
Uses and Abuses of the Cross-Entropy Loss:
Case Studies in Modern Deep Learning

Elliott Gordon-Rodriguez
Department of Statistics

Columbia University
eg2912@columbia.edu

Gabriel Loaiza-Ganem
Layer6 AI

gabriel@layer6.ai

Geoff Pleiss
Zuckerman Institute
Columbia University

gmp2162@columbia.edu

John P. Cunningham
Department of Statistics

Columbia University
jpc2181@columbia.edu

Abstract

Modern deep learning is primarily an experimental science, in which empirical
advances occasionally come at the expense of probabilistic rigor. Here we focus
on one such example; namely the use of the categorical cross-entropy loss to
model data that is not strictly categorical, but rather takes values on the simplex.
This practice is standard in neural network architectures with label smoothing and
actor-mimic reinforcement learning, amongst others. Drawing on the recently dis-
covered continuous-categorical distribution, we propose probabilistically-inspired
alternatives to these models, providing an approach that is more principled and the-
oretically appealing. Through careful experimentation, including an ablation study,
we identify the potential for outperformance in these models, thereby highlighting
the importance of a proper probabilistic treatment, as well as illustrating some of
the failure modes thereof.1

1 Introduction

The cross-entropy loss is one of the most commonly used loss functions for training deep neural
network models, most notably in (multi-class) classification problems. When applied to categorical
data, this loss function corresponds to a probabilistic log-likelihood, therefore resulting in favorable
estimation properties. On the other hand, several prominent methods in modern machine learning
are concerned with fitting data that is not quite categorical, but simplex-valued; key examples being
the “soft targets” in label smoothing (LS) [27], and “expert policies” in actor-mimic reinforcement
learning (AMN) [23], amongst others [16, 28]. In these methods, the deep learning community has
defaulted to borrowing the same cross-entropy loss from the categorical case, despite the fact that it
no longer defines a bona fide probability model. As well as highlighting this practice and putting it
into question, our work proposes adjusting the LS and AMN objective functions by replacing the
cross-entropy loss with the log-likelihood of the recently discovered continuous-categorical (CC)
distribution [12]. Doing so amounts to incorporating a normalizing constant to our model, or in other
words, adding the factor that scales the cross-entropy loss to a valid probability density function
over the simplex. As of yet, such an approach has only been considered in the context of knowledge
distillation [12], although the one-dimensional special case (corresponding to the binary cross-entropy
with [0, 1]-valued data) has been studied more extensively [20]. Our inspiration draws from both of
these works, although our focus is primarily on LS and AMN architectures instead.

1Our code is available at https://github.com/cunningham-lab/cb_and_cc.

1st I Can’t Believe It’s Not Better Workshop (ICBINB@NeurIPS 2020), Vancouver, Canada.

https://github.com/cunningham-lab/cb_and_cc


Our exposition is organized as follows (note that our two main sections, 3 and 4, are based on the
same idea, but are broadly independent of one another and can be read separately):

• In section 2 we detail the relevant background on the continuous-categorical distribution,
highlighting its close connection to the cross-entropy loss.

• Section 3 focuses on label smoothing. We propose a novel CC-LS model and perform an
ablation study to isolate its potential as a regularizer for classification networks, as well as a
qualitative assessment of its learned representations.

• Section 4 focuses on actor-mimic reinforcement learning. We recast the AMN model as
the solution to a regression problem of simplex-valued data, we propose a novel CC-AMN
model, and we provide an experimental evaluation thereof.

• Section 5 concludes, combining insights from CC-LS and CC-AMN, and discussing potential
directions for future research.

2 Background

We preface the introduction of the continuous-categorical distribution with a brief notational overview
of the categorical cross-entropy loss, which will highlight the close connection between the two and
will provide an orthogonal viewpoint to its original presentation in [12].

