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Abstract

This paper studies the use of a machine learning-based estimator as a control
variate for mitigating the variance of Monte Carlo sampling. Specifically, we
seek to uncover the key factors that influence the efficiency of control variates
in reducing variance. We examine a prototype estimation problem that involves
simulating the moments of a Sobolev function based on observations obtained from
(random) quadrature nodes. Firstly, we establish an information-theoretic lower
bound for the problem. We then study a specific quadrature rule that employs a
nonparametric regression-adjusted control variate to reduce the variance of the
Monte Carlo simulation. We demonstrate that this kind of quadrature rule can
improve the Monte Carlo rate and achieve the minimax optimal rate under a
sufficient smoothness assumption. Due to the Sobolev Embedding Theorem, the
sufficient smoothness assumption eliminates the existence of rare and extreme
events. Finally, we show that, in the presence of rare and extreme events, a
truncated version of the Monte Carlo algorithm can achieve the minimax optimal
rate while the control variate cannot improve the convergence rate.

1 Introduction
In this paper, we consider a nonparametric quadrature rule on (random) quadrature points based on
regression-adjusted control variate [1, 2, 3, 4]. To construct the quadrature rule, we partition our
available data into two halves. The first half is used to construct a nonparametric estimator, which is
then utilized as a control variate to reduce the variance of the Monte Carlo algorithm implemented
over the second half of our data. Traditional and well-known results [1, Chapter 5.2] show that the
optimal linear control variate can be obtained via Ordinary Least Squares regression. In this paper,
we investigate a similar idea for constructing a quadrature rule [3, 5, 6, 7, 8, 9, 10], which uses a
non-parametric machine learning-based estimator as a regression-adjusted control variate. We aim to
answer the following two questions:

Is using optimal nonparametric machine learning algorithms to construct
control variates an optimal way to improve Monte Carlo methods? What are the
factors that determine the effectiveness of the control variate?
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Rare and extreme event

Figure 1: According to the Sobolev Embedding Theorem [11], the Sobolev space W s,p can be
embedded in Lp

∗
, where 1

p∗ = 1
p − s

d . When s is large enough, as shown in (a), the smoothness
assumption can rule out the existence of rare and extreme events. When s is not sufficiently large,
specifically s < 2dq−dp

2pq , there may exist a peak (a.k.a rare and extreme event) that makes the Monte
Carlo simulation hard. Under such circumstances, the function’s 2q-th moment is unbounded.

To understand the two questions, we consider a basic but fundamental prototype problem of estimating
moments of a Sobolev function from its values observed on (random) quadrature nodes, which has
a wide range of applications in Bayesian inference, the study of complex systems, computational
physics, and financial risk management [1]. Specifically, we estimate the q-th moment

∫
Ω
f(x)qdx

of f based on values f(x1), · · · , f(xn) observed on n (random) quadrature nodes x1, · · · , xn ∈ Ω
for a function f in the Sobolev space W s,p(Ω), where Ω ⊂ Rd. The parameter q here is introduced
to characterize the rare events’ extremeness for estimation. To verify the effectiveness of the non-
parametric regression adjusted quadrature rule, we first study the statistical limit of the problem by
providing a minimax information-theoretic lower bound of magnitude nmax{( 1

p−
s
d )q−1,− s

d−
1
2}.

We also provide matching upper bounds for different levels of function smoothness. Under the
sufficient smoothness assumption that s > d(2q−p)

2pq , we find that the non-parametric regression

adjusted control variate f̂ can improve the rate of classical Monte Carlo algorithm and help us attain
a minimax optimal upper bound. In (3.4) below, we bound variance

∫
Ω
(fq − f̂q)2 of the Monte

Carlo target by the sum of the semi-parametric influence part
∫
Ω
f2q−2(f − f̂)2 and the propagated

estimation error
∫
Ω
(f − f̂)2q. Although the optimal algorithm in this regime remains the same, we

need to consider three different cases to derive an upper bound on the semi-parametric influence part,
which is the main contribution of our proof. We propose a new proof technique that embeds the
square of the influence function (qfq−1)2 and estimation error (f − f̂)2 in appropriate spaces via
the Sobolev Embedding Theorem [11]. The two norms used for evaluating (fq−1)2 and (f − f̂)2

should be dual norms of each other. Also, we should select the norm for evaluating (f − f̂)2 in a
way that it’s easy to estimate f under the selected norm, which helps us control the error induced by
(f − f̂)2. A detailed explanation of how to select the proper norms in different cases via the Sobolev
Embedding Theorem is exhibited in Figure 2. In the first regime when s > d

p , we can directly embed

f in L∞(Ω) and attain a final convergence rate of magnitude n−
s
d−

1
2 . For the second regime when

d(2q−p)
p(2q−2) < s < d

p , the smoothness parameter s is not large enough to ensure that f ∈ L∞(Ω). Thus,

we evaluate the estimation error (f − f̂)2 under the L
p
2 norm and embed the square of the influence

function (qfq−1)2 in the dual space of L
p
2 (Ω). Here the validity of such embedding is ensured by

the lower bound d(2q−p)
p(2q−2) on s. Moreover, the semi-parametric influence part is still dominant in

the second regime, so the final convergence rate is the same as that of the first case. In the third
regime, when d(2q−p)

2pq < s < d(2q−p)
p(2q−2) , the semi-parametric influence no longer dominates and the

final converge rate transits from n−
s
d−

1
2 to nq(

1
p−

s
d )−1.

