
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

METALINT: GENERALIZABLE IDIOMATIC CODE
QUALITY ANALYSIS THROUGH INSTRUCTION-
FOLLOWING AND EASY-TO-HARD GENERALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models, though successful in code generation, struggle with code
quality analysis because they are limited by static training data and can’t eas-
ily adapt to evolving best practices. We introduce METALINT, an instruction-
following framework that formulates code quality analysis as the task of detecting
and fixing problematic semantic code fragments or code idioms based on high-
level specifications. Unlike conventional approaches that train models on static
code quality conventions, METALINT employs instruction tuning on synthetic
linter-generated data with dynamic conventions to support easy-to-hard gener-
alization, enabling models to adapt to novel or complex code patterns without
retraining. To evaluate this, we construct a benchmark of challenging idioms
inspired by real-world coding standards such as Python Enhancement Propos-
als (PEPs) and assess whether METALINT-trained models reason adaptively or
simply memorize. Our results show that METALINT training improves gener-
alization to unseen idioms. Qwen3-4B attains a 70.37% F-score on a manually
curated and challenging PEP idiom detection benchmark, achieving the highest
recall (70.43%) among all evaluated models. For localization, it reaches 26.73%,
which is a strong outcome for its 4B parameter size and comparable to larger
state-of-the-art models such as o3-mini, highlighting its potential for future-proof
code quality analysis. Furthermore, METALINT training enables generalization in
idiom detection across model families, model scales, synthetic data from diverse
linters, and Java idioms, demonstrating the general applicability of our approach.
We plan to release our code and data to enable reproducibility and further work.

1 INTRODUCTION

With the rise of Large Language Models (LLM) of code, concerns around the quality of generated
code, such as readability, maintainability, efficiency, and security, have become increasingly promi-
nent Singhal et al. (2024); Zheng et al. (2024). Researchers have been investigating the potential
of LLMs to evaluate and improve code quality through benchmarks (Chambon et al., 2025; Singhal
et al., 2024; Zheng et al., 2024; Waghjale et al., 2024), code review agents (Vijayvergiya et al., 2024;
Rasheed et al., 2024), and static analysis with LLMs (Fang et al., 2025; Holden & Kahani, 2024;
Khare et al., 2023). Several evaluation studies indicate that LLMs struggle with this task Singhal
et al. (2024); Zheng et al. (2024), while attempts to improve them through prompting or training
are limited by task-specific, static datasets often grounded in narrow or outdated coding practices
(Vijayvergiya et al., 2024; Khare et al., 2023; Holden & Kahani, 2024; Zhang et al., 2024b). As a
result, these systems often perform poorly when detecting rare issue types or when applied to code
distributions that differ from their training data (Holden & Kahani, 2024). They may also over-flag
outdated best practices, leading to a negative user experience and wasted time (Vijayvergiya et al.,
2024). Ideally, we would develop LLM systems that can identify code quality issues without explicit
supervision for target idioms—especially hard or rare patterns—and adapt to evolving best practices
over time.

We approach this problem by training the LLM on a more general task: understanding and detect-
ing semantic blocks of code, also known as code idioms. For example, a commonly used idiom
for generating secrets or passwords in Python is to use the random.choice standard library

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

function. However, as noted in PEP 506 (D’Aprano, 2017), it is cryptographically insecure and
Python documentation explicitly warns against using this module for security reasons, which is of-
ten missed by developers, as highlighted by accepted answers on forums like StackOverflow. PEP
506 also introduces a more secure semantic block or idiom in the form of the secrets module
and the secrets.choice function, which acts as a safer alternative to the random.choice
idiom. As illustrated by this example, detecting and locating idioms associated with bad practices
can be leveraged for identifying code quality issues like code smells (Wikipedia contributors, 2024)
or Common Weakness Enumerations (CWE) (MITRE Corporation, 2024). Additionally, these is-
sues can be addressed by replacing instances of “bad” idioms with corresponding “good” idioms
that align with best practices. Moreover, for this example and similar abstract idioms, constructing
a precise rule-based approach is difficult. Simply flagging any use of random.choice, even in
non-security-critical scenarios (e.g., randomization in a game engine), could result in a poor user
experience. Vijayvergiya et al. (2024) show that LLMs can capture abstract notions of code quality,
such as code idioms where building a linter or rule-based approach is challenging, by incorporating
semantic reasoning about code and developer intent.

In this work, we train LLMs to recognize code idioms through a higher-level instruction-following
task dubbed “meta-linting”: given a specification of a best-practice code idiom I , the model learns
to identify and localize non-idiomatic code fragments. Our pipeline is designed to support easy-to-
hard generalization (Sun et al., 2024b). The easy cases involve simple idioms that can already be
captured by existing linters, while the hard cases correspond to nuanced patterns such as PEP 506,
where constructing precise rule-based checks is infeasible. To enable this, we generate synthetic
training data for easy idioms using available linters and leverage it to improve performance on harder
cases where linter support is lacking. While prior work such as Zhang et al. (2024c;b) has explored
automated refactoring of non-idiomatic Python code, including the use of LLMs with prompting,
our focus differs in three ways. First, we target challenging idioms beyond the reach of current
linters. Second, we train on easy idioms with the goal of transferring detection ability to harder
cases. Finally, we emphasize adaptability, aiming for LLMs that can accommodate evolving best
practices provided in-context as instructions and examples, rather than memorizing a static rule sets.

To tackle meta-linting, we introduce METALINT, a training framework motivated by prior work
showing that instruction tuning enables cross-task generalization and improves performance on un-
seen tasks (Mishra et al., 2021a; Sanh et al., 2021; Wang et al., 2022). Since meta-linting treats
each idiom as a distinct task or code quality judgment, instruction fine-tuning (IFT) and preference
optimization (PO) naturally extend detection ability to novel idioms. Existing linters (e.g., Ruff (ruf)
for Python and PMD (pmd) for Java) provide large-scale synthetic data by enforcing simple idioms,
which we use both for supervised IFT and as verifiers during PO to improve performance on harder
idioms. To systematically study this generalization, we construct a benchmark of challenging idioms
derived from popular PEPs introducing high-level constructs. We evaluate state-of-the-art reasoning
and code models on this benchmark and compare them with METALINT trained models, examining
whether they can move beyond memorizing easy idioms.
Our key contributions are:
1. We introduce METALINT, a training framework that leverages instruction following and synthetic

data to enable easy-to-hard generalization while remaining adaptable to evolving best practices.
2. We construct a benchmark of challenging, broadly relevant code-quality idioms inspired by PEPs

to evaluate the extent of easy-to-hard generalization achieved by METALINT.
3. We benchmark state-of-the-art code and reasoning models on our PEP hard-idiom benchmark and

compare them against METALINT-trained models. Our method achieves the highest detection
recall and competitive localization scores, even with smaller 4B models and without test-time
compute.

4. We show that METALINT generalizes across programming languages (Python, Java), model fam-
ilies (Qwen, Llama), linters (Ruff, PMD, Tree-Sitter), test-time reasoning settings (with and
without CoT), and model scales (3B–8B).

2 RELATED WORK

Code Quality Analysis with Large Language Models. A large body of prior work has explored the
use of LLMs for code quality analysis through code review and static analysis. Tools like GPTLint
(Travis Fischer, 2024) and lintrule (lin, 2023) treat LLMs as rule-guided linters via prompting or

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

fine-tuning. While Blyth et al. (2025) proposes a static analysis-driven prompting framework to im-
prove LLM-generated code, Du et al. (2025) conversely uses LLMs to enhance static analysis tools
by reducing false-positives. LintLLM (Fang et al., 2025) and (Shin et al., 2025) leverages LLMs
for linting of Verilog and Quantum computing code. Khare et al. (2023) show LLMs outperform
traditional static analysis tools for security-related CWEs with step-by-step reasoning. Vijayvergiya
et al. (2024) train LLMs for best practice violation detection and localization, while Rasheed et al.
(2024) design a multi-agent review pipeline for maintainability, efficiency, and bugs. Other works
(Jiang et al., 2025b; Yao et al., 2025) use prefix-tuning and reinforcement learning with static anal-
ysis–based rewards for higher-quality, functionally correct code generation. Naik et al. (2024) and
Jaoua et al. (2025) integrate LLMs with linters to produce more informative code reviews. RIdiom
(Zhang et al., 2024c) introduces a rule-based way to identify and refactor non-idiomatic Python
code with AST rewrite rules, while Zhang et al. (2024b) combines LLMs and rule-based detectors
but doesn’t explore nuanced idioms like PEP 506 or training LLMs to keep up with evolving best
practices. Finally, CoUpJava (Jiang et al., 2025a) presents Java version upgrade benchmarks, con-
ceptually similar to our hard PEP idiom benchmark for Python. Although prior work demonstrates
the potential of LLMs for code quality tasks, it focuses on fixed rule sets or best practices that re-
quire retraining as they evolve. In contrast, we train models to interpret high-level specifications and
perform static analysis, enabling broader generalization.

Instruction Following for Generalization. Instruction tuning has emerged as a powerful form of
meta-learning that enables cross-task generalization by training models to interpret and follow natu-
ral language instructions rather than learning fixed tasks. Prior work shows diverse task instructions
allow models to extract underlying task abstractions and apply them to unseen settings (Mishra et al.,
2021b; Wang et al., 2022). Large-scale instruction tuning further improves zero- and few-shot gen-
eralization across tasks and modalities (Wei et al., 2021; Chung et al., 2022; Gao et al., 2021; Iyer
et al., 2022; Brown et al., 2020). Instructions serve as high-density task representations, substitut-
ing supervision (Puri et al., 2022) and enabling generalization even with minimal labeled data or
pseudo-labeled examples (Gu et al., 2022). Studies also show that instruction diversity drives gen-
eralization, with varied instructions outperforming repeated exposure to identical formats (Charton
et al., 2024). This phenomenon holds across domains, including program synthesis where task-level
prompting facilitates generalization in code generation models (Niu et al., 2023). SELF-GUIDE
(Zhao et al., 2024) performs task-specific instruction following using synthetic data, demonstrating
effectiveness, but relying entirely on LLM-generated data without verifiers. These results suggest
instruction tuning acts as task-level meta-learning, enabling models to adapt to new tasks through
natural language. Building on this we model specific code quality idioms as individual tasks and
generate large-scale synthetic data for each meta-task to support cross-idiom generalization. This
allows the trained model to keep pace with new idioms and evolving best practices. We also discuss
additional related work on easy-to-hard generalization in Appendix B.

3 METHOD

We design the METALINT framework to teach an LLM to operationalize idiom descriptions pro-
vided in context, rather than memorizing specific idioms, thereby enabling adaptation to novel id-
ioms at test time. We formulate idiom detection as an instruction-following meta-task MI for a given
idiom I , where the prompt includes a natural language description DI and illustrative examples EI ,
denoted as MI = {DI , EI}. The LLM must identify all and only those code fragments that match
idiom I while performing MI . This setup discourages rote memorization and encourages adaptive
reasoning over the prompt’s specification, since flagging violations of any other idiom I ′ ̸= I is
penalized during MI . By framing best practices as meta-tasks, this approach enables the LLM to
remain flexible and better aligned with evolving best practices. We describe the components of our
training framework in Figure 1 and Figure 2 below.

3.1 SYNTHETIC DATA GENERATION

One of the main goals of our meta-task formulation is enabling easy-to-hard generalization. We
train LLMs on a set of “easy” idioms IL that are detectable by existing linters L, and evaluate them
on a harder set IL′ consisting of idioms that linters cannot detect (where L′ denotes the complement
of L, i.e., all idioms not detectable by a linter). Our hypothesis is that training on IL helps the LLM

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

acquire the ability to understand and detect code idioms from in-context descriptions, enabling it
to generalize more effectively to the harder idioms in IL′ compared to the untrained model. Since
idioms in IL are already covered by linters, we can leverage these tools to generate large-scale
synthetic training data and provide supervision. For Python, we use the popular Ruff linter, which
implements over 800 rules spanning syntax modernization, security, readability, etc., while for Java,
we use the PMD static analyzer, which covers 269 idioms as well as some manually written tree-
sitter1 queries inspired by 8 Java Enhancement Protocols (JEPs) (Table 8). We run Ruff, PMD, and
the JEP tree-sitter queries on Python and Java source code files f ∈ F from the STACK (Lozhkov
et al., 2024) dataset, which contains code from a diverse range of GitHub repositories. This allows
us to collect files with either no violations or one or more violations for each idiom in IL. Ruff
also incorporates rules from other linters such as PyFlakes, Bandit, and autoPEP8, making it well-
suited for producing diverse and representative synthetic data. Additionally, to automatically build
the meta-task instruction prompts MIL for each idiom, we scrape rule-specific documentation from
the Ruff and PMD websites, including descriptions and examples. An example prompt, along with
a code file containing lines that violate the idiom, is shown in Appendix C.1. For the JEP tree-sitter
queries, since they are few in number, we manually write the meta-task prompts.

3.2 INSTRUCTION SUPERVISED FINE-TUNING

As discussed in Section 3.1, we train the target LLM Φ on a set of linter-detectable, easy idioms IL,
using the corresponding meta-task specifications MIL and a set of source code files F . The input to
the model consists of a prompt p, which combines a meta-task specification MI for some I ∈ IL
with a source code file f ∈ F . The model’s output is a list of idiom violations in the file, denoted
as Vf,I , formatted as a JSON list with one violation per line (see example output in Appendix C.1).
In cases where there are no violations (|Vf,I | = 0), the model is expected to output the phrase NO
VIOLATIONS FOUND. We attempt to balance the data between positive (violations) and negative
(no violations) examples as much as possible; however, due to the rarity of some Python idioms,
the final distribution is approximately 70:30 in favor of files with no violations for Python data,
but roughly 53:47 (PMD) and 50:50 (JEP Tree-Sitter) for the Java data. This results in a total of
53k synthetic training instances spanning 50 idioms (a subset of all the idioms detectable by Ruff)
for Python Ruff data and 96.8k instances spanning 269 idioms for Java PMD and 127.3k instances
spanning 15 idioms for tree-sitter data, respectively.

3.3 VERIFIABLE REWARD MODEL AND PREFERENCE OPTIMIZATION

For preference optimization, we adopt the RS-DPO approach (Khaki et al., 2024), which combines
rejection sampling (RS) (Touvron et al., 2023) with Direct Preference Optimization (DPO) (Rafailov
et al., 2023) to generate on-policy data from a supervised fine-tuned (SFT) policy model. It samples
k outputs per input, computes rewards for them, and constructs contrastive win–loss pairs based on
the reward distribution and a threshold η (Figure 2). We detail the verifiable linter-based reward
model and contrastive pair sampling procedure below.
Reward Model Design: The reward model evaluates model outputs by comparing predicted viola-
tions against those flagged by the linter, treating the linter’s line numbers (blue circle in “Verifiable
Reward Model”, Figure 1) as ground truth and the model’s predicted lines (yellow circle) as predic-
tions. Reward is computed using set-based precision, recall, and F1-score (visualized via the Venn
diagram in the same figure), based on line-level overlap. Since each meta-task MI corresponds to a
single idiom I , we compute one F1-score (reward) per instance.
Sampling Contrastive Pairs: We begin with an SFT policy model ΦSFT and sample k = 5 outputs
yi, i ∈ {1, . . . , k} for each input x, using a range of temperature values τ = {0, 0.3, 0.5, 0.7, 1.0}
to promote output diversity. Each response yi receives a reward ryi , and for each pair (yi, yj),
we compute the reward gap |ryi

− ryj
|. Pairs with a gap greater than the threshold η = 0.2 are

added to the preference dataset Dp. For any such pair where ryi
≥ ryj

+ η, we assign ywin = yi,
ylose = yj , and store the instance (x, ywin, ylose) ∈ Dp. Following Khaki et al. (2024), we train the
preference-tuned model ΦRL using the DPO objective:

ΦRL = argmax
∑

(x,ywin,ylose)∈Dp

log σ

(
β log

ΦRL(ywin|x)
ΦSFT (ywin|x)

− β log
ΦRL(ylose|x)
ΦSFT (ylose|x)

)
1https://tree-sitter.github.io/tree-sitter/

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Here, σ denotes the sigmoid function, and β = 0.1 is the KL penalty coefficient, corresponding to
low-to-moderate regularization.

3.4 TRAINING WITH REASONING TRACES

Finally, inspired by the success of reasoning-augmented models in code and math tasks, and their
demonstrated effectiveness in improving CWE detection performance in LLMs (Khare et al., 2023),
we propose SFT and DPO methods that incorporate chain-of-thought (CoT) reasoning. To obtain
CoT traces that guide the LLM to correct answers, we adopt a rejection sampling approach (“Re-
jection Sampling SFT” in Figure 2) for SFT data collection. For each input x, we sample k = 5 re-
sponses yi, i ∈ {1, . . . , k}, from a base untrained CoT-capable LLM (e.g., Qwen3-4B), and compute
a reward ryi

for each, following the RS-DPO procedure in Figure 2. Instead of forming contrastive
pairs, we discard any yi with ryi

< γ, where γ = 1, i.e., CoT–response pairs that are incorrect
or improperly formatted. Rewards are applied only to the final response, obtained after parsing the
CoT trace, and we also remove cases where the CoT fails to terminate or yield an answer. If no valid
yi is found for an input x, we skip it. To promote meta-task diversity, we retain at most two valid
responses per input: multiple yi only for violation cases and a single yi otherwise. This maintains
the 71:29 no-violation-to-violation ratio of Ruff Python SFT data, with the latter more likely to fit
within token limits. When excess valid responses exist, we keep the shortest completions, as they
typically reflect more concise reasoning (final answers are of similar token length across samples).
Following this policy, we collect 52.7k Python training instances from Ruff data, which we use to
train the reasoning-enabled base Qwen3-4B with SFT. This yields a CoT-capable SFT model ΦSFT

CoT
for Python code quality analysis. We then apply the RS-DPO procedure in Section 3.3 and Figure 2,
with the only change being that each yi now includes both the CoT trace and final response.

