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Abstract

Recent advances in prompt-based learning001
have shown strong results on few-shot text002
classification by using cloze-style templates.003
Similar attempts have been made on named004
entity recognition (NER) which manually de-005
sign templates to predict entity types for ev-006
ery text span in a sentence. However, such007
methods may suffer from error propagation in-008
duced by entity span detection, high cost due009
to enumeration of all possible text spans, and010
omission of inter-dependencies among token011
labels in a sentence. Here we present a sim-012
ple demonstration-based learning method for013
NER, which lets the input be prefaced by task014
demonstrations for in-context learning. We015
perform a systematic study on demonstration016
strategy regarding what to include (entity ex-017
amples, with or without surrounding context),018
how to select the examples, and what tem-019
plates to use. Results on in-domain learning020
and domain adaptation show that the model’s021
performance in low-resource settings can be022
largely improved with a suitable demonstra-023
tion strategy (e.g., 4-17% improvement on 25024
train instances). We also find that good demon-025
stration can save many labeled examples and026
consistency in demonstration contributes to027
better performance. 1028

1 Introduction029

Neural sequence models have become the de facto030

approach for named entity recognition (NER) and031

have achieve state-of-the-art results on various032

NER benchmarks (Lample et al., 2016; Ma and033

Hovy, 2016; Liu et al., 2018). However, these034

data-hungry models often rely on large amounts of035

labeled data manually annotated by human experts,036

which are expensive and slow to collect (Huang037

et al., 2020; Ding et al., 2021b), especially for038

specialized domains (e.g., research papers). To039

improve NER performance on low-resource (label040

1Code and data have been uploaded and will be published.

scarcity) settings, prior works seek auxiliary su- 041

pervisions, such as entity dictionary (Peng et al., 042

2019; Shang et al., 2018; Yang et al., 2018; Liu 043

et al., 2019) and labeling rules (Safranchik et al., 044

2020; Jiang et al., 2020), to either augment human- 045

labeled data with pseudo-labeled data, or incor- 046

porate meta information such as explanation (Lin 047

et al., 2020; Lee et al., 2020, 2021), context (Wang 048

et al., 2021), and prompts (Ding et al., 2021a; Cui 049

et al., 2021) to facilitate training. However, such 050

methods have the following challenges: (1) hu- 051

man efforts to create auxiliary supervisions (e.g., 052

dictionaries, rules, and explanations); (2) high com- 053

putational cost to make predictions. For example, 054

Ding et al. (2021a) shows effectiveness on entity 055

type prediction given the entity span by construct- 056

ing a prompt with the structure “[entity span] is 057

[MASK]". However, when the entity span is not 058

given, cloze-style prompts need to be constructed 059

over all the entity candidates in the sentence with 060

the structure “[entity candidate] is [MASK]" to 061

make a prediction (Cui et al., 2021). Such brute- 062

force enumerations are often expensive. 063

In this paper, we propose demonstration-based 064

learning (Gao et al., 2021; Liu et al., 2021), a 065

simple-yet-effective way to incorporate automati- 066

cally constructed auxiliary supervision. The idea 067

was originally proposed in prompt-based learning 068

to show some task examples before the cloze-style 069

template so that the model can better understand 070

and predict the masked slot (Gao et al., 2021). This 071

paper proposes modified version of demonstration- 072

based learning for NER task. Instead of reformat- 073

ting the NER task into the cloze-style template, we 074

augment the original input instances by appending 075

automatically created task demonstrations and feed 076

them into pre-trained language models (PTLMs) 077

so that the model can output improved token rep- 078

resentations by better understandings of the tasks. 079

Unlike existing efforts which require additional hu- 080

man labor to create such auxiliary supervisions, our 081
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(a) Prompt-based Learning for NER

Paris is the president of student union. 

(b) Demonstration-based Learning for NER

Paris is the president of student union. Paris is [MASK]. 

Paris is the president of student union. Paris is is [MASK]. 

Paris is the president of student union. president of is [MASK]. 

…

LM Head Paris is the president of student union. 

Paris is the president of student union. [SEP] Fischer is PER. [SEP] Seoul is LOC. [SEP]  

LM

…

…

Token Classifier

Figure 1: Prompt-based learning frameworks for NER mostly neglect entity span detection which leads to a huge
time cost to generate prompts over all the entity candidates in the sentence, while our demonstration-based learning
framework integrates prompt into the input itself to make better input representations for the token classification.

