Under review as a conference paper at ICLR 2026

METALINT: GENERALIZABLE IDIOMATIC CODE
QUALITY ANALYSIS THROUGH INSTRUCTION-
FOLLOWING AND EASY-TO-HARD GENERALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models, though successful in code generation, struggle with code
quality analysis because they are limited by static training data and can’t eas-
ily adapt to evolving best practices. We introduce METALINT, an instruction-
following framework that formulates code quality analysis as the task of detecting
and fixing problematic semantic code fragments or code idioms based on high-
level specifications. Unlike conventional approaches that train models on static
code quality conventions, METALINT employs instruction tuning on synthetic
linter-generated data with dynamic conventions to support easy-to-hard gener-
alization, enabling models to adapt to novel or complex code patterns without
retraining. To evaluate this, we construct a benchmark of challenging idioms
inspired by real-world coding standards such as Python Enhancement Propos-
als (PEPs) and assess whether METALINT-trained models reason adaptively or
simply memorize. Our results show that METALINT training improves gener-
alization to unseen idioms. Qwen3-4B attains a 70.37% F-score on a manually
curated and challenging PEP idiom detection benchmark, achieving the highest
recall (70.43%) among all evaluated models. For localization, it reaches 26.73%,
which is a strong outcome for its 4B parameter size and comparable to larger
state-of-the-art models such as 03-mini, highlighting its potential for future-proof
code quality analysis. Furthermore, METALINT training enables generalization in
idiom detection across model families, model scales, synthetic data from diverse
linters, and Java idioms, demonstrating the general applicability of our approach.
We plan to release our code and data to enable reproducibility and further work.

1 INTRODUCTION

With the rise of Large Language Models (LLM) of code, concerns around the quality of generated
code, such as readability, maintainability, efficiency, and security, have become increasingly promi-
nent [Singhal et al.| (2024); Zheng et al.| (2024). Researchers have been investigating the potential
of LLMs to evaluate and improve code quality through benchmarks (Chambon et al., [2025} |Singhal
et al., 2024} Zheng et al.,|2024; Waghjale et al.|[2024), code review agents (Vijayvergiya et al., 2024
Rasheed et al.| [2024), and static analysis with LLMs (Fang et al., |2025; [Holden & Kahani, 2024;
Khare et al., 2023). Several evaluation studies indicate that LLMs struggle with this task [Singhal
et al.| (2024); Zheng et al.| (2024), while attempts to improve them through prompting or training
are limited by task-specific, static datasets often grounded in narrow or outdated coding practices
(Vijayvergiya et al., [2024; |[Khare et al., [2023; Holden & Kahani} [2024; Zhang et al., 2024b). As a
result, these systems often perform poorly when detecting rare issue types or when applied to code
distributions that differ from their training data (Holden & Kahani, [2024). They may also over-flag
outdated best practices, leading to a negative user experience and wasted time (Vijayvergiya et al.,
2024). Ideally, we would develop LLM systems that can identify code quality issues without explicit
supervision for target idioms—especially hard or rare patterns—and adapt to evolving best practices
over time.

We approach this problem by training the LLM on a more general task: understanding and detect-
ing semantic blocks of code, also known as code idioms. For example, a commonly used idiom
for generating secrets or passwords in Python is to use the random.choice standard library

Under review as a conference paper at ICLR 2026

function. However, as noted in PEP 506 (D’ Aprano, [2017), it is cryptographically insecure and
Python documentation explicitly warns against using this module for security reasons, which is of-
ten missed by developers, as highlighted by accepted answers on forums like StackOverflow. PEP
506 also introduces a more secure semantic block or idiom in the form of the secrets module
and the secrets.choice function, which acts as a safer alternative to the random.choice
idiom. As illustrated by this example, detecting and locating idioms associated with bad practices
can be leveraged for identifying code quality issues like code smells (Wikipedia contributors, [2024)
or Common Weakness Enumerations (CWE) (MITRE Corporation, 2024). Additionally, these is-
sues can be addressed by replacing instances of “bad” idioms with corresponding “good” idioms
that align with best practices. Moreover, for this example and similar abstract idioms, constructing
a precise rule-based approach is difficult. Simply flagging any use of random.choice, even in
non-security-critical scenarios (e.g., randomization in a game engine), could result in a poor user
experience. [Vijayvergiya et al.|(2024) show that LLMs can capture abstract notions of code quality,
such as code idioms where building a linter or rule-based approach is challenging, by incorporating
semantic reasoning about code and developer intent.

In this work, we train LLMs to recognize code idioms through a higher-level instruction-following
task dubbed “meta-linting”: given a specification of a best-practice code idiom I, the model learns
to identify and localize non-idiomatic code fragments. Our pipeline is designed to support easy-to-
hard generalization (Sun et al.,|2024b). The easy cases involve simple idioms that can already be
captured by existing linters, while the hard cases correspond to nuanced patterns such as PEP 506,
where constructing precise rule-based checks is infeasible. To enable this, we generate synthetic
training data for easy idioms using available linters and leverage it to improve performance on harder
cases where linter support is lacking. While prior work such as|Zhang et al.| (2024c;b)) has explored
automated refactoring of non-idiomatic Python code, including the use of LLMs with prompting,
our focus differs in three ways. First, we target challenging idioms beyond the reach of current
linters. Second, we train on easy idioms with the goal of transferring detection ability to harder
cases. Finally, we emphasize adaptability, aiming for LLMs that can accommodate evolving best
practices provided in-context as instructions and examples, rather than memorizing a static rule sets.

To tackle meta-linting, we introduce METALINT, a training framework motivated by prior work
showing that instruction tuning enables cross-task generalization and improves performance on un-
seen tasks (Mishra et al., [2021a} |Sanh et al., 2021; Wang et al., [2022)). Since meta-linting treats
each idiom as a distinct task or code quality judgment, instruction fine-tuning (IFT) and preference
optimization (PO) naturally extend detection ability to novel idioms. Existing linters (e.g., Ruff (ruf)
for Python and PMD (pmd)) for Java) provide large-scale synthetic data by enforcing simple idioms,
which we use both for supervised IFT and as verifiers during PO to improve performance on harder
idioms. To systematically study this generalization, we construct a benchmark of challenging idioms
derived from popular PEPs introducing high-level constructs. We evaluate state-of-the-art reasoning
and code models on this benchmark and compare them with METALINT trained models, examining
whether they can move beyond memorizing easy idioms.

Our key contributions are:

1. We introduce METALINT, a training framework that leverages instruction following and synthetic
data to enable easy-to-hard generalization while remaining adaptable to evolving best practices.

2. We construct a benchmark of challenging, broadly relevant code-quality idioms inspired by PEPs
to evaluate the extent of easy-to-hard generalization achieved by METALINT.

3. We benchmark state-of-the-art code and reasoning models on our PEP hard-idiom benchmark and
compare them against METALINT-trained models. Our method achieves the highest detection
recall and competitive localization scores, even with smaller 4B models and without test-time
compute.

4. We show that METALINT generalizes across programming languages (Python, Java), model fam-
ilies (Qwen, Llama), linters (Ruff, PMD, Tree-Sitter), test-time reasoning settings (with and
without CoT), and model scales (3B-8B).

2 RELATED WORK

Code Quality Analysis with Large Language Models. A large body of prior work has explored the
use of LLMs for code quality analysis through code review and static analysis. Tools like GPTLint
(Travis Fischer, 2024) and lintrule (lin, |2023) treat LLMs as rule-guided linters via prompting or

Under review as a conference paper at ICLR 2026

fine-tuning. While Blyth et al.|(2025) proposes a static analysis-driven prompting framework to im-
prove LLM-generated code, Du et al.| (2025) conversely uses LL.Ms to enhance static analysis tools
by reducing false-positives. LintLL.M (Fang et al., 2025) and (Shin et al.| |2025) leverages LLMs
for linting of Verilog and Quantum computing code. Khare et al|(2023) show LLMs outperform
traditional static analysis tools for security-related CWEs with step-by-step reasoning. |Vijayvergiya
et al.| (2024) train LLMs for best practice violation detection and localization, while [Rasheed et al.
(2024) design a multi-agent review pipeline for maintainability, efficiency, and bugs. Other works
(Jiang et al., [2025b; [Yao et al., [2025) use prefix-tuning and reinforcement learning with static anal-
ysis—based rewards for higher-quality, functionally correct code generation. |[Naik et al.| (2024)) and
Jaoua et al.|(2025)) integrate LLMs with linters to produce more informative code reviews. RIdiom
(Zhang et al., |2024c) introduces a rule-based way to identify and refactor non-idiomatic Python
code with AST rewrite rules, while [Zhang et al.| (2024b) combines LLMs and rule-based detectors
but doesn’t explore nuanced idioms like PEP 506 or training LLMs to keep up with evolving best
practices. Finally, CoUpJava (Jiang et al.| 2025a) presents Java version upgrade benchmarks, con-
ceptually similar to our hard PEP idiom benchmark for Python. Although prior work demonstrates
the potential of LLMs for code quality tasks, it focuses on fixed rule sets or best practices that re-
quire retraining as they evolve. In contrast, we train models to interpret high-level specifications and
perform static analysis, enabling broader generalization.

Instruction Following for Generalization. Instruction tuning has emerged as a powerful form of
meta-learning that enables cross-task generalization by training models to interpret and follow natu-
ral language instructions rather than learning fixed tasks. Prior work shows diverse task instructions
allow models to extract underlying task abstractions and apply them to unseen settings (Mishra et al.,
2021b; Wang et al.| [2022). Large-scale instruction tuning further improves zero- and few-shot gen-
eralization across tasks and modalities (Wei et al.l 2021 |Chung et al.| |2022; |Gao et al., [2021}; Tyer
et al.| 2022} Brown et al., 2020). Instructions serve as high-density task representations, substitut-
ing supervision (Puri et al.l 2022)) and enabling generalization even with minimal labeled data or
pseudo-labeled examples (Gu et al.| 2022)). Studies also show that instruction diversity drives gen-
eralization, with varied instructions outperforming repeated exposure to identical formats (Charton
et al.,|2024). This phenomenon holds across domains, including program synthesis where task-level
prompting facilitates generalization in code generation models (Niu et al.| 2023). SELF-GUIDE
(Zhao et al., |2024) performs task-specific instruction following using synthetic data, demonstrating
effectiveness, but relying entirely on LLM-generated data without verifiers. These results suggest
instruction tuning acts as task-level meta-learning, enabling models to adapt to new tasks through
natural language. Building on this we model specific code quality idioms as individual tasks and
generate large-scale synthetic data for each meta-task to support cross-idiom generalization. This
allows the trained model to keep pace with new idioms and evolving best practices. We also discuss
additional related work on easy-to-hard generalization in Appendix

3 METHOD

We design the METALINT framework to teach an LLM to operationalize idiom descriptions pro-
vided in context, rather than memorizing specific idioms, thereby enabling adaptation to novel id-
ioms at test time. We formulate idiom detection as an instruction-following meta-task M7 for a given
idiom I, where the prompt includes a natural language description D and illustrative examples E7,
denoted as M; = {Dy, Er}. The LLM must identify all and only those code fragments that match
idiom [while performing M. This setup discourages rote memorization and encourages adaptive
reasoning over the prompt’s specification, since flagging violations of any other idiom I’ # I is
penalized during M;. By framing best practices as meta-tasks, this approach enables the LLM to
remain flexible and better aligned with evolving best practices. We describe the components of our
training framework in Figure[T]and Figure 2| below.

3.1 SYNTHETIC DATA GENERATION

One of the main goals of our meta-task formulation is enabling easy-to-hard generalization. We
train LLMs on a set of “easy” idioms I that are detectable by existing linters £, and evaluate them
on a harder set I, consisting of idioms that linters cannot detect (where £’ denotes the complement
of L, i.e., all idioms not detectable by a linter). Our hypothesis is that training on I helps the LLM

Under review as a conference paper at ICLR 2026

acquire the ability to understand and detect code idioms from in-context descriptions, enabling it
to generalize more effectively to the harder idioms in /., compared to the untrained model. Since
idioms in I, are already covered by linters, we can leverage these tools to generate large-scale
synthetic training data and provide supervision. For Python, we use the popular Ruff linter, which
implements over 800 rules spanning syntax modernization, security, readability, etc., while for Java,
we use the PMD static analyzer, which covers 269 idioms as well as some manually written tree-
sittelﬂ queries inspired by 8 Java Enhancement Protocols (JEPs) (Table . We run Ruff, PMD, and
the JEP tree-sitter queries on Python and Java source code files f € F from the STACK (Lozhkov
et al., 2024) dataset, which contains code from a diverse range of GitHub repositories. This allows
us to collect files with either no violations or one or more violations for each idiom in I.. Ruff
also incorporates rules from other linters such as PyFlakes, Bandit, and autoPEPS8, making it well-
suited for producing diverse and representative synthetic data. Additionally, to automatically build
the meta-task instruction prompts M7, for each idiom, we scrape rule-specific documentation from
the Ruff and PMD websites, including descriptions and examples. An example prompt, along with
a code file containing lines that violate the idiom, is shown in Appendix [C.I] For the JEP tree-sitter
queries, since they are few in number, we manually write the meta-task prompts.

3.2 INSTRUCTION SUPERVISED FINE-TUNING

As discussed in Section we train the target LLM & on a set of linter-detectable, easy idioms I,
using the corresponding meta-task specifications M7, and a set of source code files /. The input to
the model consists of a prompt p, which combines a meta-task specification M; for some I € I,
with a source code file f € F. The model’s output is a list of idiom violations in the file, denoted
as Vy 1, formatted as a JSON list with one violation per line (see example output in Appendix [C.1).
In cases where there are no violations (|Vy,;| = 0), the model is expected to output the phrase NO
VIOLATIONS FOUND. We attempt to balance the data between positive (violations) and negative
(no violations) examples as much as possible; however, due to the rarity of some Python idioms,
the final distribution is approximately 70:30 in favor of files with no violations for Python data,
but roughly 53:47 (PMD) and 50:50 (JEP Tree-Sitter) for the Java data. This results in a total of
53k synthetic training instances spanning 50 idioms (a subset of all the idioms detectable by Ruff)
for Python Ruff data and 96.8k instances spanning 269 idioms for Java PMD and 127.3k instances
spanning 15 idioms for tree-sitter data, respectively.

3.3 VERIFIABLE REWARD MODEL AND PREFERENCE OPTIMIZATION

For preference optimization, we adopt the RS-DPO approach (Khaki et al.| 2024), which combines
rejection sampling (RS) (Touvron et al.,[2023)) with Direct Preference Optimization (DPO) (Rafailov
et al.| [2023) to generate on-policy data from a supervised fine-tuned (SFT) policy model. It samples
k outputs per input, computes rewards for them, and constructs contrastive win—loss pairs based on
the reward distribution and a threshold 7 (Figure [2). We detail the verifiable linter-based reward
model and contrastive pair sampling procedure below.

Reward Model Design: The reward model evaluates model outputs by comparing predicted viola-
tions against those flagged by the linter, treating the linter’s line numbers (blue circle in “Verifiable
Reward Model”, Figure|l)) as ground truth and the model’s predicted lines (yellow circle) as predic-
tions. Reward is computed using set-based precision, recall, and F1-score (visualized via the Venn
diagram in the same figure), based on line-level overlap. Since each meta-task M corresponds to a
single idiom I, we compute one F1-score (reward) per instance.

Sampling Contrastive Pairs: We begin with an SFT policy model &7 and sample k = 5 outputs
¥i» @ € {1,...,k} for each input , using a range of temperature values 7 = {0,0.3,0.5,0.7,1.0}
to promote output diversity. Each response y; receives a reward r,,, and for each pair (y;,y;),
we compute the reward gap |r,, — 7,|. Pairs with a gap greater than the threshold n = 0.2 are
added to the preference dataset D,,. For any such pair where r,, > r,, + 7, We assign Yuyin = ¥,
Yiose = Y;, and store the instance (z, Yuwin, Yiose) € Dp. Following Khaki et al.| (2024), we train the
preference-tuned model ®* using the DPO objective:

) = a max E g (y i |x) ¢ (yl |.T)
win ose
(mvywinvylose)GDP I se

'https://tree-sitter.github.io/tree-sitter/

Under review as a conference paper at ICLR 2026

Here, o denotes the sigmoid function, and 8 = 0.1 is the KL penalty coefficient, corresponding to
low-to-moderate regularization.

3.4 TRAINING WITH REASONING TRACES

Finally, inspired by the success of reasoning-augmented models in code and math tasks, and their
demonstrated effectiveness in improving CWE detection performance in LLMs (Khare et al.,|2023),
we propose SFT and DPO methods that incorporate chain-of-thought (CoT) reasoning. To obtain
CoT traces that guide the LLM to correct answers, we adopt a rejection sampling approach (“Re-
jection Sampling SFT” in Figure) for SFT data collection. For each input x, we sample k = 5 re-
sponses y;, @ € {1, ..., k}, from a base untrained CoT-capable LLM (e.g., Qwen3-4B), and compute
areward r,, for each, following the RS-DPO procedure in Figure @ Instead of forming contrastive
pairs, we discard any y; with r,, < v, where v = 1, i.e., CoT-response pairs that are incorrect
or improperly formatted. Rewards are applied only to the final response, obtained after parsing the
CoT trace, and we also remove cases where the CoT fails to terminate or yield an answer. If no valid
y; is found for an input x, we skip it. To promote meta-task diversity, we retain at most two valid
responses per input: multiple y; only for violation cases and a single y; otherwise. This maintains
the 71:29 no-violation-to-violation ratio of Ruff Python SFT data, with the latter more likely to fit
within token limits. When excess valid responses exist, we keep the shortest completions, as they
typically reflect more concise reasoning (final answers are of similar token length across samples).
Following this policy, we collect 52.7k Python training instances from Ruff data, which we use to
train the reasoning-enabled base Qwen3-4B with SFT. This yields a CoT-capable SFT model 257
for Python code quality analysis. We then apply the RS-DPO procedure in Section [3.3|and Figure[2]
with the only change being that each y; now includes both the CoT trace and final response.

