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Abstract

In this work we present a novel task of un-001
derstanding unintentional human activities in002
videos. We formalize this problem as a rea-003
soning task under zero-shot scenario, where004
given a video of an unintentional activity we005
want to know why it transitioned from inten-006
tional to unintentional. We first evaluate the007
effectiveness of current state-of-the-art Large008
Multimodal Models on this reasoning task and009
observe that they suffer from hallucination. We010
further propose a novel prompting technique,011
termed as Dream of Thoughts (DoT), which012
allows the model to navigate through halluci-013
nated thoughts to achieve better reasoning. To014
evaluate the performance on this task, we also015
introduce three different specialized metrics016
designed to quantify the models reasoning ca-017
pability. We perform our experiments on two018
different datasets, OOPs and UCF-Crimes, and019
our findings show that DOT prompting tech-020
nique is able to outperform standard prompting,021
while minimizing hallucinations.022

1 Introduction023

Automatic understanding of human activities in024

videos is a challenging problem with a lot of real-025

world applications in domains such as healthcare,026

security, robotics, and elderly assistance. In past027

few years, we have seen an impressive progress in028

recognizing intentional human activities in videos029

[14]. However, human beings are prone to mak-030

ing mistakes and activities can be unintentional in031

real-world scenarios. Recognizing unintentional032

activities is important [9], but it is also important to033

understand the reasoning behind their occurrence.034

This can be useful for correcting mistakes and any035

damage control. Motivated by this, in this work we036

focus on finding the reasoning behind unintentional037

activities in videos.038

Recently developed multimodal foundation mod-039

els have shown impressive capabilities across a040

range of tasks with strong generalization capabili-041

ties for zero-shot scenarios [2, 16–18, 23, 42, 47]. 042

We first study the reasoning abilities of existing 043

Large Multimodal Models (LMMs) using prompt- 044

ing to determine the intentionality of actions as we 045

transition to unintentional states. Our analysis re- 046

veal that conventional prompting techniques suffer 047

from hallucinations and does not perform well in 048

reasoning about the transition into unintentional 049

activities. We also noticed that even when model 050

is able to identify that the transition from inten- 051

tional to unintentional has occurred it frequently 052

provided very generic reasons without using the vi- 053

sual context to the fullest extent. Although chain of 054

thoughts [38] prompting provides a framework to 055

obtain specific reasons not just generic ones, it also 056

suffers from hallucinations when trying to reason 057

over unintentional activities. 058

To mitigate the effect of hallucinations and im- 059

prove the reasoning over unintentional activities, 060

we propose a multi-step solution. Our solution re- 061

lies on two key observations; 1) if we let a model 062

hallucinate multiple times, some of the responses 063

might be correct, and 2) multiple-choice questions 064

helps guide the model to find the right answer. We 065

build upon these observations and propose a novel 066

approach termed Dream of Thought (DoT) style 067

prompting. We use the models hallucinations and 068

present to the model as multiple choices and let the 069

model navigate through these choices and provide 070

correct reasoning. 071

We experiment with two different datasets, 072

OOPs [9] and UCF-Crimes [32], where OOPs fo- 073

cus on unintentional activities in daily life and 074

UCF-Crimes focus on anomalous activities. With 075

extensive evaluations we demonstrate the effective- 076

ness of DoT prompting over simple prompting and 077

chain of thoughts prompting. We make the follow- 078

ing contributions in this work, 079

• We present a novel problem that focuses on 080

reasoning about the transition of an activity 081

from intentional to unintentional. 082
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• We study the capability of existing LMMs and083