When the sufficient smoothness assumption breaks, i.e. s < d(2q−p)
2pq , according to the Sobolev

Embedding Theorem [11], the Sobolev space W s,p is embedded in L
dp

d−sp and dp
d−sp < 2q. This

indicates that rare and extreme events might be present, and they are not even guaranteed to have
bounded L2q norm, which makes the Monte Carlo estimate of the q-th moment have infinite variance.
Under this scenario, we consider a truncated version of the Monte Carlo algorithm, which can
be proved to attain the minimax optimal rate of magnitude nq(

1
p−

s
d )−1. In contrast, the usage of
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regression-adjusted control variates does not improve the convergence rate under this scenario. Our
results reveal how the existence of rare events will change answers to the questions raised at the
beginning of the section.

We also use the estimation of a linear functional as an example to investigate the algorithm’s adaptivity
to the noise level. In this paper, we provide minimax lower bounds for estimating the integral of a
fixed function with a general assumption on the noise level. Specifically, we consider all estimators
that have access to observations {xi, f(xi) + ϵi}ni=1 of some function f that is s-Hölder smooth,
where xi

i.i.d∼ Uniform([0, 1]d) and ϵi
i.i.d∼ n−γN (0, 1) for some γ > 0. Based on the method of two

fuzzy hypotheses, we present a lower bound of magnitude nmax{− 1
2−γ,−

1
2−

s
d}, which exhibits a

smooth transition from the Monte Carlo rate to the Quasi-Monte Carlo rate. At the same time, our
information-theoretic lower bound also matches the upper bound built for quadrature rules taking use
of non-parametric regression-adjusted control variates.

1.1 Related Work

Regression-Adjusted Control Variate The control variate method is a technique used for variance
reduction in Monte-Carlo simulation. Consider the task of estimating the expectation EX for some
random variable X . The idea of control variate method is to introduce another random variable Y
correlated with the random variable X , such that the random variable X − Y has smaller variance
thanX . Since EX = E[X−Y ]+E[Y ] and E[Y ] is deterministic, one may obtain a variance reduced
estimator of E[X] by summing up E[Y ] and an empirical estimate of E[X − Y ]. Such a random
variable Y is called a control variate. Regression-adjusted control variate, in particular, refers to the
case when Y is obtained by applying regression methods to observed data samples of X .

Regression-adjusted control variates have shown both theoretical and empirical improvements in a
wide range of applications, including the construction of confidence intervals [12, 13], randomized
trace-estimation [14, 15], dimension reduction [16], causal inference [17], light transport simulation
[18], MCMC simulation [19], estimation of the normalizing factor [10] and gradient estimation
[20, 21]. It is also used as a technique for proving the approximation bounds on two-layer neural
networks in the Barron space [22].

Regarding literature most related to our work, we mention [3, 7, 8, 10], which also study the theoretical
properties of nonparametric control variate estimator. However, the theoretical analysis in [3, 7] does
not provide a specific convergence rate in the Reproducing Kernel Hilbert Space, which requires a
high level of smoothness for the underlying function. In contrast to prior work, our research delves
into the effectiveness of a non-parametric regression-adjusted control variate in boosting convergence
rates across various degrees of smoothness assumptions and identifies the key factor that determines
the efficacy of these control variates.

Quadrature Rule There is a long literature on building quadrature rules in the Reproducing
Kernel Hilbert Space, including Bayes–Hermite quadrature [23, 24, 25, 26, 27], determinantal point
processes [28, 29, 30, 31], Nyström approximation [32, 33], kernel herding[34, 35, 36] and kernel
thinning [37, 38, 39]. Nevertheless, the quadrature points chosen in these studies all have the ability to
reconstruct the function’s information, which results in a suboptimal rate for estimating the moments.

Functional Estimation There are also lines of research that investigated the optimal rates of
estimating both linear [8, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50] and nonlinear [51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61, 62, 63, 64] functionals, such as integrals and the Lq norm. However, as far
as the authors know, previous works on this topic have assumed sufficient smoothness, which rules
out the existence of rare and extreme events that are hard to simulate. Additionally, existing proof
techniques are only applicable in scenarios where there is either no noise or a constant level of noise
present. We have developed a novel and unified proof technique that leverages the method of two
fuzzy hypotheses, which allows us to account for not only rare and extreme events but also different
levels of noise.

1.2 Contribution

• We determine all the regimes when a quadrature rule utilizing a nonparametric estimator as a
control variate to reduce the Monte Carlo estimate’s variance can boost the convergence rate
of estimating the moments of a Sobolev function. Under sufficient smoothness assumption,
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Truncate Monte Carlo Regression-adjusted Control Variate

max {( 1
p

− s
d ) q − 1, − 1

2 − s
d }

1
p

= s
d

1
p

− s
d

= 1
2q

Embed f in L∞
Embed f in L

pd
d − sp

Lp

Minimax rate

L
2pq − 2p

p − 2

Estimation in L
2p*

p* + 2 − 2q Estimation in L2

−1/2

Choose an embedding good for both evaluating the 
semi-parametric hardness and function estimation

Figure 2: We summarize the minimax optimal rates and the corresponding optimal algorithms with
respect to the function smoothness here. When the function is smooth enough, regression-adjusted
control variates can improve the Monte Carlo rate. However, when there exist rare and extreme events
that are hard to simulate, truncating the Monte Carlo estimate directly yields a minimax optimal
algorithm. Above the transition point of algorithm selection is s = d(2q−p)

2pq , while the transition

point of the optimal convergence rate is s = d(2q−p)
p(2q−2) . To build the optimal convergence guarantee for

any algorithm that utilizes a regression-adjusted control variate f̂ , we need to embed the square of
the influence function (qfq−1)2 in an appropriate space via the Sobolev Embedding Theorem and
evaluate the estimation error (f − f̂)2 under the dual norm of the norm associated with the chosen
space, which allows us to achieve optimal semi-parametric efficiency. Our selections of the metrics
in different regimes are shown in this figure.

which rules out the existence of rare and extreme events due to the Sobolev Embedding
Theorem, the regression-adjusted control variate improves the convergence rate and achieves
the minimax optimal rate. Without the sufficient smoothness assumption, however, there
may exist rare and extreme events that are hard to simulate. In this circumstance, we
discover that a truncated version of the Monte Carlo method is minimax optimal, while
regression-adjusted control variate can’t improve the convergence rate.

