out that if the poisoned exam-
ples were too easy to learn via their salient content, the network would ignore the trigger pattern
and fail to adopt the backdoor. The paper then proposed to perturb each poisoning example to make
its latent depart from the original class before adding a fixed trigger patch. Barni et al. (2019) later
proposed to use fixed sinusoidal strips as the trigger pattern. Refool (Liu et al., 2020) designed a
natural-looking attack in which the embedded trigger pattern is disguised as image reflection. Saha
et al. (2020) introduced a hidden backdoor attack via model fine-tuning that first generated a patch-
based poisoned sample, then injected its information into the texture of a training image from the
target class by minimizing their distance in the feature space, making the trigger invisible. Souri
et al. (2021) allowed hidden attacks on training-from-scratch models by applying gradient match-
ing. Still, all these methods had underwhelming attack performance. As reported Liu et al. (2020),
the attack success rate (ASR) of Refool on GTSRB was only 91.67%, while the previous attacks ob-
tained no more than 80%, widely lagging behind the common rate 98-99% of dirty-label methods.

A few recent clean-label attacks achieved near-perfect attack performance at the cost of stealthiness.
Ning et al. (2021) used an auto-encoder to learn image-dependent noised triggers and reached 96%
ASR on GTSRB (5% poisoning rate) but required a significant color shift. Narcissus (Zeng et al.,
2022) optimized a universal trigger using a pre-trained clean surrogate classifier. It reached a 97.36%
ASR on CIFAR-10 when using an additive-noise pattern with ℓ∞ = 16/255 and requiring only
0.05% data poisoned. Narcissus is the most effective attack up-to-date, and it shares many similar
ideas to our method. However, it employs a fixed, clean surrogate model and optimizes a fixed,
uniform trigger pattern. We will show that this design is not optimal. Instead, our method used an
adaptive, poisoned surrogate model and jointly trained a generator with it in an alternated training,
aiming to learn image-dependent and optimal triggers. Our method, therefore, achieves higher ASR
(98.26%) with a smaller ℓ∞ of trigger (10/255), and it is easy to be customized to different variants.

2.3 BACKDOOR DEFENSE METHODS

To protect victims from backdoor attacks, detecting and mitigating potential attack methods have
been applied in any stage ranging from dataset scanning (data defense), trained model examination
(model defense), to test-time monitoring when the model is already deployed (test-time defense).
Below is a brief summary of those defense methods.

Data defense. This defense aims at purifying the training dataset by detecting and removing poi-
soned samples, preventing backdoor formation from the source. Tran et al. (2018) filtered backdoor
samples assuming a discernible trace in the spectrum of the covariance feature representations. Chen
et al. (2018) relied on clustering the latent representations, assuming clean and poisoned samples had
distinct characteristics in the hidden feature space. Zeng et al. (2021b) proposed an efficient data
filtering mechanism based on the frequently observed high-frequency artifacts in backdoored data.

Model defense. Model defenses identify or mitigate poisoned models by inspecting their behaviors
when dealing with clean data. Fine-pruning (Liu et al., 2018a) suggested pruning inactive neurons,
but it could not confirm if the model was infected. Neural Cleanse (Wang et al., 2019) computed
optimal class-inducing patterns for each class, then identified a poisoned model based on detecting
abnormally small patterns. ABS (Liu et al., 2019) scanned the neurons to generate backdoor trigger
candidates via reverse engineering technique, then verified these candidates using a set of clean
data. Xu et al. (2020) utilized GradCAM (Selvaraju et al., 2017) to analyze the model’s behaviors
on clean images with and without the presence of engineering-reversed triggers. Zhao et al. (2020)
repaired the model’s backdoor by applying the mode connectivity (Garipov et al., 2018) technique.
Kolouri et al. (2020) jointly optimized some universal litmus patterns (ULPs) and a meta-classifier
to diagnose suspicious models. Li et al. (2021) employed the knowledge distillation technique,
assuming that the distillation process perturbs backdoor-related neurons. More recently, Zeng et al.
(2021a) proposed a minimax formulation for retraining the suspicious model to remove backdoors.
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Test-time defense. Defense methods utilized at test time aim to filter out malicious samples. STRIP
(Gao et al., 2019) exploited the stagnancy of the network prediction on poisoned data under various
perturbations to detect poisoned samples. Neo (Udeshi et al., 2022) instead located the trigger region
by searching for the minimal square-like block that altered the network prediction. Later, Februus
(Doan et al., 2020) utilized GradCAM to identify abnormally small influential regions as potential
triggers. In both, the trigger candidates were then verified by pasting them to a set of clean images.

Besides trigger-based backdoor attacks, there are studies on triggerless data poisoning attacks, in
which the attacker poisons training data to make the trained model misclassify an individual clean
image or class. A practical approach is treating it as a bilevel optimization problem (Huang et al.,
2020; Geiping et al., 2020), which simulates the training procedure and searches for optimal poi-
soned data directly. The corresponding defenses either pre-filter data with outlier detection Paudice
et al. (2018), detect poisoned data near the target class’s distribution Peri et al. (2020), or utilize
strong augmentations Borgnia et al. (2021). While this line of research is irrelevant to backdoor
attacks, it shares an idea of treating data poisoning as a bilevel optimization with our method. We
solve that problem with alternated learning, as will be discussed in the next section.

3 METHODOLOGY

3.1 PROBLEM OVERVIEW

In this section, we recall the formulation of clean-label backdoor attack problem.