Categorical data refers to observations y that take values in a discrete sample space Ω formed by K
distinct elements, which are typically expressed using the K one-hot vectors that form the standard
basis of RK , namely Ω = {e1, . . . eK}, where (ek)j = 1(k = j). In this notation, the cross-entropy
loss is equivalent to the negative log-likelihood of y ∈ Ω under a categorical distribution with
parameter π:

l(π; y) = −
K∑
k=1

yk log πk ⇐⇒ p(y;π) =

K∏
k=1

πykk . (1)

In other words, the cross-entropy loss defines a coherent probabilistic model for discrete data over
K classes. This elementary fact should not be overlooked; it provides the benefits of the theory of
maximum likelihood estimation, including frequentist consistency and asymptotic efficiency, as well
as enabling efficient Bayesian inference by specifying a conjugate prior.

2.1 From the Cross-Entropy to the Continuous-Categorical

So far so good. However, what happens when the observation is not quite categorical, but instead
takes values on the simplex, ∆K = {y ∈ RK+ :

∑K
k=1 yk = 1}? Such data is called compositional,

and is common in the sciences [1]. In the deep learning literature, while not explicitly referred to
as such, compositional data plays a key role in label smoothing [27], actor-mimic reinforcement
learning [23], knowledge distillation [16], and domain adaptation [28]. In all of these methods, neural
networks are trained to target a simplex-valued outcome, y ∈ ∆K , using the cross-entropy loss
l(λ; y) = −

∑K
k=1 yk log λk, where λ represents the output of a neural network. Crucially though,

the change in sample space from Ω to ∆K breaks the equivalence in (1) because the right-hand
expression no longer defines a proper probability distribution; its integral over ∆K does not normalize
to 1.

Given the attractive properties of maximum likelihood estimation, there are still good reasons why
a legitimate probability model is desirable (see [20] for a more detailed discussion). The classical
statistics literature offers some possibilities, notably the use of logratios [1, 2, 3, 9], or Dirichlet
regression [6, 15]. However, we argue that the most natural probabilistic solution is to apply the
recently discovered continuous-categorical distribution [12], since this corresponds to normalizing
the cross-entropy loss directly so that it becomes a genuine log-likelihood model, namely:

l(λ; y) = − logC(λ)−
K∑
k=1

yk log λk ⇐⇒ p(y;λ) = C(λ) ·
K∏
k=1

λykk , (2)

2



where C(λ) is the normalizing constant:

C(λ) =

(∫
∆K

K∏
k=1

λykk dyk

)−1

. (3)

This distribution was found to possess a number of attractive theoretical and empirical properties
[12]; we highlight the closed form expression of its normalizing constant:

C(λ) =

(
(−1)K+1

K∑
k=1

λk∏
i6=k log λi

λk

)−1

, (4)

which enables the use of automatic differentiation for optimizing models with the continuous-
categorical log-likelihood (2). We also highlight that the continuous-categorical outperformed the
Dirichlet distribution in regression models of compositional data, including neural network models
[12].

3 Continuous-Categorical Label Smoothing

Label smoothing [27] has enjoyed rapid growth and widespread use as a means to reduce overfitting
and improve the out-of-sample accuracy of neural network classifiers across a range of tasks including
computer vision [31, 24], speech recognition [8], and machine translation [30]. The mechanism is
simple: given a neural network classifier fθ : x→ y, we replace our one-hot labels y ∈ Ω with “soft”
targets:

yLS = (1− ε)y + εu, (5)

where u = (1/K, . . . , 1/K)> is a uniform vector and ε > 0 is a constant. The network weights θ are
then trained to minimize the cross-entropy loss between the network output fθ(x) and the modified
data yLS.

