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ABSTRACT

Detecting texts generated by Large Language Models (LLMs) could cause grave
mistakes due to incorrect decisions, such as undermining student’s academic dignity.
LLM text detection thus needs to ensure the interpretability of the decision, which
can help users judge how reliably correct its prediction is. When humans verify
whether a text is human-written or LLM-generated, they intuitively investigate
with which of them it shares more similar spans. However, existing interpretable
detectors are not aligned with the human decision-making process and fail to offer
evidence that users easily understand. To bridge this gap, we introduce ExaGPT, an
interpretable detection approach grounded in the human decision-making process
for verifying the origin of a text. ExaGPT identifies a text by checking whether it
shares more similar spans with human-written vs. with LLM-generated texts from
a datastore. This approach can provide similar span examples that contribute to the
decision for each span in the text as evidence. Our human evaluation demonstrates
that providing similar span examples contributes more effectively to judging the
correctness of the decision than existing interpretable methods. Moreover, extensive
experiments in four domains and three generators show that ExaGPT massively
outperforms prior interpretable detectors by up to +37.0 points of accuracy at a
false positive rate of 1%. We will release our code after acceptance.

1 INTRODUCTION

LLMs can yield human-like texts in response to various textual instructions (OpenAI, 2023a; Touvron
et al., 2023). Ironically, the powerful generative capability has resulted in various misuses of LLMs,
such as cheating in student homework assignments and mass-producing fake news (Tang et al.,
2023; Wu et al., 2023). Such abuse of LLMs has sparked the demand for discerning LLM-generated
texts from human-written ones. Recent studies have developed LLM-generated text detectors with
promising performance (Mitchell et al., 2023; Su et al., 2023a; Koike et al., 2024; Hans et al., 2024;
Verma et al., 2024).

While LLM text detection can help prevent potential misuse of LLMs, misclassifications could lead
to severe consequences. For instance, web content writers have recently been at risk of losing their
careers because of false-positive classification (Gizmodo, 2024). In school education, incorrect
detection results might ruin students’ academic dignity (OpenAI, 2023b; Bloomberg, 2024). At
the same time, it is extremely difficult, if not impossible, to develop a perfect detector with 100%
accuracy in such real-world scenarios, and there remain edge cases where human-written texts can be
misidentified as LLM-generated and vice versa. Thus, it is crucial to create a detector that provides
interpretable evidence, allowing users to judge how reliably correct the detection results are (Tang
et al., 2023; Ji et al., 2024).

Most detectors lack the interpretability of their decisions, outputting only binary labels of who
authored the text. There are few studies on the interpretability of the detection. Gehrmann et al.
(2019) color-highlighted the tokens with high probability under the predicted distribution of LMs.
Mitrović et al. (2023); Wang et al. (2024) showed which part of a text contributed to a decision based
on prediction shifts via perturbations to the text. Yang et al. (2023) provided the n-gram overlaps
between the original text and re-prompted ones generated by LLMs. Here, humans intuitively
judge whether a text is human-written or LLM-generated by assessing with which source it shares
more similar spans, including verbatim overlaps and semantically similar spans (Maurer et al.,
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2006; Barrón-Cedeño et al., 2013). However, current detectors are not aligned with the human
decision-making process (Figure 1) and fail to yield sufficiently interpretable evidence for users.

Figure 1: Identifying the author of a text (hu-
man vs. LLM) by examining if it shares more
similar spans, including verbatim overlaps
and semantically similar spans, with human-
written vs. LLM-generated texts.

Motivated by this gap, we present ExaGPT, an in-
terpretable detection method based on the human
decision-making process of verifying the origin of
a text. In particular, ExaGPT makes a prediction by
examining whether the text shares more similar spans
with human-written vs. with LLM-generated texts
from a datastore. This approach can provide simi-
lar span examples that contribute to the decision for
each span in the text as interpretable evidence. To
present interpretable span-segmented text as a final
result, we apply a dynamic programming algorithm
and determine the optimal span break. It balances
the long span length and its high frequency with the
datastore (i.e., many similar phrases to the span exist
in the datastore). The similarity of the retrieved spans
to each span in the target text can help users judge
the reliability of the detection result.