Verifiable Reward Model

Synthetic Data Generation Instruction Supervised Fine-tuning (SFT)

Reward
Source Code Source Code Source Code Target Label ewal
Line

H Linter —»‘ 7 no.s set
Line overlap
I O > nos A Fsoore

Target Label Target Label tine

Idiom Violations &

H Linter (e.g. BOO7) 0

L,
| | | = | Meta Task Prompt LLM Prediction

Idiom B007

Meta Task Prompt
Idiom B0OO7

Unused loop control ..
Examples: ...

_,I
o
Idiom Violations
(e.g. BOO7)

Y

Unused loop control ..
Examples: ...

LLM

Idiom Violations 4’|
(e.g. BOO7) || o
Predicted BOO7
Violations

Figure 1: METALINT: (1) Synthetic data generation with linters/tools, (2) Supervised Instruction
Fine-Tuning (SFT) on this data, and (3) Verifiable Reward Model derived from the linter.

Direct F Optimization (RS-DPO) Rejection Sampling SFT (RS-SFT)
Source Code Prediction Ywin_Yiose saurce Code Prediction Yuin
‘ Y1) |(Va Y b
I | Selected I I Line. Selected
I o Y2)((ys Preference I O ros Y4 Fine-tuning
R m I Data Roward Data
lewal lewal
.- iz |k V e e
Meta Task Prompt | LLM I Meta Task Prompt | = |
Idiom B0O7 I 9 > o - ; Idiom B0O7 0 nos - >
Unused loop control .. if (tywiniose) >N Unused loop control .. ifrvwin > ¥
Examples: ... * Examples: ... y 0
| Lino I
Lino nos nos
6 s ‘k 4
Randomly sample Randomly sample ‘
K responses II K responses ‘ l
= =
Target Label Target Label

Figure 2: METALINT: Preference Optimization using reward model: (4) Rejection Sampling Direct
Preference Optimization (RS-DPO), and (5) Rejection Sampling Supervised Fine-Tuning (RS-SFT).

4 EXPERIMENTS

4.1 EVALUATION METRICS

We evaluate the LLM’s ability to detect idiom violations through two tasks: detection, which as-
sesses whether a given idiom is violated in a code file, and localization, which evaluates whether

Under review as a conference paper at ICLR 2026

the model accurately identifies the specific line numbers where the violation occurs. For both tasks,
we report precision, recall, and F-score metrics. Detection metrics are calculated at the corpus level
for each idiom, treating each as a separate class, while localization metrics are computed at the in-
stance level using set-based precision, recall, and F-score for the ground truth and predicted sets of
violating line numbers. To handle potential class imbalance, we use macro-averaging across idioms
and exclude NO VIOLATION as a class to penalize models that only predict NO VIOLATIONS
FOUND (such models will score zero on all detection metrics). For localization, metrics are aver-
aged only across instances with at least one line of idiom violation in the ground truth. Details of
the formal definitions and exact computations of precision, recall, and F-scores for detection and
localization are provided in Appendix [D.T}

4.2 GENERALIZATION ON SYNTHETIC DATA

To evaluate whether METALINT training produces adaptive LLMs that handle evolving best prac-
tices and novel idioms at test time, we explore transfer settings spanning Python & Java.

Ruff Python Idioms: We construct a 5.3k-instance synthetic test set spanning 50 Ruff idioms, using
the data generation procedure from Section[3.1} The data has a 74:26 no-violation-to-violation split,
similar to the SFT training set. Idioms are chosen to vary in overlap with training idioms (Figure [3)
and fall into three categories:

In domain. 5 idioms identical to those in SFT training, to assess whether METALINT improves
performance on explicitly trained idioms.

Near transfer. 10 idioms with specifications similar but not identical to training idioms to probe
memorization. Reliance on memorized patterns, may hurt performance due to interference.

Far transfer. 35 idioms distinct from training, to test whether the LLM can follow the provided
specification and adapt to novel idioms at test time.

For these experiments, we use Qwen3-4B (with and without reasoning) and Llama-3.2-3B-Instruct
to study the effect of test-time compute and model family.

PMD and JEP Tree-Sitter Idioms: For Java, we construct two synthetic test sets: 5.1k instances
(54:46 split) spanning 269 PMD idioms, and 6.4k instances (50:50 split) spanning 15 JEP idioms
(Table [3)), flagged via tree-sitter queries. We evaluate in-domain performance by training the base
LLM on the corresponding training set (Section[3.2), and also study transfer between PMD and JEP
idioms to test adaptation to novel Java idioms. These experiments use Llama-3.2-3B-Instruct and
Llama-3.1-8B-Instruct to assess the effect of model scale.

4.3 PEP HARD IDIOM BENCHMARK

Benchmark Construction: To test whether METALINT helps LLMs interpret high-level idiom
specifications and generalize to nuanced idioms that linters miss, we construct a benchmark of “hard
idioms” from 15 PEPs defining semantic or abstract behaviors beyond syntax. We design heuristics
per PEP (Table[I3] [T4]and [T3)) to detect guideline violations and search the STACK-V2 corpus, pri-
oritizing recall to retrieve broad candidate sets for manual selection. These idioms cannot be reliably
detected by simple pattern matching, making them ideal for evaluating model’s true understanding
versus rote memorization. From the candidates, we handpick 15-20 representative files per PEP, and
annotate the precise line ranges (“start” and “end”) of the violated code, providing ground-truth for
localization. We add negative examples for each PEP by picking files retrieved for a different PEP
and making sure the current PEP is not violated, in order to have a balanced distribution of violation
and no-violation cases. The final benchmark contains 536 examples (52% violations, 48% violation-
free), enabling evaluation of METALINT’s generalization from easy to hard Python idioms.
Evaluating Easy-to-Hard Generalization: We use the PEP hard idiom benchmark to test whether
training on synthetic data for linter-detectable idioms improves performance on hard idioms. We
evaluate the base model, SFT, and DPO-trained models on this benchmark.

Benchmarking on Hard Idioms: We evaluate state-of-the-art open and closed-source code and rea-
soning LL.Ms on the PEP hard idiom benchmark, comparing them to METALINT-trained models.
Open-source models include instruction-tuned Qwen2.5 (Yang et al., |2024), Qwen2.5Coder (Hui
et al.| [2024), DeepSeek-R1-Distill-Qwen (DeepSeek-AlL [2025), Qwen3 (Team), 2025)), and GPT-oss
20B/120B |Agarwal et al. (2025). Closed-source models include GPT-40 (Hurst et al., [2024)), 03
mini and o4 mini (OpenAl 2025a)), GPT-4.1 (OpenAl, [2025), and GPT-5 |OpenAl| (2025b). We se-
lect these models for their strong coding and reasoning performance and also evaluate the effects of
code-specific pre-training, model scale (3B—120B), and test-time compute for open-source models.

Under review as a conference paper at ICLR 2026

5 RESULTS

To test whether MetaLint training leads to cross-idiom generalization instead of mere memorization
of the training idioms and whether it can produce models that can keep up with evolving code quality
standards, we present the transfer performance on the synthetic data for “easy” idioms in section[5.1]
Then we explore the extent to which METALINT training achieves easy-to-hard generalization from
the synthetic easy idioms to hard, manually curated PEP idioms in section Finally, we com-
pare METALINT trained models against state-of-the-art code and reasoning models on the manually
curated hard PEP idioms in section

5.1 GENERALIZATION ON SYNTHETIC DATA

Python Ruff Idioms: The performance of Qwen3-4B with and without reasoning and Llama3.2-
3B-Instruct when trained on synthetic Ruff idioms and evaluated on the Ruff synthetic test set
with varying transfer settings (section {f.2) is shown in Table [T (full results in Table [I8). While
Table [T] shows the overall performance, we also analyze the performance broken down by each
transfer setting in Table The results show that the SFT stage leads to modest gains in detection
and localization performance in most cases (except for a detection recall drop in the case of
Llama3.2-3B-Instruct), but the DPO stage leads to huge gains in detection recall, F-score, and
all localization metrics at the cost of a slight drop in detection precision. We identify that the
drop in precision in the DPO stage is tightly controlled by the fraction of cases with no violations
used in the DPO training and explore it in detail in Appendix [D.3] Additionally, Table [T6] shows
that while SFT can lead to slight gains for the transfer settings (near transfer and far transfer),
most gains emerge in the DPO stage, especially for non-reasoning models and detection recall.
Overall this suggests that SFT can lead to memorization of the training idioms while DPO leads to
generalization to novel idioms.

Detection Localization

Model

PDet RDet FDet PLoc RLoc FLoc
Qwen3-4B 0.5380 0.2637 0.3539 0.1396 0.1479 0.1436
Qwen3-4B + SFT 0.7686 0.3178 0.4497 0.2976 0.2960 0.2968
Qwen3-4B + SFT + RS-DPO 0.7469 0.8315 0.7869 0.6527 0.6696 0.6611
Qwen3-4B w CoT 0.8812 0.6854 0.7710 0.5049 0.4878 0.4962
Qwen3-4B w CoT + RS-SFT 0.9350 0.8183 0.8727 0.6639 0.6500 0.6569

Qwen3-4B w CoT + RS-SFT + RS-DPO 0.9234 0.8643 0.8929 0.7710 0.7571 0.7640

Table 1: Cross-Idiom Generalization on Python Ruff Idioms: Effect of different METALINT
training setups (SFT, RS-SFT, and RS-DPO) on Qwen3-4B (with and without reasoning). Best
score across the compared training setups per model are bolded.

PMD and JEP Tree-Sitter Idioms: To demonstrate the generality of METALINT training across
programming languages and linters, we present results from training on PMD and JEP Tree-Sitter
synthetic data in Table 2] (full results in Table [28). Training on PMD shows the same overall
pattern as before but with larger recall gains for both SFT and DPO, and notably stronger local-
ization under DPO. For Llama3.1-8B-Instruct, SFT initially reduces detection precision, which
DPO then recovers; the same precision dip-and-recovery appears when transferring PMD—JEP
for Llama3.2-3B-Instruct. Despite never seeing JEP idioms during training, DPO models achieve
strong detection and localization on JEP. In the untrained setting, Llama3.2-3B-Instruct (on
PMD) and Llama3.1-3B-Instruct (on JEP) nearly always output the correct format but predict NO
VIOLATIONS FOUND, yielding zero or near-zero scores because our metrics exclude that class
for detection and only score positive cases for localization. Training on JEP yields high in-domain
performance for all metrics with minimal additional benefit from DPO, likely due to JEP’s smaller
idiom set (15 vs 269 for PMD) and more precise instructions (Table E]) In the harder JEP—PMD
transfer, DPO outperforms SFT, though overall transfer remains weaker than PMD—JEP, reflecting
PMD’s broader diversity and more challenging specifications (Appendix [C.5).

Overall, METALINT training consistently yields more adaptable models than the base model, but

Under review as a conference paper at ICLR 2026

performance depends on the diversity of training idioms and the gap in instruction quality between
training and test data.

Model Transfer Detection Localization
PDet RDet FDet PDet RDet FDet
Llama3.2-3B-Instruct 0.0457 0.0079 0.0134 0.0015 0.0022 0.0017
Llama3.2-3B-Instruct + SFT PMD — PMD 0.2251 0.4421 0.2983 0.2822 0.2778 0.2800
Llama3.2-3B-Instruct + SFT + RS-DPO 0.4395 0.8908 0.5886 0.5930 0.5969 0.5949
Llama3.2-3B-Instruct 0.3855 0.0096 0.0187 0.0005 0.0004 0.0005
Llama3.2-3B-Instruct + SFT PMD — JEP 0.2286 0.4072 0.2928 0.1626 0.1336 0.1467
Llama3.2-3B-Instruct + SFT + RS-DPO 0.4903 0.8338 0.6175 0.4216 0.3333 0.3721

Table 2: Cross-Idiom Generalization on JEP & PMD Idioms: Effect of different METALINT
training setups (SFT and RS-DPO) on Llama3.2-3B-Instruct (Table 28). The transfer column indi-
cates training and test data on the left and right side of the arrow. Best score across the compared
training setups per model are bolded.

5.2 EVALUATING EASY-TO-HARD GENERALIZATIONS

To evaluate whether METALINT training on easy, linter-detectable Ruff idioms improves perfor-
mance on hard, manually curated PEP idioms, we report results on our PEP hard idiom benchmark
(Table [3] full results in Table [I9). At the SFT stage, performance declines for Qwen3-4B (with
and without CoT) but improves slightly for Llama3.2-3B-Instruct, suggesting that SFT can induce
memorization of the training distribution and reduce adaptability. In contrast, DPO yields clear im-
provements in detection and localization (except detection precision for Llama3.2-3B-Instruct), with
statistically significant gains (Appendix [E.2)). An additional experiment training Qwen3-4B (CoT)
directly with RS-DPO, bypassing SFT, resulted in near-zero performance because many generated
DPO pairs violated the required output format, which the model inherited. Thus, SFT, despite its
drawbacks, is essential for teaching format compliance and setting the stage for DPO to unlock easy-
to-hard generalization. Interestingly, the non-CoT model achieves substantially higher detection re-
call and slightly higher F-score than the CoT variant, despite lower precision. Our analysis attributes
the CoT model’s reduced recall to its more conservative interpretation of idiom specifications and to
errors such as misinterpretation, overthinking, and skipped lines, as detailed in Appendix [E.3]

Detection Localization

Model

PDet RDet FDet PLoc RLoc FLoc
Qwen3-4B 0.5267 0.1715 0.2587 0.0954 0.0824 0.0884
Qwen3-4B + SFT 0.4333 0.0821 0.1381 0.0432 0.0221 0.0292
Qwen3-4B + SFT + RS-DPO 0.7031 0.7043 0.7037 0.3536 0.1930 0.2497
Qwen3-4B w CoT 0.8154 0.3986 0.5354 0.2625 0.1467 0.1882
Qwen3-4B w CoT + RS-SFT 0.7615 0.3689 0.4970 0.2785 0.1437 0.1896

Qwen3-4B w CoT + RS-SFT + RS-DPO 0.9303 0.4958 0.6468 0.3482 0.2169 0.2673

Table 3: Easy-to-Hard Generalization on PEP Idioms: We evaluate the effect of different MET-
ALINT training setups (SFT, RS-SFT, and RS-DPO) on Qwen3-4B (with and without reasoning) and
Llama3.2-3B. Models are trained on easy synthetic Python Ruff idioms and tested on hard manually
curated PEP idiom detection data which can’t be handled by linters or static analyzers (section 4.3)).
Best score across the compared training setups per model are bolded.

5.3 BENCHMARKING ON HARD IDIOMS

Table 4| compares the best-performing Qwen3-4B METALINT DPO models against state-of-the-art
code and reasoning models (full results in Table[T7).

Detection: In terms of detection F-score, the non-CoT METALINT model is competitive with 03-
mini and GPT-5 but is outperformed by some larger open-source models (e.g., Qwen3-32B with

Under review as a conference paper at ICLR 2026

CoT, DeepSeek-R1-Distill-Qwen-32B with CoT, and GPT-o0ss-120B) and closed-source models
(GPT-40, GPT-4.1, and 04-mini). However, the non-CoT model achieves the highest detection recall
among all evaluated models, while the CoT model ranks among the top in precision, surpassed only
by Qwen3-32B with CoT and o4-mini.

Localization: For localization, the METALINT models lag behind larger 32B and 120B models
(such as Qwen3-32B, Qwen2.5Coder-32B, and DeepSeek-R1-Distill-Qwen-32B) and the GPT mod-
els, but perform comparably to 03-mini (statistical significance analysis in Appendix [E.Z) and out-
perform GPT-o0ss-20B. This is notable given that the METALINT models are much smaller (4B
parameters), trained only on synthetic data derived from easy idioms, and that the non-CoT model
does not use test-time compute.

Overall, the strong results, especially the best-in-class recall of the non-CoT model, demonstrate the
effectiveness of our framework in achieving easy-to-hard generalization. This is enabled by train-
ing on synthetic data with easy idioms and by encouraging adaptive reasoning through instruction
fine-tuning and DPO rather than relying on rote memorization.

Detection Localization
Model PDet RDet FDet PLoc RLO(; FL()(I
Qwen3-8B 0.8267 0.3572 0.4988 0.1806 0.1285 0.1501
Qwen3-8B with CoT 0.8886 0.4672 0.6124 0.3122 0.2029 0.2459
Qwen3-14B 0.9021 04612 0.6103 0.2890 0.2521 0.2693
Qwen3-14B with CoT 09116 0.4857 0.6337 0.3993 0.2915 0.3369
Qwen3-32B 0.9021 0.5205 0.6601 0.2807 0.2711 0.2758
Qwen3-32B with CoT 0.9377 0.5645 0.7048 0.4152 0.3086 0.3540
Qwen2.5-32B-Instruct 0.8667 0.2656 0.4066 0.1630 0.1477 0.1550
Qwen2.5Coder-32B-Instruct 0.8961 0.5328 0.6683 0.3432 0.3077 0.3245
DeepSeek-R1-Distill-Qwen-32B with CoT 0.9008 0.5899 0.7130 0.4015 0.3403 0.3684
GPT-0ss-20b 0.8377 0.3531 0.4968 0.2510 0.1695 0.2024
GPT-0ss-120b 09157 0.6456 0.7573 0.3991 0.3331 0.3631
Qwen3-4B METALINT (SFT+RS-DPO) 0.7031 0.7043 0.7037 0.3536 0.1930 0.2497
Qwen3-4B METALINT w CoT (RS-SFT + RS-DPO) 0.9303 0.4958 0.6468 0.3482 0.2169 0.2673
03-mini 0.8939 0.5845 0.7068 0.3169 0.2361 0.2706
04-mini 0.9667 0.5943 0.7361 0.4131 0.3164 0.3584
GPT-40 0.8938 0.6788 0.7716 0.4461 0.3320 0.3807
GPT-4.1 0.9070 0.6460 0.7546 0.4632 0.4673 0.4653
GPT-5 (high) 0.9130 0.5673 0.6998 0.4397 0.4257 0.4326

Table 4: Benchmarking on Hard Idioms: Results comparing state of the art code and reasoning
models on the hard PEP benchmark to contextualize the gains achieved with METALINT training.
The best scores are bolded and second best and underlined.