Equation 5 maps y ∈ Ω to yLS ∈ ∆K , so that our targets are no longer categorical, but simplex-
valued. Thus, even though they are not continuously distributed, it is natural to consider label-
smoothed classification through the lens of compositional regression. Our proposal is therefore to use
a continuous-categorical log-likelihood in lieu of the cross-entropy loss, and we refer to this model as
CC-LS. Namely, we are interested in comparing the usual label smoothing loss:

min
θ
LLS(θ) = −

∑
(x,y)

∑
k

yLS
k · log[fθ(x)]k, (6)

against its continuous-categorical counterpart:

min
θ
LCC-LS(θ) = −

∑
(x,y)

{
logC(fθ(x)) +

∑
k

yLS
k · log[fθ(x)]k

}
. (7)

We remark that, strictly speaking, in order to make our targets continuous over the simplex, we
would also have to add continuous noise to the labels, for example by drawing u uniformly at
random on the simplex. Such an approach produced little difference over using the fixed value
u = (1/K, . . . , 1/K)>, neither in LS nor CC-LS, and we will omit the results for clarity. However,
given the wealth of existing methods that achieve improved generalization error by adding noise at
different stages in the training procedure [5, 26, 25], the idea of smoothing the labels with random
noise may still hold potential, and we leave its further analysis for future work.

3.1 Experiments

Following the experimental setup of Muller et al [22], we train a CNN classifier on CIFAR-10, with
and without label smoothing as well as our novel CC-LS model (see appendix A.1 for the full details
of our architecture). This is an example in which label smoothing provided no significant gain over
the un-smoothed baseline, likely because the CNN is already regularized using dropout [26], weight
decay [18], and batch normalization [17], which altogether are sufficient to provide a good model of

3



Table 1: Ablation study for label smoothing on CIFAR-10. We show out-of-sample accuracy for our
baseline classifier (w/o LS), as well as vanilla LS and CC-LS, both with ε = 0.1. Errors indicate the
standard deviation over 10 random initializations of the network. We consider the effect of LS and
CC-LS over the baseline under each combination of dropout, weight decay and batch normalization,
and find that CC-LS provides significant outperformance in the absence of BatchNorm.

Dropout Weight decay BatchNorm w/o LS with LS CC-LS

Yes Yes Yes 89.5 (±0.1) 89.1 (±0.2) 89.0 (±0.2)
No Yes Yes 89.6 (±0.1) 89.2 (±0.1) 89.2 (±0.2)
Yes No Yes 89.4 (±0.2) 89.3 (±0.2) 89.0 (±0.2)
No No Yes 89.5 (±0.2) 89.4 (±0.1) 89.1 (±0.2)
Yes Yes No 88.6 (±1.2) 88.6 (±1.0) 88.7 (±0.6)
No Yes No 88.8 (±1.2) 88.7 (±1.0) 88.6 (±0.6)
Yes No No 87.0 (±0.2) 87.0 (±0.1) 87.6 (±0.2)
No No No 86.8 (±0.1) 87.0 (±0.2) 87.6 (±0.2)

the data, given the level of complexity of CIFAR-10. Likewise, we find that the CC-LS model also
performs no better than the baseline in this setting (top row of Table 1).

Driven by these observations, we perform an ablation study over the different regularizers used in
our network, and the results paint a more interesting picture (Table 1). Notably, we find that for the
unregularized CNN (bottom row), CC-LS significantly outperforms both LS and the baseline. In
the case where our network is partially regularized with dropout only, the baseline becomes equally
good as LS, but the gap with CC-LS remains wide (penultimate row), and the gain from CC-LS
persists after adding weight decay. On the other hand, batch normalization (top half) was sufficient
to capture all the gain in test accuracy, with neither LS nor CC-LS outperforming the baseline in
these cases. Under weight decay without batch normalization (rows 5 and 6), training became less
stable (as evidenced by the large standard deviations), but CC-LS was able to reduce the variability in
model accuracy. Overall, Table 1 indicates that the CC-LS loss function provides a different (and
sometimes, significantly better) regularization effect than that of vanilla LS, suggesting its potential
for novel applications, particularly in the settings where batch normalization may be undesirable [10].
We note further that numerous existing works have been devoted to analyzing the interplay between
dropout, weight decay, and batch normalization [29, 11, 7, 19, 14]; our focus is specifically on their
relation to label smoothing and CC-LS.