Figure 1: METALINT: (1) Synthetic data generation with linters/tools, (2) Supervised Instruction
Fine-Tuning (SFT) on this data, and (3) Verifiable Reward Model derived from the linter.

Figure 2: METALINT: Preference Optimization using reward model: (4) Rejection Sampling Direct
Preference Optimization (RS-DPO), and (5) Rejection Sampling Supervised Fine-Tuning (RS-SFT).

4 EXPERIMENTS

4.1 EVALUATION METRICS

We evaluate the LLM’s ability to detect idiom violations through two tasks: detection, which as-
sesses whether a given idiom is violated in a code file, and localization, which evaluates whether

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

the model accurately identifies the specific line numbers where the violation occurs. For both tasks,
we report precision, recall, and F-score metrics. Detection metrics are calculated at the corpus level
for each idiom, treating each as a separate class, while localization metrics are computed at the in-
stance level using set-based precision, recall, and F-score for the ground truth and predicted sets of
violating line numbers. To handle potential class imbalance, we use macro-averaging across idioms
and exclude NO VIOLATION as a class to penalize models that only predict NO VIOLATIONS
FOUND (such models will score zero on all detection metrics). For localization, metrics are aver-
aged only across instances with at least one line of idiom violation in the ground truth. Details of
the formal definitions and exact computations of precision, recall, and F-scores for detection and
localization are provided in Appendix D.1.

4.2 GENERALIZATION ON SYNTHETIC DATA

To evaluate whether METALINT training produces adaptive LLMs that handle evolving best prac-
tices and novel idioms at test time, we explore transfer settings spanning Python & Java.
Ruff Python Idioms: We construct a 5.3k-instance synthetic test set spanning 50 Ruff idioms, using
the data generation procedure from Section 3.1. The data has a 74:26 no-violation-to-violation split,
similar to the SFT training set. Idioms are chosen to vary in overlap with training idioms (Figure 3)
and fall into three categories:
In domain. 5 idioms identical to those in SFT training, to assess whether METALINT improves
performance on explicitly trained idioms.
Near transfer. 10 idioms with specifications similar but not identical to training idioms to probe
memorization. Reliance on memorized patterns, may hurt performance due to interference.
Far transfer. 35 idioms distinct from training, to test whether the LLM can follow the provided
specification and adapt to novel idioms at test time.
For these experiments, we use Qwen3-4B (with and without reasoning) and Llama-3.2-3B-Instruct
to study the effect of test-time compute and model family.
PMD and JEP Tree-Sitter Idioms: For Java, we construct two synthetic test sets: 5.1k instances
(54:46 split) spanning 269 PMD idioms, and 6.4k instances (50:50 split) spanning 15 JEP idioms
(Table 5), flagged via tree-sitter queries. We evaluate in-domain performance by training the base
LLM on the corresponding training set (Section 3.2), and also study transfer between PMD and JEP
idioms to test adaptation to novel Java idioms. These experiments use Llama-3.2-3B-Instruct and
Llama-3.1-8B-Instruct to assess the effect of model scale.

4.3 PEP HARD IDIOM BENCHMARK

Benchmark Construction: To test whether METALINT helps LLMs interpret high-level idiom
specifications and generalize to nuanced idioms that linters miss, we construct a benchmark of “hard
idioms” from 15 PEPs defining semantic or abstract behaviors beyond syntax. We design heuristics
per PEP (Table 13, 14 and 15) to detect guideline violations and search the STACK-V2 corpus, pri-
oritizing recall to retrieve broad candidate sets for manual selection. These idioms cannot be reliably
detected by simple pattern matching, making them ideal for evaluating model’s true understanding
versus rote memorization. From the candidates, we handpick 15–20 representative files per PEP, and
annotate the precise line ranges (“start” and “end”) of the violated code, providing ground-truth for
localization. We add negative examples for each PEP by picking files retrieved for a different PEP
and making sure the current PEP is not violated, in order to have a balanced distribution of violation
and no-violation cases. The final benchmark contains 536 examples (52% violations, 48% violation-
free), enabling evaluation of METALINT’s generalization from easy to hard Python idioms.
Evaluating Easy-to-Hard Generalization: We use the PEP hard idiom benchmark to test whether
training on synthetic data for linter-detectable idioms improves performance on hard idioms. We
evaluate the base model, SFT, and DPO-trained models on this benchmark.
Benchmarking on Hard Idioms: We evaluate state-of-the-art open and closed-source code and rea-
soning LLMs on the PEP hard idiom benchmark, comparing them to METALINT-trained models.
Open-source models include instruction-tuned Qwen2.5 (Yang et al., 2024), Qwen2.5Coder (Hui
et al., 2024), DeepSeek-R1-Distill-Qwen (DeepSeek-AI, 2025), Qwen3 (Team, 2025), and GPT-oss
20B/120B Agarwal et al. (2025). Closed-source models include GPT-4o (Hurst et al., 2024), o3
mini and o4 mini (OpenAI, 2025a), GPT-4.1 (OpenAI, 2025), and GPT-5 OpenAI (2025b). We se-
lect these models for their strong coding and reasoning performance and also evaluate the effects of
code-specific pre-training, model scale (3B–120B), and test-time compute for open-source models.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5 RESULTS

To test whether MetaLint training leads to cross-idiom generalization instead of mere memorization
of the training idioms and whether it can produce models that can keep up with evolving code quality
standards, we present the transfer performance on the synthetic data for “easy” idioms in section 5.1.
Then we explore the extent to which METALINT training achieves easy-to-hard generalization from
the synthetic easy idioms to hard, manually curated PEP idioms in section 5.2. Finally, we com-
pare METALINT trained models against state-of-the-art code and reasoning models on the manually
curated hard PEP idioms in section 5.3.

5.1 GENERALIZATION ON SYNTHETIC DATA

Python Ruff Idioms: The performance of Qwen3-4B with and without reasoning and Llama3.2-
3B-Instruct when trained on synthetic Ruff idioms and evaluated on the Ruff synthetic test set
with varying transfer settings (section 4.2) is shown in Table 1 (full results in Table 18). While
Table 1 shows the overall performance, we also analyze the performance broken down by each
transfer setting in Table 16. The results show that the SFT stage leads to modest gains in detection
and localization performance in most cases (except for a detection recall drop in the case of
Llama3.2-3B-Instruct), but the DPO stage leads to huge gains in detection recall, F-score, and
all localization metrics at the cost of a slight drop in detection precision. We identify that the
drop in precision in the DPO stage is tightly controlled by the fraction of cases with no violations
used in the DPO training and explore it in detail in Appendix D.3. Additionally, Table 16 shows
that while SFT can lead to slight gains for the transfer settings (near transfer and far transfer),
most gains emerge in the DPO stage, especially for non-reasoning models and detection recall.
Overall this suggests that SFT can lead to memorization of the training idioms while DPO leads to
generalization to novel idioms.

Model Detection Localization
PDet RDet FDet PLoc RLoc FLoc

Qwen3-4B 0.5380 0.2637 0.3539 0.1396 0.1479 0.1436
Qwen3-4B + SFT 0.7686 0.3178 0.4497 0.2976 0.2960 0.2968
Qwen3-4B + SFT + RS-DPO 0.7469 0.8315 0.7869 0.6527 0.6696 0.6611
Qwen3-4B w CoT 0.8812 0.6854 0.7710 0.5049 0.4878 0.4962
Qwen3-4B w CoT + RS-SFT 0.9350 0.8183 0.8727 0.6639 0.6500 0.6569
Qwen3-4B w CoT + RS-SFT + RS-DPO 0.9234 0.8643 0.8929 0.7710 0.7571 0.7640

Table 1: Cross-Idiom Generalization on Python Ruff Idioms: Effect of different METALINT
training setups (SFT, RS-SFT, and RS-DPO) on Qwen3-4B (with and without reasoning). Best
score across the compared training setups per model are bolded.

PMD and JEP Tree-Sitter Idioms: To demonstrate the generality of METALINT training across
programming languages and linters, we present results from training on PMD and JEP Tree-Sitter
synthetic data in Table 2 (full results in Table 28). Training on PMD shows the same overall
pattern as before but with larger recall gains for both SFT and DPO, and notably stronger local-
ization under DPO. For Llama3.1-8B-Instruct, SFT initially reduces detection precision, which
DPO then recovers; the same precision dip-and-recovery appears when transferring PMD→JEP
for Llama3.2-3B-Instruct. Despite never seeing JEP idioms during training, DPO models achieve
strong detection and localization on JEP. In the untrained setting, Llama3.2-3B-Instruct (on
PMD) and Llama3.1-3B-Instruct (on JEP) nearly always output the correct format but predict NO
VIOLATIONS FOUND, yielding zero or near-zero scores because our metrics exclude that class
for detection and only score positive cases for localization. Training on JEP yields high in-domain
performance for all metrics with minimal additional benefit from DPO, likely due to JEP’s smaller
idiom set (15 vs 269 for PMD) and more precise instructions (Table 5). In the harder JEP→PMD
transfer, DPO outperforms SFT, though overall transfer remains weaker than PMD→JEP, reflecting
PMD’s broader diversity and more challenging specifications (Appendix C.5).
Overall, METALINT training consistently yields more adaptable models than the base model, but

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

performance depends on the diversity of training idioms and the gap in instruction quality between
training and test data.

Model Transfer Detection Localization
PDet RDet FDet PDet RDet FDet

Llama3.2-3B-Instruct
PMD → PMD

0.0457 0.0079 0.0134 0.0015 0.0022 0.0017
Llama3.2-3B-Instruct + SFT 0.2251 0.4421 0.2983 0.2822 0.2778 0.2800
Llama3.2-3B-Instruct + SFT + RS-DPO 0.4395 0.8908 0.5886 0.5930 0.5969 0.5949
Llama3.2-3B-Instruct

PMD → JEP
0.3855 0.0096 0.0187 0.0005 0.0004 0.0005

Llama3.2-3B-Instruct + SFT 0.2286 0.4072 0.2928 0.1626 0.1336 0.1467
Llama3.2-3B-Instruct + SFT + RS-DPO 0.4903 0.8338 0.6175 0.4216 0.3333 0.3721

Table 2: Cross-Idiom Generalization on JEP & PMD Idioms: Effect of different METALINT
training setups (SFT and RS-DPO) on Llama3.2-3B-Instruct (Table 28). The transfer column indi-
cates training and test data on the left and right side of the arrow. Best score across the compared
training setups per model are bolded.

5.2 EVALUATING EASY-TO-HARD GENERALIZATIONS

To evaluate whether METALINT training on easy, linter-detectable Ruff idioms improves perfor-
mance on hard, manually curated PEP idioms, we report results on our PEP hard idiom benchmark
(Table 3, full results in Table 19). At the SFT stage, performance declines for Qwen3-4B (with
and without CoT) but improves slightly for Llama3.2-3B-Instruct, suggesting that SFT can induce
memorization of the training distribution and reduce adaptability. In contrast, DPO yields clear im-
provements in detection and localization (except detection precision for Llama3.2-3B-Instruct), with
statistically significant gains (Appendix E.2). An additional experiment training Qwen3-4B (CoT)
directly with RS-DPO, bypassing SFT, resulted in near-zero performance because many generated
DPO pairs violated the required output format, which the model inherited. Thus, SFT, despite its
drawbacks, is essential for teaching format compliance and setting the stage for DPO to unlock easy-
to-hard generalization. Interestingly, the non-CoT model achieves substantially higher detection re-
call and slightly higher F-score than the CoT variant, despite lower precision. Our analysis attributes
the CoT model’s reduced recall to its more conservative interpretation of idiom specifications and to
errors such as misinterpretation, overthinking, and skipped lines, as detailed in Appendix E.3.

Model Detection Localization
PDet RDet FDet PLoc RLoc FLoc

Qwen3-4B 0.5267 0.1715 0.2587 0.0954 0.0824 0.0884
Qwen3-4B + SFT 0.4333 0.0821 0.1381 0.0432 0.0221 0.0292
Qwen3-4B + SFT + RS-DPO 0.7031 0.7043 0.7037 0.3536 0.1930 0.2497
Qwen3-4B w CoT 0.8154 0.3986 0.5354 0.2625 0.1467 0.1882
Qwen3-4B w CoT + RS-SFT 0.7615 0.3689 0.4970 0.2785 0.1437 0.1896
Qwen3-4B w CoT + RS-SFT + RS-DPO 0.9303 0.4958 0.6468 0.3482 0.2169 0.2673

Table 3: Easy-to-Hard Generalization on PEP Idioms: We evaluate the effect of different MET-
ALINT training setups (SFT, RS-SFT, and RS-DPO) on Qwen3-4B (with and without reasoning) and
Llama3.2-3B. Models are trained on easy synthetic Python Ruff idioms and tested on hard manually
curated PEP idiom detection data which can’t be handled by linters or static analyzers (section 4.3).
Best score across the compared training setups per model are bolded.

5.3 BENCHMARKING ON HARD IDIOMS

Table 4 compares the best-performing Qwen3-4B METALINT DPO models against state-of-the-art
code and reasoning models (full results in Table 17).

Detection: In terms of detection F-score, the non-CoT METALINT model is competitive with o3-
mini and GPT-5 but is outperformed by some larger open-source models (e.g., Qwen3-32B with

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

CoT, DeepSeek-R1-Distill-Qwen-32B with CoT, and GPT-oss-120B) and closed-source models
(GPT-4o, GPT-4.1, and o4-mini). However, the non-CoT model achieves the highest detection recall
among all evaluated models, while the CoT model ranks among the top in precision, surpassed only
by Qwen3-32B with CoT and o4-mini.

Localization: For localization, the METALINT models lag behind larger 32B and 120B models
(such as Qwen3-32B, Qwen2.5Coder-32B, and DeepSeek-R1-Distill-Qwen-32B) and the GPT mod-
els, but perform comparably to o3-mini (statistical significance analysis in Appendix E.2) and out-
perform GPT-oss-20B. This is notable given that the METALINT models are much smaller (4B
parameters), trained only on synthetic data derived from easy idioms, and that the non-CoT model
does not use test-time compute.
Overall, the strong results, especially the best-in-class recall of the non-CoT model, demonstrate the
effectiveness of our framework in achieving easy-to-hard generalization. This is enabled by train-
ing on synthetic data with easy idioms and by encouraging adaptive reasoning through instruction
fine-tuning and DPO rather than relying on rote memorization.

Detection Localization
Model

PDet RDet FDet PLoc RLoc FLoc

Qwen3-8B 0.8267 0.3572 0.4988 0.1806 0.1285 0.1501
Qwen3-8B with CoT 0.8886 0.4672 0.6124 0.3122 0.2029 0.2459
Qwen3-14B 0.9021 0.4612 0.6103 0.2890 0.2521 0.2693
Qwen3-14B with CoT 0.9116 0.4857 0.6337 0.3993 0.2915 0.3369
Qwen3-32B 0.9021 0.5205 0.6601 0.2807 0.2711 0.2758
Qwen3-32B with CoT 0.9377 0.5645 0.7048 0.4152 0.3086 0.3540
Qwen2.5-32B-Instruct 0.8667 0.2656 0.4066 0.1630 0.1477 0.1550
Qwen2.5Coder-32B-Instruct 0.8961 0.5328 0.6683 0.3432 0.3077 0.3245
DeepSeek-R1-Distill-Qwen-32B with CoT 0.9008 0.5899 0.7130 0.4015 0.3403 0.3684
GPT-oss-20b 0.8377 0.3531 0.4968 0.2510 0.1695 0.2024
GPT-oss-120b 0.9157 0.6456 0.7573 0.3991 0.3331 0.3631

Qwen3-4B METALINT (SFT+RS-DPO) 0.7031 0.7043 0.7037 0.3536 0.1930 0.2497
Qwen3-4B METALINT w CoT (RS-SFT + RS-DPO) 0.9303 0.4958 0.6468 0.3482 0.2169 0.2673

o3-mini 0.8939 0.5845 0.7068 0.3169 0.2361 0.2706
o4-mini 0.9667 0.5943 0.7361 0.4131 0.3164 0.3584
GPT-4o 0.8938 0.6788 0.7716 0.4461 0.3320 0.3807
GPT-4.1 0.9070 0.6460 0.7546 0.4632 0.4673 0.4653
GPT-5 (high) 0.9130 0.5673 0.6998 0.4397 0.4257 0.4326

Table 4: Benchmarking on Hard Idioms: Results comparing state of the art code and reasoning
models on the hard PEP benchmark to contextualize the gains achieved with METALINT training.
The best scores are bolded and second best and underlined.