prompting techniques for this task and also084

provide a novel Dream of Thoughts (DoT)085

reasoning-based mechanism which outper-086

forms existing methods.087

• We provide three different evaluation proto-088

cols, rmMCQ, rmLLM , and rmFIB , for re-089

sponse matching (rm) which quantifies the090

reasoning capability of models for this task.091

2 Related works092

Large generative models The field of large lan-093

guage models (LLMs) has significantly evolved094

in recent years, with advanced models like GPT095

[5], LLaMA [33], ChatGPT [30], and BARD [11].096

These models excel at generalizing across various097

tasks.Emerging Large Multimodal models, derived098

from these foundational LLMs, are now being ex-099

plored for vision tasks. Examples include MiniGPT100

[47], Open Flamingo [2], BLiPv2 [16], and LLaVA101

[18] in the image domain, and Video LLaMA [42],102

Video Chat [23], and Video ChatGPT [17] in the103

video domain. We use these state of the art Large104

Multimodal Models to study the prposed new task.105

Prompting techniques The emergence of large lan-106

guage models (LLMs) and multimodal models has107

led to the development of techniques to enhance108

their zero-shot abilities. Notable advancements109

include the Chain of Thought (COT) prompting110

by Wei et al [37], Automatic Chain of Thoughts111

[44] and the Self-Consistent Chain of Thought [35]112

Zhang et al. [45] further evolved this concept into113

the Multimodal Chain of Thought, which incorpo-114

rates both textual and visual data. Wang et al. [35]115

refined the original CoT approach using the self-116

consistency criteria. Yao et al. [41] and Long [22]117

further proposed through the Tree of Thought. The118

Graph of Thought by Liu et al. [21] expanded on119

these ideas. Incorporating examples for few-shot120

learning scenarios has also been shown to improve121

LLM performance [5, 33] which have been further122

enhanced upon by [15, 20, 31, 46]. We analyze123

these existing techniques capabilities to induce rea-124

soning abilities in LMM’s and compare with our125

proposed method.126

Reasoning abilities of LLM’s Web et al. [36]127

showed that models like GPT-3.5 and GPT-4 have128

considerable analogical reasoning abilities, while129

Liu et al. [19] highlighted their limitations with130

out-of-distribution data and complex tasks. Malkin-131

ski et al. [26] analyzed deep models of analytical132

reasoning on Raven’s Progressive Matrices [36]. 133

The Visual Question Answering (VQA) field has 134

seen significant contributions from studies like [43], 135

[25], [13], and [3], enhancing VQA solutions. Re- 136

search by Xue et al. [39], Hafner et al. [12], Finn 137

et al. [10], Chang et al. [7], Burda et al. [6], 138

Babaeizadeh et al. [4], and Agrawal et al. [1] 139

has been pivotal in advancing how deep models 140

understand dynamic visuals. To the best of our 141

knowledge LMM’s ability to reason over uninten- 142

tional videos has not been addressed in existing 143

works. Hallucination in LLM’s: Hallucination in 144

foundational models refers to the creation of incon- 145

sistent responses. Mckenna et al. [27] investigated 146

the origins of hallucinations in LLMs, while Yao 147

et al. [40] drew comparisons between these hal- 148

lucinations and adversarial examples. Wang et al. 149

[34] extended this research to Large Vision Mod- 150

els, examining hallucinations in the visual domain. 151

To address hallucination challenges, Dhuliawala 152

et al. [8] and Manakul et al. [24] introduced self 153

checking and self verification to generate consis- 154

tent responses. In this work, we use hallucinations 155

to improve the models reasoning capability with 156

the help of multi-step navigation. 157

3 Method 158

Problem statement We focus on understanding 159

the transition from intentional to unintentional ac- 160

tivities in videos under zero-shot setting. Given 161

a model p() which takes a prompt P and a video 162

V with n frames as input, the objective is to iden- 163

tify the reasoning R behind the activity’s transition 164

from intentional to unintentional in the video. 165

3.1 Background and motivation 166

The Chain of Thought (COT) prompting [38] 167

method has been shown to enhance the reasoning 168

abilities of LLMs in large-parameter models. Our 169

preliminary experiments indicate that Large Video 170

Language models face specific challenges due to 171

hallucinations as well as lack of ability to infer 172

relationships between events, which seems to be 173

affecting inference and causal understanding. 174

While studying these issues, we observe that 175

repeated trials substantially provide accurate re- 176

sponses occasionally, approximately achieving one 177

correct response out of every few attempts with 178

the CoT prompt. Moreover, in [28, 29] the authors 179

show that humans also interpret problem-solving 180

in a combinatorial manner, using some heuristics 181
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Figure 1: Overview of the proposed Dream of Thoughts framework: The left figure shows an overview of the
three-step process with all the possible paths generated by the Large Video Language Model using the video and
provided prompts. The right figure describes the Dream of Paths mechanism for generating thoughts to cover the
most probable options and the Path Selection mechanism for navigating through the best possible options.