Table 2: Ratio of within-cluster sum of squares over
between-cluster sum of squares, for the learned repre-
sentations of Figure 1. Each cell shows the mean ratio
over 10 random initializations, with standard errors.

Samples w/o LS with LS CC-LS

Training 18% (±1) 9% (±1) 12% (±1)
Test 25% (±1) 20% (±1) 23% (±1)

We end this section with a qualitative anal-
ysis of the learned representations from our
trained classifiers. Again following [22],
we define the “template” vector of the kth
class, wk, as the weight vector from the
last CNN layer that is associated to the kth
class, so that in other words:

[fθ(x)]k =
ew

>
k z∑

k′ e
w>

k′z
, (8)

where z is a vector containing the activa-
tions from the penultimate layer. We then
fix three classes, and construct an orthonormal basis (consisting of two vectors) for the plane con-
taining their three template vectors. For each of the classes, we pick a random sample of input data
belonging to that class and project their penultimate layer activations onto this plane. The results
are shown in Figure 1 for the (arbitrarily chosen) classes “airplane”, “automobile”, and “bird”. As
was noted by [22], while label smoothing can help the classifier achieve better accuracy on the test
set, it comes at the cost of a less informative learned representation, as can be seen from the more
concentrated centroids in the second column relative to the first. On the other hand, CC-LS achieves
a somewhat richer representation than vanilla LS, as can be observed from the greater within-cluster
variances in the third column, which we quantify in Table 2. This suggests that the CC may offer
additional potential for combining LS with teacher models in the context of knowledge distillation,
a setting in which the concentrated clusters enforced by LS proved detrimental to the training of a
student model [22].

4



−2 0 2
−2

−1

0

1

2

3

4

Tr
ai

ni
ng

 sa
m

pl
es

w/o LS

−0.50 −0.25 0.00 0.25 0.50
−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

with LS

−5 0 5
−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

CC-LS

−2 0 2
−2

−1

0

1

2

3

4

Te
st

 sa
m

pl
es

−0.5 0.0 0.5

−0.4

−0.2

0.0

0.2

0.4

0.6

−5 0 5
−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

Figure 1: Learned representations for the classes “airplane” (blue), “automobile” (orange), and “bird”
(pink), projected to an informative 2-dimensional affine subspace spanning the template-vectors of the
3 classes. We show the same plot for samples from the training (above) and test set (below), for the
unsmoothed baseline (left), LS (middle), and CC-LS (right), trained with regularization (following
the top row of Table 1). Note that CC-LS does not concentrate clusters as tightly as LS, suggesting
the potential for richer learned representations.

4 Probabilistic Actor-Mimic Reinforcement Learning

In this section we summarize the Actor-Mimic Reinforcement Learning framework [23] and recast it
as a compositional regression problem, highlighting the potential for a probabilistic model with the
continuous-categorical distribution.

Actor-Mimic Networks (AMN) provide a method for multitask and transfer reinforcement learning.
The goal of the AMN is to train a single agent to perform on several different “source games”,
{G1, . . . , GL}, each of which corresponds to a Markov Decision Process defined on a common
state space and action set (shared across source tasks), but driven by a different set of transition
probabilities and reward functions (specific to each task). Formally, Gi = (S,A, Ti,Ri), where S is
the set of states, A is the set of actions, Ti(s′|s, a) is the probability of transitioning from state s to
state s′ when executing action a in gameGi, andRi is the reward function mapping states and actions
to real-valued rewards representing the score of the ith game. In practice, each Gi corresponds to a
different videogame from the Atari Learning Environment [4]; each game follows a different set of
rules (Ti andRi) while taking place on the same console display (S) and controller (A).