• As far as the authors know, our paper is the first work considering this problem without
assuming that the underlying function f is uniformly bounded. All previous work assumed
that s > d

p , which implies f ∈ L∞(Ω) and neglects the possibility of spike functions. As a
result, they were unable to discover the transition between the two regimes described above.
Under the assumption that s > d(2q−p)

2pq , the main difficulty in establishing the convergence
guarantee lies in determining the right evaluation metric for function estimation. To select a
suitable metric, we introduce a new proof technique by embedding the influence function
into an appropriate space via the Sobolev Embedding Theorem and evaluating the function
estimation in the corresponding dual norm to achieve optimal semi-parametric efficiency.
Our selection of the proper embedding metrics is shown in Figure 2.

• To study how the regression adjusted control variate adapts to the noise level, we examine
the linear functionals, i.e. the definite integral. We prove that this method is minimax
optimal regardless of the level of noise present in the observed data.

1.3 Notations

Let ∥ · ∥ be the standard Euclidean norm and Ω = [0, 1]d be the unit cube in Rd for any fixed d ∈ N.
Also, let 1 = 1{·} denote the indicator function, i.e, for any event A we have 1{A} = 1 if A is
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true and 1{A} = 0 otherwise. For any region R ⊆ Ω, we use V (R) :=
∫
Ω
1{x ∈ R}dx to denote

the volume of R. Let C(Ω) denote the space of all continuous functions f : Ω → R and ⌊·⌋ be the
rounding function. For any s > 0 and f ∈ C(Ω), we define the Hölder norm ∥ · ∥Cs(Ω) by

∥f∥Cs(Ω) := max
|k|≤⌊s⌋

∥Dkf∥L∞(Ω) + max
|k|=⌊s⌋

sup
x,y∈Ω,x ̸=y

|Dkf(x)−Dkf(y)|
∥x− y∥s−⌊s⌋ . (1.1)

The corresponding Hölder space is defined as Cs(Ω) :=
{
f ∈ C(Ω) : ∥f∥Cs(Ω) < ∞

}
. When

s = 0, we have that the two norms ∥ · ∥C0(Ω) and ∥ · ∥L∞(Ω) are equivalent and C0(Ω) = L∞(Ω).
Let N0 := N∪{0} be the set of all non-negative integers. For any s ∈ N0 and 1 ≤ p ≤ ∞, we define
the Sobolev space W s,p(Ω) by

W s,p(Ω) :=
{
f ∈ Lp(Ω) : Dαf ∈ Lp(Ω),∀ α ∈ Nd0 satisfying |α| ≤ s

}
. (1.2)

Let (c)+ denote max{c, 0} for any c ∈ R. Fix any two non-negative sequences {an}∞n=1 and
{bn}∞n=1. We write an ≲ bn, or an = O(bn), to denote that an ≤ Cbn for some constant C
independent of n. Similarly, we write an ≳ bn, or an = ω(bn), to denote that an ≥ cbn for some
constant c independent of n. We use an = Θ(bn) to denote that an = O(bn) and an = ω(bn).

2 Information-Theoretic Lower Bound on Moment Estimation

Problem Setup To understand how the non-parametric regression-adjusted control variate improves
the Monte Carlo estimator’s convergence rate, we consider a prototype problem that estimates a
function’s q-th moment. For any fixed q ∈ N and f ∈ W s,p(Ω), we want to estimate the q-th
moment Iqf :=

∫
Ω
fq(x)dx with n random quadrature points {xi}ni=1 ⊂ Ω. On each quadrature

point xi (i = 1, · · · , n), we can observe the function value yi := f(xi).

In this section, we study the information-theoretic limit for the problem above via the method of two
fuzzy hypotheses [65]. We have the following information-theoretic lower bound on the class Hf,q

n

that contains all estimators Ĥq : Ωn × Rn → R of the q-th moment Iqf .

Theorem 2.1 (Lower Bound on Estimating the Moment) When p > 2 and q < p < 2q, let Hf
n

denote the class of all the estimators that use n quadrature points {xi}ni=1 and observed function
values {yi = f(xi)}ni=1 to estimate the q-th moment of f , where {xi}ni=1 are independently and
identically sampled from the uniform distribution on Ω. Then we have

inf
Ĥq∈Hf,q

n

sup
f∈W s,p(Ω)

E{xi}ni=1,{yi}ni=1

[ ∣∣∣Ĥq
(
{xi}ni=1, {yi}ni=1

)
− Iqf

∣∣∣ ] ≳ nmax{−q( s
d−

1
p )−1,− 1

2−
s
d}.

(2.1)

Proof Sketch Here we give a sketch for our proof of Theorem 2.1. Our proof is based on the
method of two fuzzy hypotheses, which is a generalization of the traditional Le Cam’s two-point
method. In fact, each hypothesis in the generalized method is constructed via a prior distribution. In
order to attain a lower bound of magnitude ∆ via the method of two fuzzy hypotheses, one needs
to pick two prior distributions µ0, µ1 on the Sobolev space W s,p(Ω) such that the following two
conditions hold. Firstly, the estimators Iqf differ by ∆ with constant probability under the two priors.
Secondly, the TV distance between the two corresponding distributions P0 and P1 of data generated
by µ0 and µ1 is of constant magnitude. In order to prove the two lower bounds given in (2.1), we
pick two different pairs of prior distributions as follows:

Below we set m = Θ(n
1
d ) and divide the domain Ω into md small cubes Ω1,Ω2, · · · ,Ωmd , each of

which has side length m−1. For any p ∈ (0, 1), we use vp, wp to denote the discrete random variables
satisfying P(vp = 0) = P(wp = −1) = p and P(vp = 1) = P(wp = 1) = 1− p.