to decide from various possibilities. The possi-182

bilities at each stage are generated by our prior183

experience in solving problems, which also gener-184

ates the plan to solve the problem. Motivated by185

this, we introduce a multi-step prompting strategy186

which exploits models hallucinations and attempt187

to navigate through those hallucinated responses to188

achieve better reasoning.189

3.2 Proposed approach190

We introduce Dream of Thought (DoT) prompt-191

ing to improve the models’ ability to generate the192

correct response by filtering through multiple re-193

sponses. It is a multi-step process which consists194

of three steps to obtain cues consisting of essential195

components to obtain the reason. Specifically, we196

first obtain a description of the video and using this197

as the cue, we generate the goal of the intentional198

activity in the video, which enables us to reason199

why the intentional activity is failing. An overview200

of the proposed approach is shown in Figure 1.201

At each step, DoT generates a range of possible202

answers (Dreams of Paths) to a given question. We203

then employ a Multiple Choice Question (MCQ)-204

style prompt for effective selection of the most205

appropriate response (Path Selection) to the spe-206

cific video. This strategy capitalizes on the models’207

generative capability to provide diverse options,208

with the MCQ prompt acting as a filter to select the209

most appropriate output. Similar strategy has been210

explored in Tree of Thoughts (ToT) [41] mecha-211

nism but there are some key differences; 1) ToT212

requires a scoring mechanism to select the best pos-213

sible option in each step, whereas, we pose this214

as MCQ for the model itself, and 2) our proposed 215

DoT utilize cues from different steps as a context 216

for next steps, whereas ToT treats each step as a 217

partial path with no such motive. 218

DoT consists of three main steps, 1) generating 219

description, 2) goal derivation, and 3) reasoning, 220

which make use of Dream of Paths (DoP) and Path 221

Selection. We will first describe Dream of Paths 222

and Path Selection, and then explain the three steps 223

involved in DoT prompting. 224

Dream of Paths: At each step, we generate n pos- 225

sible options as a solution to the task in correspond- 226

ing step. The model p() to generate n candidate 227

solutions xi ∼ p(xi|V, . . . ). 228

Path selection: After obtaining n possible solu- 229

tions to our problem, we then propose the task 230

as a MCQ form problem where the model has 231

to select one out of n possible solutions: x ∼ 232

p(x|x1, . . . , xi, Ps, V ) using a prompt Ps, “The list 233

of possible descriptions/goals/reasons for the video 234

are given as (descriptions/goals/reasons). Select 235

the most appropriate descriptions/goals/reasons." 236

Generating description (D): In the first step, we 237

generate n concise summaries of the video content 238

using a prompt: di ∼ p(di|Pd, V ),where prompt 239

Pd is “Summarize the video action and infer the 240

list of objects exhaustively, from the relevant visual 241

context to the activity occurring in the video.". Fol- 242

lowing this, we engage in the Path Selection step to 243

derive the most accurate description of the video: 244

d ∼ p(d|d1, d2, . . . , dn, V, Ps). 245

Goal derivation (G): Using the summary, we de- 246

rive n possible intended activity to be executed 247

within the context of this video using a prompt: 248
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Algorithm 1 Dream of Thoughts (DoT)
Input: Model M, video Vi

Output: Reasoning R

1: P = [Pd, Pg, Pr] ▷ Define prompts for reasoning
2: c = [] ▷ Initialize empty list c for storing context
3: n = N ▷ Set n to number of options to be generated
4: Ps = SelectionPriompt ▷ Set the selection prompt
5: for j in P do
6: ci = [] ▷ Initialize empty list c_i
7: for i = 1 to n do
8: ci += model(c | Pj , V, c) ▷ Update c_i with