model can be automatically constructed by pick-082

ing up proper task examples from the train data.083

Moreover, unlike approaches that need to change084

the format of token classification into cloze-style085

mask-filling prediction which can neglect latent re-086

lationships among token labels, our approach can087

be applied to existing token classification module088

in a plug-and-play manner (See Figure 1 (a) vs (b)).089

We investigate the effectiveness of task demon-090

stration in two different low-resource settings: (1)091

in-domain setting which is a standard NER bench-092

mark settings where the train and test dataset come093

from the same domain; and (2) domain-adaptation094

setting which uses sufficient labeled data in source095

domain to solve new tasks in a target domain. Here,096

we study which variants of task demonstration are097

useful to train an accurate and label-efficient NER098

model and further explore ways to adapt the source099

model to target domain with a small amount of tar-100

get data. We propose two ways of automatic task101

demonstration construction: (1) entity-oriented102

demonstration selects an entity example per entity103

type from train data to construct the demonstra-104

tion. It allows the model to get a better sense of105

entity type by showing its entity example; and (2)106

instance-oriented demonstration retrieves instance107

example similar to input sentence in train data. It108

allows the model to get a better sense of the task109

by showing similar instances and their entities.110

We show extensive experimental results on111

CoNLL03, Ontonotes 5.0 (generic domain), and112

BC5CDR (biomedical domain) over 3 different113

templates and 5 selection/retrieval strategies for114

task demonstrations. For entity-oriented demon-115

stration, we present 3 selection strategies to choose116

appropriate entity example per entity type: (1)117

random randomly selects entity example per en-118

tity type; (2) popular selects the entity exam-119

ple which occurs the most per entity type in the120

train data; and (3) search selects the entity ex-121

ample per entity type that shows the best perfor- 122

mance in the development set. And for instance- 123

oriented demonstration, we present 2 retrieval 124

strategies to choose appropriate instance exam- 125

ple (SBERT (Reimers and Gurevych, 2019) vs. 126

BERTScore (Zhang et al., 2020)). 127

Our findings include: (1) good demonstration 128

can save many labeled examples to reach a simi- 129

lar level of performance in low-resource settings. 130

Our approach consistently outperforms standard 131

fine-tuning by up to 3 points in terms of F1 score 132

(p-value < 0.02); (2) demonstration becomes more 133

effective when we also provide context. For ex- 134

ample, not only showing ‘Fischler is PER’, but 135

also the sentence that contains ‘Fischler’ as person, 136

such as ‘France backed Fischler’s proposal’; and (3) 137

consistency in demonstration contributes to better 138

performance. Our experiments show that using con- 139

sistent demonstration for all instances rather than 140

varying per instance lead to better performance 141

2 Related Works 142

NER with additional supervision Recent at- 143

tempts addressing label scarcity have explored var- 144

ious types of human-curated resources as auxiliary 145

supervision. One of the research lines to exploit 146

such auxiliary supervision is distant-supervised 147

learning. These methods use entity dictionar- 148

ies (Peng et al., 2019; Shang et al., 2018; Yang et al., 149

2018; Liu et al., 2019) or labeling rules (Safranchik 150

et al., 2020; Jiang et al., 2020) to generate noisy- 151

labeled data for learning a NER model. Although 152

these approaches largely reduce human efforts in 153

annotation, the cross-entropy loss may make the 154

model be overfitted to the wrongly labeled tokens 155

due to noisy labels (Meng et al., 2021). Another 156

line of research is incorporating such auxiliary su- 157

pervision during training and inference in a setting 158

of supervised learning. These approaches usually 159

incorporate external information that is encoded 160
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(a) Entity-Oriented Demonstration

𝑫𝒕𝒓𝒂𝒊𝒏

𝑷𝑬𝑹:
𝑳𝑶𝑪:
𝑶𝑹𝑮:
𝑴𝑰𝑺𝑪:

Selection
(Random vs. Popular vs. Search )

𝑭𝒊𝒔𝒄𝒉𝒍𝒆𝒓

𝑻𝒂𝒊𝒘𝒂𝒏

𝑮𝒆𝒓𝒎𝒂𝒏

Paris is the president of student union. 

[SEP] Fischler is PER. [SEP] Taiwan is LOC. [SEP] EU is ORG. [SEP] German is MISC.

Template Modification

(b) Instance-Oriented Demonstration

𝑫𝒕𝒓𝒂𝒊𝒏 Retrieval
(SBERT vs. BERTScore)

[SEP] Paris is a student of USC. [SEP] Paris is PER. USC is ORG.

Template Modification

Paris is a student of USC.
Score: 0.832

Paris is the president of student union. 

𝑬𝑼

+ +

Figure 2: Task Demonstration for NER. (a) Entity-oriented demonstration selects an entity example per each
entity type from the train data to append to the sentence; while (b) instance-oriented demonstration retrieves an
instance from the train data to append to the sentence (along with the entities therein).