To evaluate the interpretability of LLM detection, we
conducted a human evaluation of how well people
can infer the correctness of the detection from the
detector’s evidence, and we found that providing sim-
ilar span examples contributes more effectively to judging the correctness of the detection than
existing interpretable methods. Moreover, extensive experiments in four domains and three generators
showed that ExaGPT massively outperforms prior interpretable and powerful detectors by up to +40.9
points accuracy, even at a constant false positive rate of 1%. From these results, we observe that
ExaGPT achieves high interpretability in its detection result and also high detection performance.

2 METHODOLOGY

ExaGPT classifies a text based on whether it shares more similar spans with human-written or with
LLM-generated texts from a datastore. As a final result, ExaGPT offers the span-segmented text
where each span is accompanied by similar span examples that contribute to the decision. Figure 2
illustrates the workflow of ExaGPT, which has two phases: Span Scoring and Span Selection. In
the first phase, we mainly investigate whether each span in the target text shares more similar spans
with human-written or LLM-generated texts from a datastore. Meanwhile, we calculate scores for
each span, which we use in the second phase (§2.1). In the second phase, we primarily decide the
optimal span segmentation to aid users’ understanding of the final result. Specifically, we apply a
dynamic programming (DP) algorithm with the scores from the first phase to find the span boundaries,
balancing span length and its frequency within the datastore (§2.2). Finally, we detect the target text
based on the selected spans and we provide similar span examples for each target span as evidence
(§2.3). We will go into further details below.

2.1 SPAN SCORING WITH k-NN SEARCH

Given a target text x to be classified, we define an n-gram span in the text x as xi:i+n, which is
any continuous sequence of n tokens starting in the i-th token. For each n-gram target span xi:i+n,
we retrieve the top-k most similar1 n-gram spans sj (j ∈ {1, . . . , k}) from the datastore, with
each original label and similarity {(sj , lj , cj)}kj=1. Here, lj is Human when the span sj is part of a
human-written text, or LLM when the span sj is a part of a LLM-generated text. cj is the similarity
between the target span xi:i+n and each retrieved span sj .

1We encode the target span, and all spans in the datastore into the same embedding space. We then perform
k-nearest neighbor (k-NN) search based on the cosine similarity of each two span embeddings. See more details
in §3.1.
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Figure 2: Overview of ExaGPT. It detects the author of a text by examining whether the text shares
more similar spans with human-written texts vs. with LLM-generated texts from a datastore.

Consequently, we calculate the following metrics for each target span xi:i+n: length score L,
reliability score R, and prediction score P . The length score L is the number of tokens in the target
span:

L(xi:i+n) = n (1)

The reliability score R is the mean similarity cj between the target span and each retrieved span:

R(xi:i+n) =

∑k
j=1 cj

k
(2)

The reliability score R indicates how strongly the target span is supported by similar spans retrieved
from the datastore. The prediction score P is a ratio of LLM label in the original labels lj of the
retrieved spans:

P (xi:i+n) =

∑k
j=1 1(lj = LLM)

k
. (3)

The prediction score P indicates whether the target span shares more similar spans with human-
written vs. with LLM-generated texts in the datastore.

2.2 SPAN SELECTION WITH DP ALGORITHM

In this phase, we select spans T = [t1, . . . , tH ] in the target text x, so that the text is segmented
without overlaps as a final result:

To facilitate users’ understanding of the final result, we optimize the span segmentation that includes
longer and more similar spans with ones from the datastore. Algorithm 1 describes our dynamic
programming strategy to find the best span break. Formally, we select spans T to maximize the score
S across the spans in the target text:

S(T ) =

∑H
h=1{αLstd(th) + (1− α)Rstd(th)}

H
. (4)

Here, Lstd(th) and Rstd(th) are the normalized2 versions of the length score L and the reliability
score R of the span th, respectively. α is an interpolation coefficient ranging from 0.0 to 1.0.
α determines the relative contribution of the length score and the reliability score to the span
segmentation.