Let fθ : X → C be the classification function mapping from the data space X to the set of classes
C, where θ is the classifier’s hyper-parameters. Assume that we are given a training data set S ={
(xi, yi) : xi ∈ X , yi ∈ C, i = 1, 2, . . . , n

}
and C =

{
0, 1, . . . ,m}, then S =

⋃m
k=0 Sk, where Sk

denotes the subset of data for class k.

We consider a clean-label backdoor attack on a target class c ∈ C. It first samples from clean data
of the target class c a subset for poisoning Pc ⊂ Sc, given a pre-defined poisoning rate p = |Pc|/|S|.
Then, it applies a transformation T , which is a compositional function of a backdoor injection
function G and some pre- and post-processing steps, to poison each image data in Pc to form a
poisoned subset Pc

b . For example, in (Turner et al., 2019), T consists of a pre-processing step (GAN
interpolation/adversarial perturbation) and a patch-based backdoor trigger function. In this work,
we consider the simple case when T is exactly G. The rest of the training data is kept unchanged.
The combined set Sb := (S \ Pc) ∪ Pc

b is delivered to the victim to train a poisoned classifier of a
hyper-parameter θb. This process can be expressed by formal equations:

Pc
b = {(G(xi), yi)|(xi, yi) ∈ Pc}, (1)

Sb = Pc
b ∪ (S \ Pc), (2)

θb = argmin
θ

∑
(x,y)∈Sb

L
(
fθ(x), y), (3)

where L is a loss function, i.e., cross-entropy function. The desired poisoned classifier can correctly
classify clean data input. However, when applying the backdoor trigger onto the input, this classifier
always returns the target label c regardless of image content:

fθb(x) = c(x), fθb(G(x)) = c ∀x ∈ X , (4)

with c(·) is the truth function returning the class of the input image.

In this study, we focus on designing an efficient backdoor function G so that any backdoor model
trained using G (Equation 1, 2, 3) can highly meet the conditions in Equation 4.

3.2 TRIGGER GENERATOR

For simplicity, we consider G as a noise-additive function:

G(x) = x+ ηg(x), (5)

with g(·) generates a trigger noise in [−1, 1] conditioned on the image input and η is the ℓ∞ bound
of the added noise. We will discuss some more complex backdoor functions in Section 5. Note that
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we use image-dependent trigger instead of a fixed, global one like in most of previous works. It is
more flexible and allows to define extra properties like input-awareness (Nguyen & Tran, 2020).

We formulate g(·) as a neural network of hyper-parameter ϕ and use directly its attack performance
as an objective function for training. We also want the trigger to be sufficiently small. Therefore,
given a classifier fθ, we want to minimize the loss of assigning poisoned data to the target class c as
well as the magnitude of the trigger. In the formula, these loss terms are defined as follows:

La(fθ, gϕ;S, η) :=
∑

(xj ,yj)∈S

L(fθ(xj + ηgϕ(xj)), c) (6)

Lℓ2(gϕ;S, η) :=
∑

(xj ,yj)∈S

∥ηgϕ(xj)∥2. (7)

Besides, a recent work (Zeng et al., 2021b) has shown that poisoned data may contain high-
frequency artifacts that are imperceptible to humans but are highly detectable by DNN-based de-
tectors. To mitigate the problem and promote even stronger stealthiness, we propose the following
frequency-based regularization:

Lfreq(fθ, gϕ, h;S, η) :=
∑

(xj ,yj)∈S

L(h(DCT(xj + ηgϕ(xj))), 0), (8)

where DCT(·) is the Discrete Cosine Transform (Ahmed et al., 1974) and h is a network to classify
clean and poisoned images based on their frequency signatures following (Zeng et al., 2021b).

The final loss function used to optimize gϕ:
F1(fθ, gϕ, h;S, λ, η) :=La(fθ, gϕ;S, η) + λℓ2Lℓ2(gϕ;S, η) + λfreqLfreq(fθ, gϕ, h;S, η), (9)

with λℓ2 and λfreq are weighting hyper-parameters.

3.3 ALTERNATED TRAINING

As we discussed in the previous section, given a classifier, we could find the best trigger generator
for that classifier. Since we want to poison the victim classifier fθb , ideally, we wish to have that
classifier in training gϕ. However, we need g first to train that victim classifier. This is a chicken-
and-egg problem. A solution is to train a surrogate classifier fθ that is as close to fθb as possible. In
particular, besides optimizing gϕ with F1, we concurrently optimize fθ with another loss function:

F2(fθ, gϕ;S \ Pc,Pc
b , η) :=

∑
(xj ,yj)∈S

L(fθ(xj), yj) +
∑

(xj ,c)∈Pc
b

L(fθ(xj + ηgϕ(xj)), c), (10)

Manifold of real data

New class
boundary

x

x+ηg(x)

Original class boundary

Figure 1: Toy example of circle
and square classes. True data are in
blue, and poisoned data are in red.

where F2 involves the real data and the poisoned data of the
target class to find the best classifier. Optimizing F2 mimics
the process of training the victim classifier. We note that min-
imizing both F1 and F2 is like finding a balancing between
trigger’s magnitude and class’s boundary. We argue that the
alternated training could allow smaller trigger’s size. Let’s as-
sume that the clean data lie in the manifold as in Figure 1.
Without alternated training, the classifier fθ would use the line
in the right middle of blue squares and blue circles to separate
them. The trigger would try to push blue squares to cross its
class’s boundary to get into the region of blue circles of the
target class. However, with the inclusion of poisoned data (red
circles) in training, the classifier will move the separating line
closer to the blue squares. It consequently allows the magni-
tude of trigger for blue squares gets smaller.