6 CONCLUSION AND FUTURE WORK

Our results show that METALINT training fosters adaptive reasoning over idiom specifications
rather than rote memorization. We observe generalization to unseen idioms in Python and Java,
across three linters (Ruff, PMD, JEP tree-sitter), two model families (Qwen, Llama), reasoning and
non-reasoning settings, and multiple scales (3B, 4B, 8B). Easy-to-hard generalization occurs from
linter-detectable Ruff idioms to harder PEP idioms, with SFT teaching output formatting and DPO
enabling true generalization. Compared to state-of-the-art code and reasoning models, METALINT-
trained Qwen models have detection comparable with 03-mini and GPT-5, achieving highest recall
(non-CoT) and third-best precision (CoT). Localization lags but surpasses GPT-0ss-20B with only
4B parameters and no test-time compute and is comparable to 03-mini, demonstrating efficiency.
These results highlight the effectiveness of instruction fine-tuning and preference optimization on
synthetic data for reasoning and generalization, even with scarce annotated examples. For mechani-
cally easy idioms, linters remain cost-effective, but METALINT enables detection of abstract idioms,
supporting personalized, evolving code quality standards. We plan to release code and data for re-
producibility. Future work includes training for automated refactoring and exploring advanced RL
methods like Group Relative Policy Optimization (GRPO) |Shao et al.[(2024).

Under review as a conference paper at ICLR 2026

REFERENCES

Pmd: Extensible cross-language static code analyzer. https://pmd.github.io/. Version
7.17.0, accessed: 2025-09-21.

Ruff: An extremely fast python linter and code formatter. https://docs.astral.sh/ruff/.
Accessed: 2025-09-21.

2023. URL https://www.lintrule.com/.

Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin Arbus, Rahul K
Arora, Yu Bai, Bowen Baker, Haiming Bao, et al. gpt-oss-120b & gpt-o0ss-20b model card. arXiv
preprint arXiv:2508.10925, 2025.

Fengshuo Bai, Mingzhi Wang, Zhaowei Zhang, Boyuan Chen, Yinda Xu, Ying Wen, and Yaodong
Yang. Efficient model-agnostic alignment via bayesian persuasion. ArXiv, abs/2405.18718, 2024.
URLhttps://api.semanticscholar.org/CorpusId:270094634.

Scott Blyth, Sherlock A. Licorish, Christoph Treude, and Markus Wagner. Static analysis as
a feedback loop: Enhancing llm-generated code beyond correctness, 2025. URL https:
//arxiv.org/abs/2508.144109.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, J. Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, T. Henighan, R. Child, A. Ramesh, Daniel M. Ziegler, Jeff Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Ma teusz Litwin, Scott Gray, Ben-
jamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, I. Sutskever, and
Dario Amodei. Language models are few-shot learners. ArXiv, abs/2005.14165, 2020. URL
https://arxiv.orqg/pdf/2005.14165.pdfl

Pierre Chambon, Baptiste Roziere, Benoit Sagot, and Gabriel Synnaeve. Bigo (bench)—can llms
generate code with controlled time and space complexity? arXiv preprint arXiv:2503.15242,
2025.

Francois Charton, Justin Wang, and Dylan Zhang. Instruction diversity drives generalization to un-
seen tasks. ArXiv, abs/2402.10891, 2024. URL https://api.semanticscholar.org/
CorpusId:267740368.

Hyung Won Chung, Le Hou, S. Longpre, Barret Zoph, Yi Tay, W. Fedus, Eric Li, Xuezhi Wang,
Mostafa Dehghani, Siddhartha Brahma, Albert Webson, S. Gu, Zhuyun Dai, Mirac Suzgun,
Xinyun Chen, Aakanksha Chowdhery, Dasha Valter, Sharan Narang, Gaurav Mishra, Adams Wei
Yu, Vincent Zhao, Yanping Huang, Andrew M. Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, J. Dean,
Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei. Scaling instruction-
finetuned language models. ArXiv, abs/2210.11416, 2022. URL https://arxiv.org/pdf/
2210.11416.pdf.

Steven D’ Aprano. Pep 506 — adding a secrets module to the standard library. https://peps.
python.org/pep-0506/}, 2017. Accessed: 2025-06-26.

DeepSeek-Al Deepseek-rl: Incentivizing reasoning capability in 1lms via reinforcement learning,
2025. URL https://arxiv.org/abs/2501.12948.

Xueying Du, Kai Yu, Chong Wang, Yi Zou, Wentai Deng, Zuoyu Ou, Xin Peng, Lingming Zhang,
and Yiling Lou. Minimizing false positives in static bug detection via llm-enhanced path feasibil-
ity analysis, 2025. URL https://arxiv.org/abs/2506.10322|

Zhigang Fang, Renzhi Chen, Zhijie Yang, Yang Guo, Huadong Dai, and Lei Wang. Lintllm: An
open-source verilog linting framework based on large language models, 2025. URL https:
//arxiv.org/abs/2502.10815.

Leo Gao, Debajyoti Datta, Jason Alan Fries, Zaid Alyafeai, Ryan Teehan, Taewoon Kim, Manan
Dey, Rachel Bawden, Thomas Wolf, Han Wang, Teven Le Scao, Antoine Chaffin, Andrea San-
tilli, Mike Tian-Jian Jiang, Trishala Neeraj, Colin Raffel, Abheesht Sharma, Gunjan Chhablani,

10

https://pmd.github.io/
https://docs.astral.sh/ruff/
https://www.lintrule.com/
https://api.semanticscholar.org/CorpusId:270094634
https://arxiv.org/abs/2508.14419
https://arxiv.org/abs/2508.14419
https://arxiv.org/pdf/2005.14165.pdf
https://api.semanticscholar.org/CorpusId:267740368
https://api.semanticscholar.org/CorpusId:267740368
https://arxiv.org/pdf/2210.11416.pdf
https://arxiv.org/pdf/2210.11416.pdf
https://peps.python.org/pep-0506/
https://peps.python.org/pep-0506/
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2506.10322
https://arxiv.org/abs/2502.10815
https://arxiv.org/abs/2502.10815

Under review as a conference paper at ICLR 2026

M Saiful Bari, Thibault Févry, Shanya Sharma, Zheng-Xin Yong, Arun Raja, Arnaud Stiegler,
Sheng Shen, Jos Rozen, Stephen H. Bach, Albert Webson, Tali Bers, Eliza Szczechla, Victor
Sanh, Canwen Xu, Matteo Manica, Jonathan D. Chang, Thomas Wang, Lintang Sutawika, Harshit
Pandey, Urmish Thakker, Stella Biderman, Nihal V. Nayak, and Alexander M. Rush. Multitask
prompted training enables zero-shot task generalization. ArXiv, abs/2110.08207, 2021. URL
https://api.semanticscholar.org/CorpusId:239009562.

Alexander L. Gaunt, Marc Brockschmidt, Nate Kushman, and Daniel Tarlow. Differentiable pro-
grams with neural libraries. In International Conference on Machine Learning, 2016. URL
https://api.semanticscholar.org/CorpusId:15016881.

Yuxian Gu, Pei Ke, Xiaoyan Zhu, and Minlie Huang. Learning instructions with unlabeled
data for zero-shot cross-task generalization. In Conference on Empirical Methods in Natural
Language Processing, 2022. URL https://api.semanticscholar.org/CorpusId:
252918165.

Xuan He, Da Yin, and Nanyun Peng. Guiding through complexity: What makes good supervision for
hard math reasoning tasks? In unknown, 2024. URL https://api.semanticscholar.
org/CorpusId:278775190.

Darren Holden and Nafiseh Kahani. Code linting using language models. arXiv preprint
arXiv:2406.19508, 2024.

Yi Hu, Shijia Kang, Haotong Yang, Haotian Xu, and Muhan Zhang. Beyond single-task: Ro-
bust multi-task length generalization for llms. In unknown, 2025. URL https://api.
semanticscholar.org/CorpusId:276408040.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

S. Iyer, Xi Victoria Lin, Ramakanth Pasunuru, Todor Mihaylov, Daniel Simig, Ping Yu, Kurt
Shuster, Tianlu Wang, Qing Liu, Punit Singh Koura, Xian Li, Brian O’Horo, Gabriel Pereyra,
Jeff Wang, Christopher Dewan, Asli Celikyilmaz, Luke S. Zettlemoyer, and Veselin Stoy-
anov. Opt-iml: Scaling language model instruction meta learning through the lens of gener-
alization. ArXiv, abs/2212.12017, 2022. URL https://api.semanticscholar.org/
CorpusId:2550962609.

Imen Jaoua, Oussama Ben Sghaier, and Houari Sahraoui. Combining large language models with
static analyzers for code review generation. arXiv preprint arXiv:2502.06633, 2025.

K. Jiang, B. Jin, and P. Nie. CoUpJava: A Dataset of Code Upgrade Histories in Open-Source Java
Repositories. In 2025 IEEE/ACM 22nd International Conference on Mining Software Reposito-
ries (MSR), pp. 441-445, Ottawa, ON, Canada, 2025a. doi: 10.1109/MSR66628.2025.00075.

Yuan Jiang, Yujian Zhang, Liang Lu, Christoph Treude, Xiaohong Su, Shan Huang, and Tiantian
Wang. Enhancing high-quality code generation in large language models with comparative prefix-
tuning. arXiv preprint arXiv:2503.09020, 2025b.

Saeed Khaki, JinJin Li, Lan Ma, Liu Yang, and Prathap Ramachandra. Rs-dpo: A hybrid rejection
sampling and direct preference optimization method for alignment of large language models.
arXiv preprint arXiv:2402.10038, 2024.

Avishree Khare, Saikat Dutta, Ziyang Li, Alaia Solko-Breslin, Rajeev Alur, and Mayur Naik. Un-
derstanding the effectiveness of large language models in detecting security vulnerabilities. arXiv
preprint arXiv:2311.16169, 2023.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack v2: The
next generation. arXiv preprint arXiv:2402.19173, 2024.

11

https://api.semanticscholar.org/CorpusId:239009562
https://api.semanticscholar.org/CorpusId:15016881
https://api.semanticscholar.org/CorpusId:252918165
https://api.semanticscholar.org/CorpusId:252918165
https://api.semanticscholar.org/CorpusId:278775190
https://api.semanticscholar.org/CorpusId:278775190
https://api.semanticscholar.org/CorpusId:276408040
https://api.semanticscholar.org/CorpusId:276408040
https://api.semanticscholar.org/CorpusId:255096269
https://api.semanticscholar.org/CorpusId:255096269

Under review as a conference paper at ICLR 2026

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. Cross-task general-
ization via natural language crowdsourcing instructions. In Annual Meeting of the Associa-
tion for Computational Linguistics, 2021a. URL|https://api.semanticscholar.org/
CorpusID:237421373.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. Cross-task general-
ization via natural language crowdsourcing instructions. In Annual Meeting of the Associa-
tion for Computational Linguistics, 2021b. URL https://api.semanticscholar.org/
CorpusId:237421373.

MITRE Corporation. Common weakness enumeration (cwe). https://cwe.mitre.org/,
2024. Accessed: 2025-06-26.

Atharva Naik, Marcus Alenius, Daniel Fried, and Carolyn Rose. Crscore: Grounding automated
evaluation of code review comments in code claims and smells. arXiv preprint arXiv:2409.19801,
2024.

Changan Niu, Chuanyi Li, Vincent Ng, and Bin Luo. Crosscodebench: Benchmarking cross-task
generalization of source code models. 2023 IEEE/ACM 45th International Conference on Soft-
ware Engineering (ICSE), pp. 537-549, 2023. URL https://api.semanticscholar.
org/CorpusId: 256662301

OpenAl. Openai 03 and 04-mini system card. Technical report, OpenAl, 2025a. Compact reasoning
models with tool use, image analysis, and code capabilities.

OpenAl Introducing gpt-5, Aug 2025b. URL https://openai.com/index/
introducing—-gpt—-5/.

OpenAl. GPT-4.1 system card. Technical report, OpenAl, San Francisco, CA, April 2025. URL
https://openai.com/index/gpt—4-1/. Launch of GPT-4.1, GPT-4.1 mini, and GPT-
4.1 nano via API; improvements in coding, instruction following, long-context capacity, and effi-
ciency.

Shubham Parashar, Shurui Gui, Xiner Li, Hongyi Ling, Sushil Vemuri, Blake Olson, Eric Li,
Yu Zhang, James Caverlee, D. Kalathil, and Shuiwang Ji. Curriculum reinforcement learn-
ing from easy to hard tasks improves llm reasoning. In unknown, 2025. URL https:
//api.semanticscholar.org/CorpusId:279251658.

Ravsehaj Singh Puri, Swaroop Mishra, Mihir Parmar, and Chitta Baral. How many data sam-
ples is an additional instruction worth? ArXiv, abs/2203.09161, 2022. URL https://api.
semanticscholar.org/CorpusId:247518570.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36:53728-53741, 2023.

Zeeshan Rasheed, Malik Abdul Sami, Muhammad Waseem, Kai-Kristian Kemell, Xiaofeng Wang,
Anh Nguyen, Kari Systd, and Pekka Abrahamsson. Ai-powered code review with llms: Early
results. arXiv preprint arXiv:2404.18496, 2024.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H. Bach, Lintang Sutawika, Zaid Alyafeai,
Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, Manan Dey, M Saiful Bari, Canwen
Xu, Urmish Thakker, Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani,
Nihal V. Nayak, Debajyoti Datta, Jonathan D. Chang, Mike Tian-Jian Jiang, Han Wang, Matteo
Manica, Sheng Shen, Zheng-Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala
Neeraj, Jos Rozen, Abheesht Sharma, Andrea Santilli, Thibault Févry, Jason Alan Fries, Ryan
Teehan, Stella Biderman, Leo Gao, Tali Bers, Thomas Wolf, and Alexander M. Rush. Multitask
prompted training enables zero-shot task generalization. ArXiv, abs/2110.08207, 2021. URL
https://api.semanticscholar.org/CorpusID:239009562.

Sheikh Shafayat, Fahim Tajwar, Ruslan Salakhutdinov, Jeff Schneider, and Andrea Zanette. Can
large reasoning models self-train? ArXiv, abs/2505.21444, 2025. URL https://api.
semanticscholar.org/CorpusId:278911518.

12

https://api.semanticscholar.org/CorpusID:237421373
https://api.semanticscholar.org/CorpusID:237421373
https://api.semanticscholar.org/CorpusId:237421373
https://api.semanticscholar.org/CorpusId:237421373
https://cwe.mitre.org/
https://api.semanticscholar.org/CorpusId:256662301
https://api.semanticscholar.org/CorpusId:256662301
https://openai.com/index/introducing-gpt-5/
https://openai.com/index/introducing-gpt-5/
https://openai.com/index/gpt-4-1/
https://api.semanticscholar.org/CorpusId:279251658
https://api.semanticscholar.org/CorpusId:279251658
https://api.semanticscholar.org/CorpusId:247518570
https://api.semanticscholar.org/CorpusId:247518570
https://api.semanticscholar.org/CorpusID:239009562
https://api.semanticscholar.org/CorpusId:278911518
https://api.semanticscholar.org/CorpusId:278911518

Under review as a conference paper at ICLR 2026

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Seung Yeob Shin, Fabrizio Pastore, and Domenico Bianculli. Quantum program linting with 1lms:
Emerging results from a comparative study. ArXiv, abs/2504.05204, 2025. URL https://
apil.semanticscholar.org/CorpusID:277621016.

Manav Singhal, Tushar Aggarwal, Abhijeet Awasthi, Nagarajan Natarajan, and Aditya Kanade.
Nofuneval: Funny how code Ims falter on requirements beyond functional correctness. arXiv
preprint arXiv:2401.15963, 2024.

Zhiqing Sun, Longhui Yu, Yikang Shen, Weiyang Liu, Yiming Yang, S. Welleck, and Chuang
Gan. Easy-to-hard generalization: Scalable alignment beyond human supervision. ArXiv,
abs/2403.09472, 2024a. URL https://api.semanticscholar.org/CorpusId:
268385111L

Zhiqing Sun, Longhui Yu, Yikang Shen, Weiyang Liu, Yiming Yang, Sean Welleck, and Chuang
Gan. Easy-to-hard generalization: Scalable alignment beyond human supervision. arXiv preprint
arXiv:2403.09472, 2024b.

Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Scott Silvi Travis Fischer. Gptlint, 4 2024. URL https://github.com/gptlint/gptlint.

Manushree Vijayvergiya, Matgorzata Salawa, Ivan Budiseli¢, Dan Zheng, Pascal Lamblin, Marko
Ivankovié, Juanjo Carin, Mateusz Lewko, Jovan Andonov, Goran Petrovié, et al. Ai-assisted as-
sessment of coding practices in modern code review. In Proceedings of the 1st ACM International
Conference on Al-Powered Software, pp. 85-93, 2024.

Siddhant Waghjale, Vishruth Veerendranath, Zhiruo Wang, and Daniel Fried. ECCO: Can we
improve model-generated code efficiency without sacrificing functional correctness? In Yaser
Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing, pp. 15362—-15376, Miami, Florida, USA,
November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.
859. URL https://aclanthology.org/2024.emnlp-main.859/.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei, An-
jana Arunkumar, Arjun Ashok, Arut Selvan Dhanasekaran, Atharva Naik, David Stap, Eshaan
Pathak, Giannis Karamanolakis, H. Lai, I. Purohit, Ishani Mondal, Jacob Anderson, Kirby Kuz-
nia, Krima Doshi, Maitreya Patel, Kuntal Kumar Pal, M. Moradshahi, Mihir Parmar, Mirali
Purohit, Neeraj Varshney, Phani Rohitha Kaza, Pulkit Verma, Ravsehaj Singh Puri, Rushang
Karia, Shailaja Keyur Sampat, Savan Doshi, Siddhartha Mishra, Sujan Reddy, Sumanta Patro,
Tanay Dixit, Xudong Shen, Chitta Baral, Yejin Choi, Noah A. Smith, Hannaneh Hajishirzi, and
Daniel Khashabi. Super-naturalinstructions: Generalization via declarative instructions on 1600+
nlp tasks. In Conference on Empirical Methods in Natural Language Processing, 2022. URL
https://www.aclanthology.org/2022.emnlp-main.340.pdfl

Jason Wei, Kelvin Guu, Quoc V. Le, Adams Wei Yu, Nan Du, Vincent Zhao, Brian Lester,
Andrew M. Dai, and Maarten Bosma. Finetuned language models are zero-shot learn-
ers. ArXiv, abs/2109.01652, 2021. URL https://api.semanticscholar.org/
CorpusId:237416585.