6 CONCLUSION AND FUTURE WORK

Our results show that METALINT training fosters adaptive reasoning over idiom specifications
rather than rote memorization. We observe generalization to unseen idioms in Python and Java,
across three linters (Ruff, PMD, JEP tree-sitter), two model families (Qwen, Llama), reasoning and
non-reasoning settings, and multiple scales (3B, 4B, 8B). Easy-to-hard generalization occurs from
linter-detectable Ruff idioms to harder PEP idioms, with SFT teaching output formatting and DPO
enabling true generalization. Compared to state-of-the-art code and reasoning models, METALINT-
trained Qwen models have detection comparable with o3-mini and GPT-5, achieving highest recall
(non-CoT) and third-best precision (CoT). Localization lags but surpasses GPT-oss-20B with only
4B parameters and no test-time compute and is comparable to o3-mini, demonstrating efficiency.
These results highlight the effectiveness of instruction fine-tuning and preference optimization on
synthetic data for reasoning and generalization, even with scarce annotated examples. For mechani-
cally easy idioms, linters remain cost-effective, but METALINT enables detection of abstract idioms,
supporting personalized, evolving code quality standards. We plan to release code and data for re-
producibility. Future work includes training for automated refactoring and exploring advanced RL
methods like Group Relative Policy Optimization (GRPO) Shao et al. (2024).

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Pmd: Extensible cross-language static code analyzer. https://pmd.github.io/. Version
7.17.0, accessed: 2025-09-21.

Ruff: An extremely fast python linter and code formatter. https://docs.astral.sh/ruff/.
Accessed: 2025-09-21.

2023. URL https://www.lintrule.com/.

Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin Arbus, Rahul K
Arora, Yu Bai, Bowen Baker, Haiming Bao, et al. gpt-oss-120b & gpt-oss-20b model card. arXiv
preprint arXiv:2508.10925, 2025.

Fengshuo Bai, Mingzhi Wang, Zhaowei Zhang, Boyuan Chen, Yinda Xu, Ying Wen, and Yaodong
Yang. Efficient model-agnostic alignment via bayesian persuasion. ArXiv, abs/2405.18718, 2024.
URL https://api.semanticscholar.org/CorpusId:270094634.

Scott Blyth, Sherlock A. Licorish, Christoph Treude, and Markus Wagner. Static analysis as
a feedback loop: Enhancing llm-generated code beyond correctness, 2025. URL https:
//arxiv.org/abs/2508.14419.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, J. Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, T. Henighan, R. Child, A. Ramesh, Daniel M. Ziegler, Jeff Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Ma teusz Litwin, Scott Gray, Ben-
jamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, I. Sutskever, and
Dario Amodei. Language models are few-shot learners. ArXiv, abs/2005.14165, 2020. URL
https://arxiv.org/pdf/2005.14165.pdf.

Pierre Chambon, Baptiste Roziere, Benoit Sagot, and Gabriel Synnaeve. Bigo (bench)–can llms
generate code with controlled time and space complexity? arXiv preprint arXiv:2503.15242,
2025.

Francois Charton, Justin Wang, and Dylan Zhang. Instruction diversity drives generalization to un-
seen tasks. ArXiv, abs/2402.10891, 2024. URL https://api.semanticscholar.org/
CorpusId:267740368.

Hyung Won Chung, Le Hou, S. Longpre, Barret Zoph, Yi Tay, W. Fedus, Eric Li, Xuezhi Wang,
Mostafa Dehghani, Siddhartha Brahma, Albert Webson, S. Gu, Zhuyun Dai, Mirac Suzgun,
Xinyun Chen, Aakanksha Chowdhery, Dasha Valter, Sharan Narang, Gaurav Mishra, Adams Wei
Yu, Vincent Zhao, Yanping Huang, Andrew M. Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, J. Dean,
Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei. Scaling instruction-
finetuned language models. ArXiv, abs/2210.11416, 2022. URL https://arxiv.org/pdf/
2210.11416.pdf.

Steven D’Aprano. Pep 506 – adding a secrets module to the standard library. https://peps.
python.org/pep-0506/, 2017. Accessed: 2025-06-26.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
2025. URL https://arxiv.org/abs/2501.12948.

Xueying Du, Kai Yu, Chong Wang, Yi Zou, Wentai Deng, Zuoyu Ou, Xin Peng, Lingming Zhang,
and Yiling Lou. Minimizing false positives in static bug detection via llm-enhanced path feasibil-
ity analysis, 2025. URL https://arxiv.org/abs/2506.10322.

Zhigang Fang, Renzhi Chen, Zhijie Yang, Yang Guo, Huadong Dai, and Lei Wang. Lintllm: An
open-source verilog linting framework based on large language models, 2025. URL https:
//arxiv.org/abs/2502.10815.

Leo Gao, Debajyoti Datta, Jason Alan Fries, Zaid Alyafeai, Ryan Teehan, Taewoon Kim, Manan
Dey, Rachel Bawden, Thomas Wolf, Han Wang, Teven Le Scao, Antoine Chaffin, Andrea San-
tilli, Mike Tian-Jian Jiang, Trishala Neeraj, Colin Raffel, Abheesht Sharma, Gunjan Chhablani,

10

https://pmd.github.io/
https://docs.astral.sh/ruff/
https://www.lintrule.com/
https://api.semanticscholar.org/CorpusId:270094634
https://arxiv.org/abs/2508.14419
https://arxiv.org/abs/2508.14419
https://arxiv.org/pdf/2005.14165.pdf
https://api.semanticscholar.org/CorpusId:267740368
https://api.semanticscholar.org/CorpusId:267740368
https://arxiv.org/pdf/2210.11416.pdf
https://arxiv.org/pdf/2210.11416.pdf
https://peps.python.org/pep-0506/
https://peps.python.org/pep-0506/
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2506.10322
https://arxiv.org/abs/2502.10815
https://arxiv.org/abs/2502.10815


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

M Saiful Bari, Thibault Févry, Shanya Sharma, Zheng-Xin Yong, Arun Raja, Arnaud Stiegler,
Sheng Shen, Jos Rozen, Stephen H. Bach, Albert Webson, Tali Bers, Eliza Szczechla, Victor
Sanh, Canwen Xu, Matteo Manica, Jonathan D. Chang, Thomas Wang, Lintang Sutawika, Harshit
Pandey, Urmish Thakker, Stella Biderman, Nihal V. Nayak, and Alexander M. Rush. Multitask
prompted training enables zero-shot task generalization. ArXiv, abs/2110.08207, 2021. URL
https://api.semanticscholar.org/CorpusId:239009562.

Alexander L. Gaunt, Marc Brockschmidt, Nate Kushman, and Daniel Tarlow. Differentiable pro-
grams with neural libraries. In International Conference on Machine Learning, 2016. URL
https://api.semanticscholar.org/CorpusId:15016881.

Yuxian Gu, Pei Ke, Xiaoyan Zhu, and Minlie Huang. Learning instructions with unlabeled
data for zero-shot cross-task generalization. In Conference on Empirical Methods in Natural
Language Processing, 2022. URL https://api.semanticscholar.org/CorpusId:
252918165.

Xuan He, Da Yin, and Nanyun Peng. Guiding through complexity: What makes good supervision for
hard math reasoning tasks? In unknown, 2024. URL https://api.semanticscholar.
org/CorpusId:278775190.

Darren Holden and Nafiseh Kahani. Code linting using language models. arXiv preprint
arXiv:2406.19508, 2024.

Yi Hu, Shijia Kang, Haotong Yang, Haotian Xu, and Muhan Zhang. Beyond single-task: Ro-
bust multi-task length generalization for llms. In unknown, 2025. URL https://api.
semanticscholar.org/CorpusId:276408040.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

S. Iyer, Xi Victoria Lin, Ramakanth Pasunuru, Todor Mihaylov, Daniel Simig, Ping Yu, Kurt
Shuster, Tianlu Wang, Qing Liu, Punit Singh Koura, Xian Li, Brian O’Horo, Gabriel Pereyra,
Jeff Wang, Christopher Dewan, Asli Celikyilmaz, Luke S. Zettlemoyer, and Veselin Stoy-
anov. Opt-iml: Scaling language model instruction meta learning through the lens of gener-
alization. ArXiv, abs/2212.12017, 2022. URL https://api.semanticscholar.org/
CorpusId:255096269.

Imen Jaoua, Oussama Ben Sghaier, and Houari Sahraoui. Combining large language models with
static analyzers for code review generation. arXiv preprint arXiv:2502.06633, 2025.

K. Jiang, B. Jin, and P. Nie. CoUpJava: A Dataset of Code Upgrade Histories in Open-Source Java
Repositories. In 2025 IEEE/ACM 22nd International Conference on Mining Software Reposito-
ries (MSR), pp. 441–445, Ottawa, ON, Canada, 2025a. doi: 10.1109/MSR66628.2025.00075.

Yuan Jiang, Yujian Zhang, Liang Lu, Christoph Treude, Xiaohong Su, Shan Huang, and Tiantian
Wang. Enhancing high-quality code generation in large language models with comparative prefix-
tuning. arXiv preprint arXiv:2503.09020, 2025b.

Saeed Khaki, JinJin Li, Lan Ma, Liu Yang, and Prathap Ramachandra. Rs-dpo: A hybrid rejection
sampling and direct preference optimization method for alignment of large language models.
arXiv preprint arXiv:2402.10038, 2024.

Avishree Khare, Saikat Dutta, Ziyang Li, Alaia Solko-Breslin, Rajeev Alur, and Mayur Naik. Un-
derstanding the effectiveness of large language models in detecting security vulnerabilities. arXiv
preprint arXiv:2311.16169, 2023.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack v2: The
next generation. arXiv preprint arXiv:2402.19173, 2024.

11

https://api.semanticscholar.org/CorpusId:239009562
https://api.semanticscholar.org/CorpusId:15016881
https://api.semanticscholar.org/CorpusId:252918165
https://api.semanticscholar.org/CorpusId:252918165
https://api.semanticscholar.org/CorpusId:278775190
https://api.semanticscholar.org/CorpusId:278775190
https://api.semanticscholar.org/CorpusId:276408040
https://api.semanticscholar.org/CorpusId:276408040
https://api.semanticscholar.org/CorpusId:255096269
https://api.semanticscholar.org/CorpusId:255096269


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. Cross-task general-
ization via natural language crowdsourcing instructions. In Annual Meeting of the Associa-
tion for Computational Linguistics, 2021a. URL https://api.semanticscholar.org/
CorpusID:237421373.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. Cross-task general-
ization via natural language crowdsourcing instructions. In Annual Meeting of the Associa-
tion for Computational Linguistics, 2021b. URL https://api.semanticscholar.org/
CorpusId:237421373.

MITRE Corporation. Common weakness enumeration (cwe). https://cwe.mitre.org/,
2024. Accessed: 2025-06-26.

Atharva Naik, Marcus Alenius, Daniel Fried, and Carolyn Rose. Crscore: Grounding automated
evaluation of code review comments in code claims and smells. arXiv preprint arXiv:2409.19801,
2024.

Changan Niu, Chuanyi Li, Vincent Ng, and Bin Luo. Crosscodebench: Benchmarking cross-task
generalization of source code models. 2023 IEEE/ACM 45th International Conference on Soft-
ware Engineering (ICSE), pp. 537–549, 2023. URL https://api.semanticscholar.
org/CorpusId:256662301.

OpenAI. Openai o3 and o4-mini system card. Technical report, OpenAI, 2025a. Compact reasoning
models with tool use, image analysis, and code capabilities.

OpenAI. Introducing gpt-5, Aug 2025b. URL https://openai.com/index/
introducing-gpt-5/.

OpenAI. GPT-4.1 system card. Technical report, OpenAI, San Francisco, CA, April 2025. URL
https://openai.com/index/gpt-4-1/. Launch of GPT-4.1, GPT-4.1 mini, and GPT-
4.1 nano via API; improvements in coding, instruction following, long-context capacity, and effi-
ciency.

Shubham Parashar, Shurui Gui, Xiner Li, Hongyi Ling, Sushil Vemuri, Blake Olson, Eric Li,
Yu Zhang, James Caverlee, D. Kalathil, and Shuiwang Ji. Curriculum reinforcement learn-
ing from easy to hard tasks improves llm reasoning. In unknown, 2025. URL https:
//api.semanticscholar.org/CorpusId:279251658.

Ravsehaj Singh Puri, Swaroop Mishra, Mihir Parmar, and Chitta Baral. How many data sam-
ples is an additional instruction worth? ArXiv, abs/2203.09161, 2022. URL https://api.
semanticscholar.org/CorpusId:247518570.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36:53728–53741, 2023.

Zeeshan Rasheed, Malik Abdul Sami, Muhammad Waseem, Kai-Kristian Kemell, Xiaofeng Wang,
Anh Nguyen, Kari Systä, and Pekka Abrahamsson. Ai-powered code review with llms: Early
results. arXiv preprint arXiv:2404.18496, 2024.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H. Bach, Lintang Sutawika, Zaid Alyafeai,
Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, Manan Dey, M Saiful Bari, Canwen
Xu, Urmish Thakker, Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani,
Nihal V. Nayak, Debajyoti Datta, Jonathan D. Chang, Mike Tian-Jian Jiang, Han Wang, Matteo
Manica, Sheng Shen, Zheng-Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala
Neeraj, Jos Rozen, Abheesht Sharma, Andrea Santilli, Thibault Févry, Jason Alan Fries, Ryan
Teehan, Stella Biderman, Leo Gao, Tali Bers, Thomas Wolf, and Alexander M. Rush. Multitask
prompted training enables zero-shot task generalization. ArXiv, abs/2110.08207, 2021. URL
https://api.semanticscholar.org/CorpusID:239009562.

Sheikh Shafayat, Fahim Tajwar, Ruslan Salakhutdinov, Jeff Schneider, and Andrea Zanette. Can
large reasoning models self-train? ArXiv, abs/2505.21444, 2025. URL https://api.
semanticscholar.org/CorpusId:278911518.

12

https://api.semanticscholar.org/CorpusID:237421373
https://api.semanticscholar.org/CorpusID:237421373
https://api.semanticscholar.org/CorpusId:237421373
https://api.semanticscholar.org/CorpusId:237421373
https://cwe.mitre.org/
https://api.semanticscholar.org/CorpusId:256662301
https://api.semanticscholar.org/CorpusId:256662301
https://openai.com/index/introducing-gpt-5/
https://openai.com/index/introducing-gpt-5/
https://openai.com/index/gpt-4-1/
https://api.semanticscholar.org/CorpusId:279251658
https://api.semanticscholar.org/CorpusId:279251658
https://api.semanticscholar.org/CorpusId:247518570
https://api.semanticscholar.org/CorpusId:247518570
https://api.semanticscholar.org/CorpusID:239009562
https://api.semanticscholar.org/CorpusId:278911518
https://api.semanticscholar.org/CorpusId:278911518


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Seung Yeob Shin, Fabrizio Pastore, and Domenico Bianculli. Quantum program linting with llms:
Emerging results from a comparative study. ArXiv, abs/2504.05204, 2025. URL https://
api.semanticscholar.org/CorpusID:277621016.

Manav Singhal, Tushar Aggarwal, Abhijeet Awasthi, Nagarajan Natarajan, and Aditya Kanade.
Nofuneval: Funny how code lms falter on requirements beyond functional correctness. arXiv
preprint arXiv:2401.15963, 2024.

Zhiqing Sun, Longhui Yu, Yikang Shen, Weiyang Liu, Yiming Yang, S. Welleck, and Chuang
Gan. Easy-to-hard generalization: Scalable alignment beyond human supervision. ArXiv,
abs/2403.09472, 2024a. URL https://api.semanticscholar.org/CorpusId:
268385111.

Zhiqing Sun, Longhui Yu, Yikang Shen, Weiyang Liu, Yiming Yang, Sean Welleck, and Chuang
Gan. Easy-to-hard generalization: Scalable alignment beyond human supervision. arXiv preprint
arXiv:2403.09472, 2024b.

Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Scott Silvi Travis Fischer. Gptlint, 4 2024. URL https://github.com/gptlint/gptlint.

Manushree Vijayvergiya, Małgorzata Salawa, Ivan Budiselić, Dan Zheng, Pascal Lamblin, Marko
Ivanković, Juanjo Carin, Mateusz Lewko, Jovan Andonov, Goran Petrović, et al. Ai-assisted as-
sessment of coding practices in modern code review. In Proceedings of the 1st ACM International
Conference on AI-Powered Software, pp. 85–93, 2024.

Siddhant Waghjale, Vishruth Veerendranath, Zhiruo Wang, and Daniel Fried. ECCO: Can we
improve model-generated code efficiency without sacrificing functional correctness? In Yaser
Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing, pp. 15362–15376, Miami, Florida, USA,
November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.
859. URL https://aclanthology.org/2024.emnlp-main.859/.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei, An-
jana Arunkumar, Arjun Ashok, Arut Selvan Dhanasekaran, Atharva Naik, David Stap, Eshaan
Pathak, Giannis Karamanolakis, H. Lai, I. Purohit, Ishani Mondal, Jacob Anderson, Kirby Kuz-
nia, Krima Doshi, Maitreya Patel, Kuntal Kumar Pal, M. Moradshahi, Mihir Parmar, Mirali
Purohit, Neeraj Varshney, Phani Rohitha Kaza, Pulkit Verma, Ravsehaj Singh Puri, Rushang
Karia, Shailaja Keyur Sampat, Savan Doshi, Siddhartha Mishra, Sujan Reddy, Sumanta Patro,
Tanay Dixit, Xudong Shen, Chitta Baral, Yejin Choi, Noah A. Smith, Hannaneh Hajishirzi, and
Daniel Khashabi. Super-naturalinstructions: Generalization via declarative instructions on 1600+
nlp tasks. In Conference on Empirical Methods in Natural Language Processing, 2022. URL
https://www.aclanthology.org/2022.emnlp-main.340.pdf.