(I) For the first lower bound in (2.1), we construct some bump function g ∈ W s,p(Ω) satisfying
supp(g) ⊆ Ω1 and Iqg =

∫
Ω1
g(x)dx = Θ(mq(−s+ d

p )−d). Now let’s take some sufficiently small

constant ϵ ∈ (0, 1) and pick µ0, µ1 to be discrete measures supported on the two finite sets
{
v 1+ϵ

2
g
}

and
{
v 1−ϵ

2
g
}

. On the one hand, the difference between the q-th moments under µ0 and µ1 can be
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lower bounded by Θ(nq(
1
p−

s
d )−1) with constant probability. On the other hand, KL(P0∥P1) can be

upper bounded by the KL divergence between v 1+ϵ
2

and v 1−ϵ
2

, which is of constant magnitude.

(II) For the second lower bound in (2.1), we set M > 0 to be some sufficiently large constant and κ =
Θ( 1√

n
). For any 1 ≤ j ≤ md, we construct bump functions fj ∈W s,p(Ω) satisfying supp(fj) ⊆ Ωj

and Ikfj =
∫
Ωj
fj(x)dx = Θ(m−ks−d) for any 1 ≤ j ≤ md and 1 ≤ k ≤ s. Now let’s pick µ0, µ1 to

be discrete measures supported on the two finite sets
{
M+

∑md

j=1 w
(0)
j fj

}
and

{
M+

∑md

j=1 w
(1)
j fj

}
,

where {w(0)
j }md

j=1 and {w(1)
j }md

j=1 are independent and identical copies ofw 1+κ
2

andw 1−κ
2

respectively.
On the one hand, applying Hoeffding’s inequality yields that the q-th moments under µ0 and µ1

differ by Θ(n−
s
d−

1
2 ) with constant probability. On the other hand, note that KL(P0∥P1) can be

bounded by the KL divergence between two multivariate discrete distributions (w(0)
j1
, · · · , w(0)

jn
) and

(w
(1)
j1
, · · · , w(1)

jn
), where {w(0)

ji
}ni=1 and {w(1)

ji
}ni=1 are independent and identical copies of w 1+κ

2
and

w 1−κ
2

respectively. Hence, KL(P0∥P1) is of constant magnitude.

Combining the two cases above gives us the minimax lower bound in (2.1). We defer a complete
proof of Theorem 2.1 to Appendix B.2.

3 Minimax Optimal Estimators for Moment Estimation

This section is devoted to constructing minimax optimal estimators of the q-th moment. We show
that under the sufficient smoothness assumption, a regression-adjusted control variate is essential for
building minimax optimal estimators. However, when the given function is not sufficiently smooth,
we demonstrate that a truncated version of the Monte Carlo algorithm is minimax optimal, and control
variates cannot give any improvement.

3.1 Sufficient Smoothness Regime: Non-parametric Regression-Adjusted Control Variate

This subsection is devoted to building a minimax optimal estimator of the q-th moment under the
assumption that sd >

1
p−

1
2q , which guarantees that functions in the spaceW s,p are sufficiently smooth.

From the Sobolev Embedding theorem, we know that the sufficient smoothness assumption implies
W s,p(Ω) ⊂ Lp

∗
(Ω) ⊂ L2q(Ω), where 1

p∗ = 1
p −

s
d . Given any function f ∈W s,p(Ω) along with n

uniformly sampled quadrature points {xi}ni=1 and corresponding observations {yi = f(xi)}ni=1 of f ,
the key idea behind the construction of our estimator Ĥq

C is to build a nonparametric estimation f̂ of
f based on a sub-dataset and use f̂ as a control variate for Monte Carlo simulation. Consequently, it
takes three steps to compute the numerical estimation of Iqf for any estimator Ĥq

C : Ωn×Rn → R. The

first step is to divide the observed data into two subsets S1 := {(xi, yi)}
n
2
i=1,S2 := {(xi, yi)}ni=n

2 +1

of equal size and use a machine learning algorithm to compute a nonparametric estimation f̂1:n2 of
f based on S1. Without loss of generality, we may assume that the number of data points is even.
Secondly, we treat f̂1:n2 as a control variate and compute the q-th moment Iq

f̂
. Using the other dataset

S2, we may obtain a Monte Carlo estimate of Iqf − Iq
f̂1:n

2

as follows: Iqf − Iq
f̂1:n

2

≈ 2
n

∑n
i=n

2 +1

(
yqi −

f̂q1:n2
(xi)

)
. Finally, combining the estimation of the q-th moment Iq

f̂1:n
2

=
∫
Ω
f̂q1:n2

(x)dx with the

estimation of Iqf − Iq
f̂1:n

2

gives us the numerical estimation returned by Ĥq
C :

Ĥq
C

(
{xi}ni=1, {yi}ni=1

)
:=

∫
Ω

f̂q1:n2
(x)dx+

2

n

n∑
i=n

2 +1

(
yqi − f̂q1:n2

(xi)
)
. (3.1)

We assume that our function estimation f̂ is obtained from an n
2 -oracle Kn

2
: Ω

n
2 ×Rn

2 →W s,p(Ω)
satisfying Assumption 3.1. For example, there are lines of research [49, 50, 59, 60, 61] considering
how the moving least squares method [66, 67] can achieve the convergence rate in (3.2).
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Assumption 3.1 (Optimal Function Estimator as an Oracle) Given any function f ∈ W s,p(Ω)
and n ∈ N, let {xi}ni=1 be n data points sampled independently and identically from the uniform
distribution on Ω. Assume that for s > 2dq−dp

2pq , there exists an oracle Kn : Ωn × Rn → W s,p(Ω)

that estimates f based on the n points {xi}ni=1 along with the n observed function values {f(xi)}ni=1

and satisfies the following bound for any r satisfying 1
r ∈

(
max{d−sppd , 0},max{ 1

p ,1{s >
d
p}}
]
:(

E{xi}n
i=1

[
∥Kn({xi}ni=1, {f(xi)}ni=1)− f∥rLr(Ω)

]) 1
r

≲ n−
s
d+( 1

p−
1
r )+ . (3.2)

A construction of the desired oracle and a complete proof of the upper bound above (up to logarithm
factors) is deferred to Appendix E. Based on the oracle above, we can obtain the following upper
bound that matches the information-theoretic lower bound in Theorem 2.1.