Wikipedia contributors. Code smell. https://en.wikipedia.org/wiki/Code_smell,
2024. Accessed: 2025-06-26.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai,

13

https://api.semanticscholar.org/CorpusID:277621016
https://api.semanticscholar.org/CorpusID:277621016
https://api.semanticscholar.org/CorpusId:268385111
https://api.semanticscholar.org/CorpusId:268385111
https://arxiv.org/abs/2505.09388
https://github.com/gptlint/gptlint
https://aclanthology.org/2024.emnlp-main.859/
https://www.aclanthology.org/2022.emnlp-main.340.pdf
https://api.semanticscholar.org/CorpusId:237416585
https://api.semanticscholar.org/CorpusId:237416585
https://en.wikipedia.org/wiki/Code_smell

Under review as a conference paper at ICLR 2026

Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng
Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai
Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan
Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2
technical report. arXiv preprint arXiv:2407.10671, 2024.

Feng Yao, Zilong Wang, Liyuan Liu, Junxia Cui, Li Zhong, Xiaohan Fu, Haohui Mai, Vish Krishnan,
Jianfeng Gao, and Jingbo Shang. Training language models to generate quality code with program
analysis feedback. arXiv preprint arXiv:2505.22704, 2025.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476—15488, 2022.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh Agarwal.
Generative verifiers: Reward modeling as next-token prediction. ArXiv, abs/2408.15240, 2024a.
URL https://api.semanticscholar.org/CorpusId:271963324.

Zejun Zhang, Zhenchang Xing, Xiaoxue Ren, Qinghua Lu, and Xiwei Xu. Refactoring to pythonic
idioms: A hybrid knowledge-driven approach leveraging large language models. Proceedings of
the ACM on Software Engineering, 1(FSE):1107-1128, 2024b.

Zejun Zhang, Zhenchang Xing, Dehai Zhao, Xiwei Xu, Liming Zhu, and Qinghua Lu. Automated
refactoring of non-idiomatic python code with pythonic idioms. IEEE Transactions on Software
Engineering, 50(11):2827-2848, 2024c. doi: 10.1109/TSE.2024.3420886.

Chenyang Zhao, Xueying Jia, Vijay Viswanathan, Tongshuang Wu, and Graham Neubig. Self-
guide: Better task-specific instruction following via self-synthetic finetuning. arXiv preprint
arXiv:2407.12874, 2024.

Jiasheng Zheng, Boxi Cao, Zhengzhao Ma, Ruotong Pan, Hongyu Lin, Yaojie Lu, Xianpei Han,
and Le Sun. Beyond correctness: Benchmarking multi-dimensional code generation for large
language models. arXiv preprint arXiv:2407.11470, 2024.

A LIMITATIONS

Despite the promising results achieved by METALINT, our work has some limitations that we plan
to address in future research. For the CoT setting, we didn’t explore whether non-CoT models
can be trained to effectively produce CoT-style reasoning with supervision from a teacher model.
We also explored self-improvement strategies for RS-SFT data generation in cases where the base
model failed, such as STaR (Zelikman et al.| 2022), but found it challenging to generate CoTs
that do not directly reference provided hints, which risks contaminating the training data. As a
result, we adopted a simpler rejection sampling or RS-SFT strategy. Furthermore, our approach
does not yet incorporate more advanced reinforcement learning techniques such as Group Relative
Policy Optimization (GRPO) (Shao et al., 2024)) using our verifiable linter-based reward model, or
curriculum learning methods to control the progression of idiom difficulty within synthetic training
data. Our current experiments also focus on training on one language at a time, such as only Python
or Java. Future work will explore joint training and extension to more programming languages like
JavaScript, Ruby, Go, etc., as well as cross-language generalization by training on Python idioms and
evaluating on Java idioms, and vice versa. Finally, while we do not evaluate or train for refactoring
of the idiom-violating code, we plan to do so in future work.

B MORE RELATED WORK

Easy-to-Hard Generalization. Research shows that training on simpler problems enhances gen-
eralization to harder ones in math, algorithms, and code, motivating its application to code quality
analysis. In math reasoning, models trained on easier problems (e.g., level 1-3) consistently gener-
alize better to harder benchmarks (e.g., level 4-5) (Bai et al., |2024; [Shafayat et al., [2025; |Parashar
et al.| [2025). Several works emphasize the importance of selecting high-quality supervision for

14

https://api.semanticscholar.org/CorpusId:271963324

Under review as a conference paper at ICLR 2026

harder problems 2024). Beyond math, [Sun et al. (2024a) shows that reward models

trained on simple code and math problems improve performance on complex ones. Broader stud-
ies on multi-task and length generalization and differentiable programming
reveal how structural simplicity during training can lead to robustness on longer or more
complex reasoning instances, including code. Zhang et al.| (2024a)) reinforces this by evaluating re-
ward models on algorithmic tasks like string manipulation and demonstrating transfer from simpler
to harder formats. Drawing inspiration from this work, we train METALINT on large-scale synthetic
data covering easily detectable code idioms handled by rule-based linters, and hypothesize that these
simple patterns serve as stepping stones toward generalizing to complex, novel PEP idioms.

C METHOD ADDITIONAL DETAILS

C.1 METALINT INSTRUCTION FOLLOWING PROMPT

We used the following instruction following style prompt to train the model with synthetic Ruff
idiom data for the meta-linting task:

METALINT Instruction Following Prompt

Look at the following list of code idiom specifications with definitions and examples:
{LIST_-OF_IDIOM_SPECS}

Given these idioms, your task is to look at a code file and detect violations of the
above idioms, and flag them like a linter. You should also suggest a fix if possible. Report
the results per idiom specification mentioned above and just say NO VIOLATIONS
FOUND if no violations are found for a given idiom. Do not detect any idioms not specified
above.

Code file: {CODE_FILE}

Violations per idiom:

An example input with the code file and idiom spec populated as well as the expected JSON style
output is shown below:

15

Under review as a conference paper at ICLR 2026

Example Ruff Meta-Task Input

Look at the following list of code idiom specifications with definitions and examples: #
Idiom ANN202 (missing-return-type-private-function)

Definition: Checks that private functions and methods have return type annotations.
Rationale: Type annotations are a good way to document the return types of functions. They
also help catch bugs, when used alongside a type checker, by ensuring that the types of any
returned values, and the types expected by callers, match expectation.

Example:

def _add(a, Db):
return a + b

Use instead:

def _add(a: int, b: int) -> int:
return a + b

Given these idioms, your task is to look at a code file and detect violations of the above
idioms, and flag them like a linter. You should also suggest a fix if possible. Report the
results per idiom specification mentioned above and just say "NO VIOLATIONS FOUND’
if no violations are found for a given idiom. Do not detect any idioms not specified above.
Code file:

1 # —x— coding: utf-8 —x-—
2 # pragma pylint: disable=unused-argument, no-self-use

86 def _reload(self, event, opts):

87 """Configuration options have changed,
save new values"""

88 self.options = opts.get ("fn_cisco_ampdep", {})

89 validate_opts (self)

90

91 @function("fn_amp_move_computer")

92 def _fn_amp_move_computer_function(self, event, =*args,
*xkwargs) :

93 """Function: Move computer to a group with given
connector guid and group guid."""

94 try:

Violations per idiom:

Example Ruff Meta-Task Output

]diom ANN202 Violations:

{"line": " 86 def _reload(self, event, opts):", "fix": null
{"line": " 92 def _fn_amp_move_computer_function(self,
event, =xargs, *xkwargs):", "fix": null}

C.2 DPO CONTRASTIVE PAIR AND RS-SFT SAMPLING DETAILS

To generate RS-DPO contrastive samples (or RS-SFT outputs) from the baseline SFT (or untrained)
models, we used the following hyperparameters: nucleus sampling with a maximum of 2048 new
tokens, k& = 5 sampled outputs per input, temperatures picked cyclically from {0, 0.3, 0.5, 0.7, 1},
a top-p (cumulative probability threshold) of 0.95, and a seed of 42 + i, where i € {1,...,k}, to
encourage both reproducibility and output diversity.

For RS-DPO sampling (in both CoT and non-CoT settings), we used the standard METALINT
instruction-following prompt with the SFT models. In contrast, for RS-SFT output sampling from

16

Under review as a conference paper at ICLR 2026

the untrained model, we employed the expanded “Baseline Inference Prompt” described in Sec-

tion[C.4]

C.3 TRAINING HYPERPARAMETERS AND COMPUTATIONAL ENVIRONMENT

Python SFT/RS-SFT hyperparameters:

We fine-tune the Qwen3-4B model using flash_attention_2 and bfloat16 precision. The
model is trained for 2 epochs with a learning rate of 2e-5, cosine learning rate schedule, and a
warmup ratio of 0.1. We use a maximum sequence length of 3000 tokens, a per-device batch size of
2, and gradient accumulation steps of 4. Gradient checkpointing is enabled to reduce memory usage,
with non-reentrant mode. Evaluation is performed every 2000 steps, and checkpoints are saved at the
same interval. Special tokens are manually handled in the chat template without automatic insertion.
The training uses 12 preprocessing workers and is seeded with 42 for reproducibility.

Python RS-DPO parameters:

We fine-tune the model using RS-DPO with bfloat16 precision and a reward shaping parameter
B = 0.1. Training is performed for 1 epoch with a learning rate of Se-7, cosine learning rate
scheduling, and a warmup ratio of 0.1. We use a maximum input length of 3500 tokens, a per-device
batch size of 2, and gradient accumulation steps of 4. Gradient checkpointing is enabled with non-
reentrant mode to optimize memory usage. The optimizer is AdamW, and evaluation is conducted
every 200 steps with checkpoints saved at the same interval. The training is seeded with 42 for
reproducibility.

Java SFT hyperparameters:

For Java experiments, we fine-tune Llama-3.1-8B-Instruct and
Llama-3.2-3B-Instruct with bfloat1l6 precision. Both models are trained for 2
epochs with a learning rate of 2e-5, cosine learning rate schedule, and warmup ratio of 0.1. We use
a maximum sequence length of 3000 tokens, per-device batch size of 2, and gradient accumulation
steps of 4. Gradient checkpointing (non-reentrant) is enabled. Evaluation and checkpoint saving
occur every 5000 steps. Special tokens are manually handled in the chat template. Training is
seeded with 42.

Java RS-DPO parameters:

RS-DPO training is performed on Llama-3.1-8B-Instruct and
Llama-3.2-3B-Instruct using bfloatl6 precision. Training runs for 1 epoch with
a learning rate of Se-7, cosine learning rate scheduling, and warmup ratio of 0.1. We use a
maximum input length of 3500 tokens, a per-device batch size of 2, and gradient accumulation steps
of 4. Gradient checkpointing (non-reentrant) is enabled. Evaluation and checkpoints are recorded
every 200 steps. Reward shaping parameters vary across settings, with 8 € {0.1,0.5,1}. Seeds are
fixed at 42 for reproducibility.

Computational Environment:

All SFT, RS-SFT, and RS-DPO experiments (Python and Java) were conducted on a Linux server
equipped with NVIDIA A100 80GB GPUs (Ampere architecture), CUDA 12.9, and driver version
575.51.03. Each job had access to 100 GB of CPU memory and 2 CPU cores. Training used mixed-
precision (bfloat16) with gradient checkpointing to optimize memory usage. Inference used a
similar setup with GPU allocation varying by model size.

C.4 BASELINE INFERENCE DETAILS

We use the following hyperparameters for performing inference with the baseline LLMs:

Open Source LLMs: We perform nucleus sampling with 8192 max-new tokens, temperature of
0.7, top-p (cumulative probability threshold) of 0.95 and seed of 42 (to promote reproducibility).
Closed Source LLMs: We use the chat completion OpenAl API with max tokens of 1024 for
GPT-4.1 and GPT-40 and max completion tokens of 3000 for 03-mini and o4-mini. We use default
parameters for everything else (temperature of 1 and top-p of 1, no presence penalty). For GPT-5
we use 8192 max completion tokens and high reasoning effort.

Additionally, we use an expanded prompt (Baseline Inference Prompt) compared to the one used for
METALINT, specifically adding more details about output formatting to ensure all baselines have
a fair chance and do not suffer performance drops due to formatting mismatches. For the same

17

Under review as a conference paper at ICLR 2026

reason, we also allow certain relaxations in output formatting during evaluation on the PEP Hard
Idiom Benchmark.

Baseline Inference Prompt

Look at the following list of code idiom specifications with definitions and examples:
{LIST-OF_IDIOM_SPECS}

Given these idioms, your task is to look at a code file and detect violations of the
above idioms, and flag them like a linter. You should also suggest a fix if possible. Report
the results per idiom specification mentioned above and just say NO VIOLATIONS
FOUND if no violations are found for a given idiom. Do not detect any idioms not specified
above.

Code file: {CODE_FILE}

OUTPUT FORMAT

I want you to generate your output under a section called “### Final Idiom Viola-
tions Found”.

Structure you response for a given idiom XYZ as follows for cases with violations:
Final Idiom Violations Found

[diom XYZ Violations:

{"line": " 12 \\t\\t#event = forms.ModelChoiceField (queryset=
Inquiry.objects.filter (owner=kwargs.pop(‘user’)))", "fix": null
{"line": " 1 from django import forms\\n

2 from django.forms.models import inlineformset_factory\\n
3 from .models import Request\\n

4 from ingquiry.models import =",

"fix": [{"before": "from django import forms\\n

from django.forms.models import inlineformset_factory\\n
from .models import Request\\n

from inquiry.models import *\\n\\n\\n\\n",

"after": "from django import forms\\n

from django.forms.models import inlineformset_factory\\n
from inquiry.models import =\\n\\n

from .models import Request\\n\\n\\n"}]}

and as follows for cases with violations:
Final Idiom Violations Found
**[diom XYZ Violations: **

NO VIOLATIONS FOUND

Violations per idiom:

C.5 PMD IDIOM SPECIFICATIONS

We scrape PMD idioms specification from the Java section of the PMD rules documentationht tps :
//docs.pmd-code.org/latest/pmd_rules_java.html., The PMD instructions are
more complex and more ambiguous than our handcrafted JEP specifications because the examples
are more verbose and don’t pinpoint the specific lines that should be flagged as idiom violations, as
can be seen in the example below.

18

https://docs.pmd-code.org/latest/pmd_rules_java.html
https://docs.pmd-code.org/latest/pmd_rules_java.html

Under review as a conference paper at ICLR 2026

PMD Rule Specification: UnitTestShouldIncludeAssert

Since: PMD 2.0

Priority: Medium (3)

Unit tests should include at least one assertion. This makes
the tests more robust, and using assert with messages provide
the developer a clearer idea of what the test does. This rule
checks for JUnit (3, 4 and 5) and TestNG Tests. Note: This rule
was named JUnitTestsShouldIncludeAssert before PMD 7.7.0. This
rule is defined by the following Java class:
net.sourceforge.pmd.lang. java.rule.bestpractices.
UnitTestShouldIncludeAssertRule

Example (s) :
public class Foo {
@Test
public void testSomething () {
Bar b = findBar();
// This is better than having a NullPointerException
// assertNotNull ("bar not found", b);
b.work();

}
This rule has the following properties:

Name
Default Value
Description

extraAssertMethodNames
Extra valid assertion methods names

Use this rule with the default properties by just referencing
it:

<rule ref="category/java/bestpractices.xml/
UnitTestShouldIncludeAssert" />

Use this rule and customize it:
<rule ref="category/java/bestpractices.xml/
UnitTestShouldIncludeAssert">
<properties>
<property name="extraAssertMethodNames" value="" />
</properties>
</rule>

19

Under review as a conference paper at ICLR 2026

Java METALINT Instruction Following Prompt

Task Instructions (1/2):
Look at the following code idiom specification with definitions and examples:
{IDIOM_SPEC}

Task Instructions (2/2):

Given this idiom, your task is to look at a code file and detect violations of the above idiom,
and flag them like a linter. You should also suggest a fix if possible. Report the results
for only the idiom specification mentioned above and just say NO VIOLATIONS FOUND
if no violations are found for the given idiom. Do not detect violations of any idiom not
specified above.

Code file:
{CODE_FILE}

Violations per idiom:

D ADDITIONAL EXPERIMENTAL DETAILS

D.1 EVALUATION METRICS

Let I denote an idiom, M7 its corresponding meta task specification, f € F a code file, V; s
the ground truth set of violating line numbers, and § = qujl the model predicted violations.

For each dataset instance with input prompt = and ground truth set of line numbers y, (z,y) =
({f, M1}, Vyg) € D.

We define the indicator variable:

1] = {1 if is true

0 otherwise

Detection Metrics:

Y (emen Lyl > 0] - 1[|g] > 0]

= S o (Tl > 0] - 1[13] > 0] + L[] = 0] - 1[13] > 0]

B 2 (eyyep Lyl >0 - L[| > 0]
 Yewen (Lllyl > 0] - 15[> 0] + Lfly| > 0] - L{|g] = 0])

Ry

Macro-averaged detection metrics:

1 1 2PDetRDet
Poe ==Y Pr, Rpa=1=) Ri, Fpa=H5———
. m;f . |f|; I TP P+ Roa

Localization Metrics:

1 Iyﬂy\ 1 |yﬁz)| 2PLOCRLOC
g Loc —) RLoc = E ; I Loc —

D Z D Pioc + Rioc

D] (z,y)ED | (w,y)€D g Loe + f1L

D.2 IDIoMs CHOSEN FOR RUFF IDIOM TRANSFER DATASET
Table [9] lists the Ruff idioms used in the SFT training and synthetic transfer evaluation test sets.