Jason Wei, Kelvin Guu, Quoc V. Le, Adams Wei Yu, Nan Du, Vincent Zhao, Brian Lester,
Andrew M. Dai, and Maarten Bosma. Finetuned language models are zero-shot learn-
ers. ArXiv, abs/2109.01652, 2021. URL https://api.semanticscholar.org/
CorpusId:237416585.

Wikipedia contributors. Code smell. https://en.wikipedia.org/wiki/Code_smell,
2024. Accessed: 2025-06-26.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai,

13

https://api.semanticscholar.org/CorpusID:277621016
https://api.semanticscholar.org/CorpusID:277621016
https://api.semanticscholar.org/CorpusId:268385111
https://api.semanticscholar.org/CorpusId:268385111
https://arxiv.org/abs/2505.09388
https://github.com/gptlint/gptlint
https://aclanthology.org/2024.emnlp-main.859/
https://www.aclanthology.org/2022.emnlp-main.340.pdf
https://api.semanticscholar.org/CorpusId:237416585
https://api.semanticscholar.org/CorpusId:237416585
https://en.wikipedia.org/wiki/Code_smell


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng
Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai
Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan
Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2
technical report. arXiv preprint arXiv:2407.10671, 2024.

Feng Yao, Zilong Wang, Liyuan Liu, Junxia Cui, Li Zhong, Xiaohan Fu, Haohui Mai, Vish Krishnan,
Jianfeng Gao, and Jingbo Shang. Training language models to generate quality code with program
analysis feedback. arXiv preprint arXiv:2505.22704, 2025.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh Agarwal.
Generative verifiers: Reward modeling as next-token prediction. ArXiv, abs/2408.15240, 2024a.
URL https://api.semanticscholar.org/CorpusId:271963324.

Zejun Zhang, Zhenchang Xing, Xiaoxue Ren, Qinghua Lu, and Xiwei Xu. Refactoring to pythonic
idioms: A hybrid knowledge-driven approach leveraging large language models. Proceedings of
the ACM on Software Engineering, 1(FSE):1107–1128, 2024b.

Zejun Zhang, Zhenchang Xing, Dehai Zhao, Xiwei Xu, Liming Zhu, and Qinghua Lu. Automated
refactoring of non-idiomatic python code with pythonic idioms. IEEE Transactions on Software
Engineering, 50(11):2827–2848, 2024c. doi: 10.1109/TSE.2024.3420886.

Chenyang Zhao, Xueying Jia, Vijay Viswanathan, Tongshuang Wu, and Graham Neubig. Self-
guide: Better task-specific instruction following via self-synthetic finetuning. arXiv preprint
arXiv:2407.12874, 2024.

Jiasheng Zheng, Boxi Cao, Zhengzhao Ma, Ruotong Pan, Hongyu Lin, Yaojie Lu, Xianpei Han,
and Le Sun. Beyond correctness: Benchmarking multi-dimensional code generation for large
language models. arXiv preprint arXiv:2407.11470, 2024.

A LIMITATIONS

Despite the promising results achieved by METALINT, our work has some limitations that we plan
to address in future research. For the CoT setting, we didn’t explore whether non-CoT models
can be trained to effectively produce CoT-style reasoning with supervision from a teacher model.
We also explored self-improvement strategies for RS-SFT data generation in cases where the base
model failed, such as STaR (Zelikman et al., 2022), but found it challenging to generate CoTs
that do not directly reference provided hints, which risks contaminating the training data. As a
result, we adopted a simpler rejection sampling or RS-SFT strategy. Furthermore, our approach
does not yet incorporate more advanced reinforcement learning techniques such as Group Relative
Policy Optimization (GRPO) (Shao et al., 2024) using our verifiable linter-based reward model, or
curriculum learning methods to control the progression of idiom difficulty within synthetic training
data. Our current experiments also focus on training on one language at a time, such as only Python
or Java. Future work will explore joint training and extension to more programming languages like
JavaScript, Ruby, Go, etc., as well as cross-language generalization by training on Python idioms and
evaluating on Java idioms, and vice versa. Finally, while we do not evaluate or train for refactoring
of the idiom-violating code, we plan to do so in future work.

B MORE RELATED WORK

Easy-to-Hard Generalization. Research shows that training on simpler problems enhances gen-
eralization to harder ones in math, algorithms, and code, motivating its application to code quality
analysis. In math reasoning, models trained on easier problems (e.g., level 1–3) consistently gener-
alize better to harder benchmarks (e.g., level 4–5) (Bai et al., 2024; Shafayat et al., 2025; Parashar
et al., 2025). Several works emphasize the importance of selecting high-quality supervision for

14

https://api.semanticscholar.org/CorpusId:271963324


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

harder problems (He et al., 2024). Beyond math, Sun et al. (2024a) shows that reward models
trained on simple code and math problems improve performance on complex ones. Broader stud-
ies on multi-task and length generalization (Hu et al., 2025) and differentiable programming (Gaunt
et al., 2016) reveal how structural simplicity during training can lead to robustness on longer or more
complex reasoning instances, including code. Zhang et al. (2024a) reinforces this by evaluating re-
ward models on algorithmic tasks like string manipulation and demonstrating transfer from simpler
to harder formats. Drawing inspiration from this work, we train METALINT on large-scale synthetic
data covering easily detectable code idioms handled by rule-based linters, and hypothesize that these
simple patterns serve as stepping stones toward generalizing to complex, novel PEP idioms.

C METHOD ADDITIONAL DETAILS

C.1 METALINT INSTRUCTION FOLLOWING PROMPT

We used the following instruction following style prompt to train the model with synthetic Ruff
idiom data for the meta-linting task:

METALINT Instruction Following Prompt

Look at the following list of code idiom specifications with definitions and examples:
{LIST OF IDIOM SPECS}

Given these idioms, your task is to look at a code file and detect violations of the
above idioms, and flag them like a linter. You should also suggest a fix if possible. Report
the results per idiom specification mentioned above and just say NO VIOLATIONS
FOUND if no violations are found for a given idiom. Do not detect any idioms not specified
above.

Code file: {CODE FILE}

Violations per idiom:

An example input with the code file and idiom spec populated as well as the expected JSON style
output is shown below:

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Example Ruff Meta-Task Input

Look at the following list of code idiom specifications with definitions and examples: #
Idiom ANN202 (missing-return-type-private-function)
Definition: Checks that private functions and methods have return type annotations.
Rationale: Type annotations are a good way to document the return types of functions. They
also help catch bugs, when used alongside a type checker, by ensuring that the types of any
returned values, and the types expected by callers, match expectation.
Example:
def _add(a, b):

return a + b

Use instead:

def _add(a: int, b: int) -> int:
return a + b

Given these idioms, your task is to look at a code file and detect violations of the above
idioms, and flag them like a linter. You should also suggest a fix if possible. Report the
results per idiom specification mentioned above and just say ’NO VIOLATIONS FOUND’
if no violations are found for a given idiom. Do not detect any idioms not specified above.
Code file:

1 # -*- coding: utf-8 -*-
2 # pragma pylint: disable=unused-argument, no-self-use
...

86 def _reload(self, event, opts):
87 """Configuration options have changed,

save new values"""
88 self.options = opts.get("fn_cisco_amp4ep", {})
89 validate_opts(self)
90
91 @function("fn_amp_move_computer")
92 def _fn_amp_move_computer_function(self, event, *args,

**kwargs):
93 """Function: Move computer to a group with given

connector guid and group guid."""
94 try:
...

Violations per idiom:

Example Ruff Meta-Task Output

**Idiom ANN202 Violations:**

{"line": " 86 def _reload(self, event, opts):", "fix": null}
{"line": " 92 def _fn_amp_move_computer_function(self,
event, *args, **kwargs):", "fix": null}

C.2 DPO CONTRASTIVE PAIR AND RS-SFT SAMPLING DETAILS

To generate RS-DPO contrastive samples (or RS-SFT outputs) from the baseline SFT (or untrained)
models, we used the following hyperparameters: nucleus sampling with a maximum of 2048 new
tokens, k = 5 sampled outputs per input, temperatures picked cyclically from {0, 0.3, 0.5, 0.7, 1},
a top-p (cumulative probability threshold) of 0.95, and a seed of 42 + i, where i ∈ {1, . . . , k}, to
encourage both reproducibility and output diversity.

For RS-DPO sampling (in both CoT and non-CoT settings), we used the standard METALINT
instruction-following prompt with the SFT models. In contrast, for RS-SFT output sampling from

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

the untrained model, we employed the expanded “Baseline Inference Prompt” described in Sec-
tion C.4.

C.3 TRAINING HYPERPARAMETERS AND COMPUTATIONAL ENVIRONMENT

Python SFT/RS-SFT hyperparameters:
We fine-tune the Qwen3-4B model using flash attention 2 and bfloat16 precision. The
model is trained for 2 epochs with a learning rate of 2e-5, cosine learning rate schedule, and a
warmup ratio of 0.1. We use a maximum sequence length of 3000 tokens, a per-device batch size of
2, and gradient accumulation steps of 4. Gradient checkpointing is enabled to reduce memory usage,
with non-reentrant mode. Evaluation is performed every 2000 steps, and checkpoints are saved at the
same interval. Special tokens are manually handled in the chat template without automatic insertion.
The training uses 12 preprocessing workers and is seeded with 42 for reproducibility.

Python RS-DPO parameters:
We fine-tune the model using RS-DPO with bfloat16 precision and a reward shaping parameter
β = 0.1. Training is performed for 1 epoch with a learning rate of 5e-7, cosine learning rate
scheduling, and a warmup ratio of 0.1. We use a maximum input length of 3500 tokens, a per-device
batch size of 2, and gradient accumulation steps of 4. Gradient checkpointing is enabled with non-
reentrant mode to optimize memory usage. The optimizer is AdamW, and evaluation is conducted
every 200 steps with checkpoints saved at the same interval. The training is seeded with 42 for
reproducibility.

Java SFT hyperparameters:
For Java experiments, we fine-tune Llama-3.1-8B-Instruct and
Llama-3.2-3B-Instruct with bfloat16 precision. Both models are trained for 2
epochs with a learning rate of 2e-5, cosine learning rate schedule, and warmup ratio of 0.1. We use
a maximum sequence length of 3000 tokens, per-device batch size of 2, and gradient accumulation
steps of 4. Gradient checkpointing (non-reentrant) is enabled. Evaluation and checkpoint saving
occur every 5000 steps. Special tokens are manually handled in the chat template. Training is
seeded with 42.

Java RS-DPO parameters:
RS-DPO training is performed on Llama-3.1-8B-Instruct and
Llama-3.2-3B-Instruct using bfloat16 precision. Training runs for 1 epoch with
a learning rate of 5e-7, cosine learning rate scheduling, and warmup ratio of 0.1. We use a
maximum input length of 3500 tokens, a per-device batch size of 2, and gradient accumulation steps
of 4. Gradient checkpointing (non-reentrant) is enabled. Evaluation and checkpoints are recorded
every 200 steps. Reward shaping parameters vary across settings, with β ∈ {0.1, 0.5, 1}. Seeds are
fixed at 42 for reproducibility.

Computational Environment:
All SFT, RS-SFT, and RS-DPO experiments (Python and Java) were conducted on a Linux server
equipped with NVIDIA A100 80GB GPUs (Ampere architecture), CUDA 12.9, and driver version
575.51.03. Each job had access to 100 GB of CPU memory and 2 CPU cores. Training used mixed-
precision (bfloat16) with gradient checkpointing to optimize memory usage. Inference used a
similar setup with GPU allocation varying by model size.

C.4 BASELINE INFERENCE DETAILS

We use the following hyperparameters for performing inference with the baseline LLMs:
Open Source LLMs: We perform nucleus sampling with 8192 max-new tokens, temperature of
0.7, top-p (cumulative probability threshold) of 0.95 and seed of 42 (to promote reproducibility).
Closed Source LLMs: We use the chat completion OpenAI API with max tokens of 1024 for
GPT-4.1 and GPT-4o and max completion tokens of 3000 for o3-mini and o4-mini. We use default
parameters for everything else (temperature of 1 and top-p of 1, no presence penalty). For GPT-5
we use 8192 max completion tokens and high reasoning effort.

Additionally, we use an expanded prompt (Baseline Inference Prompt) compared to the one used for
METALINT, specifically adding more details about output formatting to ensure all baselines have
a fair chance and do not suffer performance drops due to formatting mismatches. For the same

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

reason, we also allow certain relaxations in output formatting during evaluation on the PEP Hard
Idiom Benchmark.

Baseline Inference Prompt

Look at the following list of code idiom specifications with definitions and examples:
{LIST OF IDIOM SPECS}

Given these idioms, your task is to look at a code file and detect violations of the
above idioms, and flag them like a linter. You should also suggest a fix if possible. Report
the results per idiom specification mentioned above and just say NO VIOLATIONS
FOUND if no violations are found for a given idiom. Do not detect any idioms not specified
above.

Code file: {CODE FILE}

# OUTPUT FORMAT

I want you to generate your output under a section called “### Final Idiom Viola-
tions Found”.

Structure you response for a given idiom XYZ as follows for cases with violations:

### Final Idiom Violations Found

**Idiom XYZ Violations:**

{"line": " 12 \\t\\t#event = forms.ModelChoiceField(queryset=
Inquiry.objects.filter(owner=kwargs.pop(’user’)))", "fix": null}
{"line": " 1 from django import forms\\n
2 from django.forms.models import inlineformset_factory\\n
3 from .models import Request\\n
4 from inquiry.models import *",
"fix": [{"before": "from django import forms\\n
from django.forms.models import inlineformset_factory\\n
from .models import Request\\n
from inquiry.models import *\\n\\n\\n\\n",
"after": "from django import forms\\n
from django.forms.models import inlineformset_factory\\n
from inquiry.models import *\\n\\n
from .models import Request\\n\\n\\n"}]}

and as follows for cases with violations:

### Final Idiom Violations Found

**Idiom XYZ Violations:**

NO VIOLATIONS FOUND

Violations per idiom:

C.5 PMD IDIOM SPECIFICATIONS

We scrape PMD idioms specification from the Java section of the PMD rules documentationhttps:
//docs.pmd-code.org/latest/pmd_rules_java.html. The PMD instructions are
more complex and more ambiguous than our handcrafted JEP specifications because the examples
are more verbose and don’t pinpoint the specific lines that should be flagged as idiom violations, as
can be seen in the example below.

18

https://docs.pmd-code.org/latest/pmd_rules_java.html
https://docs.pmd-code.org/latest/pmd_rules_java.html


972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

PMD Rule Specification: UnitTestShouldIncludeAssert

Since: PMD 2.0
Priority: Medium (3)
Unit tests should include at least one assertion. This makes
the tests more robust, and using assert with messages provide
the developer a clearer idea of what the test does. This rule
checks for JUnit (3, 4 and 5) and TestNG Tests. Note: This rule
was named JUnitTestsShouldIncludeAssert before PMD 7.7.0. This
rule is defined by the following Java class:
net.sourceforge.pmd.lang.java.rule.bestpractices.
UnitTestShouldIncludeAssertRule

Example(s):
public class Foo {

@Test
public void testSomething() {

Bar b = findBar();
// This is better than having a NullPointerException
// assertNotNull("bar not found", b);
b.work();

}
}

This rule has the following properties:

Name
Default Value
Description

extraAssertMethodNames

Extra valid assertion methods names

Use this rule with the default properties by just referencing
it:
<rule ref="category/java/bestpractices.xml/
UnitTestShouldIncludeAssert" />

Use this rule and customize it:
<rule ref="category/java/bestpractices.xml/
UnitTestShouldIncludeAssert">

<properties>
<property name="extraAssertMethodNames" value="" />

</properties>
</rule>

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Java METALINT Instruction Following Prompt

Task Instructions (1/2):
Look at the following code idiom specification with definitions and examples:
{IDIOM SPEC}

Task Instructions (2/2):
Given this idiom, your task is to look at a code file and detect violations of the above idiom,
and flag them like a linter. You should also suggest a fix if possible. Report the results
for only the idiom specification mentioned above and just say NO VIOLATIONS FOUND
if no violations are found for the given idiom. Do not detect violations of any idiom not
specified above.

Code file:
{CODE FILE}

Violations per idiom:

D ADDITIONAL EXPERIMENTAL DETAILS

D.1 EVALUATION METRICS

Let I denote an idiom, MI its corresponding meta task specification, f ∈ F a code file, Vf,I

the ground truth set of violating line numbers, and ŷ = V Φ
f,I the model predicted violations.

For each dataset instance with input prompt x and ground truth set of line numbers y, (x, y) =
({f,MI}, Vf,I) ∈ D.

We define the indicator variable:

1[x] =

{
1 if x is true
0 otherwise

Detection Metrics:

PI =

∑
(x,y)∈D 1[|y| > 0] · 1[|ŷ| > 0]∑

(x,y)∈D (1[|y| > 0] · 1[|ŷ| > 0] + 1[|y| = 0] · 1[|ŷ| > 0])

RI =

∑
(x,y)∈D 1[|y| > 0] · 1[|ŷ| > 0]∑

(x,y)∈D (1[|y| > 0] · 1[|ŷ| > 0] + 1[|y| > 0] · 1[|ŷ| = 0])

Macro-averaged detection metrics:

PDet =
1

|I|
∑
I

PI , RDet =
1

|I|
∑
I

RI , FDet =
2PDetRDet

PDet +RDet

Localization Metrics:

PLoc =
1

|D|
∑

(x,y)∈D

|y ∩ ŷ|
|ŷ|

, RLoc =
1

|D|
∑

(x,y)∈D

|y ∩ ŷ|
|y|

, FLoc =
2PLocRLoc

PLoc +RLoc

D.2 IDIOMS CHOSEN FOR RUFF IDIOM TRANSFER DATASET

Table 9 lists the Ruff idioms used in the SFT training and synthetic transfer evaluation test sets.
Idioms are grouped by their source linter and cover a range of syntax, semantics, naming, and
upgrade-related rules.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 3: ID: In-Domain, NeT: Near Transfer, FaT: Far Transfer.