Theorem 3.1 (Upper Bound on Moment Estimation with Sufficient Smoothness) Assume that
p > 2, q < p < 2q and s > 2dq−dp

2pq . Let {xi}ni=1 be n quadrature points independently and
identically sampled from the uniform distribution on Ω and {yi := f(xi)}ni=1 be the corresponding
n observations of f ∈W s,p(Ω). Then the estimator Ĥq

C constructed in (3.1) above satisfies

E{xi}ni=1,{yi}ni=1

[ ∣∣∣Ĥq
C

(
{xi}ni=1, {yi}ni=1

)
− Iqf

∣∣∣ ] ≲ nmax{−q( s
d−

1
p )−1,− s

d−
1
2}, (3.3)

Proof Sketch Given a non-parametric estimator f̂ of the function f , we may bound the variance of
the Monte Carlo process by (fq − f̂q)2 and further upper bound it by the sum of the following two
terms:

|fq − f̂q|2 ≲ |fq−1(f − f̂)|2︸ ︷︷ ︸
semi-parametric influnce

+ |(f − f̂)q|2︸ ︷︷ ︸
estimation error propagation

.
(3.4)

The first term above represents the semi-parametric influence part of the problem, as qfq−1 is the
influence function for the estimation of the q-th moment fq. The second term characterizes how
function estimation affects functional estimation. If we consider the special case of estimating the
mean instead of a general q-th moment, i.e, q = 1, the semi-parametric influence term will disappear.
Consequently, the convergence rate won’t transit from n−

1
2−

s
d to n−q(

s
d−

1
p )−1 in the special case.

Although the algorithm remains unchanged in the sufficient smooth regime, we need to consider
three separate cases to obtain an upper bound on the integral of the semi-parametric influence term
|fq−1(f − f̂)|2 in (3.4). An illustration of the three cases is given in Figure 2.

From Hölder’s inequality, we know that
∫
Ω
f2q−2(x)(f(x)− f̂(x))2dx can be upper bounded by

∥f2q−2∥Lr′ (Ω)∥(f − f̂)2∥Lr∗ (Ω), where ∥ · ∥Lr′ (Ω) and ∥∥Lr∗ (Ω) are dual norms. Therefore, the
main difficulty here is to embed the function f in different spaces via the Sobolev Embedding
Theorem under different assumptions on the smoothness parameter s. When the function is smooth
enough, i.e. s > d

p , we embed the function f in L∞(Ω) and evaluate the estimation error f − f̂

under the L2 norm. Then our assumption on the oracle (3.2) gives us an upper bound of magnitude
n−

2s
d on ∥f − f̂∥2L2(Ω), which helps us further upper bound the semi-parametric influence part∫

Ω
f2q−2(x)(f(x)− f̂(x))2dx by n−

2s
d up to constants. When d(2q−p)

p(2q−2) < s < d
p , we embed

the function f in L
2pq−2p

p−2 (Ω) ⊆ L
pd

d−sp (Ω) and evaluate the estimation error f − f̂ under the
Lp norm. Applying our assumption on the oracle (3.2) again implies that the semi-parametric
influence part

∫
Ω
f2q−2(x)(f(x)− f̂(x))2dx can be upper bounded by n−

2s
d up to constants. When

d(2q−p)
2pq < s < d(2q−p)

p(2q−2) , we embed the function f in Lp
∗

and evaluate the error of the oracle in

L
2p∗

p∗+2−2q , where 1
p∗ = 1

p − s
d . Similarly, we can use (3.2) to upper bound the semi-parametric

influence part
∫
x∈Ω

f2q−2(x)(f(x)− f̂(x))2dx by n2q(
1
p−

s
d )−1.

The upper bound on the propagated estimation error
∫
x∈Ω

(f(x)− f̂(x))2qdx in (3.4) can be derived
by evaluating the error of the oracle under the L2q norm. i.e, by picking r = 2q in (3.2) above, which
yields an upper bound of magnitude n2q(

1
p−

s
d )−1.
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The obtained upper bounds on the semi-parametric influence part and the propagated estimation
error above provide us with a clear view of the upper bound on the variance of fq − f̂q, which is
the random variable we aim to simulate via Monte-Carlo in the second stage. Using the standard
Monte-Carlo algorithm to simulate the expectation of fq − f̂q then gives us an extra n−

1
2 factor for

the convergence rate, which helps us attain the final upper bounds given in (3.3). A complete proof of
Theorem 3.1 is given in Appendix C.1.

3.2 Beyond the Sufficient Smoothness Regime: Truncated Monte Carlo

In this subsection, we study the case when the sufficient smoothness assumption breaks, i.e. s
d <

1
p − 1

2q . According to the Sobolev Embedding theorem, we have that W p
s is embedded in L

dp
d−sp .