Idioms are grouped by their source linter and cover a range of syntax, semantics, naming, and
upgrade-related rules.

20

Under review as a conference paper at ICLR 2026

Train Idioms Test Idioms

____________________________,__________________________
YVYVYVYY

Figure 3: ID: In-Domain, NeT: Near Transfer, FaT: Far Transfer.

D.3 DPO NO VIOLATION FRACTION ABLATIONS

We analyze the impact of varying the amount of samples with zero violations used for RS-DPO
training. These experiments were motivated by initial findings comparing models trained only on
data with at least one violation to those trained on the full dataset. By design, RS-DPO generates
significantly more training data for cases with at least one violation, due to greater variance in
reward signals. This is further amplified by the fact that the initial SFT policy/checkpoint is already
quite accurate in handling cases with NO VIOLATIONS FOUND leading to low variance in reward
across responses.

Our early experiments showed that excluding all NO VIOLATIONS FOUND cases led to notable
gains in recall and line-level localization. However, this came at the cost of a significant drop in
precision compared to the SFT policy/base model. Further analysis revealed a sharp decline in
the accuracy of predicting NO VIOLATIONS FOUND, from nearly 99% down to 70-80%, with
performance worsening monotonically over training steps. Conversely, training on the full dataset
(i.e., including 100% of the NO VIOLATIONS FOUND cases) improved precision but offered only
modest gains in recall and localization, which also degraded with continued training. These findings
suggest that while some NO VIOLATIONS FOUND data is necessary to maintain high precision,
too much of it may hinder recall and localization.

To investigate this trade-off, we experimented with keeping only a fraction of the NO VIOLATIONS
FOUND data during training. Specifically, we randomly sampled k% of such data, varying k across
{0%, 2%, 5%, 10%, 20%, 40%, 100%}. These percentages were selected based on observed trends:
20%, 40%, and 100% yielded similar results, which discouraged further tests at 60% or 80%, while
2% and 5% were chosen due to a noticeable performance jump between 0% and 10%. We found that
5% offered a favorable middle ground, largely retaining or slightly reducing precision, while pre-
serving most of the recall (resulting in the highest detection F-score), and only modestly impacting
line-level localization. Based on these insights, we conducted a limited ablation on the CoT model,

21

Under review as a conference paper at ICLR 2026

evaluating 2% and 5% inclusion to determine the optimal setting for both detection and localization
(as shown in Table[TT).

D.4 PEP BENCHMARK CREATION ADDITIONAL DETAILS

As discussed in section we use some high recall heuristics to find promising candidates for
detecting the selected hard PEP idioms. These are summarized in Table T3] [I4]and [TI5]

E MORE RESULTS

E.1 EXPANDED RESULTS ON THE PEP HARD IDIOM BENCHMARK

We show the expanded results across various model sizes for the evaluated model families in Ta-
ble[T7] We note that most results follow the expected trends with more parameters or CoT usage
leading to better performance but there are soem exceptions to the trend. We mainly see this for cases
like Qwen2.5 and Qwen2.5Coder families. We note that Qwen2.5Coder-7B-Instruct has almost zero
metrics because it always predicts NO VIOLATIONS FOUND for all instances and Qwen2.5Coder-
14B-Instruct has really low scores because of similar reasons. for Qwen2.5 family we notice that
32B variant performs a bit worse than 32B.

We also analyze METALINT SFT models on the hard PEP benchmark and observe that they perform
similarly or slightly worse than the base untrained models. This suggests that SFT alone may lead
to overfitting on the Ruff idiom distribution and struggles to generalize from easy to hard cases
without DPO training. These findings highlight the importance of the DPO (preference-tuning)
stage in the METALINT pipeline. However, we also emphasize that while the SFT stage can limit
generalization, it remains essential for effective DPO training, as it teaches the LLM to follow the
correct output format and establishes a strong base policy. This is supported by our experiments with
the CoT model, where applying RS-DPO directly to the Qwen/Qwen3-4B model (without SFT) led
to near-zero performance across all metrics, as the model consistently failed to produce outputs in
the required format.

E.2 STATISTICAL SIGNIFICANCE OF RESULTS ON THE PEP HARD IDIOM BENCHMARK

To analyze the statistical significance of performance differences over the PEP benchmark, we con-
duct Wilcoxon signed-rank tests comparing various METALINT variants against each other and
against baseline models. We evaluate instance-level detection accuracy (binary labels indicating
whether the LLM correctly predicted the presence of a violation) as well as instance-level precision
and recall for line-level localization. To control for multiple comparisons, we apply a Bonferroni
correction to adjust the significance threshold a as o« = %92 where m is the number of comparisons

(or rows in any given statistical significance table in this case).

Table 21| reports the Wilcoxon signed-rank test statistic and corresponding p-value (in parentheses)
for detection accuracy, localization precision, and localization recall when comparing various MET-
ALINT variants to assess the effects of RS-DPO and CoT. We find that applying RS-DPO to the
base SFT policy leads to statistically significant improvements in both detection and localization
performance, with RS-DPO consistently outperforming the original SFT checkpoint across all three
metrics with it being always better for localization. For the CoT variant, RS-DPO also yields con-
sistent but less significant gains, likely because the RS-SFT CoT checkpoint is already relatively
strong. Finally, we observe no statistically significant difference between the CoT (RS-SFT+RS-
DPO) and the standard (SFT+RS-DPO) variant, suggesting that CoT does not provide a meaningful
additional benefit in this setting.

Table [22) shows the statistical significance of comparing the base untrained model Qwen3-4B with
its METALINT variants (SFT and SFT+RS-DPO), and the Qwen3-4B CoT model with METALINT
w/ CoT (RS-SFT and RS-SFT+RS-DPO). The SFT variant yields significant gains in detection and
localization recall, but not in localization precision. The SFT+RS-DPO model improves signifi-
cantly across all three metrics. In contrast, training RS-SFT from the Qwen3-4B w/ CoT base does
not yield significant improvements. However, the RS-SFT+RS-DPO variant produces significant
gains in localization precision and recall, but not detection. These results suggest that while SFT

22

Under review as a conference paper at ICLR 2026

alone offers limited generalization, combining it with DPO reliably improves localization and can
significantly boost detection when starting from a weaker base model.

Table [23|shows the statistical significance results when comparing the METALINT (SFT+RS-DPO)
and METALINT w CoT (RS-SFT+RS-DPO) variants against various baselines. Here we want to
higlight that METALINT offers comparable performance across two out of three or all three metrics
against several 32B models that outperform it like Qwen3-32B, Qwen3-32B w CoT, Qwen2.5Coder-
32B and R1-Distill-Qwen-32B. Also the METALINT non CoT (SFT+RS-DPO) variant has no singi-
ficant difference in performance compared to 03-mini, soldifying that METALINT without CoT
has generalized to the point of being as capable as 03-mini (even though the Qwen3-4B mod-
els without CoT and Qwen3-4B model with CoT perform worse than it with the difference being
statistically singificant in Table [20).

Table 24] shows the effect of using a CoT for the Qwen3 model families and we notice that using a
CoT leads to singificant gains for all metrics for the 4B and 8B models indicating that for smaller
models CoTs might be essential for good performance on this task. However the 14B and 32B model
only show statistically significant improvement in localization precision with the CoT indicating that
the CoT might offer limited benefit for larger models.

Table @ shows the effect of varying model scale for the Qwen3, Qwen2.5, Qwen2.5Coder, and
DeepSeek-R1-Distill-Qwen families. For Qwen3 we see benefits moving from 4B to 8B abd 8B to
14B but no statistically significant difference moving from 14B to 32B when not using a CoT. Wehn
using a CoT for Qwen3 we notice that the performance differences are rarely different in terms of
statistical significant except for localizaiton performance between 4B and 8B and 8B and 14B. For
R1-Distill-Qwen family we notice a significant difference moving from 14B to 32B but not for 7B
to 14B. For the Qwen2.5Coder family we notice difference across all model scales, but the trend is
weird with a big drop in performance from 3B to 7B and then a slow climb back to great performance
around 32B. We notice that for the Qwen2.5 family which shows relatively reasonable trends with
model scale, the performance differences are statistically singificant execpt for the performance gain
from 14B to 32B being significant only for recall. To conclude the trends across model scales vary
a lot across model families but in general the model size does help but differences may be smaller if
the models are capable of reasoning and use a CoT.

Table [26] shows comparison between the GPT models. We only compared GPT-40 and its succes-
sor GPT-4.1 and o3-mini against o4-mini and the results show that GPT-4.1 is only significantly
better for localization recall while o4-mini is beter than 03-mini for overall localization but not for
detection.

E.3 FAILURE ANALYSIS OF METALINT COT MODEL VS NON COoT MODEL

We observe that a significant portion of the lower detection recall of the CoT METALINT Qwen3-
4B model, relative to its non CoT counterpart, can be attributed to its higher tendency to predict NO
VIOLATIONS FOUND in cases that do, in fact, contain violations. Specifically, the CoT model
fails to flag violations in 89 additional instances compared to the non CoT model, amounting to
nearly 17% of the evaluation set (89 out of 536 examples).

The idiom wise distribution of these missed violations is shown in Figure @] While the failure
distribution follows a somewhat long tail pattern, the most significant drops occur for PEP 614, PEP
616, and PEP 593. Notably, if the CoT model matched the non CoT model’s performance on just
these three PEPs, its detection recall would rise to 0.605, surpassing that of all open source baselines
evaluated.

Upon inspecting CoT traces for these and other idioms (see examples in Table[27), we identify sev-
eral recurring failure modes: 1) Ambiguity in interpreting the idiom specification. For example,
in PEP 614, which targets decorators with complex expressions, the CoT model often labels ex-
pressions that humans consider complex as simple. 2) Overthinking and repetitive reasoning traces,
particularly for PEP 616. 3) Skipping or entirely missing lines that contain violations, again ob-
served in PEP 616. 4) Underspecified idioms. For instance, in PEP 593, which recommends using
the Annotated type from the typing module to attach metadata to type hints, the spec lacks
clarity and concrete examples, making it hard to learn what constitutes a violation.

23

Under review as a conference paper at ICLR 2026

1242

. We also find similar issues in idioms like PEP 487, which discourages the use of metaclasses for

simple customization tasks that could be handled via __init_subclass__or __set_name__. The
1244 CoT model often misclassifies such “simple” use cases as complex.

1245

1ous Overall, these patterns suggest that the CoT model applies the idiom specifications more conserva-

1247 tively, resulting in higher precision but at the cost of reduced recall.

1248

1249 Failure Distribution: CoT Qwen3-4B Missed Violations

1250 (Caught by Non-CoT)

1251

1252

1253

1254

1255

1256 PEP Idioms
EEN PEP614

1257 3 PEP593

1258 =1 PEPS16

1259 PEP525

1260 mmm PEP530
e PEP487

1261 PEPGE55

1262 PEP526

1263 mmm PEP506

1264 mmm PEPS5B4

PEP634

1265 PEP498

1266 mmm PEPS67

1267

1268

1269

1270

1271

1272

1273

1574 Figure 4: Distribution of comparative failures of the CoT METALINT Qwen3-4B model relative to
its non-CoT variant. While errors span a long tail across many PEPs, the majority are concentrated

e in three: PEP614, PEP593, and PEP616, which motivates our focused analysis on these cases.

1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

24

Under review as a conference paper at ICLR 2026

JEP# JEP Title

Definition

Example(s)

Tree Sitter Queries

394

394

378

378

361

PatternMatching
InstanceOf
(Before)

PatternMatching
InstanceOf
(After)

TextBlocks
(Before)

TextBlocks
(After)

Switch
Expressions
(Before)

Usage of the old pattern
of testing with instanceof
followed by a manual cast
to extract and operate on
the object. This pattern is
verbose and repetitive. Flag
the instanceof expression
check within a conditional
statement and the
accompanying cast
expression in the body of
the conditional statement.

Replaces verbose instanceof
tests plus manual casting into
a concise form that tests and
declares a typed variable in
one step, for example,

if (obj instanceof String s)”
which improves readability,
reduces boilerplate, and
introduces flow-scoped pattern
variables. Flag only the line
containing the combined
instancesof test and casting
within the conditional
statement.

Multiline strings represented
using concatenated string
literals, requiring explicit
newline escape sequences
(\n) and manual concatenation
with the + operator. This
approach is verbose and
error-prone. Flag cases
where a variable

declaration or method
invocation uses

concatenated string literals
instead of multiline strings.
Use of multiline string literal
enclosed by triple
double-quote marks (),
allowing for cleaner and more
readable representation of
multiline strings without
explicit escape sequences.
Flag cases that use triple
double-quote marks for
multiline strings in variable
declarations or

method invocations.

Misuse of switch statement
with fall-through behavior
*for pattern matching. This
pattern is verbose and error
prone. You should flag case
statements with empty
bodies that are misusing
fall-through behavior.

public class ShapeExample {

static double getPerimeter(Object obj) {
if (obj instanceof Rectangle) {
Rectangle r = (Rectangle) obj;

return 2 * r.length() + 2 * r.width();

} else if (obj instanceof Circle) {
Circle ¢ = (Circle) obj;

return 2 * c.radius() * Math.PI;

}else {

throw new Illegal ArgumentException(
”Unrecognized shape”);

}

}

}

public class ShapeExample {

static double getPerimeter(Object obj) {
if (obj instanceof Rectangle r) {

return 2 * r.length() + 2 * r.width();

} else if (obj instanceof Circle ¢) {
return 2 * c.radius() * Math.PI;

}else {

throw new Illegal ArgumentException(
”Unrecognized shape”);

}

}

}

String html = ”<htmlI>\n" +

” <body>\n" +

” <p>Hello, world!</p>\n" +
” </body>\n" +
”</html>\n";

399993

String html =
<html>
<body>
<p>Hello, world!</p>
</body>

</html>

5

int numLetters;
switch (day) {
case MONDAY:
case FRIDAY:
case SUNDAY:
numLetters = 6;
break;

case TUESDAY:
numLetters = 7;
break;

throw new IllegalStateException(
”Unexpected value: ” + day);

(if_statement

condition: (parenthesized_expression
(instanceof_expression

left: (identifier) @H1

right: (type_identifier) @ H2

) @jep_-394 _before_instanceof_expression.partl
consequence: (block

((local_variable _declaration

type: (type-identifier) @H3

declarator: (variable_declarator

value: (cast_expression

type: (type-identifier) @H4

value: (identifier) @H5

)

)

)(#eq? @H1 @HS5) (#eq? @H2 @H3) (

#eq? @H3 @H4)

) @jep_394_before_instanceof_expression.part2
)

)

[

(instanceof_expression

left: ()

right: (type_identifier)

name: (identifier)

) @jep_394 _after_instanceof_expression

1

[

(local_variable_declaration
declarator: (variable_declarator
name: (identifier)

value: [

(binary_expression

)
] @jep_378_before_concatenated_string_literals

[

(string_literal) @jep_378_after_text_block
(#match?

@jep_378_after_text_block ™"\"\"\""")

1

jep-361_before_custom _detectors

Table 5: JEP Idiom Specifications (1/3): This table presents 15 idioms across 8 JEPs, including
both “before” (old best practice) and “after” (updated best practice) patterns. The JEP# column lists
the JEP number, the JEP title specifies the idiom topic, and the parenthesized value indicates whether
it is a before or after pattern. The Definition, Example, and Tree-Sitter Queries columns provide the
idiom definition, minimal Java examples shown to the LLM as instructions, and the queries used to
flag idioms for synthetic data creation.

25

Under review as a conference paper at ICLR 2026

JEP# JEP Title

Definition

Example(s)

Tree Sitter Queries

361

314

395

395

Switch
Expressions
(After)

UnicodeLang
TagExtensions
(After)

RecordClass
(Before)

RecordClass
(After)

Use of switch expressions, allowing
a return value. Employs the ->
syntax for case labels, eliminating
fall-through behavior. Flag
statements that use the arrow
operator ”->" or "yield” syntax.

Use java.util. Locale with additional
BCP 47 Unicode extensions

(cu, fw, rg, tz) in Java 10 to customize
locale behavior like currency
(java.util.Currency), first-day-of-week
(java.time.temporal. WeekFields),
region override

(java.text. NumberFormat.getInstance),
and time zone

(java.time.format.DateTimeFormatter).

Flag imports and function calls
related to these.

Use of simple data aggregates with
traditional classes which could be
replaced with a record class. This
approach requires explicit
declarations of fields, constructors,
and accessor methods, leading to
verbose and repetitive code. Flag

non record classes containing equals(),
hashCode(), and toString() methods.

Use of record class. Record classes
introduce a concise syntax for
defining immutable data aggregates,
automatically generating canonical
constructors, accessors, equals(),
hashCode(), and toString() methods,
thereby reducing boilerplate code
and enhancing readability.