After the alternated training process, the attacker acquires the
optimal trigger generator G, then uses it to acquire the poisoned dataset Sb as described in Section
3.1. The whole process is described in Algorithm 1. The poisoned data will expectedly be used
by the victim to train a classifier. This victim model will be poisoned and behaves similar as the
surrogate model, which we will empirically prove in Section 4.3. Finally, the attacker could use the
“optimal” trigger function to generate poisoned data from other classes to fool the victim model.
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Algorithm 1: COMBAT
Input: Training data set S, target label c, injection rate p, poison magnitude η, number of training

iteration N , surrogate frequency-backdoor detector h, hyper-parameters λℓ2 and λfreq

Stage 1: Find the trigger function G
initialize noise function gϕ and the surrogate model fθ
for the number of iteration is less than N do

Randomly choose a mini-batch of sample of S denoted by Smini

Find Sc
mini as the subset of Smini with the class label c

Randomly choose a subset with ratio p of Sc
mini, denoted by Pc

mini

Train fθ: min
θ

∑
(xj ,yj)∈Smini\Pc

mini

L(fθ(xj), yj) +
∑

(xj ,c)∈Pc
mini

L
(
fθ(xj + ηgϕ(xj)), c

)
Train gϕ:
min
ϕ

∑
(xj ,yj)∈Smini

[
L
(
fθ(xj + ηgϕ(xj)), c

)
+λℓ2∥ηgϕ(xj)∥2 +λfreqL(h(DCT(xj + ηgϕ(xj))), 0)

]
end
G(x)← x+ ηgϕ(x)

Stage 2: Generate Sb
Find Sc as the subset of S with the class label c
Randomly choose a subset with ratio p of Sc, denoted by Pc

Pc
b ← ∅

for (x, y) in Pc do
Pc

b ← Pc
b ∪ {(G(x), y)}

end
Sb ← (S \ Pc) ∪ Pc

b

return Trigger function G and the poisoned dataset Sb.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We choose three widely-used datasets to conduct our experiments: CIFAR10 (Krizhevsky et al.,
2009), GTSRB (Stallkamp et al., 2012), and CelebA (Liu et al., 2015). In CelebA, we follow the
suggested configuration from (Salem et al., 2020) to select three most balanced attributes (Heavy
Makeup, Mouth Slightly Open, and Smiling) and concatenate them to form eight compound classes
for a multi-label classification task. To build the classifier f , we use Pre-activation ResNet-18 (He
et al., 2016) for CIFAR10 and GTSRB, and ResNet-18 for CelebA. We design the generator function
g with U-Net (Ronneberger et al., 2015) architecture. Details can be found in the Appendix A.3.

In each experiment, we mimic the entire data and model poisoning process, then evaluate the clean
and attack accuracy of the victim model. In all model training, we use the SGD optimizer. The initial
learning rate is 0.01, which is reduced 10 times for each 100 epochs until the model converges. We
use the same target class c = 0 in all tests. We also set λℓ2 = 0.02 and λfreq = 0.08.

4.2 ATTACK EXPERIMENTS

We first test our proposed attacks on normal settings. A half of clean target-class training images are
poisoned , leading to the overall poisoning rate p on CIFAR-10, GTSRB, and Celeb-A as 5%, 0.57%,
and 13.40%, respectively. We employ small η values to guarantee invisibility of the trigger. In
particular, η is set as 10/255 on CIFAR-10/CelebA and 20/255 on GTSRB. We found that GTSRB
is a bit harder to attack, thus doubled the generated noise before adding to the test images following
the recommendation of (Zeng et al., 2022). We report the victim models’ performance in Table
1. In all cases, the clean accuracy of the poisoned model matches well the accuracy of the clean
counterpart. All attack success rates are higher than 98%, confirming near-perfect attack efficacy.

Next, we compare our method with the existing clean-label attack methods on the CIFAR-10 dataset.
The baselines include BadNets (Gu et al., 2017) (to confirm its inefficacy in this setting), Label-
consistent (Turner et al., 2019), SIG (Barni et al., 2019), Sleeper Agent (Souri et al., 2021), and
Narcissus (Zeng et al., 2022). Note that Sleeper Agent computes attack success rate (ASR) on a
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Table 1: Attack performance of the victim models. For each model, we report its test accuracy on
benign inputs (BA), the attack success rate on poisoned test data (ASR), and the original accuracy
from the corresponding clean model as a reference. The triggers are amplified when evaluating on
GTSRB.

Dataset η p(%) Amplification Original acc.(%) BA(%) ASR(%)

CIFAR-10 10/255 5.00 - 94.77 94.79 98.26
GTSRB 20/255 0.57 ×2 99.54 99.38 98.48
CelebA 10/255 13.40 - 79.34 78.56 99.88

Table 2: Comparison between clean-label attacks on CIFAR-10. For each model, we test with a
normal and an extreme scenario, with the poisoning rates are 5% and 0.05%, respectively. We report
the victim model’s test accuracy on begin inputs (BA) and attack success rate on poisoned test data
(ASR). Narcissus models are tested with ×3 amplification (as used in the paper) and without it.