model output
9: end for

10: c += model(c | ci, c, V, Ps) ▷ Update c with model
output

11: end for
12: R = c[−1] ▷ Set reason to the last element of c

gi ∼ p(gi|d, V, Pg), where prompt Pg is given249

as “If the summary of the given video is <video250

summary>, logically infer the most probable inten-251

tion of the actions being attempted in this video.".252

We then perform the Path Selection step to ob-253

tain the best possible description for the video:254

g ∼ p(g|g1, g2, gn, Ps, V, d).255

Reasoning step (R): Utilizing the information per-256

taining to the intended activity, we generate a set of257

n probable factors that could have potentially hin-258

dered the successful completion of the aforemen-259

tioned task: ri ∼ p(ri|V, g, Pr), using a prompt Pr,260

“The goal of the intended activity taking place in the261

given video is described as: (goal), provide a visual262

description of the event that leads to the failure to263

perform the activity with the greatest probability."264

This step is again followed by the Path Selection265

step to obtain the best possible description for the266

videor ∼ p(r|r1, r2, rn, Pr, V, g).267

3.3 Evaluation and metrics268

We perform comparison of the responses with the269

ground truth reasons at both high and low level270

context. For high level context analysis, we aim to271

match underlying reasons provided by the model272

with the ground truth reasoning. For this, we intro-273

duce the rmLLM metric. For low level contextual274

analysis we measure how accurately the model can275

predict specific attributes of the reason such as sub-276

ject, verb and object. We propose two metrics for277

this, rmMCQ, and rmFIB . Leveraging keyword-278

based metrics, we can more precisely assess the279

presence of hallucinations in these models. Specif-280

ically, if the keywords are absent, it suggests that281

hallucination may have occurred, where the key-282

words have either been replaced by synonyms or283

include hallucinatory details not originally present.284

1) Low level context evaluation: The ground truth 285

encompasses subject, object, and verb components 286

extracted from the ground truth, denoted as si for 287

the ith video. Our evaluation revolves around the 288

identification of these “keywords" within the pre- 289

dicted responses. This evaluation is applied when 290

the reasoning task is framed as either a multiple- 291

choice question (MCQ) task, or a fill-in-the-blanks 292

task. We experimented with existing metrics for 293

generated text evaluation such as BLEU and Sacre 294

BLEU, but these metrics were unable to match the 295

responses providing most of the scores close to 0 296

therefore we do not use these metrics. 297

1.1) MCQ evaluation: For MCQ style task, since 298

we provide the ground truth option as one of the 299

options and rest of the options are unrelated, the 300

presence of keywords in the response provides a 301

reasonable estimate of how correct the answer is 302

and also allows us to judge the accuracy of the 303

output. The rmMCQ accuracy is obtained as, 304

rmMCQ = ΣN
i=11[si ∈ predi] (1) 305

where predi is the prediction given by the model 306

for the ith video in the dataset. Here N is the to- 307

tal number of samples and predi is the prediction 308

provided by the model for the ith video. 309

1.2) Fill-in-blank evaluation: In FIB style task 310

since we are removing one of the possible key- 311

words which has to be completed by the model we 312

evaluate the number for keywords model is able to 313

output correctly. We remove si from the ground 314

truth reason gti. 315

rmFIB = ΣN
i=1Σxj∈si

1[xj ∈ predi]

len(si)
, (2) 316

Here N is the total number of samples, predi is 317

the predicted made by the model for the ith video. 318

2) Reasoning evaluation: Finally, we evaluate the 319

response provided by the models and match it with 320

the ground truth answer. We make us of using 321

GPT-3.5 for matching the generated and ground 322

truth reason. This evaluation allows us to compare 323

whether the output contains the event which occurs 324

in the ground truth reason. We evaluate the same 325

video five times and report the average score of 326

each video as the rmLLM and the standard devia- 327

tion of scores per question as std. 328

4 Experiments 329

Datasets We performed our experiments on two 330

different datasets, OOPs [9] and UCF-Crimes [32]. 331
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Models MCQ FIB
w goal w/o goal w goal w/o goal

rmMCQ rmLLM rmMCQ rmLLM rmFIB rmLLM rmFIB rmLLM

Video ChatGPT 0.303 0.667 0.240 0.457 0.352 0.648 0.222 0.519
Video LLaMA 0.105 0.092 0.099 0.054 0.383 0.139 0.167 0.206
Video Chat 0.315 0.204 0.278 0.067 0.337 0.226 0.215 0.214
Video LLaMAv2 0.134 0.072 0.040 0.067 0.184 0.059 0.293 0.214

Table 1: Reasoning capability of existing models: Performance evaluation of existing models on multiple-choice
questions (MCQ) and fill-in-the-blank (FIB) style prompting. We analyze both scenarios, prompts with and without
goals. MCQ setup consist of four questions, 1 ground truth, 2 random and ‘None of the above’.