Example 1:

int numLetters = switch (day) {

case MONDAY, FRIDAY, SUNDAY ->6;
case TUESDAY ->7;

case THURSDAY, SATURDAY ->8;
case WEDNESDAY ->9;

Example 7:

String category = switch (age) {

case 0, 1,2, 3,4, 5 ->"Toddler”;

case 6,7,8,9,10, 11, 12 ->"Child”;

case 13, 14, 15, 16, 17, 18, 19 ->""Teenager”;
default ->"Adult™;

Example 8:

String response = switch (input) {
case "yes” ->"Affirmative”;

case “no” ->"Negative”;

default ->""Unrecognized input”;

E;(ample 1: Currency Type (cu)

import java.util. Locale;
import java.util.Currency;

public class Foo {

void bar() {

Locale locale = Locale.forLanguageTag(
“en-US-u-cu-EUR”);

Currency ¢ = Currency.getInstance(locale);
System.out.println(c);

}
Example 4: Time Zone (tz)

import java.util.Locale;
import java.time.format.DateTimeFormatter;
import java.time.ZonedDateTime;

public class Foo {

void bar() {

Locale locale = Locale.forLanguageTag(
“en-US-u-tz-Asia-Tokyo”);
DateTimeFormatter fmt =
DateTimeFormatter.ofPattern(

”yyyy-MM-dd HH:mm z”).withLocale(locale);

System.out.println(
fmt.format(ZonedDateTime.now()));

public class Point {
private final int x;
private final int y;

public int x() {
return x;

@Override
public String toString() {
return "Point{x="+x + 7, y="+y + "}

@Override
public boolean equals(Object obj) {

}

@Override

public int hashCode() {

return Objects.hash(x, y);
Example 1 (Record Declaration):

record Point(int x, int y) {}

Example 2 (Record Declaration):

record Rectangle(double length, double width) {}

[

(yield_statement

) @jep_361_after_yield
(switch_rule

(switch_label)

”->” @jep-361_after_arrow

(switch_rule

(switch_label)

”->” . ensures it’s not arrow
(block (yield_statement

) @jep_361_after_yield)

)

1

[

(import_declaration
((scoped_identifier

scope: (scoped_identifier

) @H2

name: (identifier) @H1

) (#eq? @H2 “java.util”) (

#eq? @H1 ”Currency”))

) @jep_314 _after_currency_import

((method_invocation
object: (identifier) @H7
name: (identifier) @H8

) (#eq? @H7 Currency”) (
#eq? @HS “getInstance”)

) @jep_314_after_currency...

((method_invocation

object: (identifier) @H13

name: (identifier) @H14

) (

#eq? @H13 "NumberFormat™) (
#eq? @H14 “getlnstance”)

) @jep_314 _after_number_format...
1

[

(class_declaration
body: (class_body
(constructor_declaration
) @H1
(method_declaration
name: (identifier) @H2

)

) (#match? @H2 ™"(
hashCode—equals—toString)$”)

) @jep-395_before_record_like_class
]

[
(record_declaration
) @jep-395_after_record._...

Table 6: JEP Idiom Specifications (2/3)

26

Under review as a conference paper at ICLR 2026

JEP# JEP Title Definition Example(s) Tree Sitter Queries
N . . ((class_declaration
Eﬁiaﬁ i:iffﬁ;ﬁzbs :};Ir::glate public abstract class Shape { (modifiers) @H1
- ST private Shape() {} name: (identifier) @H4
sealed classes using body-: (class_body
Sealed paclgage-ptl)'l\{ale'v151b1i11'ly to public class Circle extends Shape { (constructor_declaration
409 Class restrict shul c]z:ssmgiT tlls /* Implementation */ (modifiers) @H2
approach lacks explicit language R X
(Before) support and is error-prone.) name: (identifier) @”H3 .
:) o public class Square extends Shape { ...)(#match? @HI1 “abstract”)
Switch to sealed classes. Flag .
. . /* Implementation */ (#eq? @H3 @H4)
abstract classes with private s -
o (#match? @H2 “private”)
.) @jep_409_before_abstract class...
1
Use of sealed classes to N .
explicitly define which classes pUbh? Sed.led class Shape
X permits Circle, Square { [
or interfaces can extend or » A .
. . /* Implementation */ (permits
implement them using the) @jep_409_after_permits_clause
Sealed sealed modifier and the permits . . Jep- o -
.] - N public final class Circle extends Shape { ((class_declaration
409 Class clause. This feature enhances ” . !
. . i /* Implementation */ (modifiers) @H1
(After) type safety and exhaustiveness } Y#match? @H1 "sealed”)
Sxﬁfl?:]l;géeiﬁ% f)lralslzge:elzlr:gons public final class Square extends Shape {) @jep_409_after_sealed_modifier
- * ion *
modifiers and lines with the 7 Implementation */ 1
permit clause.
(if_statement
condition: (parenthesized_expression
(instanceof_expression
. . . left: (identifier) @H1
Use of a sequence of if-else is;igci::tr:rigef:fnlr:liz‘ig)?em ot right: (type.identifier) @H2
if statements to test an object’s Integer i = (Integer) o; . . .
L . . .) @jep_406_before_if_else_if_...
0 .
il cast 16 handie cach case) ele i (o sstanceot Long) | consequence: (block
Pattern separately. "i"his approach is Long I = (Long) o; ¢ ((local_variable declaration
Matching verbose, error-prone, and lacks return String.format(”long %d”, 1); type: (ty pe,ldegllﬁer) @H3
406 Switch exhaustiveness checking or } else if (o instanceof String) { declarator: (variable.declarator
. o sor. . . X & value: (cast_expression

(Before) compiler assistance for missing String s = (String) o; X . .
cases. Flag if or else-if statements return String.format(”’String %s”, s); type: (type-identifier) @H4
that c;)ntain instanceof statements }else { ' . value: (identifier) @H5
:\‘/:t};rig?%l:ﬂ cast in the return o.toString(); (#eq? @HI @HS)

s Y-] (#eq? @H2 @H3)
(#eq? @H3 @H4)
) @jep_406_before_if else_if...
)
)

Example 1:

Use of a switch expression or

statement with case labels i:ltllrcnsstrv:ir:fhf(()g;l?tter(Object o { E;‘:llltj}ll{el ?:Sl

zortli?::l?g ;yp:afs;t%:ilgind case Integer i ->String.format(int %d”, i);) @jep-406_after_null_case

P Y a guard), binding case Long I ->String.format(”long %d”, 1); (switch_label

the matched variable within . . Qi G

Pattern . . case String s ->String.format(”String %s”, s); (pattern)

Matchi the branch. This style is more . i . .

406 atching concise, expressive, and opens default ->o.toString();) @Jep,406ﬁfter,sw1tch,pattern

Switch opportunities for compiler-checked } (SWllCh’lal??l .

(After) . } (parenthesized_expression)
exhaustiveness and performance . e aranthesized.pe
optimizations. Flag switch labels) @Jep,4()641tler,pdmm esized-pattern

o . Example 2: (switch_label
(case statements) with patterns, null (binary_expression)
literals or paranthesized expressions ic String checkShape(Obi @firy 740§ fior bi .
but skip default switch labels/cases static String chec ape(Object o) {) @jep-406_after_binary_expression
* return switch (o) {]
Use of implicitly typed lambda
expressions with omitted type Example 1:

LocalVar declarations. These lambda xs.stream().filter((a, b) ->a <b).forEach(

Syntax expressions rely solely on parameter ~ System.out::println);

323 Lambda names. This approach prioritizes jep-323_before_custom_detector

Params brevity but lacks explicit type Example 4:

(Before) information. Flag full lambda xs.stream().filter((a) ->a >10).forEach(
expressions without type System.out::println);
declarations.

. .. - Example 1:

Use of explicit type declaraAtlons for xs.stream().filter((lambda_expression

LocalVar lambda parameters, enhancing code
N . A (var a, var b) ->a.compareTo(b) <0).forEach(parameters: (formal_parameters
Syntax clarity and enabling better static 3 o)
R ystem.out::println); (formal_parameter
323 Lambda analysis tools. Flag full lambda type: (type_identifier) @H1

Params expressions with explicit type é.xam le 4: (ig o @y%f var™)
(After) declarations using formal ple % q:

parameters (var).

xs.stream().filter((var a) ->a >10).forEach(
System.out::println);

)) @jep_323_after_local_var_lambda

Table 7: JEP Idiom Specifications (3/3)

27

Under review as a conference paper at ICLR 2026

JEP# Before After Title JDK# Release Date
409 Yes Yes Sealed Classes 17

406 Yes Yes Pattern Matching for switch 17 14 Sept 2021
395 Yes Yes Records 16

394 Yes Yes Pattern Matching for instanceof 16 16 Mar 2021
378 Yes Yes Text Blocks 15 15 Sept 2020
361 Yes Yes Switch Expressions 14 17 Mar 2020

Local-Variable Syntax for

323 Yes Yes Lambda Parameters 11 25 Sept 2018
34 No Yes /dditional Unicode 10 20 Mar 2018

Language-Tag Extensions

Table 8: List of JEPs addressed by our tree-sitter synthetic data. The JEP# and Title column indicate
the number and title of the JEP while JDK# and Release Date indicate the JDK needed for compila-
tion to be able to use the JEP features. The Before and After columns indicate whether we include
rules/patterns to flag the old idiom or new idiom introduced by the JEP.

Training Set Idioms Test Set Idioms

PyFlakes: PyFlakes:

F405, F501, F502, F601, F621 F403, F406, F503, F602, F622
pycodestyle: pycodestyle:

E402, E701, E721, E741, E743 E401, E702, E722, E731, E742
Naming: Miscellaneous:

N801, N802, N803, N804, N805,
N806, N807, N811, N812, N813

pyupgrade:
UP001, UP002, UP003, UP004, UP005, UP006,

UP007, UP00S, UP009, UP010, UPO11,
UP040, UP044, UP045, UP046, UP047

Miscellaneous:
ERAO001, C901, 1001, 1002, BLEOO1

Bugbear:
B002, B003, B004, BO05, BO06,
B007, B00S, B009, B010, B0O12

ERAO001, C901, 1001, 1002, BLE0O1
(shared with training)

flake8 annotations:
ANNOO1, ANN002, ANNO003, ANN201, ANN202,
ANN204, ANN205, ANN206

flake8 async:

ASYNC100, ASYNC105, ASYNC109, ASYNCI110,
ASYNCI115, ASYNC116, ASYNC210, ASYNC220,
ASYNC221, ASYNC222, ASYNC230, ASYNC251

flake8 bandit:

S102, S103, S104, S105, S106,
S107, S108, S110, S112, S113,
S201, S202, S301, S302, S303

Table 9: Ruff idioms included in the supervised training and transfer evaluation test sets. Test set
idioms span both overlapping linters and novel ones not seen during training.

28

Under review as a conference paper at ICLR 2026

Fraction of Detection Localization

NV data PDet RDet FDet PLoc RLoc FLoc
0% 0.6268 09577 0.7577 0.6777 0.6932 0.6854
2% 0.671 009128 0.7734 0.6681 0.6812 0.6746
5% 0.7469 0.8315 0.7869 0.6527 0.6696 0.6611
10% 0.7584 0.8114 0.784 0.6263 0.6474 0.6367
20% 0.8382 0.7227 0.7762 0.5721 0.5815 0.5768
40% 0.8683 0.5618 0.6822 0.4683 0.4735 0.4709
100% 0.8565 0.4152 0.5593 0.4041 0.4056 0.4048

Table 10: Effect of varying the fraction of NO VIOLATIONS FOUND instances in the training
data for METALINT Qwen3-4B model without CoT. Including 0% yields the highest recall and
best line-level localization but reduces precision due to more false positives and lower accuracy in
predicting NO VIOLATIONS FOUND. Conversely, including 100% improves precision but leads
to reduced recall and localization performance. All rows report the performance at the best training
step, selected based on a balance of detection and localization F-score on the Ruff Idiom Transfer
test set.

Fraction of Detection Localization
NV data

PDet RDet FDet PLoc RLoc FLoc
2% 0.9226 0.8901 0906 0.7688 0.7638 0.7663
5% 0.9234 0.8643 0.8929 0.771 0.7571 0.764

Table 11: Effect of varying the fraction of NO VIOLATIONS FOUND instances in the training data
for METALINT Qwen3-4B model with CoT. We perform limited ablations because of the insights
from the non CoT model training.

Fraction of Detection Localization

NV data PDet RDet FDet PLoc RLoc FLoc
1% 0.654 0.6468 0.6504 0.491 0.4788 0.4848
2% 0.6636 0.6057 0.6333 0.4869 0.4745 0.4806

Table 12: Effect of varying the fraction of NO VIOLATIONS FOUND instances in the training data
for METALINT Llama3.2-3B-Instruct model. We perform limited ablations because of the insights
from the non CoT model training.

29

Under review as a conference paper at ICLR 2026

PEP Description

Heuristics

Example

Adds secrets module
to the standard library

Conjunction of 2 conditions:

characters = string.ascii_letters +
string.punctuation + string.digits
password =" join(random.choice
(characters) for x in range(16))

506 for eryptographically secure 1. Presence of "random” module imports Use instead:
ran do)tllf v ;;gluep ener’i tion 2. Presence of “random” function usage characters = string.ascii_letters +
& string.punctuation + string.digits
password = " join(secrets.choice
(characters) for x in range(16))
“class Point:
def __init_(self, x, y):
Conjunction of 2 conditions: selfix = x
1. There is a class with manual self.y =y
Introduces the dataclasses L A s ey def __repr__(self):
. . implementation of ”_init__"" method Al _ s
557 module, enabling automatic 2. On the same class there is manual return £7"Point(x={self.x}, y={self.y })
generation of common boilerplate . . Use instead:
implementation of common .
methods for classes . . from dataclasses import dataclass
special methods or comparison methods -
S . . @dataclass
that follow standard data storage patterns.) .
class Point:
x: int
y: int”
class MovieBase(TypedDict): # implicitly total=True
title: str
Introduces Required[] and Conjuction of: class Movie(_MovieBase, total=False):
NotRequired[] type qualifiers n e L . year: int
655 1. "TypedDict” defined with inheritance pattern.

to replaces cumbersome
TypedDict inheritance patterns.

2. total=False parameter usage in class definition

Use instead:

class Movie(TypedDict):
title: str

year: NotRequired[int]

Introduced structural pattern

matching, enabling more
634 expressive and concise ways

to match data structures

and control flow.

Multiple consecutive if-elif-else
statements that compare a

single variable against different

values with dysjunction of 2 conditions:
1. Length of ladder (number of

conditons at the "top level” + one level in) >=6

2. Depth of ladder (degree of nesting) >=3

”def handle_response(response):
if isinstance(response, dict):
if ”error” in response:
print(f"Error: {response[error’]}””)
elif ”data™ in response:
print(f”’Data: {response[’data’]}")
else:

print(””’Unknown response format™”’)
elif isinstance(response, list):
print(””’List of items:””, response)
else:

print(””Invalid response type’”)

Use instead:

def handle_response(response):
match response:

case {"error™: error_message}:
print(f”Error: {error_message}””)
case {""data”: data_content}:
print(f""Data: {data_content}")
case list(items):

print(””’List of items:””, items)

case _: print(””Invalid response type””)”

Removes previous restrictions

Conjunction of 2 conditions:
1. A decorator is applied using a name

def uppercase(func):

def wrapper(*args, **kwargs):
return func(*args, **kwargs).upper()
return wrapper

on decorator syntax. Before, (e.g., @decorator) where that name is @uppercase
614 only simple names or dotted assigned earlier in the code. def greet():
names were valid decorators. 2. The assignment value is an expression return "hello”
After 614, any valid expression of type Call, Attribute, or Subscript (e.g., Use Instead:
can be used as a decorator deco = factory(), deco = module.decorator, deco = [uppercase]
deco = decorators[i]). @deco[0]
def greet2():
return "hi”
dysjunction of 2 conditions: if s.startswith(prefix): s = s[len(prefix):]
1. There is a "check” with Use instead:
Replaces manual slicing s{aﬂswith} or endswith on a s = s.removeprefix(prefix)
616 with dedicated methods given variable x. OR
2. On the same variable x s[:-len(suffix)]
check if there is an “edit” using a Use instead:
program slicing syntax or using “replace()”. s.removesuffix(suffix)
dl={a:1,’b:2}d2={c:3,’d": 4}
disjunction of two conditions: 2:522 ;p(filatce ?ggg)
Introduces the binary operators ;h?hzzgﬁgn‘?a}?ggf: sequence dl={a: 1,b:2}d2={"c:3,’d: 4}
— (merge) and —= (update) on . L merged = {**d1, **d2}
dict (and other built-in mapping or in close proximity: d = d1.copy() dl={a: 1,b: 2} d2={"c: 3,°d": 4}
584 followed by d.update(d2) e U

types), providing an expressive,
in-place-or-new-object way to
combine dictionaries.