D.3 DPO NO VIOLATION FRACTION ABLATIONS

We analyze the impact of varying the amount of samples with zero violations used for RS-DPO
training. These experiments were motivated by initial findings comparing models trained only on
data with at least one violation to those trained on the full dataset. By design, RS-DPO generates
significantly more training data for cases with at least one violation, due to greater variance in
reward signals. This is further amplified by the fact that the initial SFT policy/checkpoint is already
quite accurate in handling cases with NO VIOLATIONS FOUND leading to low variance in reward
across responses.

Our early experiments showed that excluding all NO VIOLATIONS FOUND cases led to notable
gains in recall and line-level localization. However, this came at the cost of a significant drop in
precision compared to the SFT policy/base model. Further analysis revealed a sharp decline in
the accuracy of predicting NO VIOLATIONS FOUND, from nearly 99% down to 70-80%, with
performance worsening monotonically over training steps. Conversely, training on the full dataset
(i.e., including 100% of the NO VIOLATIONS FOUND cases) improved precision but offered only
modest gains in recall and localization, which also degraded with continued training. These findings
suggest that while some NO VIOLATIONS FOUND data is necessary to maintain high precision,
too much of it may hinder recall and localization.

To investigate this trade-off, we experimented with keeping only a fraction of the NO VIOLATIONS
FOUND data during training. Specifically, we randomly sampled k% of such data, varying k across
{0%, 2%, 5%, 10%, 20%, 40%, 100%}. These percentages were selected based on observed trends:
20%, 40%, and 100% yielded similar results, which discouraged further tests at 60% or 80%, while
2% and 5% were chosen due to a noticeable performance jump between 0% and 10%. We found that
5% offered a favorable middle ground, largely retaining or slightly reducing precision, while pre-
serving most of the recall (resulting in the highest detection F-score), and only modestly impacting
line-level localization. Based on these insights, we conducted a limited ablation on the CoT model,

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

evaluating 2% and 5% inclusion to determine the optimal setting for both detection and localization
(as shown in Table 11).

D.4 PEP BENCHMARK CREATION ADDITIONAL DETAILS

As discussed in section 4.3 we use some high recall heuristics to find promising candidates for
detecting the selected hard PEP idioms. These are summarized in Table 13, 14 and 15.

E MORE RESULTS

E.1 EXPANDED RESULTS ON THE PEP HARD IDIOM BENCHMARK

We show the expanded results across various model sizes for the evaluated model families in Ta-
ble 17. We note that most results follow the expected trends with more parameters or CoT usage
leading to better performance but there are soem exceptions to the trend. We mainly see this for cases
like Qwen2.5 and Qwen2.5Coder families. We note that Qwen2.5Coder-7B-Instruct has almost zero
metrics because it always predicts NO VIOLATIONS FOUND for all instances and Qwen2.5Coder-
14B-Instruct has really low scores because of similar reasons. for Qwen2.5 family we notice that
32B variant performs a bit worse than 32B.

We also analyze METALINT SFT models on the hard PEP benchmark and observe that they perform
similarly or slightly worse than the base untrained models. This suggests that SFT alone may lead
to overfitting on the Ruff idiom distribution and struggles to generalize from easy to hard cases
without DPO training. These findings highlight the importance of the DPO (preference-tuning)
stage in the METALINT pipeline. However, we also emphasize that while the SFT stage can limit
generalization, it remains essential for effective DPO training, as it teaches the LLM to follow the
correct output format and establishes a strong base policy. This is supported by our experiments with
the CoT model, where applying RS-DPO directly to the Qwen/Qwen3-4B model (without SFT) led
to near-zero performance across all metrics, as the model consistently failed to produce outputs in
the required format.

E.2 STATISTICAL SIGNIFICANCE OF RESULTS ON THE PEP HARD IDIOM BENCHMARK

To analyze the statistical significance of performance differences over the PEP benchmark, we con-
duct Wilcoxon signed-rank tests comparing various METALINT variants against each other and
against baseline models. We evaluate instance-level detection accuracy (binary labels indicating
whether the LLM correctly predicted the presence of a violation) as well as instance-level precision
and recall for line-level localization. To control for multiple comparisons, we apply a Bonferroni
correction to adjust the significance threshold α as α = 0.05

m where m is the number of comparisons
(or rows in any given statistical significance table in this case).

Table 21 reports the Wilcoxon signed-rank test statistic and corresponding p-value (in parentheses)
for detection accuracy, localization precision, and localization recall when comparing various MET-
ALINT variants to assess the effects of RS-DPO and CoT. We find that applying RS-DPO to the
base SFT policy leads to statistically significant improvements in both detection and localization
performance, with RS-DPO consistently outperforming the original SFT checkpoint across all three
metrics with it being always better for localization. For the CoT variant, RS-DPO also yields con-
sistent but less significant gains, likely because the RS-SFT CoT checkpoint is already relatively
strong. Finally, we observe no statistically significant difference between the CoT (RS-SFT+RS-
DPO) and the standard (SFT+RS-DPO) variant, suggesting that CoT does not provide a meaningful
additional benefit in this setting.

Table 22 shows the statistical significance of comparing the base untrained model Qwen3-4B with
its METALINT variants (SFT and SFT+RS-DPO), and the Qwen3-4B CoT model with METALINT
w/ CoT (RS-SFT and RS-SFT+RS-DPO). The SFT variant yields significant gains in detection and
localization recall, but not in localization precision. The SFT+RS-DPO model improves signifi-
cantly across all three metrics. In contrast, training RS-SFT from the Qwen3-4B w/ CoT base does
not yield significant improvements. However, the RS-SFT+RS-DPO variant produces significant
gains in localization precision and recall, but not detection. These results suggest that while SFT

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

alone offers limited generalization, combining it with DPO reliably improves localization and can
significantly boost detection when starting from a weaker base model.

Table 23 shows the statistical significance results when comparing the METALINT (SFT+RS-DPO)
and METALINT w CoT (RS-SFT+RS-DPO) variants against various baselines. Here we want to
higlight that METALINT offers comparable performance across two out of three or all three metrics
against several 32B models that outperform it like Qwen3-32B, Qwen3-32B w CoT, Qwen2.5Coder-
32B and R1-Distill-Qwen-32B. Also the METALINT non CoT (SFT+RS-DPO) variant has no singi-
ficant difference in performance compared to o3-mini, soldifying that METALINT without CoT
has generalized to the point of being as capable as o3-mini (even though the Qwen3-4B mod-
els without CoT and Qwen3-4B model with CoT perform worse than it with the difference being
statistically singificant in Table 20).

Table 24 shows the effect of using a CoT for the Qwen3 model families and we notice that using a
CoT leads to singificant gains for all metrics for the 4B and 8B models indicating that for smaller
models CoTs might be essential for good performance on this task. However the 14B and 32B model
only show statistically significant improvement in localization precision with the CoT indicating that
the CoT might offer limited benefit for larger models.

Table 25 shows the effect of varying model scale for the Qwen3, Qwen2.5, Qwen2.5Coder, and
DeepSeek-R1-Distill-Qwen families. For Qwen3 we see benefits moving from 4B to 8B abd 8B to
14B but no statistically significant difference moving from 14B to 32B when not using a CoT. Wehn
using a CoT for Qwen3 we notice that the performance differences are rarely different in terms of
statistical significant except for localizaiton performance between 4B and 8B and 8B and 14B. For
R1-Distill-Qwen family we notice a significant difference moving from 14B to 32B but not for 7B
to 14B. For the Qwen2.5Coder family we notice difference across all model scales, but the trend is
weird with a big drop in performance from 3B to 7B and then a slow climb back to great performance
around 32B. We notice that for the Qwen2.5 family which shows relatively reasonable trends with
model scale, the performance differences are statistically singificant execpt for the performance gain
from 14B to 32B being significant only for recall. To conclude the trends across model scales vary
a lot across model families but in general the model size does help but differences may be smaller if
the models are capable of reasoning and use a CoT.

Table 26 shows comparison between the GPT models. We only compared GPT-4o and its succes-
sor GPT-4.1 and o3-mini against o4-mini and the results show that GPT-4.1 is only significantly
better for localization recall while o4-mini is beter than o3-mini for overall localization but not for
detection.

E.3 FAILURE ANALYSIS OF METALINT COT MODEL VS NON COT MODEL

We observe that a significant portion of the lower detection recall of the CoT METALINT Qwen3-
4B model, relative to its non CoT counterpart, can be attributed to its higher tendency to predict NO
VIOLATIONS FOUND in cases that do, in fact, contain violations. Specifically, the CoT model
fails to flag violations in 89 additional instances compared to the non CoT model, amounting to
nearly 17% of the evaluation set (89 out of 536 examples).

The idiom wise distribution of these missed violations is shown in Figure 4. While the failure
distribution follows a somewhat long tail pattern, the most significant drops occur for PEP 614, PEP
616, and PEP 593. Notably, if the CoT model matched the non CoT model’s performance on just
these three PEPs, its detection recall would rise to 0.605, surpassing that of all open source baselines
evaluated.

Upon inspecting CoT traces for these and other idioms (see examples in Table 27), we identify sev-
eral recurring failure modes: 1) Ambiguity in interpreting the idiom specification. For example,
in PEP 614, which targets decorators with complex expressions, the CoT model often labels ex-
pressions that humans consider complex as simple. 2) Overthinking and repetitive reasoning traces,
particularly for PEP 616. 3) Skipping or entirely missing lines that contain violations, again ob-
served in PEP 616. 4) Underspecified idioms. For instance, in PEP 593, which recommends using
the Annotated type from the typing module to attach metadata to type hints, the spec lacks
clarity and concrete examples, making it hard to learn what constitutes a violation.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

We also find similar issues in idioms like PEP 487, which discourages the use of metaclasses for
simple customization tasks that could be handled via init subclass or set name . The
CoT model often misclassifies such “simple” use cases as complex.

Overall, these patterns suggest that the CoT model applies the idiom specifications more conserva-
tively, resulting in higher precision but at the cost of reduced recall.

Figure 4: Distribution of comparative failures of the CoT METALINT Qwen3-4B model relative to
its non-CoT variant. While errors span a long tail across many PEPs, the majority are concentrated
in three: PEP614, PEP593, and PEP616, which motivates our focused analysis on these cases.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

JEP# JEP Title Definition Example(s) Tree Sitter Queries

394
PatternMatching
InstanceOf
(Before)

Usage of the old pattern
of testing with instanceof
followed by a manual cast
to extract and operate on
the object. This pattern is
verbose and repetitive. Flag
the instanceof expression
check within a conditional
statement and the
accompanying cast
expression in the body of
the conditional statement.

public class ShapeExample {
static double getPerimeter(Object obj) {
if (obj instanceof Rectangle) {
Rectangle r = (Rectangle) obj;
return 2 * r.length() + 2 * r.width();
} else if (obj instanceof Circle) {
Circle c = (Circle) obj;
return 2 * c.radius() * Math.PI;
} else {
throw new IllegalArgumentException(
”Unrecognized shape”);
}
}
}

(if statement
condition: (parenthesized expression
(instanceof expression
left: (identifier) @H1
right: (type identifier) @H2
)
) @jep 394 before instanceof expression.part1
consequence: (block
((local variable declaration
type: (type identifier) @H3
declarator: (variable declarator
value: (cast expression
type: (type identifier) @H4
value: (identifier) @H5
)
)
)(#eq? @H1 @H5) (#eq? @H2 @H3) (
#eq? @H3 @H4)
) @jep 394 before instanceof expression.part2
)
)

394
PatternMatching
InstanceOf
(After)

Replaces verbose instanceof
tests plus manual casting into
a concise form that tests and
declares a typed variable in
one step, for example,
”if (obj instanceof String s)”
which improves readability,
reduces boilerplate, and
introduces flow-scoped pattern
variables. Flag only the line
containing the combined
instancesof test and casting
within the conditional
statement.

public class ShapeExample {
static double getPerimeter(Object obj) {
if (obj instanceof Rectangle r) {
return 2 * r.length() + 2 * r.width();
} else if (obj instanceof Circle c) {
return 2 * c.radius() * Math.PI;
} else {
throw new IllegalArgumentException(
”Unrecognized shape”);
}
}
}

[
(instanceof expression
left: ( )
right: (type identifier)
name: (identifier)
) @jep 394 after instanceof expression
]

378 TextBlocks
(Before)

Multiline strings represented
using concatenated string
literals, requiring explicit
newline escape sequences
(\n) and manual concatenation
with the + operator. This
approach is verbose and
error-prone. Flag cases
where a variable
declaration or method
invocation uses
concatenated string literals
instead of multiline strings.

String html = ”<html>\n” +
” <body>\n” +
” <p>Hello, world!</p>\n” +
” </body>\n” +
”</html>\n”;

[
(local variable declaration
declarator: (variable declarator
name: (identifier)
value: [
(binary expression
...
)
] @jep 378 before concatenated string literals

378 TextBlocks
(After)

Use of multiline string literal
enclosed by triple
double-quote marks (”””),
allowing for cleaner and more
readable representation of
multiline strings without
explicit escape sequences.
Flag cases that use triple
double-quote marks for
multiline strings in variable
declarations or
method invocations.

String html = ”””
<html>
<body>
<p>Hello, world!</p>
</body>
</html>
”””;

[
(string literal) @jep 378 after text block
(#match?
@jep 378 after text block ”ˆ\”\”\””)
]

361
Switch
Expressions
(Before)

Misuse of switch statement
with fall-through behavior
’for pattern matching. This
pattern is verbose and error
prone. You should flag case
statements with empty
bodies that are misusing
fall-through behavior.

int numLetters;
switch (day) {
case MONDAY:
case FRIDAY:
case SUNDAY:
numLetters = 6;
break;
case TUESDAY:
numLetters = 7;
break;
...
throw new IllegalStateException(
”Unexpected value: ” + day);
}

jep 361 before custom detectors

Table 5: JEP Idiom Specifications (1/3): This table presents 15 idioms across 8 JEPs, including
both “before” (old best practice) and “after” (updated best practice) patterns. The JEP# column lists
the JEP number, the JEP title specifies the idiom topic, and the parenthesized value indicates whether
it is a before or after pattern. The Definition, Example, and Tree-Sitter Queries columns provide the
idiom definition, minimal Java examples shown to the LLM as instructions, and the queries used to
flag idioms for synthetic data creation.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

JEP# JEP Title Definition Example(s) Tree Sitter Queries

361
Switch
Expressions
(After)

Use of switch expressions, allowing
a return value. Employs the ->
syntax for case labels, eliminating
fall-through behavior. Flag
statements that use the arrow
operator ”->” or ”yield” syntax.

Example 1:

int numLetters = switch (day) {
case MONDAY, FRIDAY, SUNDAY ->6;
case TUESDAY ->7;
case THURSDAY, SATURDAY ->8;
case WEDNESDAY ->9;
...
Example 7:

String category = switch (age) {
case 0, 1, 2, 3, 4, 5 ->”Toddler”;
case 6, 7, 8, 9, 10, 11, 12 ->”Child”;
case 13, 14, 15, 16, 17, 18, 19 ->”Teenager”;
default ->”Adult”;
};

Example 8:

String response = switch (input) {
case ”yes” ->”Affirmative”;
case ”no” ->”Negative”;
default ->”Unrecognized input”;
};

[
(yield statement
) @jep 361 after yield
(switch rule
(switch label)
”->” @jep 361 after arrow
)
(switch rule
(switch label)
”->” ;; ensures it’s not arrow
(block (yield statement
) @jep 361 after yield)
)
]

314
UnicodeLang
TagExtensions
(After)

Use java.util.Locale with additional
BCP 47 Unicode extensions
(cu, fw, rg, tz) in Java 10 to customize
locale behavior like currency
(java.util.Currency), first-day-of-week
(java.time.temporal.WeekFields),
region override
(java.text.NumberFormat.getInstance),
and time zone
(java.time.format.DateTimeFormatter).
Flag imports and function calls
related to these.

Example 1: Currency Type (cu)

import java.util.Locale;
import java.util.Currency;

public class Foo {
void bar() {
Locale locale = Locale.forLanguageTag(
”en-US-u-cu-EUR”);
Currency c = Currency.getInstance(locale);
System.out.println(c);
}
}
...
Example 4: Time Zone (tz)

import java.util.Locale;
import java.time.format.DateTimeFormatter;
import java.time.ZonedDateTime;

public class Foo {
void bar() {
Locale locale = Locale.forLanguageTag(
”en-US-u-tz-Asia-Tokyo”);
DateTimeFormatter fmt =
DateTimeFormatter.ofPattern(
”yyyy-MM-dd HH:mm z”).withLocale(locale);
System.out.println(
fmt.format(ZonedDateTime.now()));
}
}

[
(import declaration
((scoped identifier
scope: (scoped identifier
) @H2
name: (identifier) @H1
) (#eq? @H2 ”java.util”) (
#eq? @H1 ”Currency”))
) @jep 314 after currency import

((method invocation
object: (identifier) @H7
name: (identifier) @H8
) (#eq? @H7 ”Currency”) (
#eq? @H8 ”getInstance”)
) @jep 314 after currency...