In order to train an AMN, we first require access to a set of “experts” {E1, . . . , EL}, each of which
corresponds to an agent specialized in one of the source games. Expert Ei represents a policy πEi

mapping states to distributions over actions, so that we can write πEi
(ak|st) for the probability

that Ei chooses action ak ∈ A when in state st ∈ S. Note that k indexes the action space, so that
A = {a1, . . . , aK}, whereas t indexes time (i.e., frame number), so that S ⊇ {s1, s2, . . . }. In our
implementation, Ei corresponds to a Deep Q-Network (DQN) [21] trained on game Gi, though the
fact that Ei is a DQN is not necessary – any policy that performs well on Gi will suffice.

Given the set of expert policies, the AMN is trained to “mimic” the experts in their respective source
games. We can reformulate the method as a two-stage process. First, we form an auxiliary dataset of
“guidance vectors”, Daux =

{
y

(i)
t

}
. These vectors are obtained by generating, for each game Gi, a

sequence of states
{
s

(i)
t

}n
t=1

, and then feeding these states through the corresponding expert policies,

5



Table 3: Mean evaluation score (and standard deviation) over the last 20 evaluation epochs (higher is
better). With the exception of Pong, the performance of AMN and CC-AMN is similar.

Model Breakout Atlantis Pong SpaceInvaders

DQN 331 (±44) 32 833 (±14 430) 20.9 (±0.2) 442 (±119)
AMN 337 (±74) 31 558 (±9 084) 20.9 (±0.1) 415 (±126)

CC-AMN 320 (±66) 26 196 (±10 396) 8.8 (±11.9) 415 (±132)

in other words:

y
(i)
t =

(
πEi

(
a1|s(i)

t

)
, . . . , πEi

(
aK |s(i)

t

))
. (9)

Second, the parameters of our Actor-Mimic Network, πAM
θ , are learned by minimizing the categorical

cross-entropy loss with respect to the auxiliary data:

min
θ
LAMN(θ) = −

∑
t,i

∑
k

πEi

(
ak|s(i)

t

)
· log πAM

θ

(
ak|s(i)

t

)
. (10)

In practice, we minimize this loss using minibatch stochastic gradient descent, running the gameplay-
generation in parallel with the gradient steps. The effectiveness of the AMN approach is fundamentally
computational; the expert policies can be trained independently in parallel, and the AMN is much
faster to optimize via the cross-entropy loss (10) than using policy gradients, as it is able to leverage
the rich information from the expert policies directly, (with an entire guidance vector of probabilities
containing information for all classes at each time step, rather than learning from noisy and biased
n-step bootstrap estimates).

Since y(i)
t is a vector of probabilities over actions, our auxiliary data is simplex-valued rather than

categorical. It is therefore clear from Equation 10 that the AMN model solves a compositional
regression problem, whence we propose replacing the cross-entropy loss with its probabilistic
counterpart, the continuous-categorical log-likelihood:

min
θ
LCC-AMN(θ) = −

∑
t,i

{
logC

(
λAM
θ

(
s

(i)
t

))
+
∑
k

πEi

(
ak|s(i)

t

)
· log λAM

θ

(
ak|s(i)

t

)}
.

(11)

We call this model CC-AMN, and we compare its performance against the AMN model, as well as
the DQN baseline.

4.1 Experiments

We follow the experimental setup of Parisotto et al [23], choosing a subset of games from the Atari
Learning Environment in which the DQN model performed at super-human level. For each game, we
pre-train a DQN with the same network architecture; these are then used as the expert policies. Our
network architecture, described in appendix A.2, is taken directly from [21], and is also used for the
AMN and CC-AMN models.

First, we reproduce the results of [23] and compare with our novel CC-AMN model, as shown in
Table 3. The evaluation scores of the CC-AMN are similar to those of the AMN, except for the game
of Pong, where using the CC likelihood leads to unstable training, resulting in worse performance
and higher variability in the evaluation score. Note that both AMN and CC-AMN are generally able
to achieve similar performance to the expert DQN.