including POS labels, syntactic constituents, de-161

pendency relations (Nie et al., 2020; Tian et al.,162

2020), explanations (Lin et al., 2020; Lee et al.,163

2020, 2021), retrieved context (Wang et al., 2021)164

and prompts (Ding et al., 2021a; Cui et al., 2021).165

Demonstration-based Learning Providing a166

few training examples in a natural language167

prompt has been widely explored in autoregres-168

sive LMs (Brown et al., 2020; Zhao et al., 2021).169

Such prompt augmentation is called demonstration-170

based learning (Gao et al., 2021). This is designed171

to let prompt be prefaced by a few examples before172

it predicts label words for [MASK] in the cloze-173

style question. Recent works on this research line174

explore a good selection of training examples (Gao175

et al., 2021) and permutation of them as demonstra-176

tion (Kumar and Talukdar, 2021).177

3 Problem Definition178

In this section, we introduce basic concepts of179

named entity recognition, standard fine-tuning for180

sequence labeling, and domain adaptation for se-181

quence labeling. We then formally introduce our182

goal – generating task demonstration and then de-183

veloping a learning framework that uses them to184

improve NER models.185

3.1 Named Entity Recognition186

Here, we let x = [x(1), x(2), . . . x(n)] denote the187

sentence composed of a sequence of n words188

and y = [y(1), y(2), . . . y(n)] denote the sequence189

of NER tags. The task is to predict the entity190

tag y(i) ∈ Y for each word x(i), where Y is a191

pre-defined set of tags such as {B-PER, I-PER,192

. . . , O}. In standard fine-tuning, NER model193

M parameterized by θ is trained to minimize194

the cross entropy loss over token representations195

h = [h(1), h(2), . . . h(n)] which are generated from196

the pre-trained contextualized embedder as follows:197

198

L = −
n∑
i=1

log fi,yi(h;θ) (1) 199

where f is the model’s predicted conditional prob- 200

ability that can be either from linear or CRF layer. 201

3.2 In-domain Low-resource Learning 202

We let Dtrain and Dtest denote the labeled train and 203

test dataset, respectively, consisting of {(xi,yi)}. 204

Here, we expect the number of labeled instances in 205

Dtrain is extremely limited (e.g., N < 50). Given 206

such small labeled instances, our goal is to train 207

an accurate NER model with task demonstrations 208

compared to standard fine-tuning and show the ef- 209

fectiveness of demonstration-based learning. We 210

evaluate the trained models on Dtest. 211

3.3 Low-resource Domain Adaption 212

Domain adaptation aims to exploit the abundant 213

data of well-studied source domains to improve 214

the performance in target domains of interest. We 215

consider two different settings: (1) label-sharing 216

setting in which the label space L =
{
l1, . . . , l|L|

}
217

(e.g., li = PERSON ) of source-domain data 218

S and target-domain data T are equal; (2) label- 219

different setting which L is different. 220

In domain adaptation, we first train a model 221

Ms on source-domain data S. Next, we initial- 222

ize the weights of the new modelMt by weights 223

of Ms. Here, we can either transfer the whole 224

model weights or only the weights of contextual- 225

ized embedder fromMs toMt. Then, we further 226

tuneMt on target-domain data T . In our prelim- 227

inary experiments, we find that transferring only 228

the embedder fromMs toMt is much more ef- 229

fective than transferring the whole model weights 230

(See first rows in Table 2 and Table 3). For this pa- 231

per, we focus on the effectiveness of our models to 232

adapt to the target domain with a T , for which the 233

number of instances is extremely limited. We then 234
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(a) Entity-Oriented Demonstration
Input X Paris is the president of student union.

Label space L PER, ORG

Selected Entity e PER: Fischler , ORG: EU

Retrieved Instance s Paris is a student of USC.

no-context Fischler is PER. [SEP] EU is ORG.

context France backed Fischler’s proposal. Fischler is PER. [SEP] EU rejects German call. EU is ORG.

lexical France backed PER’s proposal. [SEP]ORG rejects German.

(b) Instance-Oriented Demonstration

context Paris is a student of USC. Paris is PER. USC is ORG.

lexical PER is a student of ORG.

Figure 3: Demonstration Template T . Given input x and label space L, entity-oriented demonstration selects
entity e per each label l ∈ L to construct three types of templates (no-context, context, lexical) while
instance-oriented demonstration retrieve instance s to create two types of templates (context, lexical).

compare the results of tasks with demonstration to235

those without demonstration.236

4 Demonstration-based NER237

In this work, we focus on how to create effective238

task demonstration x̃ to elicit better token repre-239

sentations for x, and then we propose an efficient240

learning framework that can be improved by the ef-241

fect of [x; x̃]. This section introduces the concepts242

of demonstration-based learning, and provides de-243

tails of the approach. Here, we study example244

sampling strategies and templates to construct the245

demonstration (Sec 4.1) and how we can train the246

NER model with the demonstration (Sec 4.2).247

4.1 Task Demonstration248

Task demonstration x̃ = [[SEP] ; x̂1; · · · ; x̂l] is249

constructed by selecting entity example e or re-250

trieving instance example s from Dtrain (Ttrain for251

domain adaptation) and modifying by template252

T to form x̂i. The demonstration sequence x̃253

is then appended to the original input x to cre-254

ate a demonstration-augmented input [x; x̃]. Here,255

[SEP] in front of x̃ is to separate x and x̃. The key256

challenge of constructing task demonstration is to257

choose appropriate e or s and template T that can258

be helpful to demonstrate how the model should259

solve the task. As shown in Figure 2, we cate-260

gorize the demonstration into (1) entity-oriented261

demonstration; and (2) instance-oriented demon-262

stration by whether we choose e or s respectively,263

for demonstration.264

Entity-oriented demonstration. Given an en-265

tity type label set L =
{
l1, . . . , l|L|

}
, we select266

an entity example e per label l from Dtrain. Then,267

we modify it using template T . To select e per268

each l, we first enumerate all the e ∈ Dtrain and cre-269

ate a mapping {li : [e1, . . . , en] | li ∈ L} between270

l and corresponding list of entities. Then for each271

label l, we select e by three selection strategies:272

(1) random randomly chooses e from the list; 273

(2) popular chooses e that occurs the most fre- 274

quently in the list; and (3) search conducts grid 275

search over possible entity candidates per label. 276

Here, we sample top-k frequent entities per label, 277

and search over combinations of entity candidates 278

(= k|L|). We find the best combination that max- 279

imizes the F1 score on the dev set Ddev. Here, x̃i 280

for every xi is different in random while x̃i for 281

every xi is same in popular and search. 282

Instance-oriented demonstration. Given an in- 283

put x, we retrieve an instance example s that is the 284

most relevant to the input from Dtrain. Then, we 285

modify the s along with its {e, l} ∈ s by template 286

T . For retrieval, we present two strategies: (1) 287

SBERT (Reimers and Gurevych, 2019) retrieves 288

semantically similar sentence using pre-trained bi- 289

encoder. It produces CLS embeddings indepen- 290

dently for an input x and s ∈ Dtrain, and com- 291

pute the cosine similarity between them to rank 292

s ∈ Dtrain; (2) BERTScore (Zhang et al., 2020), 293

which is originally used as a text generation metric, 294

retrieves token-level semantically similar sentence 295

by computing a sum of cosine similarity between 296

token representations of two sentences. Since the 297

NER task aims to token classification, sentence- 298

level similarity may retrieve a sentence that is se- 299

mantically relevant but has no relevant entities. 300

Fixed vs Variable demonstration. As described 301

in previous sections, the demonstration in some 302

strategies varies per instance while in others it 303

stays fixed globally. We can divide the demon- 304

stration strategies into two categories: (1) Variable 305

demonstration: random, SBERT, BERTScore 306

(2) Fixed demonstration: popular, search 307

Demonstration template. As shown in Figure 3, 308

we select three variants of template T : 309

(1) no-context shows selected e per l with a 310

simple template “e is l.", without including the spe- 311
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cific sentence where the entities show up. Between312