OOPs: We conduct detailed experimental analysis332

using the validation subset of the OOPs dataset.333

This subset comprises 3,500 YouTube videos, each334

portraying a variety of failures in diverse real-world335

scenarios. Along with this, the OOPs dataset also336

contains natural language descriptions for each337

video. These descriptions provide insights into the338

original intentions behind the videos and the cir-339

cumstances leading to the deviation from planned340

actions. UCF-Crimes Further, we also conduct341

experiments on UCF-Crimes dataset. It consists of342

long and untrimmed real-world surveillance videos,343

with 13 realistic anomalies such as fighting, road344

accident, burglary, robbery, etc. We use the vali-345

dation set of this dataset to evaluate our approach,346

where we select only anomalous videos. These347

videos have length ranging from 1-3 minutes and348

there are a total of 65 videos in this evaluation set.349

We provide natural language descriptions for the350

crime occurring in the videos from this new test set351

to evaluate our approach.352

Baselines and models For the evaluation and353

benchmark, we utilize the officially released ver-354

sions of several state-of-the-art models, namely355

Video ChatGPT [23], Video LLaMA [42], Video356

Chat [17], and Video LLaMAv2 [42]. Along with357

these video-based models, we also use image based358

model, Open Flamingo [2]. These models serve as359

comprehensive baselines in our analysis. Further,360

we also evaluate different prompting strategies in-361

cluding standard prompting and CoT prompting.362

Each of these models is built upon the LLaMA-7b363

billion language model, endowing them with sub-364

stantial capabilities in text generation from video365

inputs. For the proposed DoT approach, we use366

Video ChatGPT in all our experiments.367

4.1 Quantitative results368

We first analyze the reasoning capability of exist-369

ing LMMs for explaining reasoning behind unin-370

tentional activities in videos. Here we explore two371

different prompting setups, 1) multiple choice ques- 372

tions (MCQs), and 2) fill-in-the-blanks. In MCQ 373

style prompting with n = 3 options (more details 374

in supplementary), we presented several options 375

along with ground truth and prompted the model to 376

select the correct reasoning for the failure. This is 377

evaluated using rmMCQ and rmLLM metrics. In 378

the second setup, we use the ground truth reasoning 379

and randomly remove subject, object or verbs from 380

the sentence and prompt the model to fill in the 381

missing words. This is evaluated using rmFIB and 382

rmLLM metrics. 383

The performance of studied models for MCQ 384

and FIB style prompting is shown in Table 1. For 385

both, we experimented with two variations, one 386

where the goal is also provided along with the 387

prompt and the other where goal is not provided. 388

Video ChatGPT shows consistently better perfor- 389

mance on both FIB and MCQ prompts for all three 390

metrics with and without goal. Video LLaMA and 391

LLaMAv2 show significantly worse performance 392

on MCQ as compared to FIB-style prompts on 393

rmMCQ, rmFIB and rmLLM . Video Chat shows 394

similar performance on rmMCQ and rmFIB but 395

rmLLM for FIB is higher in non-goal setting and 396

similar in with goal setting. Based on this analysis, 397

we experimented with mostly Video ChatGPT for 398

proposed DoT prompting technique. 399

Next, we evaluate the existing and proposed 400

methods for generating the complete reasoning. We 401

evaluate both CoT and DoT prompting for Video 402

ChatGPT as it was the best performing model in 403

our preliminary experiments. This is evaluated us- 404

ing rmLLM metric along with standard deviation 405

in responses std, which attempts to measure degree 406

of hallucinations in the response. 407

The evaluation for all the models is shown in 408

Table 2 for both OOPs and UCF-Crimes dataset. 409

We can observe that the proposed DoT prompting 410

demonstrate benefits over existing methods sur- 411

passing both the standard and CoT prompts. DoT 412
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Figure 2: Qualitative evaluations: We show some samples for qualitative analysis of the proposed DoT prompting
compared with CoT and standard prompting. First row illustrates examples from OOPs dataset and the second row
refers to examples sampled from UCF-Crimes dataset.

Dataset OOPs UCF-Crimes
Model rmLLM std rmLLM std

Open Flamingo 0.154 0.128 0.035 0.047
Video LLaMA 0.026 0.048 0.075 0.072
Video Chat 0.064 0.156 0.082 0.143
Video LLaMA2 0.053 0.089 0.081 0.089
Video ChatGPT 0.242 0.217 0.247 0.171
CoT 0.236 0.182 0.271 0.182
DoT 0.279 0.199 0.291 0.160

Table 2: Performance evaluation: A comparison of ex-
isting methods with proposed DoT prompting on OOPs
and UCF-Crimes dataset. We show both rmLLM and
standard deviation (std) across five trials. CoT refers
to Chain of Thoughts and DoT refers to the proposed
prompting strategy using VideoChatGPT model.