...
((method invocation
object: (identifier) @H13
name: (identifier) @H14
) (
#eq? @H13 ”NumberFormat”) (
#eq? @H14 ”getInstance”)
) @jep 314 after number format...
]

395 RecordClass
(Before)

Use of simple data aggregates with
traditional classes which could be
replaced with a record class. This
approach requires explicit
declarations of fields, constructors,
and accessor methods, leading to
verbose and repetitive code. Flag
non record classes containing equals(),
hashCode(), and toString() methods.

public class Point {
private final int x;
private final int y;
...

public int x() {
return x;
}
...
@Override
public String toString() {
return ”Point{x=” + x + ”, y=” + y + ”}”;
}

@Override
public boolean equals(Object obj) {
...
}

@Override
public int hashCode() {
return Objects.hash(x, y);
}
}

[
(class declaration
body: (class body
(constructor declaration
) @H1
(method declaration
name: (identifier) @H2
)
) (#match? @H2 ”ˆ(
hashCode—equals—toString)$”)
) @jep 395 before record like class
]

395 RecordClass
(After)

Use of record class. Record classes
introduce a concise syntax for
defining immutable data aggregates,
automatically generating canonical
constructors, accessors, equals(),
hashCode(), and toString() methods,
thereby reducing boilerplate code
and enhancing readability.

Example 1 (Record Declaration):

record Point(int x, int y) {}

Example 2 (Record Declaration):

record Rectangle(double length, double width) {}
...

[
(record declaration
) @jep 395 after record ...
]

Table 6: JEP Idiom Specifications (2/3)

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

JEP# JEP Title Definition Example(s) Tree Sitter Queries

409
Sealed
Class
(Before)

Use of abstract classes with
private constructors to simulate
sealed classes using
package-private visibility to
restrict subclassing. This
approach lacks explicit language
support and is error-prone.
Switch to sealed classes. Flag
abstract classes with private
constructors.

public abstract class Shape {
private Shape() {}
}
public class Circle extends Shape {
/* Implementation */
}
public class Square extends Shape {
/* Implementation */
}

[
((class declaration
(modifiers) @H1
name: (identifier) @H4
body: (class body
(constructor declaration
(modifiers) @H2
name: (identifier) @H3
... )(#match? @H1 ”abstract”)
(#eq? @H3 @H4)
(#match? @H2 ”private”)
) @jep 409 before abstract class...
]

409
Sealed
Class
(After)

Use of sealed classes to
explicitly define which classes
or interfaces can extend or
implement them using the
sealed modifier and the permits
clause. This feature enhances
type safety and exhaustiveness
checking. Flag class declarations
with the sealed or non-sealed
modifiers and lines with the
permit clause.

public sealed class Shape
permits Circle, Square {
/* Implementation */
}
public final class Circle extends Shape {
/* Implementation */
}
public final class Square extends Shape {
/* Implementation */
}

[
(permits
) @jep 409 after permits clause
((class declaration
(modifiers) @H1
)(#match? @H1 ”sealed”)
) @jep 409 after sealed modifier
]

406

Pattern
Matching
Switch
(Before)

Use of a sequence of if-else
if statements to test an object’s
type via instanceof, with a
manual cast, to handle each case
separately. This approach is
verbose, error-prone, and lacks
exhaustiveness checking or
compiler assistance for missing
cases. Flag if or else-if statements
that contain instanceof statements
with a manual cast in the
statement body.

static String formatter(Object o) {
if (o instanceof Integer) {
Integer i = (Integer) o;
return String.format(”int %d”, i);
} else if (o instanceof Long) {
Long l = (Long) o;
return String.format(”long %d”, l);
} else if (o instanceof String) {
String s = (String) o;
return String.format(”String %s”, s);
} else {
return o.toString();
}
}

(if statement
condition: (parenthesized expression
(instanceof expression
left: (identifier) @H1
right: (type identifier) @H2
...
) @jep 406 before if else if ...
consequence: (block
((local variable declaration
type: (type identifier) @H3
declarator: (variable declarator
value: (cast expression
type: (type identifier) @H4
value: (identifier) @H5
...
(#eq? @H1 @H5)
(#eq? @H2 @H3)
(#eq? @H3 @H4)
) @jep 406 before if else if...
)
)

406

Pattern
Matching
Switch
(After)

Use of a switch expression or
statement with case labels
containing type patterns (and
optionally a guard), binding
the matched variable within
the branch. This style is more
concise, expressive, and opens
opportunities for compiler-checked
exhaustiveness and performance
optimizations. Flag switch labels
(case statements) with patterns, null
literals or paranthesized expressions
but skip default switch labels/cases.

Example 1:

static String formatter(Object o) {
return switch (o) {
case Integer i ->String.format(”int %d”, i);
case Long l ->String.format(”long %d”, l);
case String s ->String.format(”String %s”, s);
default ->o.toString();
};
}

Example 2:

static String checkShape(Object o) {
return switch (o) {
...

[
(switch label
(null literal)
) @jep 406 after null case
(switch label
(pattern)
) @jep 406 after switch pattern
(switch label
(parenthesized expression)
) @jep 406 after paranthesized pattern
(switch label
(binary expression)
) @jep 406 after binary expression
]

323

LocalVar
Syntax
Lambda
Params
(Before)

Use of implicitly typed lambda
expressions with omitted type
declarations. These lambda
expressions rely solely on parameter
names. This approach prioritizes
brevity but lacks explicit type
information. Flag full lambda
expressions without type
declarations.

Example 1:
xs.stream().filter((a, b) ->a <b).forEach(
System.out::println);
...
Example 4:
xs.stream().filter((a) ->a >10).forEach(
System.out::println);

jep 323 before custom detector

323

LocalVar
Syntax
Lambda
Params
(After)

Use of explicit type declarations for
lambda parameters, enhancing code
clarity and enabling better static
analysis tools. Flag full lambda
expressions with explicit type
declarations using formal
parameters (var).

Example 1:
xs.stream().filter(
(var a, var b) ->a.compareTo(b) <0).forEach(
System.out::println);
...
Example 4:
xs.stream().filter((var a) ->a >10).forEach(
System.out::println);

(lambda expression
parameters: (formal parameters
(formal parameter
type: (type identifier) @H1
(#eq? @H1 ”var”))
)) @jep 323 after local var lambda

Table 7: JEP Idiom Specifications (3/3)

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

JEP # Before After Title JDK# Release Date
409 Yes Yes Sealed Classes 17
406 Yes Yes Pattern Matching for switch 17 14 Sept 2021

395 Yes Yes Records 16
394 Yes Yes Pattern Matching for instanceof 16 16 Mar 2021

378 Yes Yes Text Blocks 15 15 Sept 2020
361 Yes Yes Switch Expressions 14 17 Mar 2020

323 Yes Yes Local-Variable Syntax for
Lambda Parameters 11 25 Sept 2018

314 No Yes Additional Unicode
Language-Tag Extensions 10 20 Mar 2018

Table 8: List of JEPs addressed by our tree-sitter synthetic data. The JEP# and Title column indicate
the number and title of the JEP while JDK# and Release Date indicate the JDK needed for compila-
tion to be able to use the JEP features. The Before and After columns indicate whether we include
rules/patterns to flag the old idiom or new idiom introduced by the JEP.

Training Set Idioms Test Set Idioms

PyFlakes: PyFlakes:
F405, F501, F502, F601, F621 F403, F406, F503, F602, F622

pycodestyle: pycodestyle:
E402, E701, E721, E741, E743 E401, E702, E722, E731, E742

Naming: Miscellaneous:
N801, N802, N803, N804, N805, ERA001, C901, I001, I002, BLE001
N806, N807, N811, N812, N813 (shared with training)

pyupgrade: flake8 annotations:
UP001, UP002, UP003, UP004, UP005, UP006, ANN001, ANN002, ANN003, ANN201, ANN202,
UP007, UP008, UP009, UP010, UP011, ANN204, ANN205, ANN206
UP040, UP044, UP045, UP046, UP047

Miscellaneous: flake8 async:
ERA001, C901, I001, I002, BLE001 ASYNC100, ASYNC105, ASYNC109, ASYNC110,

ASYNC115, ASYNC116, ASYNC210, ASYNC220,
ASYNC221, ASYNC222, ASYNC230, ASYNC251

Bugbear: flake8 bandit:
B002, B003, B004, B005, B006, S102, S103, S104, S105, S106,
B007, B008, B009, B010, B012 S107, S108, S110, S112, S113,

S201, S202, S301, S302, S303

Table 9: Ruff idioms included in the supervised training and transfer evaluation test sets. Test set
idioms span both overlapping linters and novel ones not seen during training.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Fraction of
NV data

Detection Localization
PDet RDet FDet PLoc RLoc FLoc

0% 0.6268 0.9577 0.7577 0.6777 0.6932 0.6854
2% 0.671 0.9128 0.7734 0.6681 0.6812 0.6746
5% 0.7469 0.8315 0.7869 0.6527 0.6696 0.6611
10% 0.7584 0.8114 0.784 0.6263 0.6474 0.6367
20% 0.8382 0.7227 0.7762 0.5721 0.5815 0.5768
40% 0.8683 0.5618 0.6822 0.4683 0.4735 0.4709
100% 0.8565 0.4152 0.5593 0.4041 0.4056 0.4048

Table 10: Effect of varying the fraction of NO VIOLATIONS FOUND instances in the training
data for METALINT Qwen3-4B model without CoT. Including 0% yields the highest recall and
best line-level localization but reduces precision due to more false positives and lower accuracy in
predicting NO VIOLATIONS FOUND. Conversely, including 100% improves precision but leads
to reduced recall and localization performance. All rows report the performance at the best training
step, selected based on a balance of detection and localization F-score on the Ruff Idiom Transfer
test set.

Fraction of
NV data

Detection Localization
PDet RDet FDet PLoc RLoc FLoc

2% 0.9226 0.8901 0.906 0.7688 0.7638 0.7663
5% 0.9234 0.8643 0.8929 0.771 0.7571 0.764

Table 11: Effect of varying the fraction of NO VIOLATIONS FOUND instances in the training data
for METALINT Qwen3-4B model with CoT. We perform limited ablations because of the insights
from the non CoT model training.

Fraction of
NV data

Detection Localization
PDet RDet FDet PLoc RLoc FLoc

1% 0.654 0.6468 0.6504 0.491 0.4788 0.4848
2% 0.6636 0.6057 0.6333 0.4869 0.4745 0.4806

Table 12: Effect of varying the fraction of NO VIOLATIONS FOUND instances in the training data
for METALINT Llama3.2-3B-Instruct model. We perform limited ablations because of the insights
from the non CoT model training.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

PEP Description Heuristics Example

506

Adds secrets module
to the standard library
for cryptographically secure
random value generation

Conjunction of 2 conditions:
1. Presence of ”random” module imports
2. Presence of ”random” function usage

characters = string.ascii letters +
string.punctuation + string.digits
password = ””.join(random.choice
(characters) for x in range(16))
Use instead:
characters = string.ascii letters +
string.punctuation + string.digits
password = ””.join(secrets.choice
(characters) for x in range(16))

557

Introduces the dataclasses
module, enabling automatic
generation of common boilerplate
methods for classes

Conjunction of 2 conditions:
1. There is a class with manual
implementation of ” init ” method
2. On the same class there is manual
implementation of common
special methods or comparison methods
that follow standard data storage patterns.

”class Point:
def init (self, x, y):
self.x = x
self.y = y
def repr (self):
return f””Point(x={self.x}, y={self.y})””
Use instead:
from dataclasses import dataclass
@dataclass
class Point:
x: int
y: int”

655

Introduces Required[] and
NotRequired[] type qualifiers
to replaces cumbersome
TypedDict inheritance patterns.

Conjuction of:
1. ”TypedDict” defined with inheritance pattern.
2. total=False parameter usage in class definition

class MovieBase(TypedDict): # implicitly total=True
title: str
class Movie( MovieBase, total=False):
year: int
Use instead:
class Movie(TypedDict):
title: str
year: NotRequired[int]

634

Introduced structural pattern
matching, enabling more
expressive and concise ways
to match data structures
and control flow.

Multiple consecutive if-elif-else
statements that compare a
single variable against different
values with dysjunction of 2 conditions:
1. Length of ladder (number of
conditons at the ”top level” + one level in) >= 6
2. Depth of ladder (degree of nesting) >=3

”def handle response(response):
if isinstance(response, dict):
if ””error”” in response:
print(f””Error: {response[’error’]}””)
elif ””data”” in response:
print(f””Data: {response[’data’]}””)
else:
print(””Unknown response format””)
elif isinstance(response, list):
print(””List of items:””, response)
else:
print(””Invalid response type””)
Use instead:
def handle response(response):
match response:
case {””error””: error message}:
print(f””Error: {error message}””)
case {””data””: data content}:
print(f””Data: {data content}””)
case list(items):
print(””List of items:””, items)
case : print(””Invalid response type””)”

614

Removes previous restrictions
on decorator syntax. Before,
only simple names or dotted
names were valid decorators.
After 614, any valid expression
can be used as a decorator

Conjunction of 2 conditions:
1. A decorator is applied using a name
(e.g., @decorator) where that name is
assigned earlier in the code.
2. The assignment value is an expression
of type Call, Attribute, or Subscript (e.g.,
deco = factory(), deco = module.decorator,
deco = decorators[i]).

# def uppercase(func):
def wrapper(*args, **kwargs):
return func(*args, **kwargs).upper()
return wrapper
@uppercase
def greet():
return ”hello”
Use Instead:
deco = [uppercase]
@deco[0]
def greet2():
return ”hi”

616 Replaces manual slicing
with dedicated methods

dysjunction of 2 conditions:
1. There is a ”check” with
startswith or endswith on a
given variable x.
2. On the same variable x
check if there is an ”edit” using a
program slicing syntax or using ”replace()”.

if s.startswith(prefix): s = s[len(prefix):]
Use instead:
s = s.removeprefix(prefix)
OR
s[:-len(suffix)]
Use instead:
s.removesuffix(suffix)

584

Introduces the binary operators
— (merge) and —= (update) on
dict (and other built-in mapping
types), providing an expressive,
in-place-or-new-object way to
combine dictionaries.

disjunction of two conditions:
1. A copy-and-update sequence
on the same variable
or in close proximity: d = d1.copy()
followed by d.update(d2)
2. A dictionary literal using multiple
unpackings {**d1, **d2},
indicating ad-hoc merging rather
than the new operators

d1 = {’a’: 1, ’b’: 2} d2 = {’c’: 3, ’d’: 4}
merged = d1.copy()
merged.update(d2)
d1 = {’a’: 1, ’b’: 2} d2 = {’c’: 3, ’d’: 4}
merged = {**d1, **d2}
d1 = {’a’: 1, ’b’: 2} d2 = {’c’: 3, ’d’: 4}
merged = dict(list(d1.items()) + list(d2.items()))
Use instead:
d1 = {’a’: 1, ’b’: 2} d2 = {’c’: 3, ’d’: 4}
merged = d1 — d2
d1 = {’a’: 1, ’b’: 2} d2 = {’c’: 3, ’d’: 4}
d1 —= d2 # d1 is now {’a’: 1, ’b’: 2, ’c’: 3, ’d’: 4}

Table 13: High recall heuristics used to find instances of PEP violations that human annotators vet

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

PEP Description Heuristics Example

570

Introduces new syntax
(the / marker) in Python
function signatures to
specify positional-only
parameters, ensuring that
certain arguments can
only be supplied by their
position and not as keywords

Conjunction of the
following conditions:
1. Have only positional-or-
keyword parameters
(without *args, **kwargs, keyword
-only parameters, or the ’/’ marker),
2. Include 2 to 4 parameters, all of
which have no default values

def compute area(width, height):
return width * height
area = compute area(width=5, height=10)
print(”Area:”, area)
Use instead:
def compute area(width, height, /):
return width * height
area = compute area(5, 10)
print(”Area:”, area)

567
Adds the contextvars module,
enabling context-local variables
for managing dynamic state.

Dysjunction of the following conditions:
1. Look for import threading together
with threading.local() object creation and use.
2. Find global statements or assignment
to variables at the module
level that are accessed or mutated in functions,
especially as shared state.
3. Identify async functions or classes
where context or state
variables are passed as parameters
(e.g., def func(context, ...) or async
def func(context, ...)), not as context-local variables.

import threading
thread local = threading.local()

def set context(value):
thread local.value = value

def get context():
return getattr( thread local, ’value’, None)
Use instead:
from contextvars import ContextVar
context var = ContextVar(’value’)
def set context(value):
context var.set(value)
def get context():
return context var.get()

530

Enables the use of ”async for”
and ”await” in list, set, and dict
comprehensions as well as in
generator expressions, providing
concise asynchronous data
processing within comprehensions

Dysjunction of the following conditions:
1. ”async” def functions that uses ”async for”
loops to build lists, sets, or dicts.
2. ”async for” loops, followed by methods like
result.append(...), result.extend(...), or result[key] = ....
3. Comprehensions written without the ”async for”
clause despite being inside an ”async def”

result = []
async for i in aiter():
if i % 2:
result.append(i)
Use instead:
result = [i async for i in aiter() if i % 2]

525

Introduces the ability to define
asynchronous generator functions
using the async def and yield
syntax, enabling concise, native
support for asynchronous iteration.