each pair of (e, l) (of different entity labels l), we313

concatenate with separator [SEP]. This template is314

only applied to the entity-oriented demonstration.315

(2) context in entity-oriented demonstration316

shows selected e per l along with an instance sen-317

tence s that contains e as a type of l. For each318

triple of (e, l, s), it is modified into “s. e is l." and319

concatenated with [SEP]. For instance-oriented320

demonstration, it shows the retrieved instance s321

along with all the entities mentioned in the sentence322

e ∈ s. It is modified into “s. e1 is l1. . . . en is ln.".323

(3) lexical in entity-oriented demonstration also324

shows selected e per l along with an instance sen-325

tence s. But here we only show s, which the entity326

span e is replaced by its label string l. For instance-327

oriented demonstration, we show retrieved s by328

replacing e ∈ s with the corresponding l. We ex-329

pect such templates can form labeling rules and let330

the model know how to label the sentence.331

4.2 Model Training with Demonstration332

Transformer-based standard fine-tuning for NER333

first feeds the input sentence x into a transfomer-334

based PTLMs to get the token representations h.335

The token representations h are fed into a CRF336

layer to get the conditional probability pθ(y | h),337

and the model is trained by minimizing the condi-338

tional probability by cross entropy loss:339

L = −
n∑
i=1

log pθ(y | h) (2)340

In our approach, we define a neural network341

parameterized by θ that learns from a concatenated342

input [x; x̃]. For both model training and inference,343

we feed the input and retrieve the representations:344

[h; h̃] = [h(1), . . . h(n), h̃(1), . . . h̃(n)] = embed([x; x̃]) (3)345

As shown in Figure 1, we then feed h into the CRF346

layer to get predictions and train by minimizing the347

conditional probability pθ(y | h) as Equation 2.348

For domain adaptation, we first trainMs with349

standard fine-tuning. Then, transfer the weights of350

embedder ofMs toMt and further fine-tuneMt351

with our approach.352

5 Experimental Setup353

5.1 Datasets354

We consider three NER datasets as target tasks.355

We consider two datasets for a general domain356

Dataset Label Train Data

25 50

CoNLL03 PER (Person) 16.0±3.52 29.2±4.52
LOC (Location) 15.6±3.92 30.4±4.07
ORG (Organization) 21.8±2.31 32.6±3.77
MISC (Miscellaneous) 11.0±2.52 15.6±2.33

Ontonotes 5.0 PER (Person) 10.8±2.22 21.4±4.02
LOC (Location) 16.0±3.52 25.0±7.32
ORG (Organization) 13.8±3.48 24.2±6.17
MISC (Miscellaneous) 23.8±5.56 62.6±7.93

BC5CDR Disease 25.8±6.01 29.2±4.52
Chemical 51.0±7.49 65.8±7.12

Table 1: Data statistics. Average number of entities
per each entity type over 5 different subsamples.

(CoNLL03 (Tjong Kim Sang, 2002), Ontonotes 357

5.0 (Weischedel et al., 2013)) and one dataset for a 358

bio-medical domain (BC5CDR (Li et al., 2016)). 359

CoNLL03 is a general domain NER dataset that 360

has 22K sentences containing four types of general 361

named entities: LOCATION, PERSON, ORGANIZA- 362

TION, and MISCELLANEOUS entities that do not be- 363

long in any of the three categories. Ontonotes 5.0 364

is a corpus that has roughly 1.7M words along with 365

integrated annotations of multiple layers of syn- 366

tactic, semantic, and discourse in the text. Named 367

entities in this corpus were tagged with a set of 368

general 18 well-defined proper named entity types. 369

We split the data following (Pradhan et al., 2013). 370

BC5CDR has 1,500 articles containing 15,935 371

CHEMICAL and 12,852 DISEASE mentions. 372

5.2 Baselines 373

To show its effectiveness in few-shot NER, we also 374

show baselines of few-shot NER methods NNShot 375

and StructShot (Yang and Katiyar, 2020). NNshot 376

is simple token-level nearest neighbor classifica- 377

tion system while StructShot extends NNshot with 378

a decoding process using abstract tag transition 379

distribution. Here, both the classification model 380

and the transition distribution should be pre-trained 381

on the source dataset. Thus, we consider this as 382

domain adaptation setting. 383

5.3 Experiments and Implementation Details 384

We implement all the baselines and our frameworks 385

using PyTorch (Paszke et al., 2019) and Hugging- 386

Face (Wolf et al., 2020). We set the batch size 387

and learning rate to 4 and 2e-5, respectively, and 388

use bert-base-cased model for all the exper- 389

iments. For each variant, we run 50 epochs over 390

5 different sub-samples and 3 random seeds with 391

early-stopping 20 and show its average and stan- 392
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Demonstration / Method Strategy Template CoNLL03 Ontonotes 5.0 BC5CDR

25 50 25 50 25 50

BERT+CRF w/o demonstration - - 52.72 ±2.44 62.75 ±0.98 38.97 ±4.62 54.51 ±3.27 52.56 ±0.46 60.20 ±2.01

BERT+CRF w/ SBERT lexical 48.92 ±2.81 57.68 ±0.37 36.58 ±4.61 44.47 ±2.58 49.41 ±0.94 51.98 ±2.14
Instance-oriented demonstration (variable) context 53.62 ±1.64 64.21 ±1.87 42.18 ±5.21 53.07 ±3.46 54.71 ±2.09 59.78 ±1.47

BERTScore lexical 49.55 ±3.18 58.85 ±1.06 35.42 ±3.88 44.70 ±2.41 49.37 ±0.19 51.61 ±2.45
(variable) context 53.97 ±1.52 64.66 ±2.04 37.56 ±5.29 53.13 ±3.22 54.81 ±2.11 59.63 ±1.94