2. A dictionary literal using multiple
unpackings {**d1, **d2},
indicating ad-hoc merging rather
than the new operators

merged = dict(list(d1.items()) + list(d2.items()))

Use instead:
dl={a:1,'b:2}d2={c:3,'d: 4}
merged =dl —d2
dl={a:1,°b:2}d2={"c":3,d: 4}

dl —=d2#dlisnow {"a’: 1,°b’: 2,°¢’: 3,°d’: 4}

Table 13: High recall heuristics used to find instances of PEP violations that human annotators vet

30

Under review as a conference paper at ICLR 2026

PEP Description

Heuristics

Example

Introduces new syntax
(the / marker) in Python
function signatures to
specify positional-only

Conjunction of the
following conditions:

1. Have only positional-or-
keyword parameters

def compute_area(width, height):

return width * height

area = compute_area(width=5, height=10)
print(”Area:”, area)

370 parameters, ensuring that (without *args, **kwargs, keyword Use instead: . . X
. A def compute_area(width, height, /):
certain arguments can -only parameters, or the ’/> marker), return width * height
only be supplied by their 2. Include 2 to 4 parameters, all of &
" . area = compute_area(5, 10)
position and not as keywords which have no default values print(*Area:”, area)
Dysjunction of the following conditions: l?;lfgiljgz:?ﬂqfhrea ding.local()
1. Look for import threading together def set contex_t(value)' 8-
with threading.local() object creation and use. threadjocal value = ;'alue
2. Find global statements or assignment a f aet_cont g 10: -
to variables at the module el get-contextt): B N
Adds the contextvars module, . . return getattr(_thread_local, "value’, None)
. . level that are accessed or mutated in functions, .
567 enabling context-local variables especially as shared state Use instead:
for managing dynamic state. SP Y S from contextvars import ContextVar
3. Identify async functions or classes context_var = ContextVar(’value’)
where context or state e R
: def set_context(value):
variables are passed as parameters context_var.set(value)
(e.g., def func(context, ...) or async def oot ;:on'{exl()'
def func(context, ...)), not as context-local variables. retm%n gomext ve{r get()
Enables the use of “async for” Dyfjunctii)n of the fgllowing condit fons: - result =[]
and “await” in list, set, and dict 1. "async _def _funct}ons thdt. uses "async for async for i in aiter():
comprehensions as well as in loops to build lists, sets, or dicts. . ifi% 2:
530 . Py 2. "async for” loops, followed by methods like . .
generator expressions, providing I d 1 d liTkey] = result.append(i)
concise asynchronous data result.appen (“.‘)’ resu }Aextenl (...), or risu ([key] P Use instead:
processing within comprehensions 3. Comprf:h_ensmp s written Wl},h out the asyne for result = [i async for i in aiter() if i % 2]
clause despite being inside an “async def’
class Ticker:
”Yield numbers from 0 to ‘to*
every ‘delay* seconds.”””
def _init_(self, delay, to):
self.delay = delay
self.i=0
self.to = to
def __aiter__(self):
return self
- Dysjunction of the following conditions: async def __anext__(self):
;:"sg:rc(;sol:f a;)rlle‘:z};t:)(; ?:n?;ieom 1. classes defining both ”__aiter__” and ”_anext__" i=selfi
sy s & . i methods, especially where the class is used solely to if i >= self.to:
525 using the async def and yield
s) ntix enaglin concisey native produce a sequence of values asynchronously. raise StopAsynclteration
Si 01’1 for as Schronou; iteration. 2. async def functions that create and return custom self.i+=1
pp Y * iterator classes instead of using async def with yield. if i
await asyncio.sleep(self.delay)
return i
Use instead:
async def ticker(delay, to):
””Yield numbers from 0 to ‘to*
every ‘delay* seconds.”””
for i in range(to):
yield i
await asyncio.sleep(delay)
class Person:
name = "Alice”
age =30
city = "Wonderland”
def display _attributes(self):
N . L # Manually sorting keys
Ensures that the order in ?y[?:ergczi)?ezi)ﬂ(l)i (f)(;lllleoxilli c?:g:::e:b' for key in sorted(self._class__.__dict__keys()):
which attributes are defined within ciass dict_keys() to im osepallribule order. if not key.startswith(”__"):
a class body is preserved in the 58 —Cict—key pose 4 . L print(key, getattr(self, key))
520 resulting class object, making 2. Attribute names are tracked in a list or similar Use instead:
the attribute order predictable muc“fre solely to r‘n‘amtgm deﬁ,ﬁm"o" ordf,:,r‘. class Person:
and consistent 3. C_ustom metaclass logic or ”__prepare__ lmple_me- name = " Alice”
T ntations created to preserve the order of class attributes. age = 30
city = ”"Wonderland”
def display _attributes(self):
Directly iterate over the preserved definition order
for key in self.__class__.__definition_order__:
print(key, getattr(self, key))
name = "Alice”
age =30
greeting = "Hello, ” + name +
Dysjunction of the following conditions: Ijs:?:s?er:d' + str(age) + years old:
Introduces f-strings (formatted 1. Occurrences of string literals with name . Alice”
string literals) as a new, format(...) applied, age = 50
498 concise, and efficient way especially where keys or variables match g%ee;ing = f"Hello, {name}!

to embed Python
expressions inside string
literals using the f” prefix.

braces in the string

2. String literals concatenated using

”+” with variables.

3. Uses of the "% operator for string formatting,

You are {age} years old.”

OR

value = 12.3456

formatted = "The value is {:.2}".format(value)
Use instead:

value = 12.3456

formatted = f"The value is {value:.2f}”

Table 14: High recall heuristics used to find instances of PEP violations that human annotators vet

31

Under review as a conference paper at ICLR 2026

PEP Description

Heuristics

Example

Makes customizing class
creation and subclass initialization
easier by introducing __init_

487
subclass__ and __set_name__,
eliminating the need for
most custom metaclasses

Disjunction of the following conditions:
1. Custom metaclasses defined to
execute code during class creation

or subclassing (e.g., overriding __new__,
__init__, or __call__ in metaclasses)
instead of using __init_subclass__.

2. Descriptor classes lacking __set_
name__ method and employing

manual workarounds to determine

their assigned attribute names.

3. Classes or frameworks manually
tracking or registering sub-

classes via metaclass hooks instead

of leveraging __init_subclass__.

class Meta(type):

def __new__(meta, name, bases, namespace):
for key, value in namespace.items():
if isinstance(value, Descriptor):
value.name = key

return super().__new__

(meta, name, bases, namespace)
class MyClass(metaclass=Meta):
attr = Descriptor()

Use instead:

class Descriptor:

def __set_name__(self, owner, name):
self.name = name

class MyClass:

attr = Descriptor()

OR
class PluginBase(type):
plugins = {}

def __new__(meta, name, bases, namespace):
if name !="Plugin’:

meta.plugins[name] = namespace[’priority’]
return super().__new__

(meta, name, bases, namespace)

class Plugin(metaclass=PluginBase):
priority =0

class HighPriority(Plugin):

priority = 10

Use instead:

class Plugin:

plugins = {}

priority =0

def __init_subclass__(cls, **kwargs):
super()._-init_subclass__(**kwargs)
cls.plugins[cls.__name__] = cls.priority

class HighPriority(Plugin):

priority = 10

Introduces flexible function

and variable annotations via

typing.Annotated, which lets you
593 A

attach context-specific metadata

to type hints (e.g., validation

constraints, units)

Conjunction of 2 conditions:

1. Type hints are already present

in function arguments, return

types, or variable annotations.

2. Nearby comments/docstrings (within
+2 lines) contain metadata-like
patterns such as “min”, “max”,
“nullable”, “regex”, “enum”,

“unit”, “deprecated”, etc.

max 100, min 1
def set_age(age: int) ->None:
pass

Use instead:

from typing import Annotated

Age = Annotated[int, “min=1", "max=100"]
def set_age(age: Age) ->None:

pass

introduces explicit variable
annotations, allowing type
526 hints directly on variable
declarations for local, global,
and class variables in Python

Disjunction of the following conditions:
1. Variables assigned values with a
type comment (e.g., x = 0 # type: int)
instead of using annotation syntax.

2. Identify variable assignments,
especially class and

instance attributes, that lack any
type annotation (e.g., name ="
3.Module-level variables assigned

values without accompanying type hints—
especially in type-annotated codebases.

in class bodies).

type: List[int]

numbers =[]

Use instead:

numbers: List[int] =[]

OR

class Player:

type: str
name = "Guest”
Use instead:

class Player:

name: str = "Guest”

Introduces TypedDict, enabling
precise type hints for
dictionaries with a fixed

set of string keys, improving
static type checking and
readability in Python code.

589

Disjunction of the following conditions:

1. Dictionary literals or variables
consistently using the same fixed set of
string keys without accompanying
TypedDict annotations.

2. Functions annotated with broad
dictionary types like Dict[str, Any], dict,
or untyped parameters/returns that actually

expect dictionaries with a known fixed set of keys.

3. Explicit key presence checks or

accessing dictionary keys repeatedly that suggest

a structured dictionary shape.

movie = {"name’: ’Blade Runner’,

“year’: 1982}

Use instead:

from typing import TypedDict

class Movie(TypedDict):

name: str

year: int

movie: Movie = {"name’: ’Blade Runner’,
‘year’: 1982}

Introduces the assignment
expression operator :=

572 (the “walrus operator™),
allowing assignment to
variables within expressions,

1. Patterns where a value is first assigned

to a variable, and then immediately checked
or used in the next line or inside a

loop, list comprehension, or condition.

2. separate assignment and conditional test statements

match = pattern.search(data)

if match is not None:

process(match)

Use instead:

if (match := pattern.search(data)) is not None:
process(match)

Table 15: High recall heuristics used to find instances of PEP violations that human annotators vet

32

Under review as a conference paper at ICLR 2026

Model In-Domain Near Transfer Far Transfer
Ppet Rpet Fpet Ppet Rpet Fpet Ppet Rpet Fpet
Qwen3-4B 0.45 0.14 0.22 0.58 0.24 0.34 0.54 0.29 0.38
+SFT 0.93 (+0.48) 0.74 (+0.6) 0.83 (+0.61) 0.89 (+0.31) 0.24 (+0) 0.38 (+0.04) 0.72 (+0.18) 0.27 (-0.02) 0.39 (+0.01)
+RS-DPO 0.72 (+0.27) 1(+0.86) 0.83 (+0.61) 0.76 (+0.18) 0.8 (+0.56) 0.78 (+0.44) 0.75 (+0.21) 0.81 (+0.52) 0.78 (+0.4)
Qwen3-4B w CoT 0.87 0.5 0.63 0.95 0.88 0.91 0.87 0.68 0.76
+RS-SFT 0.87 (+0) 0.73 (+0.23) 0.8 (+0.17) 0.97 (+0.02) 0.86 (-0.02) 091 (+0) 0.94 (+0.07) 0.82 (+0.14) 0.88 (+0.12)
+RS-DPO 0.86 (-0.1) 0.85(+0.35) 0.85(+0.22) 0.97 (+0.02) 0.92 (+0.04) 0.94 (+0.03) 0.92 (+0.05) 0.86 (+0.18) 0.89 (+0.13)
Llama3.2-3B-Instruct 0.54 0.43 0.48 0.69 0.68 0.69 0.47 0.51 0.49
+SFT 0.88 (+0.34) 0.87 (+0.44) 0.88 (+0.4) 0.89 (+0.2) 044 (-024) 0.59(-0.1) 0.61 (+0.14) 027 (-0.24) 0.37 (-0.12)
+RS-DPO 0.75 (+0.21) ~ 0.92 (+0.49) 0.83 (+0.35) 0.81 (+0.12) 0.71 (+0.03) 0.76 (+0.07) 0.61 (+0.14) 0.59 (+0.08) 0.60 (+0.11)

Table 16: Cross-Idiom Generalization on Python Ruff Idioms by Transfer Setting: We evaluate
the effect of different METALINT training setups (SFT, RS-SFT, and RS-DPO) on Qwen3-4B (with
and without reasoning) and Llama3.2-3B. Models are trained on easy synthetic Python Ruff idioms,
and the performance is reported on other Ruff idioms with varying levels of transfer - In-Domain,
Near Transfer, and Far Transfer (section @

Detection Localization

Model

ode PDet RDet FDet Pan RLoc FLoc
Llama3.2-3B-Instruct 0.7042 0.214 0.3283 0.0691 0.0798 0.0741
Qwen3-4B 0.5267 0.1715 0.2587 0.0954 0.0824 0.0884
Qwen3-4B with CoT 0.8154 0.3986 0.5354 0.2625 0.1467 0.1882
Qwen3-8B 0.8267 0.3572 0.4988 0.1806 0.1285 0.1501
Qwen3-8B with CoT 0.8886 0.4672 0.6124 0.3122 0.2029 0.2459
Qwen3-14B 0.9021 04612 0.6103 0.289 0.2521 0.2693
Qwen3-14B with CoT 09116 0.4857 0.6337 0.3993 0.2915 0.3369
Qwen3-32B 0.9021 0.5205 0.6601 0.2807 0.2711 0.2758
Qwen3-32B with CoT 0.9377 0.5645 0.7048 0.4152 0.3086 0.354
Qwen2.5-3B-Instruct 0.0667 0.0033 0.0063 0.0036 0.0036 0.0036
Qwen2.5-7B-Instruct 0.4333 0.1379 0.2092 0.0585 0.0518 0.0549
Qwen2.5-14B-Instruct 0.8017 0.4324 0.5618 0.2389 0.2158 0.2267
Qwen2.5-32B-Instruct 0.8667 0.2656 0.4066 0.163 0.1477 0.155
Qwen2.5Coder-3B-Instruct 0.7802 0.411 0.5384 0.1257 0.0745 0.0936
Qwen2.5Coder-7B-Instruct 0.0667 0.0033 0.0063 0 0 0
Qwen2.5Coder-14B-Instruct 0.2 0.0443 0.0726 0.0294 0.0264 0.0278
Qwen2.5Coder-32B-Instruct 0.8961 0.5328 0.6683 0.3432 0.3077 0.3245
DeepSeek-R1-Distill-Qwen-7B with CoT 0.7143 0.2841 0.4065 0.1064 0.1122 0.1092
DeepSeek-R1-Distill-Qwen-14B with CoT 0.69 0.2345 0.35 0.1856 0.1245 0.149
DeepSeek-R1-Distill-Qwen-32B with CoT 0.9008 0.5899 0.713 0.4015 0.3403 0.3684
GPT-0ss-20b 0.8377 0.3531 0.4968 0.251 0.1695 0.2024
GPT-0ss-120b 0.9157 0.6456 0.7573 0.3991 0.3331 0.3631
Qwen3-4B METALINT (SFT) (Ours) 0.4333 0.0821 0.1381 0.0432 0.0221 0.0292
Qwen3-4B METALINT (SFT+RS-DPO) (Ours) 0.7031 0.7043 0.7037 0.3536 0.193 0.2497
Qwen3-4B METALINT w CoT (RS-SFT) (Ours) 0.7615 0.3689 0.497 0.2785 0.1437 0.1896
Qwen3-4B METALINT w CoT (RS-SFT+RS-DPO) (Ours) 0.9303 0.4958 0.6468 0.3482 0.2169 0.2673
Llama3.2-3B-Instruct METALINT (SFT) (Ours) 0.5627 0.259 0.3547 0.1066 0.0509 0.0689
Llama3.2-3B-Instruct METALINT (SFT+RS-DPO) (Ours) 0.6368 0.5614 0.5965 0.2364 0.1263 0.1647
03-mini 0.8939 0.5845 0.7068 0.3169 0.2361 0.2706
04-mini 0.9667 0.5943 0.7361 0.4131 0.3164 0.3584
GPT-40 0.8938 0.6788 0.7716 0.4461 0.332 0.3807
GPT-4.1 0.907 0.646 0.7546 0.4632 0.4673 0.4653
GPT-5 (high) 0.913 0.5673 0.6998 0.4397 0.4257 0.4326

Table 17: Results on the hard PEP benchmark to measure easy to hard generalization.

33

Under review as a conference paper at ICLR 2026

Detection Localization

Model

PDet RDet FDet PLoc RLoc FLoc
Qwen3-4B 0.538 0.2637 0.3539 0.1396 0.1479 0.1436
Qwen3-4B + SFT 0.7686 0.3178 0.4497 0.2976 0.296 0.2968
Qwen3-4B + SFT + RS-DPO 0.7469 0.8315 0.7869 0.6527 0.6696 0.6611
Qwen3-4B w CoT 0.8812 0.6854 0.771 0.5049 0.4878 0.4962
Qwen3-4B w CoT + RS-SFT 0.935 0.8183 0.8727 0.6639 0.65 0.6569
Qwen3-4B w CoT + RS-SFT + RS-DPO 0.9234 0.8643 0.8929 0.771 0.7571 0.764
Llama3.2-3B-Instruct 0.5092 0.5286 0.5187 0.1371 0.3 0.1882
Llama3.2-3B-Instruct + SFT 0.6793 0.3598 0.4704 0.3424 0.3485 0.3454

Llama3.2-3B-Instruct + SFT + RS-DPO 0.654 0.6468 0.6504 0.491 0.4788 0.4848

Table 18: Cross-Idiom Generalization on Python Ruff Idioms: We evaluate the effect of different
METALINT training setups (SFT, RS-SFT, and RS-DPO) on Qwen3-4B (with and without reason-
ing) and Llama3.2-3B. Models are trained on easy synthetic Python Ruff idioms and tested on other
Ruff idioms with varying levels of transfer (section 4.2). Best score across the compared training
setups per model are bolded.

Detection Localization

Model

PDet RDet FDet PLoc RLoc FLoc
Qwen3-4B 0.5267 0.1715 0.2587 0.0954 0.0824 0.0884
Qwen3-4B + SFT 0.4333 0.0821 0.1381 0.0432 0.0221 0.0292
Qwen3-4B + SFT + RS-DPO 0.7031 0.7043 0.7037 0.3536 0.193 0.2497
Qwen3-4B w CoT 0.8154 0.3986 0.5354 0.2625 0.1467 0.1882
Qwen3-4B w CoT + RS-SFT 0.7615 0.3689 0.497 0.2785 0.1437 0.1896
Qwen3-4B w CoT + RS-SFT + RS-DPO 0.9303 0.4958 0.6468 0.3482 0.2169 0.2673
Llama3.2-3B-Instruct 0.7042 0.214 0.3283 0.0691 0.0798 0.0741
Llama3.2-3B-Instruct + SFT 0.5627 0.259 0.3547 0.1066 0.0509 0.0689

Llama3.2-3B-Instruct + SFT + RS-DPO 0.6368 0.5614 0.5965 0.2364 0.1263 0.1647

Table 19: Easy-to-Hard Generalization on PEP Idioms: We evaluate the effect of different MET-
ALINT training setups (SFT, RS-SFT, and RS-DPO) on Qwen3-4B (with and without reasoning) and
Llama3.2-3B. Models are trained on easy synthetic Python Ruff idioms and tested on hard manually
curated PEP idiom detection data which can’t be handled by linters or static analyzers (section.3).
Best score across the compared training setups per model are bolded.

Model Comparison Detection Localization P Localization R

Qwen3-4B vs 03-mini 1266.5 (7.20e-21) 743.5 (2.96e-11) 739.0 (4.23e-09)
Qwen3-4B w CoT vs 03-mini ~ 921.5 (3.23e-09) 2385.5 (9.61e-02) 1891.0 (4.99e-04)

Table 20: Wilcoxon signed-rank test results comparing untrained Qwen3-4B variants with
o03-mini, using Bonferroni-adjusted significance threshold oo = 0.025. Each cell reports the test
statistic (p-value).

Model Comparison Detection Localization P Localization R
METALINT (SFT) vs METALINT (SFT+RS-DPO) 7192.0 (1.92e-12) 0.0 (2.49¢-20) 0.0 (2.92e-18)

METALINT w CoT (RS-SFT) vs METALINT w CoT (RS-SFT+RS-DPO) 839.5 (2.18e-03) 740.0 (3.95¢-03) 523.0 (2.34e-05)
METALINT (SFT) vs METALINT w CoT (RS-SFT) 528.0 (6.91e-14) 11.0 (1.38e-15) 113.0 (7.95e-12)

METALINT (SFT+RS-DPO) vs METALINT w CoT (RS-SFT+RS-DPO) 8140.0 (5.55e-01) 2568.5 (8.42e-01) 2544.0 (4.44e-01)

Table 21: Wilcoxon signed-rank test results comparing MetaLint variants. Each cell reports test
statistic (p-value). All the METALINT models are trained Qwen3-4B variants. We use the Bonferroni
corrected significance threshold o = 0.0125.