outperforms Basic prompts by ∼ 4% Furthermore,413

Video ChatGPT outperforms Video LLaMA, Video414

LLaMAv2, and Video Chat models when subjected415

to basic prompts. Similar results can be observed416

for UCF-Crimes dataset.417

Analyzing hallucinations: We provide insights418

into the standard deviation of scores across indi-419

vidual questions. High standard deviation implies420

inconsistent answers and substantial model hallu-421

cinations. Conversely, a low standard deviation,422

coupled with low accuracy, suggests consistent but423

incorrect responses, while a low standard deviation424

with high accuracy indicates consistent and correct425
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Figure 3: Distribution of cosine similarity between
ground-truth and the DoT as well as basic prompt.

answers. From Table 2 we can observe that DoT 426

has lower std score than basic prompts by ∼ 0.02 427

whereas it is comparable to that of COT, whereas 428

CoT maintains low uncertainty but struggles to 429

consistently achieve high scores when compared to 430

DoT. Additionally, in Figure 3 we can see that the 431

outputs obtained from DoT prompt display a con- 432

sistently higher cosine similarity score to ground 433

truth reason as compared to the output obtained 434

from standard prompts (More details in supplemen- 435

tary). 436
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Figure 4: Effect of number of options: Variation of
p(x = ans|O) on reasoning task proposed as MCQ
style query, with varying number of present in a MCQ
question, where p(x = ans|O) = 1iffrmmcq >= 0.8
else p(x = ans|O) = 0. Here O refers to the options
presented in the MCQ.
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Figure 5: Analyzing number of trials: Variation of
p(ans ∈ x|n) on reasoning task proposed as MCQ
style query, with n is the number of times prompt has
been evaluated using LMM and x is set of n outputs
obtained using LMM.

4.2 Qualitative Results437

We present qualitative results on the OOPs and438

UCF-Crimes dataset in Figure 2. We can observe439

that DoT prompting is generating better reasoning440

for action failures as well reasoning behind the the441

activity being anomalous in videos, compared to442

Standard and CoT prompting. The DoT method is443

better aligned with ground truth reasoning, show-444

casing its capability across diverse activities such as445

typing, shooting an air gun. These activities high-446

light different success scenarios: ongoing success447

in working, and instant success in air gun shooting.448

It also demonstrates its effectiveness to identify449

a wide range of crimes like arson and vandalism450

showcasing its generalizability.451

4.3 Ablation studies452

We conduct ablation studies to assess the impact of453

prompt variations on both accuracy and the pres-454

ence of hallucinations these ablations studies aid455

in evaluating the efficacy of each individual step456

with goal w/o goal
Model rmLLM std rmLLM std
Video ChatGPT 0.621 0.213 0.242 0.217
Video LLaMA 0.337 0.261 0.026 0.048
Video Chat 0.205 0.301 0.064 0.156
Video LLaMA2 0.033 0.032 0.053 0.089

Table 3: Effect of goal: Performance comparison of
models on reasoning with provided goals.

Figure 6: Role of visual information: We observe some
interesting scenarios where the model using a standard
prompt with goal of the video provided is able to infer
the correct reasoning without any video frames.

within our proposed DoT prompting methodology 457

Effect of number of options: In MCQ-style ques- 458

tion answering, we explore how varying the num- 459

ber of options in MCQs impacts models perfor- 460

mance. As shown in Figure 4, we initially observe 461

some gain of 3% and 6% for with and without goal 462

settings respectively which is followed by a no- 463

ticeable reduction of 12% in the average rmMCQ, 464

when the number of options is increased in both 465

scenarios—with and without a defined goal. We hy- 466

pothesize that the first increment is due the fact that 467

more options allow the model to generate better 468

options with more probability as shown in Figure 5, 469

but then the performance decreases. This decrease 470

is likely due to the broadening of the model’s search 471

space, resulting in more inaccuracies. The score 472

becomes almost constant after 14 options for both 473

with goal and without goal cases. 474

Effect of goal: Humans demonstrate an impressive 475

ability to comprehend the reasoning behind actions 476

when guided by contextual information. In this 477

experiment, we introduce the goal of the attempted 478

action as a part of the prompt. For this, we con- 479

struct the prompt as Prompt: “If the goal of the 480

activity occurring in the video is (goal). Explain 481

the reason behind the failure to achieve the desired 482

goal.".Analysis of the results, as presented in Table 483

1 and Table 3, reveals that the inclusion of goal 484

enhances the reasoning capabilities of these mod- 485

els. We can see that the presence of goal increases 486

the rmLLM by 0.4 in Video ChatGPT and by 0.2 487

∼ 0.3 for Video Chat and Video LLaMA models, 488

whereas Video LLaMAv2 seems to perform worse 489

7



Model rmLLM std

CoT 0.237 0.182
DoT(w/o des) 0.180 0.153
DoT(w/o goal,des) 0.221 0.182
DoT(rmFIB) 0.260 0.183
DoT 0.279 0.199