2To align the scales of the length score and the reliability score, each score is normalized using the mean and
the variance in the validation split of our dataset.
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Algorithm 1 Span Segmentation Optimization

Input: Target text x; Length of target text m; Length score L; Reliability score R; Maximum
length of n-gram span N ; Hyper-parameter α
Output: List of selected n-grams T
dp[0, . . . ,m− 1]← [([0],None)] ∗m
for i = 1 to m do

for j = min(i−N, 0) to i do
l, r ← Lstd(xj:i), R

std(xj:i)
scores← dp[j][0] + [αl + (1− α)r]
scand ← average(scores)
if average(dp[i][0]) < scand then
dp[i]← (scores, j)

end if
end for

end for
Traverse dp backward and collect span breaks
return List of selected n-grams T

2.3 OVERALL DETECTION WITH EVIDENCE

Given a sequence of the selected spans T each with a prediction score for the target text x, ExaGPT
identifies a text based on the mean prediction score:

Poverall =

∑H
h=1 P (th)

H
. (5)

ExaGPT classifies a text as LLM if Poverall exceeds a detection threshold ϵ, and otherwise as Human.
As evidence of the decision, ExaGPT provides retrieved top-k similar spans for each span in the text:

E = [(th, [s
1
h, . . . , s

k
h])]

H
h=1. (6)

The similarity of the retrieved spans to each span in the target text can help users judge how reliably
correct the detection result is.

3 EXPERIMENTS

3.1 OVERALL SETUP

Evaluation Measures. To assess the detection performance, we use the Area Under Receiver
Operating Characteristic curve (AUROC) measure, which is widely used in studies on LLM detection.
However, it is only useful to observe the overall behavior of a detector through all possible thresholds.
In practical scenarios, it is quite important to minimize the false positive classification, i.e., wrongly
identifying human-written texts as LLM-generated. We thus report the detection accuracy with a
threshold by fixing the false-positive rate (FPR) at 1%, which is an evaluation stream among recent
robustness studies (Krishna et al., 2023; Hans et al., 2024; Dugan et al., 2024).

Datasets. We use the M4 dataset (Wang et al., 2024), which is a large-scale LLM detection
benchmark consisting of pairs of human-written and LLM-generated texts across multiple languages,
domains, and generators. In our experiments, we use the English subset, including 3,000 pairs of
human-written and LLM-generated texts from each combination of four domains: Wikipedia, Reddit,
WikiHow, and arXiv, as well as three generators: ChatGPT, GPT-4 as closed-source LLMs, and
Dolly-v2 (Conover et al., 2023) as open-source LLMs. For each combination, we split the dataset
into three parts: train/validation/test with 2,000/500/500 pairs, respectively.

Baselines. In our experiments, we compare ExaGPT to three strong and interpretable detectors
(as detailed in §5): RoBERTa with SHAP (Mitrović et al., 2023), LR-GLTR (Wang et al., 2024), and
DNA-GPT (Yang et al., 2023). The first one is a supervised classifier based on RoBERTa3 (Liu, 2019),

3https://huggingface.co/FacebookAI/roberta-base
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which we fine-tune for LLM detection on our train split. Similarly, we train the LR-GLTR detector on
our train split with selected and hand-crafted GLTR features (Gehrmann et al., 2019), following Wang
et al. (2024). The hyper-parameter settings for training both RoBERTa and LR-GLTR are aligned
with Wang et al. (2024). Configuration details of the baseline detectors are given in Appendix B.

Settings of ExaGPT. In the span scoring phase, ExaGPT leverages our train split as the datastore
for each combination of domains and generators. We consider the size of n-gram to be from 1 to 20
throughout the entire dataset. We embed the target span and all spans in the datastore into the same
vector space using BERT-large4. For a span embedding, we feed a text into the BERT-large and take
the mean second-layer5 hidden outputs of tokens included in the span. We retrieve the top-k (=10)6

most similar spans from the datastore for each target span via k-NN search using the FAISS library
(Johnson et al., 2017). In the span selection phase, we select the optimal α from values between 0.0
and 1.0 at 0.125 intervals, where ExaGPT exhibits the best detection performance in our validation
split. The α is constant through our evaluation of the interpretability and the detection performance
of ExaGPT.