Second, we focus specifically on the effect of the probabilistic objective (11) on network training by
reducing the multi-task objective to a single-task objective, i.e., we no longer sum over i in Equation
10. This corresponds to running AMN and CC-AMN against the expert DQN, Ei, of a single game,
and we do this separately for each game, as shown in Figure 2. While both CC-AMN and AMN are
able to train much faster than the DQN, converging in just a few epochs, CC-AMN fails to outperform
AMN, and can be slower to converge (Breakout) or worse overall (Pong).

The case of Pong highlights an important failure mode of CC-AMN, which also offers some insight as
to why our model underperforms in the other games. The issue originates in the normalizing constant

6



0 50 100
Training Epoch

0
30

0
60

0
Ev

al
ua

tio
n 

Sc
or

e

Breakout
DQN
AMN
CC-AMN

0 50 100
Training Epoch

0
25

00
0

50
00

0 Atlantis

0 50 100
Training Epoch−2

1
0

21

Pong

0 50 100
Training Epoch

0
40

0
80

0

SpaceInvaders

Figure 2: Training curves for the CC-AMN and AMN models, run on the simplified single-game
objective. Solid lines reflect a moving average of the raw evaluation scores (faded lines). Each
training epoch lasts 100 000 frames, with the evaluation scores being calculated from another 100 000
frames. While the actor-mimic models learn much faster than the DQN, the CC-AMN shows no
improvement over the AMN model.

(4), which is numerically unstable when the parameter λ is close to uniform, due to the product
of log-ratios vanishing in the in the denominator, as was noted in [12]. In the case of CC-AMN,
our optimization hovers around this unstable region, since the guidance vectors tend to concentrate
around the centroid of the simplex (this is because our expert policies correspond to the softmax of
Q-value functions, which don’t typically exhibit large variability across actions since, over small time
steps, most actions are not individually critical to the outcome of the game). In practice this is not
necessarily a problem, as we zero out the unstable gradients during optimization, as in [12]. Doing
so provides a reasonable approximation, since ∇G(λ) = 0 for λ = (1/K, . . . , 1/K), by symmetry
(
∑
k λk = 1 is constrained by definition of the continuous-categorical). Nevertheless, this behavior

likely results in a worse optimization landscape overall (unlike in CC-LS where y, and hence λ,
are far away from the centroid), which in the game of Pong, derails our gradient search altogether.
Further investigation may involve re-running our experiments with arbitrary-precision floating point,
though we currently find this to be computationally prohibitive.

5 Discussion and Future Work

Comparing our experiments on CC-LS and CC-AMN, it may come as a surprise that the former
yields the more promising empirical results, in spite of its less rigorous theoretical underpinning
(with targets that are simplex-valued, but not genuinely continuous). This observation suggests that
the continuous-categorical may provide useful modeling advances outside the realm of compositional
data analysis and probabilistic modeling, for example in classification problems.

It is also worth noting that, throughout our experiments, the cross-entropy loss may have benefitted
disproportionately from favorable network initialization, which has been developed for and become
increasingly specialized toward networks with particular loss functions [13]. A similar argument can
be made about network architecture, noting that a good architecture for the cross-entropy loss may
not be equivalent to a good architecture for its continuous-categorical counterpart. In fact, we have
observed experimentally that additional architecture or hyperparameter search can lead to improved
performance for the CC-based approaches. However we deliberately chose not to focus on such
experimentation, as doing so could further entangle the effect of the loss function on our models; we
leave such analyses to future work.

At a more theoretical level, as identified in [12], it follows from the properties of exponential families
that optimizing the continuous-categorical log-likelihood results in an unbiased estimator for its
mean parameter, which corresponds to a (local) average of the observed data. This is, in fact, akin to
the cross-entropy loss, which is also maximized at local average that approximates the conditional
expectation of the outputs given the inputs. The optimization landscapes defined by the two loss
functions could therefore be of similar nature, though this remains an open question.