Table 4: Ablation Analysis of the DoT
Prompt.DoT(GPT):final path selection is per-
formed using GPT-3.5. DOT(w/o des) refers to the
case when we directly obtain description. Similarly,
in DoT(w/o goal, des) we directly obtain goal and
description. In DoT(rmFIB) the path selection is
performed using rmFIB .

in both conditions.490

Effect of Dream of Paths: We evaluated the ef-491

fectiveness of Dream of Paths by modifying the492

prompt to exclude the Dream of Paths step for both493

descriptions and goals. The results, as shown in494

Table 4, reveal that removing this (DoT(w/o des))495

leads to a significant decline in performance. This496

decrease can be attributed to the reliance on inac-497

curate descriptions for subsequent steps like goal498

determination and final reasoning, resulting in in-499

correct overall outcomes. Furthermore, generat-500

ing a single option for both description and goal501

(DoT(w/o goal des)) shows marginally better per-502

formance compared to DoT(w/o des), yet it falls503

short of the complete DoT method.504

Effect of Path Selection We compared our Path Se-505

lection procedure used in against the DoT(rmFIB)506

approach, where we select the option with the high-507

est rmFIB at each stage, ensuring that the option508

mentioning the most objects involved in the video509

is chosen. Our results, as detailed in Table 4, show510

that using the FIB method, while resulting in a511

lower std, achieves a slightly lower performance512

compared to the base DoT by 2%.513

4.4 Analysis514

Number of video frames: We conduct an analysis515

on the effect of number of video frames to investi-516

gate their impact on models performance. We vary517

the number of frames, ranging from 0 to 1, 50, and518

100 frames. Our observations, as depicted in Fig-519

ure 7, reveal that the model’s performance remains520

relatively stable concerning the number of frames521

but experiences a substantial drop when no frames522

are provided as input. Interestingly, for some sce-523

narios (Figure 6) when merely a goal is provided524

to the model, it manages to achieve a significantly525

high rmLLM using only the goal as information526

Figure 7: Effect of number of frames and sampling
strategy: The left plot shows the effect of varying the
number of sampled frames on rmLLM for reasoning
task. In the right plot we show effect of various frame
sampling techniques in videos: U(uniform sampling),
R(random sampling), ISS (sparse sampling from both
intentional and unintentional parts), ISD (sparse from
intentional, dense from unintentional), IDS (dense from
intentional, sparse from unintentional), and IDD (dense
sampling from both intentional and unintentional parts)