BERT+CRF w/ random no-context 53.95 ±1.89 63.31 ±2.14 42.25 ±3.61 55.71 ±3.82 53.58 ±0.48 59.97 ±1.89
Entity-oriented demonstration (variable) lexical 55.20 ±2.24 63.60 ±2.32 44.02 ±4.73 56.31 ±3.83 53.79 ±0.61 59.65 ±1.71

context 54.84 ±2.12 63.51 ±2.83 43.57 ±3.73 56.76 ±3.69 54.08 ±0.97 59.94 ±1.70

popular no-context 54.34 ±3.33 64.30 ±2.76 43.02 ±4.33 56.65 ±3.35 53.86 ±0.86 60.51 ±1.77
(fixed) lexical 56.22 ±3.88 64.95 ±2.04 45.31 ±5.02 58.24 ±3.17 54.14 ±0.67 60.67 ±1.58

context 56.52 ±3.34 64.47 ±2.35 45.52 ±4.69 58.40 ±3.24 54.31 ±0.80 61.31 ±1.51

search no-context 54.63 ±2.12 64.50 ±2.76 42.88 ±5.41 56.96 ±4.09 53.97 ±1.32 60.84 ±2.14
(fixed) lexical 56.57 ±3.61 65.11 ±2.71 44.87 ±5.09 58.51 ±3.42 54.39 ±1.57 60.76 ±2.12

context 57.00 ±4.03 64.82 ±3.16 45.74 ±5.57 59.00 ±3.27 55.83 ±1.25 62.87 ±2.41

Table 2: In-domain performance comparison (F1-score) on CoNLL03, Ontonotes 5.0, and BC5CDR by different number
of training instances. We randomly sample k training instances with a constraint that sampled instances should cover all the
IOBES labels in the whole dataset. Best variants are bold and second best ones are underlined. Scores are average of 15 runs (5
different sub-samples and 3 random seeds) and the backbone LM model is bert-base-cased.

Baselines
Label Sharing Label Different

CoNLL03 -> Ontonotes CoNLL03 -> BC5CDR

25 50 25 50

BERT+CRF w/o demonstration 61.22 ±1.93 66.44 ±1.75 52.31 ±1.02 62.10 ±1.01
NNShot 46.67 ±5.48 46.34 ±2.66 44.93 ±1.78 48.12 ±2.72
StructShot 43.61 ±4.58 43.02 ±3.19 25.86 ±4.14 27.81 ±2.10

Strategy Template

SBERT lexical 63.34 ±1.53 68.52 ±0.98 53.50 ±2.26 60.52 ±0.71
(variable) context 62.33 ±1.63 67.86 ±0.89 51.93 ±1.96 60.09 ±1.27

BERTScore lexical 62.26 ±1.43 68.68 ±0.25 52.07 ±2.11 59.90 ±0.05
(variable) context 62.46 ±1.69 67.46 ±0.79 53.58 ±1.98 58.95 ±0.38

random no-context 62.28 ±1.70 69.32 ±1.34 53.61 ±1.04 62.57 ±0.97
(variable) lexical 62.41 ±1.85 68.84 ±1.78 53.85 ±1.12 62.30 ±0.75

context 62.58 ±2.20 69.26 ±1.51 54.05 ±0.63 63.04 ±0.31

popular no-context 62.31 ±1.60 69.39 ±1.59 54.33 ±0.80 62.87 ±0.23
(fixed) lexical 62.50 ±2.41 69.34 ±1.38 54.30 ±1.12 63.05 ±0.45

context 62.59 ±2.38 69.91 ±1.24 54.45 ±0.96 63.40 ±0.33

search no-context 62.38 ±2.47 69.57 ±1.50 54.51 ±2.25 62.93 ±1.96
(fixed) lexical 62.51 ±2.43 68.93 ±1.69 54.70 ±2.26 62.88 ±2.90

context 62.63 ±2.94 69.98 ±1.63 54.97 ±1.99 63.55 ±1.58

Table 3: Domain adaptation performance comparison
(F1-score) on Ontonotes 5.0 and BC5CDR by different num-
ber of training instances. Ms is trained on CoNLL03 and
Mt is initialized with embedder of Ms. Scores are average
of 15 runs (5 different sub-samples and 3 random seeds) and
the backbone LM model is bert-base-cased.

dard deviation of F1 scores. Unlike existing sam-393

pling methods for few-shot NER (Yang and Kati-394

yar, 2020), in which the training sample refers to395

one entity span in a sentence, we consider a real-396

world setting that humans annotate a sentence. We397

sub-sample data-points by random sampling with398

a constraint that sampled instances should cover399

all the BIOES labels (Chiu and Nichols, 2016) in400

the whole dataset. For Ontonotes, we aggregate401

all other entity types rather than person, location,402

and organization into miscellaneous to set the label403

sharing setting for domain adaptation experiments.404

Table 1 presents statistics of average number of en-405

tities per entity type over 5 different sub-samples.406

6 Experimental Results 407

We first compare the overall performance of all 408

baseline models and our proposed framework with 409

the amount of training data 25 and 50 to show the 410

impact of our approach in a low-resource scenario, 411

assuming a task that needs to be annotated from 412

scratch. Then, we show performance analysis to 413

show the effectiveness of our approach and whether 414

the model really learns from the demonstration. 415

6.1 Performance Comparison 416

In-domain setting In Table 2, we can observe 417

that most variants of demonstration-based learn- 418

ing consistently and significantly (with p-value < 419

0.02) outperform the baseline by a margin ranging 420

from 1.5 to 7 F1 score in three low-resource NER 421

datasets (25, 50 train instances respectively). It 422

demonstrates the potential of our approach for serv- 423

ing as a plug-and-play method for NER models. 424

Domain adaptation setting First, we observe 425

that simple domain adaptation technique can im- 426

prove the performance (First rows of Table 2 vs. 427

Table 3). Here, we only transfer the embedder 428

weights ofMs toMt, and we expect the perfor- 429

mance gain can be attributed to the embedder of 430

Ms, which is trained in task adaptive pre-training 431

manner on NER task formats (Gururangan et al., 432

2020). In Table 3, we can see that the most variants 433

of demonstration-based learning allow the source 434

modelMs to be adapted to the target domain in 435

fast with a small amount of target data T , com- 436

pared to baselines without demonstration including 437

few-shot NER methods. 438
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Figure 4: Performance (F1-score) of randomly select one
fixed entity per entity type for demonstration (fixed
random) on CoNLL03 by different numbers of train data
(20, 30, 40). Error bars show standard deviation across 3 trials
using 3 different random seeds for entity selection.