34

Under review as a conference paper at ICLR 2026

Model Comparison

Detection

Localization P

Localization R

Qwen3-4B vs Qwen3-4B METALINT (SFT)
Qwen3-4B vs Qwen3-4B METALINT (SFT+RS-DPO)
Qwen3-4B w CoT vs Qwen3-4B METALINT w CoT (RS-SFT)

Qwen3-4B w CoT vs Qwen3-4B METALINT w CoT (RS-SFT+RS-DPO)

560.5 (8.64¢-03)
7260.0 (4.13¢-09)
1224.0 (7.22¢-01)
1728.0 (1.83¢-02)

363.5 (1.82¢-02)
411.0 (1.99-15)
937.0 (6.12¢-01)
1011.0 (1.53¢-03)

238.0 (4.85¢-04)
979.5 (7.30e-09)
918.5 (5.39¢-01)
966.0 (1.02¢-03)

Table 22: Wilcoxon signed-rank test results comparing METALINT models against their untrained
counterparts, with Bonferroni-adjusted significance threshold ac = 0.0125. Each cell reports the test

statistic (p-value).

Model Comparison

Detection

Localization P

Localization R

Qwen3-8B vs METALINT (SFT+RS-DPO)

Qwen3-8B w CoT vs METALINT w CoT (RS-SFT+RS-DPO)
Qwen3-14B vs METALINT (SFT+RS-DPO)

Qwen3-14B w CoT vs METALINT w CoT (RS-SFT+RS-DPO)
Qwen3-32B vs METALINT (SFT+RS-DPO)

Qwen3-32B w CoT vs METALINT w CoT (RS-SFT+RS-DPO)
R1-Distill-Qwen-7B vs METALINT (SFT+RS-DPO)
R1-Distill-Qwen-7B vs METALINT w CoT (RS-SFT+RS-DPO)
R1-Distill-Qwen-14B vs METALINT (SFT+RS-DPO)
R1-Distill-Qwen-14B vs METALINT w CoT (RS-SFT+RS-DPO)
R1-Distill-Qwen-32B vs METALINT (SFT+RS-DPO)
R1-Distill-Qwen-32B vs METALINT w CoT (RS-SFT+RS-DPO)
Qwen2.5-3B vs METALINT (SFT+RS-DPO)

Qwen2.5-3B vs METALINT w CoT (RS-SFT+RS-DPO)
Qwen2.5-7B vs METALINT (SFT+RS-DPO)

Qwen2.5-7B vs METALINT w CoT (RS-SFT+RS-DPO)
Qwen2.5-14B vs METALINT (SFT+RS-DPO)

Qwen2.5-14B vs METALINT w CoT (RS-SFT+RS-DPO)
Qwen2.5-32B vs METALINT (SFT+RS-DPO)

Qwen2.5-32B vs METALINT w CoT (RS-SFT+RS-DPO)
Qwen2.5Coder-3B vs METALINT (SFT+RS-DPO)
Qwen2.5Coder-3B vs METALINT w CoT (RS-SFT+RS-DPO)
Qwen2.5Coder-7B vs METALINT (SFT+RS-DPO)
Qwen2.5Coder-7B vs METALINT w CoT (RS-SFT+RS-DPO)
Qwen2.5Coder-14B vs METALINT (SFT+RS-DPO)
Qwen2.5Coder-14B vs METALINT w CoT (RS-SFT+RS-DPO)
Qwen2.5Coder-32B vs METALINT (SFT+RS-DPO)
Qwen2.5Coder-32B vs METALINT w CoT (RS-SFT+RS-DPO)
03-mini vs METALINT (SFT+RS-DPO)

03-mini vs METALINT w CoT (RS-SFT+RS-DPO)

8140.5 (7.21e-03)
2070.0 (9.17e-01)
7304.0 (4.96¢-01)
2392.0 (2.78¢-01)
7175.0 (4.48¢-01)
2677.5 (9.95¢-03)
8244.0 (2.65¢-08)
2907.0 (7.07e-10)
9877.0 (3.99¢-06)
2660.0 (9.11e-08)
8677.5 (2.51e-01)
3125.0 (3.11e-02)
8001.0 (1.41e-15)
949.0 (4.96¢-23)
7312.5 (3.37e-10)
1187.5 (1.14e-14)
8677.5 (2.51e-01)
4123.0 (4.86e-01)
8640.0 (1.76e-04)
1792.0 (8.16e-06)
11184.0 (8.64e-03)
3683.5 (6.45¢-03)
8001.0 (1.41e-15)
949.0 (4.96¢-23)
9123.5 (1.04e-12)
1112.0 (1.82e-19)
6833.5 (2.86e-01)
1039.5 (1.16e-02)
7520.0 (4.83¢-02)
1944.0 (7.15e-04)

1309.5 (2.19¢-08)
1974.5 (1.88e-01)
2816.5 (3.15¢-02)
2749.5 (1.26e-01)
3262.0 (1.93¢-02)
3479.0 (8.38¢-02)
555.0 (8.12¢-15)
915.5 (1.04e-12)
2582.5 (9.36¢-06)
1703.0 (2.98¢-06)
5767.5 (1.93¢-01)
3641.5 (6.35¢-02)
0.0 (1.24e-22)
0.0 (4.24¢-22)
208.0 (1.44e-18)
226.0 (2.60e-18)
3045.5 (5.70e-04)
3228.0 (1.51e-03)
1492.5 (3.12¢-08)
1166.0 (2.43¢-08)
953.5 (3.73¢-12)
1126.0 (4.3%-11)
0.0 (7.69¢-23)
0.0 (2.61e-22)
289.0 (8.19¢-20)
159.5 (7.63e-20)
4500.0 (9.59%-01)
2655.0 (9.39%-01)
4986.0 (5.20e-01)
3169.0 (5.16e-01)

2067.0 (2.12¢-03)
2161.0 (6.58¢-01)
3159.0 (2.88¢-02)
2319.0 (1.32¢-03)
2818.5 (5.56e-03)
3180.5 (5.64¢-04)
1924.0 (1.91e-04)
1569.5 (8.64e-06)
3085.0 (2.00e-03)
1791.0 (3.97¢-05)
3705.0 (6.67¢-06)
2175.0 (4.99¢-06)
68.5 (1.26e-19)
0.0 (9.89¢-20)
610.0 (1.99¢-12)
406.5 (5.69¢-14)
4006.0 (3.83¢-01)
4383.0 (9.89¢-01)
2971.5 (4.55¢-02)
1983.5 (4.71e-03)
1716.0 (3.00e-07)
1403.5 (1.32e-08)
0.0 (2.02¢-20)
0.0 (6.55¢-20)
736.0 (7.32¢-14)
408.5 (3.02e-15)
2651.5 (7.07e-05)
1235.5 (1.44e-05)
44275 (2.87e-01)
2683.0 (4.23¢-01)

Table 23: Wilcoxon signed-rank test statistics and p-values comparing MetaLint variants against

baseline models.

All the METALINT variants are Qwen3-4B variants and Qwen2.5 and

Qwen2.5Coder variants are instruction tuned checkpoints. We use the Bonferroni corrected sig-

nificance threshold o« = 0.0017.

Model Comparison

Detection

Localization P

Localization R

Qwen3-4B vs Qwen3-4B w CoT
Qwen3-8B vs Qwen3-8B w CoT
Qwen3-14B vs Qwen3-14B w CoT
Qwen3-32B vs Qwen3-32B w CoT

1260.0 (3.99¢-08)
1924.0 (4.27¢-03)
1691.0 (2.01e-01)
1572.5 (2.75¢-01)

425.0 (1.91e-09)
1132.5 (8.69¢-06)
2127.0 (4.27e-04)
1767.0 (6.35¢-06)

624.5 (2.25¢-05)
1005.0 (1.15¢-04)
2398.5 (1.26e-01)
2596.5 (7.31e-02)

Table 24: Wilcoxon signed-rank test results measuring the effect of Chain-of-Thought (CoT)
prompting across Qwen3 model scales. Each cell reports test statistic (p-value). We use the Bonfer-

roni corrected significance threshold o = 0.0125.

35

Under review as a conference paper at ICLR 2026

Model Comparison

Detection

Localization P

Localization R

Qwen3-4B vs Qwen3-8B

Qwen3-8B vs Qwen3-14B

Qwen3-14B vs Qwen3-32B

Qwen3-4B w CoT vs Qwen3-8B w CoT
Qwen3-8B w CoT vs Qwen3-14B w CoT
Qwen3-14B w CoT vs Qwen3-32B w CoT
R1-Distill-Qwen-7B vs R1-Distill-Qwen-14B
R1-Distill-Qwen-14B vs R1-Distill-Qwen-32B
Qwen2.5Coder-3B vs Qwen2.5Coder-7B
Qwen2.5Coder-7B vs Qwen2.5Coder-14B
Qwen2.5Coder-14B vs Qwen2.5Coder-32B
Qwen2.5-3B vs Qwen2.5-7B

Qwen2.5-7B vs Qwen2.5-14B

Qwen2.5-14B vs Qwen2.5-32B

546.0 (2.35¢-08)
1350.0 (2.11e-03)
875.0 (2.22¢-02)
1468.5 (1.90e-02)
904.5 (1.40e-01)
850.0 (3.78¢-02)
4278.0 (2.67-01)
2432.0 (1.44e-12)
1541.0 (4.56e-14)
8.0 (7.89e-04)
423.0 (2.83e-27)
18.0 (2.43e-08)
960.5 (1.70e-13)
1925.0 (1.87e-04)

618.0 (1.37e-04)
1503.5 (3.96e-05)
3129.5 (7.94e-01)
1578.5 (1.07e-01)
1248.0 (1.66e-03)
1834.5 (4.87e-01)
1431.0 (4.66e-03)
1475.5 (8.07e-11)
0.0 (3.46e-10)
0.0 (2.04e-03)
100.5 (2.00e-22)
0.0 (3.43e-05)
500.5 (1.65e-11)
1858.5 (6.60e-03)

572.5 (1.72e-03)
1008.5 (2.69e-07)
2061.0 (4.14e-01)
1081.5 (2.60e-03)
1099.5 (1.82e-05)
2396.0 (4.40e-01)
1962.5 (6.01e-01)
843.5 (6.38e-15)
0.0 (7.07e-10)
0.0 (2.14e-03)
43.5 (9.29e-23)
0.0 (3.58e-05)
574.0 (2.62e-10)
2108.5 (1.43e-02)

Table 25: Wilcoxon signed-rank test results measuring the effect of increasing model scale
across families and CoT settings. Each cell shows the test statistic (p-value). All Qwen2.5 and
Qwen2.5Coder variants are instruction tuned checkpoints. We use the Bonferroni corrected signifi-

cance threshold o« = 0.0036.

Model Comparison

Detection

Localization P

Localization R

GPT-40 vs GPT-4.1
03-mini vs 04-mini

2550.0 (9.21e-01)
575.0 (6.68¢-01)

3961.0 (5.83e-01)
1171.0 (1.44e-03)

2207.5 (4.48¢-06)
1079.0 (1.47e-04)

Table 26: Wilcoxon signed-rank test results comparing GPT model variants. Each cell shows the
test statistic (p-value). We use the Bonferroni corrected significance threshold o = 0.025.

36

Under review as a conference paper at ICLR 2026

PEP Chain of Thought Reason for Failure

... I need to check the code file for violations of the 614 idiom,
which is about using complex expressions in decorators. ...

... The register variable is defined on line 7 as partial(register, Ambiguity about what constitutes
server=hippa). So, the decorator is a partial function. ... a complex expression. The idiom

614 ... the idiom allows for complex expressions in the decorator. targets decorators with complex
For example, if the decorator was something like expressions that make code
@lambda func: timed(...)(func), that would be allowed. ... more verbose

... the register is a partial function, which is a simple expression. ...
... the decorator is just a variable that’s a partial function. ...

... The user ... wants me to check for ... idiom, 525, which
is about using asynchronous generators with async for”
syntax ... the violation would be if the code uses
synchronous generators (like regular for loops) instead of
asynchronous generators (using async for) ... Wait, the

example given in the idiom is a class that uses __aiter__ CoT accidentally looks for the

525 . incorrect construct at a crucial

and __anext__ to create an asynchronous iterator. The fix oint (async for instead of for)

is to use a function with async def and yield. So, I need to P Y

check if there are any instances where the code is using

synchronous generators (like for loops) instead of

asynchronous ones. ... Looking through the code, 1

don’t see any for loops that are using "async for’. ...

... using __init_subclass__ and __set_name__ for class

customization without metaclasses ... using metaclasses - .

. o . Ambiguity around what constitutes
for simple customization tasks makes code unnecessarily - .
s . . a simple class. The idiom targets
complex ... there’s a class called FirestoreClientMeta, .
Lo . . instances where metaclasses

which is a metaclass ... used for registration of transports . o

487 are used for simple customization

... the problem is whether this is a simple customization ...
not just for a single customization but for managing
multiple transports ... the idiom is about using metaclasses
for simple customization ... but in this case ... handling a
more complex task ... maybe this is not a violation ...

tasks that could have been handled
with ”__init_subclass__" or
”__set_.name__")

Table 27: Example chains of thought for various PEPs where the CoT model incorrectly flags NO
VIOLATIONS FOUND instead of the non CoT model.

37

Under review as a conference paper at ICLR 2026

Model Transfer Detection Localization
PDet RDet FDet PDet RDet FDe.t
Llama3.2-3B-Instruct 0.0457 0.0079 0.0134 0.0015 0.0022 0.0017
Llama3.2-3B-Instruct + SFT PMD — PMD 0.2251 0.4421 0.2983 0.2822 0.2778 0.28
Llama3.2-3B-Instruct + SFT + RS-DPO 0.4395 0.8908 0.5886 0.593 0.5969 0.5949
Llama3.1-8B-Instruct 0.3656 0.4015 0.3827 0.1253 0.131 0.1281
Llama3.1-8B-Instruct + SFT PMD — PMD 0.2264 0.4508 0.3014 0.3201 0.3152 0.3177
Llama3.1-8B-Instruct + SFT + RS-DPO 0.4427 09191 0.5976 0.6506 0.6709 0.6606
Llama3.2-3B-Instruct 0.3855 0.0096 0.0187 0.0005 0.0004 0.0005
Llama3.2-3B-Instruct + SFT PMD — JEP 0.2286 0.4072 0.2928 0.1626 0.1336 0.1467
Llama3.2-3B-Instruct + SFT + RS-DPO 0.4903 0.8338 0.6175 04216 0.3333 0.3721
Llama3.1-8B-Instruct 0 0 0 0 0 0
Llama3.1-8B-Instruct + SFT PMD — JEP 0.2166 0.3724 0.2739 0.1455 0.1142 0.128
Llama3.1-8B-Instruct + SFT + RS-DPO 0.4964 0.8047 0.614 04615 0.3395 0.3912
Llama3.2-3B-Instruct 0.3855 0.0096 0.0187 0.0005 0.0004 0.0005
Llama3.2-3B-Instruct + SFT JEP — JEP 0.9567 0.8411 0.8952 0.7837 0.754 0.7686
Llama3.2-3B-Instruct + SFT + RS-DPO 0.9406 0.86 0.8985 0.7859 0.7651 0.7753
Llama3.1-8B-Instruct 0 0 0 0 0 0
Llama3.1-8B-Instruct + SFT JEP — JEP 0.9658 0.8466 0.9023 0.809 0.7844 0.7965
Llama3.1-8B-Instruct + SFT + RS-DPO 0.9308 0.8686 0.8986 0.8131 0.7756 0.7939
Llama3.2-3B-Instruct 0.0457 0.0079 0.0134 0.0015 0.0022 0.0017
Llama3.2-3B-Instruct + SFT JEP — PMD 03722 0.2708 0.3152 0.0574 0.0869 0.0692
Llama3.2-3B-Instruct + SFT + RS-DPO 0.4322 0.4054 0.4183 0.0878 0.1222 0.1022
Llama3.1-8B-Instruct 0.3656 0.4015 0.3827 0.1253 0.131 0.1281
Llama3.1-8B-Instruct + SFT JEP — PMD 03514 0.2229 0.2728 0.0383 0.0753 0.0508
Llama3.1-8B-Instruct + SFT + RS-DPO 0.436 0.4898 0.4613 0.0831 0.1351 0.1029

Table 28: Cross-Idiom Generalization on JEP & PMD Idioms: Effect of different METALINT
training setups (SFT and RS-DPO) on Llama3.2-3B-Instruct (Table @ The transfer column indi-
cates training and test data on the left and right side of the arrow. Best score across the compared
training setups per model are bolded.

38

	Introduction
	Related Work
	Method
	Synthetic Data Generation
	Instruction Supervised Fine-Tuning
	Verifiable Reward Model and Preference Optimization
	Training with Reasoning Traces

	Experiments
	Evaluation Metrics
	Generalization on Synthetic Data
	PEP Hard Idiom Benchmark

	Results
	Generalization on Synthetic Data
	Evaluating Easy-to-Hard Generalizations
	Benchmarking on Hard Idioms

	Conclusion and Future Work
	Limitations
	More Related Work
	Method Additional Details
	MetaLint Instruction Following Prompt
	DPO Contrastive Pair and RS-SFT Sampling Details
	Training Hyperparameters and Computational Environment
	Baseline Inference Details
	PMD Idiom Specifications

	Additional Experimental Details
	Evaluation Metrics
	Idioms Chosen for Ruff Idiom Transfer Dataset
	DPO No Violation Fraction Ablations
	PEP Benchmark Creation Additional Details

	More Results
	Expanded Results on the PEP Hard Idiom Benchmark
	Statistical Significance of Results on the PEP Hard Idiom Benchmark
	Failure Analysis of MetaLint CoT Model VS Non CoT Model