about the video, which shows that it utilizes textual 527

conditioning more efficiently than visual modality. 528

Sampling strategy: Additionally, we explore vari- 529

ations in the frame sampling strategy, ranging from 530

uniform and random sampling to importance sam- 531

pling. Importance sampling involves selectively 532

sampling frames sparsely or densely from the in- 533

tentional and unintentional segments of the video. 534

To execute importance sampling, we utilize times- 535

tamps provided for intentional and unintentional 536

parts of the video with the OOPs dataset, sampling 537

varying numbers of frames from the start of the 538

video to the beginning of the transition, and from 539

the start of the transition to its end. Our findings, 540

presented in Figure 7, show that sampling strategies 541

do not significantly affect the reasoning capabili- 542

ties of Video ChatGPT, uniform sampling offers 543

the best overall performance, followed by sampling 544

frames densely from intentional and unintentional 545

parts. 546

5 Conclusion 547

In this work, we present a novel task regarding 548

understanding of unintentional activities in videos 549

where we formalize it as a zero shot reasoning task. 550

We first analyze the reasoning capabilities of exist- 551

ing LMM models and prompting techniques and 552

then also propose a novel DoT prompting technique 553

which navigates through hallucinations introduced 554

by LLM’s to obtain the reasoning. We propose dif- 555

ferent metrics to quantify the models performance 556

and also analyze hallucinations of the responses. 557

We further demonstrate that the proposed method 558

outperforms existing prompting techniques. 559

8



6 Guidelines560

6.1 Limitations561

In this work we only explore reasoning where the562

event that causes the action to fail occurs immedi-563

ately before the actual failure of the action. We do564

not consider actions which may cause failure of the565

action at a later moment in time.566

6.2 Risks567

This research may pose some risk for privacy by568

being employed extensively for surveillance.569

6.3 Licenses570

OOPs dataset - Creative Commons Attribution-571

NonCommercial-ShareAlike 4.0 International Li-572

cense. Video ChatGPT- Creative Commons573

Attribution-NonCommercial-ShareAlike 4.0 Inter-574

national License. LLaMA- LLAMA community575

license agreement UCF-Crimes - Creative Com-576

mons Attribution-NonCommercial-ShareAlike 4.0577

International License.578

6.4 Computation579

All experiments we performed using a single V-100580
32 GB GPU with each experiment taking around581
10 hours.582
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A Appendix776

A.1 Cosine similarity777

To obtain the cosine similarity score for Figure 3778

we prompt the model as the Prompt: “Given the779

video goal of the activity occurring in the video as780

<goal> and reason behind its failure as <reason>“781

and take the embedding obtained from the encoder782

of Video-ChatGPT model. For ground truth en-783

coding we replace <reason> with the ground truth784

reason similarly for DoT and Basic prompt with785

reasoning obtained from using repsective prompts.786

A.2 LLM Evaluation787

We use GPT-3.5 for evaluation using LLM. To ob-788

tain the score we prompt GPT-3.5 as Prompt: "You789

are provided with a question,the correct answer790

and the predicted answer. The question contains791

information about the task being attempted to be792

achieved in the video, along with the context about793

the objects involved in achieving that goal. The794

correct answer consists of the reasons behind the795

failure of achieving that objective and information796

about the objects present during the failure. Your797

task is to evaluate the correctness of the predicted798

answer. Here’s how you can accomplish the task://799

"——" "INSTRUCTIONS: //" "- Focus on the800

meaningful match of events between the predicted801

answer and the correct answer.802

" "- Consider synonyms or paraphrases as valid803

matches.804

" "- Evaluate the correctness and alignment of the805

predicted answer compared to the correct answer.806

" ,807

808

"role": "user",809

"content":810

"Please evaluate the following video-based811

question-answer pair:812

" f"Question: question813

" f"Correct Answer: answer814

" f"Predicted Answer: pred815

" "Provide your evaluation only as a yes/no and816

score where the score is an integer value between817

0 and 1, with 1 indicating the highest meaningful818

match. " "Please generate the response in the form819

of a Python dictionary string with keys ’pred’ and820

’score’, where value of ’pred’ is a string of ’yes’821

or ’no’ and value of ’score’ is in NUMBER, not822

STRING."823

"DO NOT PROVIDE ANY OTHER OUTPUT824

TEXT OR EXPLANATION. Only provide the825

Python dictionary string. " "For example, your 826

response should look like this: ’pred’: ’yes’, 827

’score’: 0.8." 828

Where the correct reason is the ground truth reason 829

the question is given as If the <goal> of the action 830

occurring in the given video infer the reason why 831

the action fails to achieve the intended outcome 832

and predicted answer is the answer obtained using 833

the respective prompting technique. 834

A.3 MCQ Style Prompt 835

: To formulate the MCQ style prompt mentioned 836

in 1 containing n options we first randomly select 837

ground truth reasons behind the failure of actions to 838

obtain n-2 options. In addition to these N-2 options 839

we also provide the ground truth reason for that 840

particular video and None of these option as well. 841

The prompt provided to the model is given as The 842

action occurring in the given video fails.You will 843

be given num_options describing the reasoning 844

behind the failure. The options for this video 845

are given as options_list. where num_options 846

is the number of options provided in the MCQ 847

style prompt and options_list refers to the list of 848

options provided to the MCQ style prompt. 849

A.4 FIB style prompt 850

To formulate the FIB style prompt used in 1 we 851

first use the ground truth reason behind the failure 852

contain a list of s subjects v verbs and o objects. 853

First we randomly remove s , v and o′s and replace 854

it with ___. The sentence obtained after it is They 855

______ the ______ too high and ___ a ______ 856

_______ off. Finally we prompt the model with 857

Given the following video complete the following 858

sentence such that the sentence describes the rea- 859

soning behind failure of the intended action in 860

the video. The sentence to be completed is <sen- 861

tence>. Note: Your task is to complete the given 862

sentence where the blanks are indicated by _____. 863
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Figure 8: We show some samples for the qualitative results of the proposed DOT prompting compared with COT
and standard prompting for UCF-Crimes and OOPs dataset.
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