Method Ampl. η p(%) BA(%) ASR(%) η p(%) BA(%) ASR(%)

BadNets - 255/255 5 94.99 5.49 255/255 0.05 94.82 0.79
LabelConsistent - 255/255 5 94.78 65.69 255/255 0.05 95.00 0.79
SIG - 25/255 5 94.72 69.35 25/255 0.05 94.54 0.27
Sleeper Agent - 12/255 5 91.43 60.90 16/255 0.05 91.74 9.06
Narcissus ×3 10/255 5 95.06 100.00 16/255 0.05 95.37 98.73
Narcissus - 10/255 5 95.06 89.09 16/255 0.05 95.37 47.86
Ours - 10/255 5 94.79 98.26 16/255 0.05 95.10 99.64

sampled source image set, and we corrected its code to compute ASR on the poisoned test images.
Besides, Narcissus amplifies the trigger noise three times before injecting it into images at infer-
ence time. We report Narcissus’s performance with and without such amplification to get a fair
comparison with the other approaches. We examine one normal and one extreme scenario, with the
poisoning rates p as 5% (2500 poisoned samples) and 0.05% (25 poisoned samples), respectively.
All results are reported in Table 2. As can be seen, in the easy setting, all methods except BadNets
can poison the victim model with at least 60% ASR. However, only Narcissus and our method can
reach near-perfect attack performance, and they outperform the others by a wide margin. Also, Nar-
cissus can only achieve such impressive results by amplifying the trigger at test time. Without the
amplification, its fooling rate is only 89.09%. In contrast, COMBAT can reach a 98.25% ASR in
that fair condition. In the extreme scenario, only Narcissus and our COMBAT manage to pass the
backdoor to the end model. With a higher η budget, our method can achieve 99.64% ASR even with
such a low poisoning rate. It even surpasses the attack performance of Narcissus when applying the
×3 amplification trick.

4.3 TRANSFER EXPERIMENTS

The attacker trains the surrogate model without knowledge about the victim network, and these
two models likely have different structures. Still, we found that the learned triggers were highly
transferable to different victim backbones. We run a series of transfer experiments to confirm it.
While the source (surrogate) backbone is PreActResNet18/ResNet18, we test vastly different target
(victim) backbones , including MobileNetV2, VGG13, and ViT-Small-8. The results are provided
in Table 3. In most experiments, the transferred ASR is at least 95%, confirming the observed high
transferability. The target ViT models on CIFAR-10 and GTSRB have exceptionally lower clean
and attack accuracy, possibly because these small datasets are unsuitable to train ViT models.

Table 3: Transferability to different victim’s backbones, with BA (%) in teal and ASR (%) in purple.

Dataset Source Model
Target model

MobileNetV2 VGG13 ViT-Small-8

CIFAR10 PreActResNet18 94.28 / 98.07 93.79 / 92.86 77.89 / 84.77
GTSRB PreActResNet18 99.16 / 95.45 99.03 / 85.00 94.35 / 86.73
CelebA ResNet18 78.89 / 96.93 78.58 / 99.69 75.00 / 100.00
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(a) Fine-pruning

(b) STRIP

(c) Neural Cleanse (d) GradCAM visualization
Figure 2: Experiment results of evaluating COMBAT against defense methods

4.4 DEFENSE EXPERIMENTS

In this section, we evaluate our proposed backdoor attack against several popular defense methods.
Extra defense results can be found in the Appendix.

Table 4: Effect of our frequency-based loss
on the detection rate (%) of frequency-based
backdoor detector on COMBAT.

CIFAR10 GTSRB CelebA

W/o Lfreq 100.00 99.86 100.00
Same backbone 15.09 40.75 21.35
Transfer b.bone 31.87 27.72 52.07

Frequency-based defense (Zeng et al., 2021b) is
a data defense method. It trained a detector to rec-
ognize poisoned samples in the frequency domain.
This straightforward defense can effectively detect
poisoned data in existing attacks. We address it by a
frequency-based loss Lfreq (Section 3.2). As shown
in Table 4, our loss effectively reduces the back-
door detection rate on all datasets. The detection
rate is still low even when the test detector’s back-
bone (VGG13 - 9.5M params) is different from the
backbone used for the loss (customized CNN (Zeng et al., 2021b) - 0.3M params).

Neural Cleanse (Wang et al., 2019) is a widely used model defense method. It computes for each
class an optimal class-inducing pattern, then detects if there is an abnormally smaller pattern among
them, using an anomaly index computed by an outlier detection algorithm. If a label obtains an
anomaly index greater than 2, it will be marked as backdoor. We run Neural Cleanse on our victim
models and report the results in Fig. 2c. COMBAT passes Neural Cleanse for all datasets.

Fine-pruning (Liu et al., 2018a) is another model defense method that focuses on neuron analysis.
It detects and gradually prunes the neurons that are inactive when predicting clean images, assuming
they are more likely linked to the backdoor. We run Fine-pruning on our victim models and plot the
clean (BA) and backdoor (ASR) accuracy with respect to the number of neurons pruned in Fig. 2a.
There is no point with high BA and low ASR, implying this defense can not mitigate our backdoor.

STRIP (Gao et al., 2019) is a common test-time defense. Given the model and a suspicious input,
STRIP superimposes various image patterns on the input and records the prediction entropy over
those perturbed images. Consistent predictions, indicated by low entropy, suggest that the sample is
likely to be poisoned. We provide the results of STRIP on our victim models in Fig. 2b. COMBAT
has a similar entropy range as that of a clean model, hence easily passing the defense.
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Figure 3: Ablation Studies on CIFAR-10 dataset

GradCAM inspection was used in some studies (Xu et al., 2020; Doan et al., 2020) to detect abnor-
mal network behavior for backdoor detection. With patch-based backdoor attacks like BadNets, the
backdoor trigger is easily caught in the GradCAM heatmaps, as shown in Fig. 2d. We tested Grad-
CAM on our CIFAR-10 poisoned model. Unlike from BadNets, the highlighted heatmap regions
spread out and vary in size and position; hence our trigger stays obscure under such inspection.