Since 1
p −

s
d >

1
2q implies dp

d−sp < 2q, the underlying function f is not guaranteed to have bounded
L2q norm, which indicates the existence of rare and extreme events. Consequently, the Monte Carlo
estimate of f ’s q-th moment must have infinite variance, which makes it hard to simulate. Here
we present a truncated version of the Monte Carlo algorithm that can achieve the minimax optimal
convergence rate. For any fixed parameter M > 0, our estimator is designed as follows:

Ĥq
M

(
{xi}ni=1, {yi}ni=1

)
:=

1

n

n∑
i=1

max
{
min{yi,M},−M

}q
. (3.5)

In Theorem 3.2, we provide the convergence rate of the estimator (3.5) by choosing the truncation
parameter M in an optimal way.

Theorem 3.2 (Upper Bound on Moment Estimation without Sufficient Smoothness) Assuming
that p > 2, q < p < 2q and s < 2dq−dp

2pq , we pick M = Θ(n
1
p−

s
d ). Let {xi}ni=1 be n

quadrature points independently and identically sampled from the uniform distribution on Ω and
{yi := f(xi)}ni=1 be the corresponding n observations of f ∈ W s,p(Ω). Then we have that the
estimator Ĥq

M constructed in (3.5) above satisfies

E{xi}ni=1,{yi}ni=1

[ ∣∣∣Ĥq
M

(
{xi}ni=1, {yi}ni=1

)
− Iqf

∣∣∣ ] ≲ n−q(
s
d−

1
p )−1. (3.6)

Proof Sketch The error can be decomposed into bias and variance parts. The bias part is caused
by the truncation in our algorithm, which is controlled by the parameter M and can be bounded by∫
{x:|f(x)|>M} |f |

qdx. According to the Sobolev Embedding Theorem, W s,p(Ω) can be embedded in

the space Lp
∗
, where 1

p∗ = 1
p −

s
d . As |f(x)| > M implies |f(x)|q < Mq−p∗ |f(x)|p∗ , the bias can

be upper bounded byMq−p∗ . Similarly, the variance is controlled byM and can be upper bounded by

Mq− p∗
2 . Combining the bias and variance bound, we can bound the final error as Mq−p∗ + Mq− p∗

2√
n

.

By selecting M = Θ(n
1
p∗ ) = Θ(n

1
p−

s
d ), we obtain the final convergence rate n−q(

s
d−

1
p )−1. A

complete proof of Theorem 3.2 is given in Appendix C.2.

Remark 3.1 [64] has shown that the convergence rate of the optimal non-parametric regression-
based estimation is n−

s
d+

1
p−

1
q , which is slower than the convergence rate of the truncated Monte

Carlo estimator that we show above.

4 Adapting to the Noise Level: a Case Study for Linear Functional

In this section, we study how the regression-adjusted control variate adapts to different noise levels.
Here we consider the linear functional, i.e. estimating a function’s definite integral via low-noise
observations at random points.

Problem Setup We consider estimating If =
∫
Ω
f(x)dx, the integral of f over Ω, for a fixed

function f ∈ Cs(Ω) with uniformly sampled quadrature points {xi}ni=1 ⊂ Ω. On each quadrature
point xi (i = 1, · · · , n), we have a noisy observation yi := f(xi)+ϵi. Here the ϵi’s are independently
and identically distributed Gaussian noises sampled from N (0, n−2γ), where γ ∈ [0,∞].
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4.1 Information-Theoretic Lower Bound on Mean Estimation

In this subsection, we present a minimax lower bound (Theorem 4.1) for all estimators Ĥ : Ωn×Rn →
R of the integral If of a function f ∈ Cs(Ω) when one can only access noisy observations.

Theorem 4.1 (Lower Bound for Integral Estimation) Let Hf
n denote the class of all the estima-

tors that use n quadrature points {xi}ni=1 and noisy observations {yi = f(xi) + ϵi}ni=1 to estimate
the integral of f , where {xi}ni=1 and {ϵi}ni=1 are independently and identically sampled from the
uniform distribution on Ω and the normal distribution N (0, n−2γ) respectively. Assuming that
γ ∈ [0,∞] and s > 0, we have

inf
Ĥ∈Hf

n

sup
f∈Cs(Ω)

E{xi}ni=1,{yi}ni=1

[ ∣∣∣Ĥ({xi}ni=1, {yi}ni=1

)
− If

∣∣∣ ] ≳ nmax{− 1
2−γ,−

1
2−

s
d}. (4.1)

Remark 4.1 Functional estimation is a well-studied problem in the literature of nonparametric
statistics. However, current information-theoretic lower bounds for functional estimation [51, 52, 53,
56, 57, 58, 65, 68] assume a constant level of noise on the observed function values. One essential
idea for proving these lower bounds is to leverage the existence of the observational noise, which
enables us to upper bound the amount of information required to distinguish between two reduced
hypotheses. In contrast, we provide a minimax lower bound that is applicable for noises at any
level by constructing two priors with overlapping support and assigning distinct probabilities to the
corresponding Bernoulli random variables, which separates the two hypotheses. A comprehensive
proof of Theorem 4.1 is given in Appendix D.2.

4.2 Optimal Nonparametric Regression-Adjusted Quadrature Rule

In the discussion below, we use the nearest-neighbor method as an example. For any k ∈
{1, 2, · · · , n2 }, the k-nearest neighbor estimator f̂k-NN of f is given by f̂k-NN(z) :=

1
k

∑k
j=1 yi(z)j

,

where {x
i
(z)
j

}
n
2
j=1 is a permutation of the quadrature points {xi}

n
2
i=1 such that ∥x

i
(z)
1

− z∥ ≤
∥x

i
(z)
2

− z∥ ≤ · · · ≤ ∥x
i
(z)
n
2

− z∥ holds for any z ∈ Ω. Moreover, we use Tk,z := {x
i
(z)
j

}kj=1

to denote the collection of the k nearest neighbors of z among {xi}
n
2
i=1 for any z ∈ Ω. For any

1 ≤ i ≤ n
2 , we take Di ⊂ Ω to be the region formed by all the points whose k nearest neighbors

contain xi, i.e, Di :=
{
z ∈ Ω : xi ∈ Tk,z

}
. Our estimator Ĥk-NN can be formally represented as

Ĥk-NN

(
{xi}ni=1, {yi}ni=1

)
=

n
2∑
i=1

V (Di)

k
yi︸ ︷︷ ︸∫

Ω
f̂k-NN(x)dx

+
2

n

n∑
i=n

2 +1

yi −
2

n

n∑
i=n

2 +1

(1
k

n
2∑
j=1

1{xi ∈ Dj}yj
)

︸ ︷︷ ︸
2
n

∑n
i=n

2
+1

(
yi−f̂k-NN(xi)

)
.