Dysjunction of the following conditions:
1. classes defining both ” aiter ” and ” anext ”
methods, especially where the class is used solely to
produce a sequence of values asynchronously.
2. async def functions that create and return custom
iterator classes instead of using async def with yield.

class Ticker:
”””Yield numbers from 0 to ‘to‘
every ‘delay‘ seconds.”””
def init (self, delay, to):
self.delay = delay
self.i = 0
self.to = to
def aiter (self):
return self
async def anext (self):
i = self.i
if i >= self.to:
raise StopAsyncIteration
self.i += 1
if i:
await asyncio.sleep(self.delay)
return i
Use instead:
async def ticker(delay, to):
”””Yield numbers from 0 to ‘to‘
every ‘delay‘ seconds.”””
for i in range(to):
yield i
await asyncio.sleep(delay)

520

Ensures that the order in
which attributes are defined within
a class body is preserved in the
resulting class object, making
the attribute order predictable
and consistent.

Dysjunction of the following conditions:
1. Uses sorted() or otherwise processes
class. dict .keys() to impose attribute order.
2. Attribute names are tracked in a list or similar
structure solely to maintain definition order.
3. Custom metaclass logic or ” prepare ” impleme-
ntations created to preserve the order of class attributes.

class Person:
name = ”Alice”
age = 30
city = ”Wonderland”
def display attributes(self):
# Manually sorting keys
for key in sorted(self. class . dict .keys()):
if not key.startswith(” ”):
print(key, getattr(self, key))
Use instead:
class Person:
name = ”Alice”
age = 30
city = ”Wonderland”
def display attributes(self):
# Directly iterate over the preserved definition order
for key in self. class . definition order :
print(key, getattr(self, key))

498

Introduces f-strings (formatted
string literals) as a new,
concise, and efficient way
to embed Python
expressions inside string
literals using the f” prefix.

Dysjunction of the following conditions:
1. Occurrences of string literals with
.format(...) applied,
especially where keys or variables match
braces in the string
2. String literals concatenated using
”+” with variables.
3. Uses of the ”%” operator for string formatting,

name = ”Alice”
age = 30
greeting = ”Hello, ” + name +
”! You are ” + str(age) + ” years old.”
Use instead:
name = ”Alice”
age = 30
greeting = f”Hello, {name}!
You are {age} years old.”
OR
value = 12.3456
formatted = ”The value is {:.2f}”.format(value)
Use instead:
value = 12.3456
formatted = f”The value is {value:.2f}”

Table 14: High recall heuristics used to find instances of PEP violations that human annotators vet

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

PEP Description Heuristics Example

487

Makes customizing class
creation and subclass initialization
easier by introducing init
subclass and set name ,
eliminating the need for
most custom metaclasses

Disjunction of the following conditions:
1. Custom metaclasses defined to
execute code during class creation
or subclassing (e.g., overriding new ,

init , or call in metaclasses)
instead of using init subclass .
2. Descriptor classes lacking set
name method and employing
manual workarounds to determine
their assigned attribute names.
3. Classes or frameworks manually
tracking or registering sub-
classes via metaclass hooks instead
of leveraging init subclass .

class Meta(type):
def new (meta, name, bases, namespace):
for key, value in namespace.items():
if isinstance(value, Descriptor):
value.name = key
return super(). new
(meta, name, bases, namespace)
class MyClass(metaclass=Meta):
attr = Descriptor()
Use instead:
class Descriptor:
def set name (self, owner, name):
self.name = name
class MyClass:
attr = Descriptor()
OR
class PluginBase(type):
plugins = {}
def new (meta, name, bases, namespace):
if name != ’Plugin’:
meta.plugins[name] = namespace[’priority’]
return super(). new
(meta, name, bases, namespace)
class Plugin(metaclass=PluginBase):
priority = 0
class HighPriority(Plugin):
priority = 10
Use instead:
class Plugin:
plugins = {}
priority = 0
def init subclass (cls, **kwargs):
super(). init subclass (**kwargs)
cls.plugins[cls. name ] = cls.priority
class HighPriority(Plugin):
priority = 10

593

Introduces flexible function
and variable annotations via
typing.Annotated, which lets you
attach context-specific metadata
to type hints (e.g., validation
constraints, units)

Conjunction of 2 conditions:
1. Type hints are already present
in function arguments, return
types, or variable annotations.
2. Nearby comments/docstrings (within
±2 lines) contain metadata-like
patterns such as ”min”, ”max”,
”nullable”, ”regex”, ”enum”,
”unit”, ”deprecated”, etc.

# max 100, min 1
def set age(age: int) ->None:
pass

Use instead:

from typing import Annotated
Age = Annotated[int, ”min=1”, ”max=100”]
def set age(age: Age) ->None:
pass

526

introduces explicit variable
annotations, allowing type
hints directly on variable
declarations for local, global,
and class variables in Python

Disjunction of the following conditions:
1. Variables assigned values with a
type comment (e.g., x = 0 # type: int)
instead of using annotation syntax.
2. Identify variable assignments,
especially class and
instance attributes, that lack any
type annotation (e.g., name = ”” in class bodies).
3.Module-level variables assigned
values without accompanying type hints—
especially in type-annotated codebases.

# type: List[int]
numbers = []
Use instead:
numbers: List[int] = []
OR
class Player:
# type: str<br>name = ”Guest”
Use instead:
class Player:
name: str = ”Guest”

589

Introduces TypedDict, enabling
precise type hints for
dictionaries with a fixed
set of string keys, improving
static type checking and
readability in Python code.

Disjunction of the following conditions:
1. Dictionary literals or variables
consistently using the same fixed set of
string keys without accompanying
TypedDict annotations.
2. Functions annotated with broad
dictionary types like Dict[str, Any], dict,
or untyped parameters/returns that actually
expect dictionaries with a known fixed set of keys.
3. Explicit key presence checks or
accessing dictionary keys repeatedly that suggest
a structured dictionary shape.

movie = {’name’: ’Blade Runner’,
’year’: 1982}
Use instead:
from typing import TypedDict
class Movie(TypedDict):
name: str
year: int
movie: Movie = {’name’: ’Blade Runner’,
’year’: 1982}

572

Introduces the assignment
expression operator :=
(the ”walrus operator”),
allowing assignment to
variables within expressions,

1. Patterns where a value is first assigned
to a variable, and then immediately checked
or used in the next line or inside a
loop, list comprehension, or condition.
2. separate assignment and conditional test statements

match = pattern.search(data)
if match is not None:
process(match)
Use instead:
if (match := pattern.search(data)) is not None:
process(match)

Table 15: High recall heuristics used to find instances of PEP violations that human annotators vet

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Model In-Domain Near Transfer Far Transfer
PDet RDet FDet PDet RDet FDet PDet RDet FDet

Qwen3-4B 0.45 0.14 0.22 0.58 0.24 0.34 0.54 0.29 0.38
+SFT 0.93 (+0.48) 0.74 (+0.6) 0.83 (+0.61) 0.89 (+0.31) 0.24 (+0) 0.38 (+0.04) 0.72 (+0.18) 0.27 (-0.02) 0.39 (+0.01)

+RS-DPO 0.72 (+0.27) 1 (+0.86) 0.83 (+0.61) 0.76 (+0.18) 0.8 (+0.56) 0.78 (+0.44) 0.75 (+0.21) 0.81 (+0.52) 0.78 (+0.4)
Qwen3-4B w CoT 0.87 0.5 0.63 0.95 0.88 0.91 0.87 0.68 0.76

+RS-SFT 0.87 (+0) 0.73 (+0.23) 0.8 (+0.17) 0.97 (+0.02) 0.86 (-0.02) 0.91 (+0) 0.94 (+0.07) 0.82 (+0.14) 0.88 (+0.12)
+RS-DPO 0.86 (-0.1) 0.85 (+0.35) 0.85 (+0.22) 0.97 (+0.02) 0.92 (+0.04) 0.94 (+0.03) 0.92 (+0.05) 0.86 (+0.18) 0.89 (+0.13)

Llama3.2-3B-Instruct 0.54 0.43 0.48 0.69 0.68 0.69 0.47 0.51 0.49
+SFT 0.88 (+0.34) 0.87 (+0.44) 0.88 (+0.4) 0.89 (+0.2) 0.44 (-0.24) 0.59 (-0.1) 0.61 (+0.14) 0.27 (-0.24) 0.37 (-0.12)

+RS-DPO 0.75 (+0.21) 0.92 (+0.49) 0.83 (+0.35) 0.81 (+0.12) 0.71 (+0.03) 0.76 (+0.07) 0.61 (+0.14) 0.59 (+0.08) 0.60 (+0.11)

Table 16: Cross-Idiom Generalization on Python Ruff Idioms by Transfer Setting: We evaluate
the effect of different METALINT training setups (SFT, RS-SFT, and RS-DPO) on Qwen3-4B (with
and without reasoning) and Llama3.2-3B. Models are trained on easy synthetic Python Ruff idioms,
and the performance is reported on other Ruff idioms with varying levels of transfer - In-Domain,
Near Transfer, and Far Transfer (section 4.2).

Detection Localization
Model

PDet RDet FDet PLoc RLoc FLoc

Llama3.2-3B-Instruct 0.7042 0.214 0.3283 0.0691 0.0798 0.0741

Qwen3-4B 0.5267 0.1715 0.2587 0.0954 0.0824 0.0884
Qwen3-4B with CoT 0.8154 0.3986 0.5354 0.2625 0.1467 0.1882
Qwen3-8B 0.8267 0.3572 0.4988 0.1806 0.1285 0.1501
Qwen3-8B with CoT 0.8886 0.4672 0.6124 0.3122 0.2029 0.2459
Qwen3-14B 0.9021 0.4612 0.6103 0.289 0.2521 0.2693
Qwen3-14B with CoT 0.9116 0.4857 0.6337 0.3993 0.2915 0.3369
Qwen3-32B 0.9021 0.5205 0.6601 0.2807 0.2711 0.2758
Qwen3-32B with CoT 0.9377 0.5645 0.7048 0.4152 0.3086 0.354

Qwen2.5-3B-Instruct 0.0667 0.0033 0.0063 0.0036 0.0036 0.0036
Qwen2.5-7B-Instruct 0.4333 0.1379 0.2092 0.0585 0.0518 0.0549
Qwen2.5-14B-Instruct 0.8017 0.4324 0.5618 0.2389 0.2158 0.2267
Qwen2.5-32B-Instruct 0.8667 0.2656 0.4066 0.163 0.1477 0.155

Qwen2.5Coder-3B-Instruct 0.7802 0.411 0.5384 0.1257 0.0745 0.0936
Qwen2.5Coder-7B-Instruct 0.0667 0.0033 0.0063 0 0 0
Qwen2.5Coder-14B-Instruct 0.2 0.0443 0.0726 0.0294 0.0264 0.0278
Qwen2.5Coder-32B-Instruct 0.8961 0.5328 0.6683 0.3432 0.3077 0.3245

DeepSeek-R1-Distill-Qwen-7B with CoT 0.7143 0.2841 0.4065 0.1064 0.1122 0.1092
DeepSeek-R1-Distill-Qwen-14B with CoT 0.69 0.2345 0.35 0.1856 0.1245 0.149
DeepSeek-R1-Distill-Qwen-32B with CoT 0.9008 0.5899 0.713 0.4015 0.3403 0.3684

GPT-oss-20b 0.8377 0.3531 0.4968 0.251 0.1695 0.2024
GPT-oss-120b 0.9157 0.6456 0.7573 0.3991 0.3331 0.3631

Qwen3-4B METALINT (SFT) (Ours) 0.4333 0.0821 0.1381 0.0432 0.0221 0.0292
Qwen3-4B METALINT (SFT+RS-DPO) (Ours) 0.7031 0.7043 0.7037 0.3536 0.193 0.2497
Qwen3-4B METALINT w CoT (RS-SFT) (Ours) 0.7615 0.3689 0.497 0.2785 0.1437 0.1896
Qwen3-4B METALINT w CoT (RS-SFT+RS-DPO) (Ours) 0.9303 0.4958 0.6468 0.3482 0.2169 0.2673
Llama3.2-3B-Instruct METALINT (SFT) (Ours) 0.5627 0.259 0.3547 0.1066 0.0509 0.0689
Llama3.2-3B-Instruct METALINT (SFT+RS-DPO) (Ours) 0.6368 0.5614 0.5965 0.2364 0.1263 0.1647

o3-mini 0.8939 0.5845 0.7068 0.3169 0.2361 0.2706
o4-mini 0.9667 0.5943 0.7361 0.4131 0.3164 0.3584
GPT-4o 0.8938 0.6788 0.7716 0.4461 0.332 0.3807
GPT-4.1 0.907 0.646 0.7546 0.4632 0.4673 0.4653
GPT-5 (high) 0.913 0.5673 0.6998 0.4397 0.4257 0.4326

Table 17: Results on the hard PEP benchmark to measure easy to hard generalization.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Model Detection Localization
PDet RDet FDet PLoc RLoc FLoc

Qwen3-4B 0.538 0.2637 0.3539 0.1396 0.1479 0.1436
Qwen3-4B + SFT 0.7686 0.3178 0.4497 0.2976 0.296 0.2968
Qwen3-4B + SFT + RS-DPO 0.7469 0.8315 0.7869 0.6527 0.6696 0.6611
Qwen3-4B w CoT 0.8812 0.6854 0.771 0.5049 0.4878 0.4962
Qwen3-4B w CoT + RS-SFT 0.935 0.8183 0.8727 0.6639 0.65 0.6569
Qwen3-4B w CoT + RS-SFT + RS-DPO 0.9234 0.8643 0.8929 0.771 0.7571 0.764
Llama3.2-3B-Instruct 0.5092 0.5286 0.5187 0.1371 0.3 0.1882
Llama3.2-3B-Instruct + SFT 0.6793 0.3598 0.4704 0.3424 0.3485 0.3454
Llama3.2-3B-Instruct + SFT + RS-DPO 0.654 0.6468 0.6504 0.491 0.4788 0.4848

Table 18: Cross-Idiom Generalization on Python Ruff Idioms: We evaluate the effect of different
METALINT training setups (SFT, RS-SFT, and RS-DPO) on Qwen3-4B (with and without reason-
ing) and Llama3.2-3B. Models are trained on easy synthetic Python Ruff idioms and tested on other
Ruff idioms with varying levels of transfer (section 4.2). Best score across the compared training
setups per model are bolded.

Model Detection Localization
PDet RDet FDet PLoc RLoc FLoc

Qwen3-4B 0.5267 0.1715 0.2587 0.0954 0.0824 0.0884
Qwen3-4B + SFT 0.4333 0.0821 0.1381 0.0432 0.0221 0.0292
Qwen3-4B + SFT + RS-DPO 0.7031 0.7043 0.7037 0.3536 0.193 0.2497
Qwen3-4B w CoT 0.8154 0.3986 0.5354 0.2625 0.1467 0.1882
Qwen3-4B w CoT + RS-SFT 0.7615 0.3689 0.497 0.2785 0.1437 0.1896
Qwen3-4B w CoT + RS-SFT + RS-DPO 0.9303 0.4958 0.6468 0.3482 0.2169 0.2673
Llama3.2-3B-Instruct 0.7042 0.214 0.3283 0.0691 0.0798 0.0741
Llama3.2-3B-Instruct + SFT 0.5627 0.259 0.3547 0.1066 0.0509 0.0689
Llama3.2-3B-Instruct + SFT + RS-DPO 0.6368 0.5614 0.5965 0.2364 0.1263 0.1647

Table 19: Easy-to-Hard Generalization on PEP Idioms: We evaluate the effect of different MET-
ALINT training setups (SFT, RS-SFT, and RS-DPO) on Qwen3-4B (with and without reasoning) and
Llama3.2-3B. Models are trained on easy synthetic Python Ruff idioms and tested on hard manually
curated PEP idiom detection data which can’t be handled by linters or static analyzers (section 4.3).
Best score across the compared training setups per model are bolded.

Model Comparison Detection Localization P Localization R
Qwen3-4B vs o3-mini 1266.5 (7.20e-21) 743.5 (2.96e-11) 739.0 (4.23e-09)
Qwen3-4B w CoT vs o3-mini 921.5 (3.23e-09) 2385.5 (9.61e-02) 1891.0 (4.99e-04)

Table 20: Wilcoxon signed-rank test results comparing untrained Qwen3-4B variants with
o3-mini, using Bonferroni-adjusted significance threshold α = 0.025. Each cell reports the test
statistic (p-value).