4.5 ABLATION STUDIES

Alternated training. The alternated training process is a key component of our proposal. It helps
to obtain a poisoned surrogate model that is as close to the victim one as possible, thus boosting the
attack efficiency. Instead, a naive approach is to train a fixed, clean surrogate model and use it to
optimize the generator G. We compare these two approaches on CIFAR-10, using different noise
strengths η in Fig. 3a. While both methods provide stable clean accuracy, the alternated training
approach consistently outperforms the naive one on ASR.

Performance w.r.t poisoning rates. We examine the effect of the poisoning rate on the victim model
performance on CIFAR-10 and report the results in Fig. 3b. Impressively, COMBAT manages
to reach a very high attack success when only a few images are poisoned. When the number of
poisoned images is large enough, increasing p leads to increasing ASR towards 100%.

5 CUSTOMIZE THE ATTACK CONFIGURATIONS

The key component of COMBAT is the alternated training process. Other components, including
the trigger type and the loss components, can be customized based on the need of the attacker. We
demonstrate below an example variant that employs image warping as the backdoor trigger. Some
other variants such as input-aware trigger or multi-target attack can be found in the Appendix.

Warping-based trigger patterns. In this section, we testify the usage of a warping-based trigger
function (Nguyen & Tran, 2021a). Specifically, we change the definition of G as follow:

G(x) = W(x,Φ(I + η · ↑gk(x))), (11)
with W(·) is the image warping function that takes the input image and a normalized warping grid,
gk(x) generates a trigger grid at some resolution k× k, ↑ upsamples that grid to the same resolution
as the input, I is the identical warping grid, and function Φ(·) clips the grid values to be in the
range [−1, 1]. We can plug this function directly into our system and keep the same loss functions
for optimization. We test a simple attack on CIFAR-10 with k = 2, η = 0.15, and p = 5%. It
successfully poisons the victim model with BA as 92.22 % and ASR as 94.18 %.

6 CONCLUSIONS AND FUTURE WORKS

This paper proposes COMBAT, a framework for training clean-label backdoor attacks with near-
perfect performance. The key component is an alternated training process that optimizes together a
trigger generator and a surrogate classifier model. Our attack is effective, stealthy, and flexible for
customization, which is extensively verified on various datasets and experimental configurations. We
believe this study is crucial to understanding the potential capability of clean-label backdoor attacks,
stimulating future defense studies aiming toward safe and trustful AI. Besides, since COMBAT
shows unstable transferability in some experiments, we plan to fix this weakness in future studies.
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A APPENDIX

A.1 ETHIC STATEMENT

Our work extends the understanding of the potential capability of clean-label backdoor attacks;
hence, it benefits both the research community and real-life AI systems. By being informed about
the risk, AI system developers will be more careful when using third-party or open-source datasets.
The work also stimulates future backdoor defense studies aiming toward safe and trustful AI.

Undeniably, the adversaries can also take advantage of our work by employing COMBAT to design
more effective clean-label attacks. Still, we believe that more advanced defense methods will soon
be developed after our paper to counter the risk, and the positive benefits of our paper outweigh its
negative impact.

A.2 REPRODUCIBILITY STATEMENT

Our work is highly reproducible. All datasets used in the paper are popular and publicly available.
We include in the supplementary materials our code and pre-trained models. The code and pre-
trained models will also be publicly released upon paper acceptance.

A.3 SYSTEM DETAILS

A.3.1 DATASETS

We conduct our experiments on three popular datasets, which are widely used in various previous
works, in both backdoor attacks and defenses.

CIFAR10

CIFAR10, introduced by Krizhevsky et al. (2009), is a labeled subset of the 80-millions-tiny-images
dataset, collected by Alex Krizhevsky, Vinod Nair and Geoffrey Hinton. The dataset consists of
60,000 color images in 10 classes, with 6,000 images per class. The image resolution is 32 × 32.
CIFAR10 is splitted into 2 subsets: 50,000 images in training set and 10,000 images in test set. It is
publicly available at https://www.cs.toronto.edu/˜kriz/cifar.html.

Data augmentation techniques including random crop, random rotation, and random horizontal flip
are applied during training process. No augmentation is applied during evaluation.

GTSRB

German Traffic Sign Recognition Benchmark (GTSRB) (Stallkamp et al., 2012) is the dataset
used for a multi-class image classification challenge held at the International Joint Conference
on Neural Networks (IJCNN) 2011. The dataset originally contains 43 classes of 50,000 images.
It can be found at http://benchmark.ini.rub.de/?section=gtsrb&subsection=
dataset. In this work, we choose a subset formed by the first 13 classes that contains 20,100
images in the training set and 6,570 images in the test set, which is relatively similar to Liu et al.
(2020)’s study. The resolution of the images varies from 32× 32 to 250× 250.

All input images are resized to 32× 32 in both training and evaluating procedure. At training stage,
we also apply random crop and random rotation to the data. No augmentation is applied during
evaluation.

CelebA

CelebFaces Attributes Dataset (CelebA) (Liu et al., 2015) is a large-scale face attributes dataset
with more than 202,599 celebrity images from 10,177 identities. There are 5 landmark loca-
tions and 40 binary attribute annotations per image. The dataset is available for use at http:
//mmlab.ie.cuhk.edu.hk/projects/CelebA.html. In this work, we select 3 out of 40
attributes, namely Heavy Makeup, Mouth Slightly Open and Smiling, and then concatenate them
into 8 compound classes to create a multiple label classification task, as recommended by Salem
et al. (2020).
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Table 5: Network architecture of generator g. Each ConvBlock consists of a Conv2D with kernel
size of 3 × 3, an InstanceNorm, and a LeakyReLU layer. The final ConvBlock does not have
LeakyReLU.