In the following theorem, we present an upper bound on the expected risk of the estimator Ĥk-NN:

Theorem 4.2 (Matching Upper Bound for Integral Estimation) Let {xi}ni=1 be n quadrature
points independently and identically sampled from the uniform distribution on Ω and {yi :=
f(xi) + ϵi}ni=1 be the corresponding n noisy observations of f ∈ Cs(Ω), where {ϵi}ni=1 are
independently and identically sampled from the normal distribution N (0, n−2γ). Assuming that
γ ∈ [0,∞] and s ∈ (0, 1), we have that there exists k ∈ N such that the estimator Ĥk-NN constructed
above satisfies

E{xi}ni=1,{yi}ni=1

[ ∣∣∣Ĥk-NN

(
{xi}ni=1, {yi}ni=1

)
− If

∣∣∣ ] ≲ nmax{− 1
2−γ,−

1
2−

s
d}. (4.2)

Remark 4.2 Our upper bound in Theorem 4.2 matches our minimax lower bound in Theorem 4.1,
which indicates that the regression-adjusted quadrature rule associated with the nearest neighbor
estimator is minimax optimal. When the noise level is high (γ < s

d ), the control variate helps
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to improve the rate from n−
1
2 (the Monte Carlo rate) to n−

1
2−γ via eliminating all the effects of

simulating the smooth function. When the noise level is low (γ > s
d ), we show that our estimator

Ĥk-NN can achieve the optimal rate of quadrature rules [46]. We defer a complete proof of Theorem
4.2 to Appendix D.3.

5 Discussion and Conclusion

In this paper, we have investigated whether a non-parametric regression-adjusted control variate can
improve the rate of estimating functionals and its minimax optimality. Using the Sobolev Embedding
Theorem, we discover that the existence of infinite variance rare and extreme events will change the
answer to this question. We show that when infinite variance rare and extreme events are present,
using a non-parametric machine learning algorithm as a control variate does not help to improve
the convergence rate, and truncated Monte Carlo is minimax optimal. When the variance of the
simulation problem is finite, using a regression-adjusted control variate via an optimal non-parametric
estimator is minimax optimal.

The assumptions we made in this paper, such as boundedness of the domain Ω and constraints on the
parameters p, q, might be too restrictive for some application scenarios. We left relaxations of these
assumptions as future work. One other potential direction is to investigate how to combine importance
sampling with regression-adjusted control variates. Also, the study of how regression-adjusted control
variates adapt to the noise level for non-linear functionals [62, 63] may be of interest. Moreover,
another intriguing project is to analyze how the data distribution’s information [3, 7] can be used to
achieve both better computational trackability and convergence rate [8].

Acknowledgments and Disclosure of Funding

Jose Blanchet is supported in part by the Air Force Office of Scientific Research (AFOSR) under
award number FA9550-20-1-0397 and the National Science Foundation (NSF) under award number
DMS-1915967. Haoxuan Chen is supported by the T. S. Lo Graduate Fellowship Fund. Yiping Lu is
supported by the Stanford Interdisciplinary Graduate Fellowship (SIGF). Lexing Ying is supported
by the National Science Foundation (NSF) under award number DMS-2011699 and DMS-2208163.

References
[1] Søren Asmussen and Peter W Glynn. Stochastic simulation: algorithms and analysis, volume 57.

Springer, 2007.

[2] Russell Davidson and James G MacKinnon. Regression-based methods for using control
variates in monte carlo experiments. Journal of Econometrics, 54(1-3):203–222, 1992.

[3] Chris Oates and Mark Girolami. Control functionals for quasi-monte carlo integration. In
Artificial Intelligence and Statistics, pages 56–65. PMLR, 2016.

[4] Fred J Hickernell, Christiane Lemieux, and Art B Owen. Control variates for quasi-monte carlo.
Statistical Science, 20(1):1 – 31, 2005.

[5] Roland Assaraf and Michel Caffarel. Zero-variance principle for monte carlo algorithms.
Physical review letters, 83(23):4682, 1999.

[6] Antonietta Mira, Reza Solgi, and Daniele Imparato. Zero variance markov chain monte carlo
for bayesian estimators. Statistics and Computing, 23:653–662, 2013.

[7] Chris J Oates, Mark Girolami, and Nicolas Chopin. Control functionals for monte carlo
integration. Journal of the Royal Statistical Society. Series B (Statistical Methodology), pages
695–718, 2017.

[8] Chris J Oates, Jon Cockayne, François-Xavier Briol, and Mark Girolami. Convergence rates for
a class of estimators based on stein’s method. Bernoulli, 25(2):1141 – 1159, 2019.

[9] Leah F South, CJ Oates, A Mira, and C Drovandi. Regularised zero-variance control variates.
arXiv preprint arXiv:1811.05073, 2018.

10



[10] David Holzmüller and Francis Bach. Convergence rates for non-log-concave sampling and
log-partition estimation. arXiv preprint arXiv:2303.03237, 2023.