6.2 Performance Analysis439

Entity vs. Instance-oriented demonstration.440

instance-oriented demonstration performs worse441

than entity-oriented demonstration due to the diffi-442

culty of finding an appropriate similar instance in443

a low resource train data. In our analysis, we find444

that the average cosine similarity between retrieved445

example s and input x is less than 0.4 which shows446

many of the retrieved examples are not appropriate447

similar examples to the input.448

Fixed vs. Variable demonstration. As men-449

tioned in section 4.1, random doesn’t pick a fixed450

set of demonstrations the same way as popular451

and search. Instead, it picks random demonstra-452

tions for each input instance. In a low-resource453

setting, there are often no significantly popular454

entities. Therefore, the fact that popular out-455

performs random in our experiments might sug-456

gest that the consistency of demonstration selec-457

tion, rather than popularity of selected entities, is458

a crucial factor in better few-shot learning. To test459

this, we randomly select one entity per entity type460

and attach it as the demonstration to all instances,461

we call it (fixed random). As shown in Fig-462

ure 4, it outperforms random and is on par with463

popular and search. We believe this serves464

as evidence for two hypotheses: (1) consistency465

of demonstration is essential to performance, and466

(2) in low-resource settings, the effectiveness of467

combinations of entities as demonstrations might468

be a rather random function and not too affected469

by the combination’s collective popularity in the470

training dataset, which further implies that the idea471

of search is on the right track.472

Performance in other model variants To show473

the effectiveness of demonstration-based learning474

as plug-and-play method, we present performance475

in other model variants: bert-large-cased,476

LM Strategy Template
In-domain Label Sharing

CoNLL03 CoNLL03 -> Ontonotes

25 50 25 50

BL - - 52.08 ±2.02 66.42 ±2.14 63.50 ±0.96 70.59 ±1.16
RB - - 59.67 ±4.65 70.17 ±3.93 68.43 ±2.09 74.11 ±1.19
RL - - 59.15 ±2.93 71.51 ±3.44 68.16 ±2.65 74.45 ±1.02

BL popular context 57.60 ±3.37 67.11 ±2.31 64.09 ±2.95 70.88 ±1.09
RB popular context 59.76 ±4.27 70.21 ±3.41 69.09 ±2.63 74.53 ±1.32
RL popular context 59.99 ±2.16 72.15 ±3.81 68.78 ±2.89 74.93 ±1.07

Table 4: Performance comparison (F1-score) with
various backbone LMs: bert-large-cased (BL);
roberta-base (RB); and roberta-large (RL).
Scores are average of 15 runs (5 different sub-samples and 3
random seeds).
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(b) Ontonotes

Figure 5: Performance (F1-score) trend with entity-
oriented demonstration on CoNLL03 and Ontonotes by dif-
ferent numbers of train data (15, 20, 30, 40, 50).

roberta-base and roberta-large. As 477

shown in Table 4, our method shows consistent 478

improvement over baselines (p-value < 0.05). It 479

shows that demonstration-based learning can be ap- 480

plied to any other model variants and output better 481

contextualized representations for NER tasks and 482

show its potential for scalability. 483

Effectiveness of search. search consis- 484

tently outperforms all other strategies. It shows 485

that not only the entity selection, but also the com- 486

bination of entity examples per each entity type 487

affects the performance. To see whether it consis- 488

tently outperforms the baseline over various low- 489

resource data points, we show the performance 490

trend of entity-oriented demonstration in Figure 5. 491

Templates of entity-oriented demonstration. 492

entity-oriented demonstration becomes more ef- 493

fective when not only showing the entity exam- 494

ple per each entity type, but also the correspond- 495

ing instance example as a context. context and 496

lexical consistently outperform no-context. 497

We explore other templates as well, and these three 498

are the best among them. We present details on 499

Appendix A. To see whether the order of entity 500

type in entity-oriented demonstration affects the 501

performance, we present analysis of entity type 502

permutation, e.g., person - organization - 503

location - miscellaneous. There is no 504
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Figure 6: Performance (F1-score) variance by differ-
ent permutation of entity type orders. Performance
is based on template basic, strategy popular, and
CoNLL03.

Train Infer CoNLL03 Ontonotes 5.0 BC5CDR

25 50 25 50 25 50

X X 52.72 ±2.44 62.75 ±0.98 38.97 ±4.62 54.51 ±3.27 52.56 ±0.46 60.20 ±2.01
X O 51.24 ±2.10 61.02 ±2.05 40.48 ±3.90 52.12 ±3.85 52.16 ±0.55 58.12 ±1.67
O X 37.71 ±4.65 53.17 ±3.47 31.98 ±4.25 45.27 ±5.19 51.94 ±1.04 57.73 ±1.52
O O 56.52 ±3.34 64.47 ±2.35 45.52 ±4.69 58.40 ±3.24 54.31 ±0.80 61.31 ±1.51

Table 5: Effects of demonstration (F1-score)
with/without the demonstration (denoted by “O" and
“X", respectively) at training and inference time.

clear pattern of which entity type order is better505

(spearman correlation between F1-scores over dif-506

ferent entity type orders with 25 and 50 training507

instances < 0), but all the permutations outperform508

the baseline as shown in Figure 6, which show509

that demonstration-based learning can be effective510

regardless of the order (See Appendix Figure 8).511

Demonstration perturbation. To investigate512

whether the model really learns from demonstra-513

tion, we explore the performance of our approach514

with perturbed demonstration which selects ran-515

dom entities, labels, and context sentences as516

demonstration. Here, we present two studies: (1)517

Test perturbation which train with correct demon-518

stration and test with perturbed demonstration; and519

(2) Train-test perturbation which both train and520

test with perturbed demonstration. Figure 7 shows521

perturbed demonstration disturbs the model in a522

large margin for both case. This shows that the523

model affects by demonstration, and proper demon-524

stration can improve the model’s performance. Full525

results are available in Appendix Table 9.526

Effects of demonstration in train & inference.527

Table 5 shows the effects of demonstration in train-528

ing and inference stage. A comparison of row 0529

with row 3 shows that applying demonstration in530

the training stage but not in the inference stage531

would make the model perform worse than the532

fine-tuning baseline. This is another evidence that533

CoNLL BC5CDR Ontonotes
25 Train Instances
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F1
 S

co
re
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Original
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(a) Test perturbation
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55