Layer # Channels

ConvBlock ×2 64
ConvBlock ×2 128
ConvBlock ×2 256
ConvBlock ×2 512

upsample, ConvBlock 512
ConvBlock, upsample, ConvBlock 256
ConvBlock, upsample, ConvBlock 128
ConvBlock, upsample, ConvBlock 64

ConvBlock, tanh 3

All input images are resized to 64× 64 in both training and evaluating procedure. Random crop and
random rotation are applied to training data. No augmentation is applied during evaluation.

A.3.2 NETWORKS

Classifier

For the CIFAR10 and GTSRB datasets, we use Pre-activation ResNet18 (He et al., 2016) as the
classifier architecture.

For the CelebA dataset, we use ResNet18 (He et al., 2016) as the classifier architecture.

Generator

To generate the backdoor trigger to poison the data, we design the generator function g with U-Net
(Ronneberger et al., 2015) architecture. Details of this generator structure are shown in Table 5.

A.4 QUALITATIVE RESULTS

We provide a qualitative comparison between poisoned images generated by COMBAT and other
clean-label backdoor attacks on the CIFAR-10 dataset in Fig. 4. Along with the qualitative figure,
we provide the metrics comparing each poisoned image with the original one. As can be seen, COM-
BAT provides better scores compared with other methods except BadNets, which ultimately fails in
the clean-label attack setting. While achieving high qualitative scores, COMBAT still produces a
noticeable trigger pattern. We will discuss how to revise its mechanism to generate imperceptible
triggers in Section A.8.

A.5 ROLE OF DATA POISONING

When the poisoning rate is 0, the surrogate model will fall back as a clean classifier. The generator
g then acts as an adversarial perturbation generator that produces noise patterns to create adversarial
examples fooling the clean surrogate model. It raises a question of the contribution of the poisoning
scheme to our attack performance. We run experiments w/ and w/o data poisoning, using ρ = 5%
and η = 10/255, and report the results in Table 6. The ASR is significantly improved when data is
poisoned during the training process, which implies that data poisoning plays an important role in
the success of our attack.

A.6 ADDITIONAL RESULTS ON ROLE OF ALTERNATED TRAINING

In Sec. 4.5, we analyzed the role of the alternated training process on CIFAR10. In this section,
we show additional results on GTSRB and CelebA in Fig. 5. We see that the models w/ alternated
training constantly outperform the models w/o using it.
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Figure 4: Comparison between poisoned examples generated by COMBAT and other clean-label
attacks on the CIFAR-10 dataset. For each poisoning method, we compare the poisoned samples
in the training dataset and their original images and report the average PSNR, SSIM, and LPIPS
metrics.

Dataset
ASR (%)

W/ data poisoning W/o data poisoning

CIFAR10 98.26 92.37
GTSRB 98.48 89.77
CelebA 99.88 91.95

Table 6: Attack performance with and without data poisoning.
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(a) (b)

Figure 5: Attack performance with and without alternated training (AT) on (a) GTSRB and (b)
CelebA.

A.7 ADDITIONAL EXPERIMENT RESULTS AGAINST BACKDOOR DEFENSES

A.7.1 EXPERIMENT ON SPECTRAL SIGNATURE DEFENSE

Tran et al. (2018) used spectral signatures for detecting and removing backdoor inputs in the train-
ing set. First, the suspicious dataset is used to train a network. For a given class label, all input
samples are fed through the network, and their latent representations are recorded. Singular value
decomposition (SVD) is then performed on the covariance matrix of these latent representations to
compute an outlier score for each input. Inputs with the highest scores are identified as poisoned
samples, then removed from the dataset.

We test our attack method against this defense to see if it can detect our poisoned samples in the
target class (class 0). We use CIFAR10 for this experiment, which is the same dataset used in the
original paper. We follow the setting in (Tran et al., 2018), poison 10% of training data in the target
class (i.e., 500 images), and use the default 85% percentile threshold, which means that the defense
will remove 750 images as poisoned example candidates. Table 7a shows that the defense cannot
correctly remove any of our poisoned samples.

A.7.2 EXPERIMENT ON ACTIVATION CLUSTERING DEFENSE

Chen et al. (2018) detect backdoors in the training data by clustering their latent representations.

Figure 6: Projections of latent representa-
tions of all training inputs classified as the
target label on their first two independent
components.

For all input samples that the model classifies as
a particular label, their latent representations are
recorded. The algorithm then applies Independent
Component Analysis (ICA) (Comon, 1992) to reduce
the dimensionality of these latent representations to
10 and performs k-means clustering to divide the
data into 2 clusters. The intuition behind this clus-
tering step is that while clean and poisoned samples
are classified as the same target label by the vic-
tim model, the features that the model extracts from
them are different. Therefore, the latent represen-
tations of clean and poisoned inputs should form 2
separate clusters when projected onto the principal
components. This intuition suggests that the latent
representations are better described with 2 clusters
when the data is poisoned, while 1 cluster better de-
scribes the latent representations when the data is
clean. Thus, a metric called silhouette score is used
to evaluate how well the number of clusters fits the
representations to determine if the data is poisoned.