[11] Robert A Adams and John JF Fournier. Sobolev spaces. Elsevier, 2003.

[12] Anastasios N Angelopoulos, Stephen Bates, Clara Fannjiang, Michael I Jordan, and Tijana
Zrnic. Prediction-powered inference. arXiv preprint arXiv:2301.09633, 2023.

[13] Yaniv Romano, Evan Patterson, and Emmanuel Candes. Conformalized quantile regression.
Advances in neural information processing systems, 32, 2019.

[14] Raphael A Meyer, Cameron Musco, Christopher Musco, and David P Woodruff. Hutch++:
Optimal stochastic trace estimation. In Symposium on Simplicity in Algorithms (SOSA), pages
142–155. SIAM, 2021.

[15] Lin Lin. Randomized estimation of spectral densities of large matrices made accurate. Nu-
merische Mathematik, 136:183–213, 2017.

[16] Aleksandros Sobczyk and Mathieu Luisier. Approximate euclidean lengths and distances
beyond johnson-lindenstrauss. arXiv preprint arXiv:2205.12307, 2022.

[17] Hanzhong Liu and Yuehan Yang. Regression-adjusted average treatment effect estimates in
stratified randomized experiments. Biometrika, 107(4):935–948, 2020.

[18] Thomas Müller, Fabrice Rousselle, Alexander Keller, and Jan Novák. Neural control variates.
ACM Transactions on Graphics (TOG), 39(6):1–19, 2020.

[19] Denis Belomestny, Artur Goldman, Alexey Naumov, and Sergey Samsonov. Theoretical
guarantees for neural control variates in mcmc. arXiv preprint arXiv:2304.01111, 2023.

[20] Jiaxin Shi, Yuhao Zhou, Jessica Hwang, Michalis Titsias, and Lester Mackey. Gradient
estimation with discrete stein operators. Advances in Neural Information Processing Systems,
35:25829–25841, 2022.

[21] Hao Liu, Yihao Feng, Yi Mao, Dengyong Zhou, Jian Peng, and Qiang Liu. Action-depedent
control variates for policy optimization via stein’s identity. arXiv preprint arXiv:1710.11198,
2017.

[22] Jonathan W Siegel and Jinchao Xu. High-order approximation rates for shallow neural networks
with cosine and reluk activation functions. Applied and Computational Harmonic Analysis,
58:1–26, 2022.

[23] Anthony O’Hagan. Bayes–hermite quadrature. Journal of statistical planning and inference,
29(3):245–260, 1991.

[24] Motonobu Kanagawa, Bharath K Sriperumbudur, and Kenji Fukumizu. Convergence guarantees
for kernel-based quadrature rules in misspecified settings. Advances in Neural Information
Processing Systems, 29, 2016.

[25] Francis Bach. On the equivalence between kernel quadrature rules and random feature expan-
sions. The Journal of Machine Learning Research, 18(1):714–751, 2017.

[26] Toni Karvonen and Simo Sarkka. Fully symmetric kernel quadrature. SIAM Journal on Scientific
Computing, 40(2):A697–A720, 2018.

[27] Motonobu Kanagawa and Philipp Hennig. Convergence guarantees for adaptive bayesian
quadrature methods. Advances in Neural Information Processing Systems, 32, 2019.

[28] Ayoub Belhadji, Rémi Bardenet, and Pierre Chainais. Kernel quadrature with dpps. Advances
in Neural Information Processing Systems, 32, 2019.

[29] Ayoub Belhadji. An analysis of ermakov-zolotukhin quadrature using kernels. Advances in
Neural Information Processing Systems, 34:27278–27289, 2021.

11



[30] Rémi Bardenet and Adrien Hardy. Monte carlo with determinantal point processes. Annals of
Applied Probability, 2020.

[31] Guillaume Gautier, Rémi Bardenet, and Michal Valko. On two ways to use determinantal point
processes for monte carlo integration. Advances in Neural Information Processing Systems, 32,
2019.

[32] Satoshi Hayakawa, Harald Oberhauser, and Terry Lyons. Positively weighted kernel quadrature
via subsampling. arXiv preprint arXiv:2107.09597, 2021.

[33] Satoshi Hayakawa, Harald Oberhauser, and Terry Lyons. Sampling-based nyström approxima-
tion and kernel quadrature. arXiv preprint arXiv:2301.09517, 2023.

[34] Yutian Chen, Max Welling, and Alex Smola. Super-samples from kernel herding. arXiv preprint
arXiv:1203.3472, 2012.

[35] Simon Lacoste-Julien, Fredrik Lindsten, and Francis Bach. Sequential kernel herding: Frank-
wolfe optimization for particle filtering. In Artificial Intelligence and Statistics, pages 544–552.
PMLR, 2015.

[36] Ferenc Huszár and David Duvenaud. Optimally-weighted herding is bayesian quadrature. arXiv
preprint arXiv:1204.1664, 2012.

[37] Wilson Ye Chen, Lester Mackey, Jackson Gorham, François-Xavier Briol, and Chris Oates.
Stein points. In International Conference on Machine Learning, pages 844–853. PMLR, 2018.

[38] Raaz Dwivedi and Lester Mackey. Kernel thinning. arXiv preprint arXiv:2105.05842, 2021.

[39] Raaz Dwivedi and Lester Mackey. Generalized kernel thinning. arXiv preprint
arXiv:2110.01593, 2021.

[40] Erich Novak. Deterministic and stochastic error bounds in numerical analysis, volume 1349.
Springer, 2006.

[41] Joseph F Traub, GW Wasilkowski, H Wozniakowski, and Erich Novak. Information-based
complexity. SIAM Review, 36(3):514–514, 1994.

[42] E Novak and H Wozniakowski. Tractability of multivariate problems, volume i: Linear
information, european math. Soc., Zürich, 2(3), 2008.
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