Model Comparison Detection Localization P Localization R
METALINT (SFT) vs METALINT (SFT+RS-DPO) 7192.0 (1.92e-12) 0.0 (2.49e-20) 0.0 (2.92e-18)
METALINT w CoT (RS-SFT) vs METALINT w CoT (RS-SFT+RS-DPO) 839.5 (2.18e-03) 740.0 (3.95e-03) 523.0 (2.34e-05)
METALINT (SFT) vs METALINT w CoT (RS-SFT) 528.0 (6.91e-14) 11.0 (1.38e-15) 113.0 (7.95e-12)
METALINT (SFT+RS-DPO) vs METALINT w CoT (RS-SFT+RS-DPO) 8140.0 (5.55e-01) 2568.5 (8.42e-01) 2544.0 (4.44e-01)

Table 21: Wilcoxon signed-rank test results comparing MetaLint variants. Each cell reports test
statistic (p-value). All the METALINT models are trained Qwen3-4B variants. We use the Bonferroni
corrected significance threshold α = 0.0125.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Model Comparison Detection Localization P Localization R
Qwen3-4B vs Qwen3-4B METALINT (SFT) 560.5 (8.64e-03) 363.5 (1.82e-02) 238.0 (4.85e-04)
Qwen3-4B vs Qwen3-4B METALINT (SFT+RS-DPO) 7260.0 (4.13e-09) 411.0 (1.99e-15) 979.5 (7.30e-09)
Qwen3-4B w CoT vs Qwen3-4B METALINT w CoT (RS-SFT) 1224.0 (7.22e-01) 937.0 (6.12e-01) 918.5 (5.39e-01)
Qwen3-4B w CoT vs Qwen3-4B METALINT w CoT (RS-SFT+RS-DPO) 1728.0 (1.83e-02) 1011.0 (1.53e-03) 966.0 (1.02e-03)

Table 22: Wilcoxon signed-rank test results comparing METALINT models against their untrained
counterparts, with Bonferroni-adjusted significance threshold α = 0.0125. Each cell reports the test
statistic (p-value).

Model Comparison Detection Localization P Localization R
Qwen3-8B vs METALINT (SFT+RS-DPO) 8140.5 (7.21e-03) 1309.5 (2.19e-08) 2067.0 (2.12e-03)
Qwen3-8B w CoT vs METALINT w CoT (RS-SFT+RS-DPO) 2070.0 (9.17e-01) 1974.5 (1.88e-01) 2161.0 (6.58e-01)
Qwen3-14B vs METALINT (SFT+RS-DPO) 7304.0 (4.96e-01) 2816.5 (3.15e-02) 3159.0 (2.88e-02)
Qwen3-14B w CoT vs METALINT w CoT (RS-SFT+RS-DPO) 2392.0 (2.78e-01) 2749.5 (1.26e-01) 2319.0 (1.32e-03)
Qwen3-32B vs METALINT (SFT+RS-DPO) 7175.0 (4.48e-01) 3262.0 (1.93e-02) 2818.5 (5.56e-03)
Qwen3-32B w CoT vs METALINT w CoT (RS-SFT+RS-DPO) 2677.5 (9.95e-03) 3479.0 (8.38e-02) 3180.5 (5.64e-04)
R1-Distill-Qwen-7B vs METALINT (SFT+RS-DPO) 8244.0 (2.65e-08) 555.0 (8.12e-15) 1924.0 (1.91e-04)
R1-Distill-Qwen-7B vs METALINT w CoT (RS-SFT+RS-DPO) 2907.0 (7.07e-10) 915.5 (1.04e-12) 1569.5 (8.64e-06)
R1-Distill-Qwen-14B vs METALINT (SFT+RS-DPO) 9877.0 (3.99e-06) 2582.5 (9.36e-06) 3085.0 (2.00e-03)
R1-Distill-Qwen-14B vs METALINT w CoT (RS-SFT+RS-DPO) 2660.0 (9.11e-08) 1703.0 (2.98e-06) 1791.0 (3.97e-05)
R1-Distill-Qwen-32B vs METALINT (SFT+RS-DPO) 8677.5 (2.51e-01) 5767.5 (1.93e-01) 3705.0 (6.67e-06)
R1-Distill-Qwen-32B vs METALINT w CoT (RS-SFT+RS-DPO) 3125.0 (3.11e-02) 3641.5 (6.35e-02) 2175.0 (4.99e-06)
Qwen2.5-3B vs METALINT (SFT+RS-DPO) 8001.0 (1.41e-15) 0.0 (1.24e-22) 68.5 (1.26e-19)
Qwen2.5-3B vs METALINT w CoT (RS-SFT+RS-DPO) 949.0 (4.96e-23) 0.0 (4.24e-22) 0.0 (9.89e-20)
Qwen2.5-7B vs METALINT (SFT+RS-DPO) 7312.5 (3.37e-10) 208.0 (1.44e-18) 610.0 (1.99e-12)
Qwen2.5-7B vs METALINT w CoT (RS-SFT+RS-DPO) 1187.5 (1.14e-14) 226.0 (2.60e-18) 406.5 (5.69e-14)
Qwen2.5-14B vs METALINT (SFT+RS-DPO) 8677.5 (2.51e-01) 3045.5 (5.70e-04) 4006.0 (3.83e-01)
Qwen2.5-14B vs METALINT w CoT (RS-SFT+RS-DPO) 4123.0 (4.86e-01) 3228.0 (1.51e-03) 4383.0 (9.89e-01)
Qwen2.5-32B vs METALINT (SFT+RS-DPO) 8640.0 (1.76e-04) 1492.5 (3.12e-08) 2971.5 (4.55e-02)
Qwen2.5-32B vs METALINT w CoT (RS-SFT+RS-DPO) 1792.0 (8.16e-06) 1166.0 (2.43e-08) 1983.5 (4.71e-03)
Qwen2.5Coder-3B vs METALINT (SFT+RS-DPO) 11184.0 (8.64e-03) 953.5 (3.73e-12) 1716.0 (3.00e-07)
Qwen2.5Coder-3B vs METALINT w CoT (RS-SFT+RS-DPO) 3683.5 (6.45e-03) 1126.0 (4.39e-11) 1403.5 (1.32e-08)
Qwen2.5Coder-7B vs METALINT (SFT+RS-DPO) 8001.0 (1.41e-15) 0.0 (7.69e-23) 0.0 (2.02e-20)
Qwen2.5Coder-7B vs METALINT w CoT (RS-SFT+RS-DPO) 949.0 (4.96e-23) 0.0 (2.61e-22) 0.0 (6.55e-20)
Qwen2.5Coder-14B vs METALINT (SFT+RS-DPO) 9123.5 (1.04e-12) 289.0 (8.19e-20) 736.0 (7.32e-14)
Qwen2.5Coder-14B vs METALINT w CoT (RS-SFT+RS-DPO) 1112.0 (1.82e-19) 159.5 (7.63e-20) 408.5 (3.02e-15)
Qwen2.5Coder-32B vs METALINT (SFT+RS-DPO) 6833.5 (2.86e-01) 4500.0 (9.59e-01) 2651.5 (7.07e-05)
Qwen2.5Coder-32B vs METALINT w CoT (RS-SFT+RS-DPO) 1039.5 (1.16e-02) 2655.0 (9.39e-01) 1235.5 (1.44e-05)
o3-mini vs METALINT (SFT+RS-DPO) 7520.0 (4.83e-02) 4986.0 (5.20e-01) 4427.5 (2.87e-01)
o3-mini vs METALINT w CoT (RS-SFT+RS-DPO) 1944.0 (7.15e-04) 3169.0 (5.16e-01) 2683.0 (4.23e-01)

Table 23: Wilcoxon signed-rank test statistics and p-values comparing MetaLint variants against
baseline models. All the METALINT variants are Qwen3-4B variants and Qwen2.5 and
Qwen2.5Coder variants are instruction tuned checkpoints. We use the Bonferroni corrected sig-
nificance threshold α = 0.0017.

Model Comparison Detection Localization P Localization R
Qwen3-4B vs Qwen3-4B w CoT 1260.0 (3.99e-08) 425.0 (1.91e-09) 624.5 (2.25e-05)
Qwen3-8B vs Qwen3-8B w CoT 1924.0 (4.27e-03) 1132.5 (8.69e-06) 1005.0 (1.15e-04)
Qwen3-14B vs Qwen3-14B w CoT 1691.0 (2.01e-01) 2127.0 (4.27e-04) 2398.5 (1.26e-01)
Qwen3-32B vs Qwen3-32B w CoT 1572.5 (2.75e-01) 1767.0 (6.35e-06) 2596.5 (7.31e-02)

Table 24: Wilcoxon signed-rank test results measuring the effect of Chain-of-Thought (CoT)
prompting across Qwen3 model scales. Each cell reports test statistic (p-value). We use the Bonfer-
roni corrected significance threshold α = 0.0125.

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Model Comparison Detection Localization P Localization R
Qwen3-4B vs Qwen3-8B 546.0 (2.35e-08) 618.0 (1.37e-04) 572.5 (1.72e-03)
Qwen3-8B vs Qwen3-14B 1350.0 (2.11e-03) 1503.5 (3.96e-05) 1008.5 (2.69e-07)
Qwen3-14B vs Qwen3-32B 875.0 (2.22e-02) 3129.5 (7.94e-01) 2061.0 (4.14e-01)
Qwen3-4B w CoT vs Qwen3-8B w CoT 1468.5 (1.90e-02) 1578.5 (1.07e-01) 1081.5 (2.60e-03)
Qwen3-8B w CoT vs Qwen3-14B w CoT 904.5 (1.40e-01) 1248.0 (1.66e-03) 1099.5 (1.82e-05)
Qwen3-14B w CoT vs Qwen3-32B w CoT 850.0 (3.78e-02) 1834.5 (4.87e-01) 2396.0 (4.40e-01)
R1-Distill-Qwen-7B vs R1-Distill-Qwen-14B 4278.0 (2.67e-01) 1431.0 (4.66e-03) 1962.5 (6.01e-01)
R1-Distill-Qwen-14B vs R1-Distill-Qwen-32B 2432.0 (1.44e-12) 1475.5 (8.07e-11) 843.5 (6.38e-15)
Qwen2.5Coder-3B vs Qwen2.5Coder-7B 1541.0 (4.56e-14) 0.0 (3.46e-10) 0.0 (7.07e-10)
Qwen2.5Coder-7B vs Qwen2.5Coder-14B 8.0 (7.89e-04) 0.0 (2.04e-03) 0.0 (2.14e-03)
Qwen2.5Coder-14B vs Qwen2.5Coder-32B 423.0 (2.83e-27) 100.5 (2.00e-22) 43.5 (9.29e-23)
Qwen2.5-3B vs Qwen2.5-7B 18.0 (2.43e-08) 0.0 (3.43e-05) 0.0 (3.58e-05)
Qwen2.5-7B vs Qwen2.5-14B 960.5 (1.70e-13) 500.5 (1.65e-11) 574.0 (2.62e-10)
Qwen2.5-14B vs Qwen2.5-32B 1925.0 (1.87e-04) 1858.5 (6.60e-03) 2108.5 (1.43e-02)

Table 25: Wilcoxon signed-rank test results measuring the effect of increasing model scale
across families and CoT settings. Each cell shows the test statistic (p-value). All Qwen2.5 and
Qwen2.5Coder variants are instruction tuned checkpoints. We use the Bonferroni corrected signifi-
cance threshold α = 0.0036.

Model Comparison Detection Localization P Localization R
GPT-4o vs GPT-4.1 2550.0 (9.21e-01) 3961.0 (5.83e-01) 2207.5 (4.48e-06)
o3-mini vs o4-mini 575.0 (6.68e-01) 1171.0 (1.44e-03) 1079.0 (1.47e-04)

Table 26: Wilcoxon signed-rank test results comparing GPT model variants. Each cell shows the
test statistic (p-value). We use the Bonferroni corrected significance threshold α = 0.025.

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

PEP Chain of Thought Reason for Failure

614

... I need to check the code file for violations of the 614 idiom,
which is about using complex expressions in decorators. ...
... The register variable is defined on line 7 as partial(register,
server=hippa). So, the decorator is a partial function. ...
... the idiom allows for complex expressions in the decorator.
For example, if the decorator was something like
@lambda func: timed(...)(func), that would be allowed. ...
... the register is a partial function, which is a simple expression. ...
... the decorator is just a variable that’s a partial function. ...

Ambiguity about what constitutes
a complex expression. The idiom
targets decorators with complex
expressions that make code
more verbose

525

... The user ... wants me to check for ... idiom, 525, which
is about using asynchronous generators with ”async for”
syntax ... the violation would be if the code uses
synchronous generators (like regular for loops) instead of
asynchronous generators (using async for) ... Wait, the
example given in the idiom is a class that uses aiter
and anext to create an asynchronous iterator. The fix
is to use a function with async def and yield. So, I need to
check if there are any instances where the code is using
synchronous generators (like for loops) instead of
asynchronous ones. ... Looking through the code, I
don’t see any for loops that are using ’async for’. ...

CoT accidentally looks for the
incorrect construct at a crucial
point (async for instead of for)

487

... using init subclass and set name for class
customization without metaclasses ... using metaclasses
for simple customization tasks makes code unnecessarily
complex ... there’s a class called FirestoreClientMeta,
which is a metaclass ... used for registration of transports
... the problem is whether this is a simple customization ...
not just for a single customization but for managing
multiple transports ... the idiom is about using metaclasses
for simple customization ... but in this case ... handling a
more complex task ... maybe this is not a violation ...

Ambiguity around what constitutes
a simple class. The idiom targets
instances where metaclasses
are used for simple customization
tasks that could have been handled
with ” init subclass ” or
” set name ”)

Table 27: Example chains of thought for various PEPs where the CoT model incorrectly flags NO
VIOLATIONS FOUND instead of the non CoT model.

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Model Transfer Detection Localization
PDet RDet FDet PDet RDet FDet

Llama3.2-3B-Instruct
PMD → PMD

0.0457 0.0079 0.0134 0.0015 0.0022 0.0017
Llama3.2-3B-Instruct + SFT 0.2251 0.4421 0.2983 0.2822 0.2778 0.28
Llama3.2-3B-Instruct + SFT + RS-DPO 0.4395 0.8908 0.5886 0.593 0.5969 0.5949

Llama3.1-8B-Instruct
PMD → PMD

0.3656 0.4015 0.3827 0.1253 0.131 0.1281
Llama3.1-8B-Instruct + SFT 0.2264 0.4508 0.3014 0.3201 0.3152 0.3177
Llama3.1-8B-Instruct + SFT + RS-DPO 0.4427 0.9191 0.5976 0.6506 0.6709 0.6606

Llama3.2-3B-Instruct
PMD → JEP

0.3855 0.0096 0.0187 0.0005 0.0004 0.0005
Llama3.2-3B-Instruct + SFT 0.2286 0.4072 0.2928 0.1626 0.1336 0.1467
Llama3.2-3B-Instruct + SFT + RS-DPO 0.4903 0.8338 0.6175 0.4216 0.3333 0.3721

Llama3.1-8B-Instruct
PMD → JEP

0 0 0 0 0 0
Llama3.1-8B-Instruct + SFT 0.2166 0.3724 0.2739 0.1455 0.1142 0.128
Llama3.1-8B-Instruct + SFT + RS-DPO 0.4964 0.8047 0.614 0.4615 0.3395 0.3912

Llama3.2-3B-Instruct
JEP → JEP

0.3855 0.0096 0.0187 0.0005 0.0004 0.0005
Llama3.2-3B-Instruct + SFT 0.9567 0.8411 0.8952 0.7837 0.754 0.7686
Llama3.2-3B-Instruct + SFT + RS-DPO 0.9406 0.86 0.8985 0.7859 0.7651 0.7753

Llama3.1-8B-Instruct
JEP → JEP

0 0 0 0 0 0
Llama3.1-8B-Instruct + SFT 0.9658 0.8466 0.9023 0.809 0.7844 0.7965
Llama3.1-8B-Instruct + SFT + RS-DPO 0.9308 0.8686 0.8986 0.8131 0.7756 0.7939

Llama3.2-3B-Instruct
JEP → PMD

0.0457 0.0079 0.0134 0.0015 0.0022 0.0017
Llama3.2-3B-Instruct + SFT 0.3722 0.2708 0.3152 0.0574 0.0869 0.0692
Llama3.2-3B-Instruct + SFT + RS-DPO 0.4322 0.4054 0.4183 0.0878 0.1222 0.1022

Llama3.1-8B-Instruct
JEP → PMD

0.3656 0.4015 0.3827 0.1253 0.131 0.1281
Llama3.1-8B-Instruct + SFT 0.3514 0.2229 0.2728 0.0383 0.0753 0.0508
Llama3.1-8B-Instruct + SFT + RS-DPO 0.436 0.4898 0.4613 0.0831 0.1351 0.1029

Table 28: Cross-Idiom Generalization on JEP & PMD Idioms: Effect of different METALINT
training setups (SFT and RS-DPO) on Llama3.2-3B-Instruct (Table 28). The transfer column indi-
cates training and test data on the left and right side of the arrow. Best score across the compared
training setups per model are bolded.

38


	Introduction
	Related Work
	Method
	Synthetic Data Generation
	Instruction Supervised Fine-Tuning
	Verifiable Reward Model and Preference Optimization
	Training with Reasoning Traces

	Experiments
	Evaluation Metrics
	Generalization on Synthetic Data
	PEP Hard Idiom Benchmark

	Results
	Generalization on Synthetic Data
	Evaluating Easy-to-Hard Generalizations
	Benchmarking on Hard Idioms

	Conclusion and Future Work
	Limitations
	More Related Work
	Method Additional Details
	MetaLint Instruction Following Prompt
	DPO Contrastive Pair and RS-SFT Sampling Details
	Training Hyperparameters and Computational Environment
	Baseline Inference Details
	PMD Idiom Specifications

	Additional Experimental Details
	Evaluation Metrics
	Idioms Chosen for Ruff Idiom Transfer Dataset
	DPO No Violation Fraction Ablations
	PEP Benchmark Creation Additional Details

	More Results
	Expanded Results on the PEP Hard Idiom Benchmark
	Statistical Significance of Results on the PEP Hard Idiom Benchmark
	Failure Analysis of MetaLint CoT Model VS Non CoT Model