We examine our attack method on CIFAR10 with this defense and report the results in Table 8. We
set the silhouette score threshold to 0.1, as recommended in the original paper, meaning classes with
silhouette scores higher than 0.1 are flagged as suspicious. The silhouette score of the target class is
smaller than the threshold, and the sizes of its two clusters are more or less equal, which is relatively
similar to the other non-target classes; hence this defense cannot detect the backdoor.
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# Poisoned # Clean # Poisoned
removed

# Clean
removed

500 4500 0 750

(a)

Before
NAD

Finetuned model
(teacher model)

After
NAD

BA (%) 94.79 89.13 89.51
ASR (%) 98.26 90.18 89.89

(b)

Table 7: Experimental results of evaluating COMBAT against Spectral Signature defense (a) and
Neural Attention Distillation (b).

Table 8: Experimental results of evaluating COMBAT against Activation Clustering defense.

Class ID 0 1 2 3 4 5 6 7 8 9

% in cluster 0 53 52 51 51 51 52 52 51 52 52
% in cluster 1 47 48 49 49 49 48 48 49 48 48

Silhouette score 0.014 0.006 0.025 0.007 0.014 0.044 0.016 0.055 0.081 0.058

Several possible reasons can explain this method’s ineffectiveness to our attack. Firstly, this defense
assumes that the attack can only poison less than half of the data for a given target label and considers
the smaller cluster as being poisoned, which does not suit our attack scenario. Secondly, as shown in
Fig. 6, projections of the latent representations of poisoned inputs and clean inputs in the target class
highly overlap; hence k-means clustering cannot sufficiently separate the poisoned and the clean.

A.7.3 EXPERIMENT ON NEURAL ATTENTION DISTILLATION

Neural Attention Distillation (NAD) (Li et al., 2021) adopts knowledge distillation (Hinton et al.,
2015) technique to remove backdoors from the poisoned model, assuming that the distillation pro-
cess can perturb backdoor-related neurons. We conduct an experiment with this defense on CI-
FAR10. Following the settings in the original paper, we first finetune the backdoored model (i.e.,
the student model) on the 5% accessible clean data for 10 epochs to obtain a teacher model, then use
it in conjunction with the student model through the NAD process and train for another 10 epochs.
The results are shown in Table 7b. As can be seen, although the ASR suffers from a downward
trend, which is reasonable since the defense uses a part of clean data to finetune the victim model
via distillation, the backdoor can still maintain a decent degree of effectiveness with 89.89% ASR.

A.7.4 EXPERIMENT ON IMPLICIT BACKDOOR ADVERSARIAL UNLEARNING

Also defending backdoors by retraining poisoned model with a part of clean data, Zeng et al. (2021a)
formulated the retraining process as a minimax problem and proposed a novel algorithm called Im-
plicit Backdoor Adversarial Unlearning (I-BAU) to solve it. The core idea of this method is to
alternate between trigger synthesizing and unlearning for some rounds. As the trigger synthesized
can mislead the model’s predictions more effectively, the model that unlearns that trigger may be-
come more robust against backdoors.

We conduct experiments on CIFAR10 and GTSRB, which are the same datasets used in the original
paper. Following the original settings, we use 5,000 samples in the test set as the accessible clean
data for the defender and assess the performance on the remaining test data. Trigger synthesizing and
unlearning processes are conducted with iterative optimizers, namely SGD and Adam. We find that
the model’s performance is sensitive to the change in learning rate. In our experiments, we choose
the learning rate of 0.001 for SGD and 0.0001 for Adam since we find the model’s clean accuracy
(BA) is best preserved when running with these learning rates. While I-BAU can efficiently remove
the backdoors in most existing attacks after only 1 round of retraining as claimed in the original
work, it does not have the same effect on COMBAT victim models. Therefore, we run I-BAU for
100 rounds and plot the clean (BA) and backdoor (ASR) accuracy with respect to the number of
rounds in Fig. 7. On both CIFAR10 and GTSRB, the ASR of the victim models remains higher than
90% in most of the rounds, and at no round does it drop to under 70%, indicating that I-BAU is not
robust against COMBAT.
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Figure 7: Experimental results of evaluating COMBAT against I-BAU on CIFAR10 and GTSRB.

Threshold BA (%) ASR (%)

0.05 91.36 78.95
0.1 80.14 62.35
0.2 55.27 29.24
0.3 18.64 4.76

Table 9: Experimental results of evaluating COMBAT against ANP defense.

A.7.5 EXPERIMENT ON ADVERSARIAL NEURON PRUNING

The idea of pruning malicious neurons to remove hidden backdoors proposed by Liu et al. (2018a)
was further explored by Wu & Wang (2021). They proposed Adversarial Neuron Pruning (ANP),
where they used adversarial weight perturbation to amplify differences between benign neurons and
backdoor-related ones. We evaluate COMBAT against this defense on CIFAR10 and report the
results in Table 9. We see that ANP cannot achieve a low ASR without significantly reducing the
model’s accuracy on clean data.

A.7.6 EXPERIMENT ON ANTI-BACKDOOR UNLEARNING

Recently, Li et al. (2022) proposed a gradient ascent based defense method called Anti-Backdoor
Learning (ABL). The method is developed based on the observations that poisoned samples are
learned much faster than the clean ones, and backdoor trigger is associated with a specific target
class. The method includes two phases: backdoor isolation (based on the first observation) and
backdoor unlearning (based on the latter one). We conduct experiment with this defense on CI-
FAR10. We follow the original experiment and isolation 1% of the data in the first phase. We then
run the unlearning phase for 20 epochs, which is similar to the original work, but the ASR still
remains relatively high (79.65%). Therefore, we favour the defense and continue to run backdoor
unlearning to 100 epochs. The results are shown in Table 10. Large number of unlearning epochs
can decrease the ASR, but with a high cost in BA, which is not congruous with backdoor defense’s
objective.