Last, we highlight a computational limitation of our approach: the numerical instabilities noted in
section 4.1 are exacerbated in high dimensions. In fact, evaluating Equation 4 for much more than 10

7



classes is problematic for all λ ∈ ∆K (not only for λ around the centroid), since the K summands
typically cancel out beyond numerical precision.2 As a result, we constrained our experimentation to
examples where K ≤ 10, however, similar applications with K ∼ 100 or greater are also of interest.
Further advances in theory or numerical analysis will be needed to enable successful applications of
the continuous-categorical at this scale.

We conclude by noting that, taken together with the theoretical and empirical results in [20] and [12],
our work suggests that future methodological advances may be possible through a combination of
careful probabilistic consideration of the cross-entropy loss, and the use of the continuous-categorical
distribution.

Acknowledgments and Disclosure of Funding

We thank Andres Potapczynski and the anonymous reviewers for helpful conversations, and the
Simons Foundation, Sloan Foundation, McKnight Endowment Fund, NSF 1707398, and the Gatsby
Charitable Foundation for support.

References
[1] John Aitchison. The statistical analysis of compositional data. Journal of the Royal Statistical

Society: Series B (Methodological), 44(2):139–160, 1982.

[2] John Aitchison. Principles of compositional data analysis. Lecture Notes-Monograph Series,
24:73–81, 1994. ISSN 07492170.

[3] John Aitchison. Logratios and natural laws in compositional data analysis. Mathematical
Geology, 31(5):563–580, 1999.

[4] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

[5] Chris M Bishop. Training with noise is equivalent to tikhonov regularization. Neural computa-
tion, 7(1):108–116, 1995.

[6] G Campbell and J Mosimann. Multivariate methods for proportional shape. In ASA Proceedings
of the Section on Statistical Graphics, volume 1, pages 10–17. Washington, 1987.

[7] Guangyong Chen, Pengfei Chen, Yujun Shi, Chang-Yu Hsieh, Benben Liao, and Shengyu
Zhang. Rethinking the usage of batch normalization and dropout in the training of deep neural
networks. arXiv preprint arXiv:1905.05928, 2019.

[8] Jan Chorowski and Navdeep Jaitly. Towards better decoding and language model integration in
sequence to sequence models. arXiv preprint arXiv:1612.02695, 2016.

[9] Juan José Egozcue, Vera Pawlowsky-Glahn, Glòria Mateu-Figueras, and Carles Barcelo-Vidal.
Isometric logratio transformations for compositional data analysis. Mathematical Geology, 35
(3):279–300, 2003.

[10] Angus Galloway, Anna Golubeva, Thomas Tanay, Medhat Moussa, and Graham W Taylor.
Batch normalization is a cause of adversarial vulnerability. arXiv preprint arXiv:1905.02161,
2019.

[11] Christian Garbin, Xingquan Zhu, and Oge Marques. Dropout vs. batch normalization: an
empirical study of their impact to deep learning. Multimedia Tools and Applications, pages
1–39, 2020.

2For an intuitive explanation, note that the Lebesgue measure of the K-dimensional simplex is 1/K!. We
therefore expect C(λ)−1 ∼ 1/K!. However, as K increases, the “typical” summand in (4) decays slower than
1/K! (if at all). Thus, for large K, the individual summands in (4) will become much larger (in magnitude)
than C(λ)−1. Their summation will then result in (near) total cancellation and therefore total loss of numerical
precision.

8



[12] Elliott Gordon-Rodriguez, Gabriel Loaiza-Ganem, and John P Cunningham. The continuous
categorical: a novel simplex-valued exponential family. In International Conference on Machine
Learning, 2020.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE
international conference on computer vision, pages 1026–1034, 2015.