60

65

F1
 S

co
re

Test Perturbation (context)
Original
Perturbation

(b) Train-Test perturbation

Figure 7: Performance (F1-score) difference be-
tween original and perturbed demonstration. Per-
formance is based on template basic, strategy
popular, and CoNLL03 25 train instances.

Strategy Template CoNLL03 BC5CDR

50% 100% 50% 100%

- - 91.24 ±0.13 91.82 ±0.12 84.58 ±0.17 85.89 ±0.32
random context 90.60 ±0.13 91.22 ±0.38 84.32 ±0.07 85.58 ±0.14
popular context 90.81 ±0.11 91.85 ±0.07 84.12 ±0.48 85.61 ±0.12

Table 6: Performance (F1-score) in fully supervised
setting by different percentages of train data.

consistency of demonstration is essential to the 534

method’s performance. 535

Fully supervised setting. Table 6 shows the 536

performance in fully supervised setting, where 537

the train data is sufficient. We can see that 538

demonstration-based learning yields similar perfor- 539

mance as baselines (p-value < 0.1), which shows 540

that demonstrations are rather redundant when data 541

is abundant. 542

7 Conclusion 543

In this paper, we propose demonstration-based 544

learning for named entity recognition. Specif- 545

ically, we present entity-oriented demonstration 546

and instance-oriented demonstration and show that 547

they successfully guide the model towards better 548

understandings of the task in low-resource settings. 549

We observe that entity-oriented demonstration is 550

more effective than instance-oriented demonstra- 551

tion, and search strategy consistently outper- 552

forms all other variants. Moreover, we find that 553

consistent demonstration for all the instances is cru- 554

cial to the superior performance of our approach. 555

We believe that our work provides valuable cost re- 556

duction when domain-expert annotations are too ex- 557

pensive and opens up possibilities for future work 558

in automatic demonstration search for few-shot 559

named entity recognition. 560
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A Template Analysis821

Here we present 4 other variants of templates that822

we have not presented in entity-oriented demon-823

stration: (1) context-all shows selected e per824

l along with an instance sentence s that contains825

e as a type of l. Unlike context, it shows all826

the e ∈ s. For each triple of (e, l, s), it is modi-827

fied into “s. e1 is l1. . . . en is ln." and concatenated828

with [SEP]. (2) lexical-all shows selected e829

per l in instance example s and further replaces the830

entity span e by its label string l. Unlike lexical,831

it replaces all the e ∈ s by its label string l. (3)832

structure follows augmented natural language833

format, which is a structured format (Paolini et al.,834

2021). It shows selected e per l along with an835

instance sentence s that contains e as a type of836

l. For each triple of (e, l, s), e in s is replaced837

with [ e | l ] and concatenated with [SEP]. (4)838

structure-all also follows augmented natu-839

ral language format, and shows selected e per l840

along with an instance sentence s that contains e841

as a type of l. Unlike structure it shows all842

the e ∈ s. For each triple of (e, l, s), for each ei843

in s it is replaced with [ ei | li ] and concatenated844

with [SEP].done Table. 7 shows that context845

and lexical are more effective than others.846

B Effects of Batch Size847

Table 8 shows the main results in Table 2 with batch848

size 10. Overall performance is much lower than849

Table 2. It shows that choosing a lower batch size850

is important in a extremely low resource, where the851

number of train data is 25 or 50.852
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Template CoNLL03 Ontonotes 5.0 BC5CDR

50 100 150 200 50 100 150 200 50 100 150 200

- 58.51 ±2.99 69.44 ±4.40 73.94 ±5.69 75.83 ±5.61 46.34 ±4.46 60.36 ±7.52 65.69 ±7.41 68.81 ±7.52 55.68 ±5.33 64.24 ±2.79 68.37 ±2.55 71.09 ±2.84

no-context 58.23 ±3.09 69.52 ±3.32 72.99 ±4.63 76.33 ±4.49 49.63 ±3.49 62.10 ±6.53 67.48 ±6.20 69.68 ±7.00 56.04 ±5.34 64.32 ±2.63 68.55 ±2.82 71.14 ±3.29

context 59.14 ±2.53 69.75 ±3.50 73.35 ±4.24 76.59 ±3.96 52.93 ±4.64 63.37 ±7.02 68.05 ±6.40 70.23 ±6.28 57.10 ±4.55 64.42 ±3.14 68.46 ±2.94 71.27 ±3.43

lexical 59.62 ±3.12 69.22 ±3.94 74.23 ±4.26 77.01 ±4.07 52.69 ±4.47 62.80 ±7.12 67.78 ±6.02 70.02 ±6.86 57.83 ±4.53 64.52 ±3.36 68.51 ±2.57 71.14 ±3.04

structure 60.61 ±2.60 68.35 ±3.85 73.95 ±4.60 76.56 ±4.38 53.35 ±3.59 63.45 ±6.23 68.10 ±5.99 69.99 ±6.74 57.45 ±4.79 64.72 ±2.79 68.32 ±2.77 71.55 ±3.20
context-all 58.82 ±2.01 69.22 ±3.37 71.22 ±3.45 76.07 ±4.53 52.85 ±4.23 62.80 ±7.40 68.22 ±6.18 69.87 ±6.63 57.92 ±4.58 64.69 ±2.72 68.83 ±2.28 71.32 ±3.13

lexical-all 59.34 ±2.72 69.71 ±3.65 74.16 ±4.47 77.31 ±4.04 52.46 ±4.47 63.03 ±7.33 67.22 ±6.82 70.21 ±6.68 56.76 ±5.01 64.42 ±2.91 68.05 ±3.18 71.17 ±3.13

structure-all 59.27 ±2.28 69.17 ±3.28 73.69 ±4.43 76.14 ±4.21 53.33 ±4.39 62.69 ±6.48 67.99 ±6.08 70.09 ±6.34 56.99 ±5.56 64.42 ±2.71 68.43 ±2.94 70.92 ±3.12