A.7.7 EXPERIMENT ON DATA AUGMENTATION DEFENSES

As suggested by Borgnia et al. (2021), strong data augmentation techniques such as mixup (Zhang
et al., 2017) and CutMix (Yun et al., 2019) can break data poisoning while enduring only a slight
trade-off in clean accuracy. We test our attack with mixup and CutMix on CIFAR10. The results are
shown in Table 11. While mixup is almost inefficient against our attack as the ASR is still over 90%,
CutMix can considerably decrease the ASR; however, our attack performance remains at a certain
level of effectiveness.

A.8 CUSTOMIZE THE ATTACK CONFIGURATIONS

In this section, we will demonstrate few more variants of COMBAT to showcase the flexibility of
our method.
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# Unlearning epochs BA (%) ASR (%)

20 89.48 79.65
50 80.43 72.18

100 74.54 65.24

Table 10: Experimental results of evaluating COMBAT against ABL defense.

Defense BA (%) ASR (%)

mixup 92.38 91.02
CutMix 91.76 72.55

Table 11: Experimental results of evaluating COMBAT against data augmentations defenses.

Imperceptible trigger patterns. When designing the trigger generator in Section 3.2, we focused
more on its effectiveness. The imperceptibility of the trigger was mainly enforced via the ℓ2 loss
defined in Equation 7, which still introduces sharp edges. We can improve the trigger’s impercepti-
bility by enforcing it to be smooth via a total variation loss:

Ltv(gϕ;S, η) :=
∑

(xj ,yj)∈S

∥∇(ηgϕ(xj))∥22, (12)

where ∇ is the spatial gradient function. This loss term can be added to the generator training
loss F1 in Equation 9, using some weighting hyper-parameter λtv. Figure 8 visualizes the poisoned
examples generated by using different λtv values. As can be seen, by adding the total variation loss
term, the trigger noise becomes much harder to notice. When employing λtv = 0.01, the poisoned
example looks almost similar to the original one, with PSNR, SSIM, and LPIPS scores as 31.3521,
0.948, and 0.0068 respectively. The victim model trained on those poisoned data also achieves
similar performance as in Section 4.2, with BA as 94.50% and ASR as 91.72% on the CIFAR-10
dataset.

Input-aware trigger patterns. Although our generator-based trigger is image-dependent, it is not
guaranteed to be diverse and non-reusable. We follow paper (Nguyen & Tran, 2020) to examine
the reusability of the trigger patterns generated from different input images by the cross-trigger test.
The cross-trigger accuracy of our CIFAR-10 victim model in Section 4.2 is only 35.81%, meaning
a trigger generated for one image can be with another image with a high probability. This behavior
is undesirable and can be exploited by the defenders. Following (Nguyen & Tran, 2020), we resolve
this weakness by adding a cross-trigger classification loss to F1 in Equation 9. The new victim
model on CIFAR-10 has improved cross-trigger accuracy of 87.10% while keeping BA and ASR
relatively similar to the original attack.

Multiple target labels. We consider a single target label c in all previous experiments. In practice,
the attacker can use multiple target labels. Let us consider the scenario when all labels are targeted. It
requires the adversary to use different triggers for different classes in order to define which label the
victim network should return in an inference-time attack. This attack can be simply implemented
by using multiple trigger functions G1,G2, ...,Gn for each target class. However, such a system
is expensive and nonscalable. Instead, we can employ a single conditional generator G(x, y) that
inputs both an image x and a target label y ∈ [1..n]. The generated trigger is label-aware, i.e.,
G(x, i) ̸= G(x, j) for every labels i ̸= j. From the original training set S, we now select the
poisoning set P covering images from all classes. The new poisoned dataset Sb is defined as follows:

Sb = Pb ∪ (S \ P), with Pb = {(G(xi, yi), yi)|(xi, yi) ∈ P}. (13)

At inference time, the attacker can freely choose the target label:

fθb(G(x, y)) = y ∀x ∈ X , y ∈ [1..n]. (14)

We implemented a version of this attack on CIFAR-10 using a noise-based trigger generator
G(x, y) = x + ηg(x, y) with g(x, y) is a conditional Unet. The attack is still near-perfect with
BA as 94.48% and ASR as 97.41%.
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Figure 8: Poisoned examples generated by using different λtv values. For each λtv value, we
compare the poisoned samples in the training dataset and their original images and report the average
PSNR, SSIM, and LPIPS metrics.

Table 12: Attack performance on ImageNet-10. We report its test accuracy on benign inputs (BA),
the attack success rate on poisoned test data (ASR), and the original accuracy from the corresponding
clean model as a reference.

Dataset η p(%) Amplification Original acc.(%) BA(%) ASR(%)

ImageNet-10 10/255 5.00 - 88.40 87.60 95.20
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A.9 ADDITIONAL ATTACK EXPERIMENT ON IMAGENET-10

In addition to the datasets above, we test our method on ImageNet-10 to evaluate its effectiveness
on large-size images. We construct the dataset by randomly sampling 10 classes from ImageNet-
1k Deng et al. (2009) such that each class contains 1300 train and 50 test samples. We use an
input resolution of 224 × 224 and use Pre-activation ResNet-18 (He et al., 2016) as the classifier’s
backbone. We use the first attack configuration in Sec. 4.2. COMBAT can obtain a near-perfect
ASR (95.20%) on this ImageNet-10 dataset, as shown in Table 12, confirming its effectiveness even
on large-image datasets.
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