[14] Alex Hernández-García and Peter König. Do deep nets really need weight decay and dropout?
arXiv preprint arXiv:1802.07042, 2018.

[15] Rafiq H Hijazi and Robert W Jernigan. Modelling compositional data using dirichlet regression
models. Journal of Applied Probability & Statistics, 4(1):77–91, 2009.

[16] Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network.
In NIPS Deep Learning and Representation Learning Workshop, 2015.

[17] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[18] Anders Krogh and John A Hertz. A simple weight decay can improve generalization. In
Advances in neural information processing systems, pages 950–957, 1992.

[19] Xiang Li, Shuo Chen, Xiaolin Hu, and Jian Yang. Understanding the disharmony between
dropout and batch normalization by variance shift. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2682–2690, 2019.

[20] Gabriel Loaiza-Ganem and John P Cunningham. The continuous bernoulli: fixing a pervasive
error in variational autoencoders. In Advances in Neural Information Processing Systems, pages
13266–13276, 2019.

[21] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[22] Rafael Müller, Simon Kornblith, and Geoffrey E Hinton. When does label smoothing help? In
Advances in Neural Information Processing Systems, pages 4694–4703, 2019.

[23] Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhutdinov. Actor-mimic: Deep multitask and
transfer reinforcement learning. arXiv preprint arXiv:1511.06342, 2015.

[24] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. In Proceedings of the aaai conference on artificial intelligence,
volume 33, pages 4780–4789, 2019.

[25] Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for deep
learning. Journal of Big Data, 6(1):60, 2019.

[26] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

[27] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Re-
thinking the inception architecture for computer vision. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 2818–2826, 2016.

[28] Eric Tzeng, Judy Hoffman, Trevor Darrell, and Kate Saenko. Simultaneous deep transfer across
domains and tasks. In Proceedings of the IEEE International Conference on Computer Vision,
pages 4068–4076, 2015.

[29] Twan Van Laarhoven. L2 regularization versus batch and weight normalization. arXiv preprint
arXiv:1706.05350, 2017.

9



[30] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008, 2017.

[31] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable
architectures for scalable image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 8697–8710, 2018.

10



A Experimental details

A.1 Label Smoothing

We denote a convolutional layer by W×W×N-S, where W is the width of the convolution, N the
number of filter maps, and S the stride. Our architecture is: 3×3×32-1→ BatchNorm→ 3×3×32-1
→ BatchNorm→MaxPooling (2×2)→ Dropout (0.2)→ 3×3×64-1→ BatchNorm→ 3×3×64-1
→ BatchNorm→MaxPooling (2×2)→ Dropout (0.3)→ 3×3×128-1→ BatchNorm→ 3×3×128-
1 → BatchNorm → MaxPooling (2×2) → Dropout (0.4) → 10 fully-connected units. We use
weight decay of 0.0001 in the final fully-connected layer, which, together with dropout and batch
normalization, was switched on and off in the different runs of our ablation study in Table 1. Our
models were trained for 500 epochs using a minibatch size of 128 and the Adam optimizer with a
learning rate of 10−3. The label smoothing hyperparameter ε was set to 0.1 as per [22].

Note however, that we were unable to replicate the results of [22] exactly, as they did not share their
code, nor did they describe their architecture in full.

A.2 Actor-Mimic Network

Our architecture is 8×8×32-4→ 4×4×64-2→ 3×3×64-1→ 7×7×1024-1→ 512 fully-connected
units→ 6 fully connected units (corresponding to 6 possible actions). We used the Adam optimizer
with a learning rate of 10−5, and a minibatch size of 32.

11


	Introduction
	Background
	From the Cross-Entropy to the Continuous-Categorical

	Continuous-Categorical Label Smoothing
	Experiments

	Probabilistic Actor-Mimic Reinforcement Learning
	Experiments

	Discussion and Future Work
	Experimental details
	Label Smoothing
	Actor-Mimic Network