Table 7: Template performance comparison (F1-score) in popular strategy on CoNLL03, Ontonotes 5.0, and
BC5CDR by different number of training instances. We randomly sample k training instances with a constraint
that sampled instances should cover all the IOBES labels in the whole dataset. Best variants are bold and second
best ones are underlined. For efficient training, here the batch size is 10.

Demonstration Strategy Template CoNLL03 Ontonotes 5.0 BC5CDR

25 50 25 50 25 50

No Demonstration - - 42.65 ±4.77 60.14 ±3.28 29.11 ±5.21 49.00 ±4.92 50.59 ±3.64 57.44 ±4.51

Instance-oriented SBERT lexical 39.25 ±5.57 54.13 ±4.72 26.41 ±5.84 41.09 ±4.07 47.08 ±5.65 50.78 ±4.77
Demonstration (variable) context 41.09 ±5.82 59.92 ±4.78 30.55 ±6.61 48.46 ±5.03 51.72 ±5.81 57.53 ±4.58

BERTScore lexical 40.27 ±6.36 55.85 ±4.39 23.84 ±6.10 41.34 ±3.99 47.24 ±5.53 49.73 ±5.43
(variable) context 41.42 ±6.5 60.65 ±4.64 25.79 ±5.74 42.21 ±3.23 51.85 ±5.87 56.68 ±5.31

Entity-oriented random no-context 44.19 ±4.98 58.87 ±3.80 33.07 ±7.14 50.02 ±5.48 51.07 ±2.85 58.08 ±3.45
Demonstration (variable) lexical 46.83 ±3.69 59.94 ±3.82 34.52 ±6.58 50.69 ±5.64 51.72 ±2.75 57.62 ±3.33

context 47.39 ±3.89 59.81 ±3.58 35.39 ±7.10 50.80 ±5.63 51.86 ±2.71 58.12 ±2.97

popular no-context 46.51 ±4.50 60.67 ±2.97 34.50 ±6.51 52.38 ±4.61 51.12 ±3.28 57.71 ±4.46
(fixed) lexical 49.92 ±3.52 60.75 ±3.29 36.99 ±6.11 54.56 ±4.59 52.23 ±3.56 58.53 ±4.64

context 50.54 ±3.43 61.08 ±3.10 37.97 ±6.14 54.66 ±4.43 52.78 ±2.71 58.69 ±4.17

search no-context 47.80 ±3.45 60.74 ±3.50 34.44 ±6.04 53.06 ±4.78 51.65 ±2.94 58.32 ±4.08
(fixed) lexical 50.77 ±3.32 61.67 ±3.66 37.41 ±6.74 54.62 ±4.17 52.89 ±3.43 58.80 ±4.23

context 51.57 ±3.25 62.26 ±2.75 38.17 ±6.60 54.99 ±4.09 53.01 ±3.42 59.15 ±3.96

Table 8: In-domain performance comparison (F1-score) on CoNLL03, Ontonotes 5.0, and BC5CDR by dif-
ferent number of training instances. We randomly sample k training instances with a constraint that sampled
instances should cover all the IOBES labels in the whole dataset. Best variants are bold and second best ones are
underlined. Scores are average of 15 runs (5 different sub-samples and 3 random seeds) and the backbone LM
model is bert-base-cased. Unlike Table 2, here the batch size is 10.

Template Test CoNLL03 Ontonotes 5.0 BC5CDR

Perturbation 25 50 25 50 25 50

no-context X 54.34 ±3.33 64.30 ±2.76 43.02 ±4.33 56.65 ±3.35 53.86 ±0.86 60.51 ±1.77
no-context O 53.83 ±3.65 62.86 ±2.16 41.59 ±5.76 54.63 ±3.89 53.06 ±0.84 59.67 ±1.55

context X 56.52 ±3.34 64.47 ±2.35 45.52 ±4.69 58.40 ±3.24 54.31 ±0.8 61.31 ±1.51
context O 51.93 ±5.96 62.21 ±2.66 41.63 ±5.61 53.80 ±4.74 54.12 ±0.95 59.63 ±1.24

Template Train-Test CoNLL03 Ontonotes 5.0 BC5CDR

Perturbation 25 50 25 50 25 50

no-context X 54.34 ±3.33 64.30 ±2.76 43.02 ±4.33 56.65 ±3.35 53.86 ±0.86 60.51 ±1.77
no-context O 54.13 ±2.31 62.88 ±2.36 42.34 ±4.91 55.17 ±3.46 53.16 ±0.70 59.93 ±2.31

context X 56.52 ±3.34 64.47 ±2.35 45.52 ±4.69 58.40 ±3.24 54.31 ±0.8 61.31 ±1.51
context O 54.67 ±3.04 63.93 ±1.92 43.55 ±5.64 56.09 ±3.37 53.59 ±0.82 59.45 ±1.66

Table 9: Perturbation Analysis.
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Figure 8: Performance comparison (F1-score) by different entity type order in entity-oriented demonstration.
Performance is based on template basic and strategy popular, and dataset is CoNLL03. We construct the
demonstration by different entity type order (P: Person, L: Location, O: Organization, M: Miscellaneous). Scores
are average of 15 runs (5 different subsamples and 3 random seeds).
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