Figure 3: User interface of ExaGPT. Hovering
over a text span displays the tooltip about the
retrieved similar spans with the similarity to the
span and the original label distribution.

Human Evaluation on Interpretability. We as-
sess the interpretability of the detectors via human
evaluation, as it is vital for a good detector to of-
fer interpretable evidence, allowing users to judge
how reliably correct the detection result is. Ac-
cordingly, we design a human evaluation where
participants are provided with detection evidence
and judge whether the detection is correct. There-
fore, the evaluation metric for interpretability is
the accuracy of the human judgments on the de-
tection correctness based on the evidence. For
each detector, we evaluate 96 samples7 from our
test split in all combinations of domains and gen-
erators so that the ratio of correct and incorrect
detections8 is even. In our human evaluation, four
annotators, including one MSc student, one PhD
student, and two researchers working in natural
language processing, were provided with different
samples.

Figure 3 shows the user interface of ExaGPT in
our human evaluation. The spans are highlighted9

in red, green, and blue for which prediction score P is lower than 0.5 (human-written), equal to 0.5
(neither), and higher than 0.5 (LLM-generated), respectively. The participants identify the correctness
of the detection by mainly investigating similar span examples for each span in the text. We elaborate
on the detection evidence of each baseline detector in Appendix C.

3.2 MAIN RESULTS

Detection Interpretability. Table 1 presents the difference in the accuracy of human judgments on
the detection correctness based on evidence across baseline detectors and ExaGPT. The accuracy of
human judgments on ExaGPT is relatively higher compared to baseline detectors by up to +13.6 points.

4https://huggingface.co/google-bert/bert-large-uncased
5We select the layer where the k-NN spans are similar to the target span well-balanced lexically and

semantically, enhancing its interpretability in our pilot study.
6We choose the value of k so that ExaGPT shows favorable detection performance over smaller values in our

pilot study and does not reduce the interpretability of its evidence. Since ExaGPT presents retrieved spans as
evidence, keeping k small helps users assess detection correctness based on a manageable amount of information.

7The 96 samples for each detector consist of two samples (one correct and one incorrect) across four domains
and three generators, distributed among four participants.

8We focus on the setting of the 1% FPR threshold based on practical scenarios.
9ExaGPT performs the overall detection rather than detecting each span individually. However, for better

readability, each span is color-highlighted on its prediction score.
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Table 1: Comparison of interpretability, as the accuracy
(ACC.) of human judgments on the correctness of detections
based on evidence across baseline detectors and ExaGPT.
Higher accuracy implies that the detector provides more
interpretable evidence to users.

Detector ACC. of Human Judgements (%) ↑
RoBERTa 47.9
LR-GLTR 57.3
DNA-GPT 53.1
ExaGPT 61.5

This indicates that ExaGPT offers
more interpretable evidence than other
baselines, helping humans judge the
correctness of detections more effec-
tively. Here, DNA-GPT also offers n-
gram span overlaps between the target
text and the re-generated LLM texts
from the truncated part as evidence.
The comparison of the human evalua-
tion score between DNA-GPT and Ex-
aGPT suggests that providing not only
simple overlaps but also semantically
similar spans contributes to better in-
terpretability. We further investigate how the similarity between the target span and retrieved spans
correlates with the correctness of the detection of ExaGPT in §4.

Detection Performance. Table 2 shows the difference in the detection performance of baseline
detectors and ExaGPT across four domains and three generators. The detection performance includes
AUROC and the accuracy at 1% FPR. Overall, ExaGPT consistently demonstrates detection perfor-
mance on par with or better than baseline detectors, including supervised classifiers. Specifically, on
accuracy at 1% FPR, ExaGPT achieves the best average detection performance on all three generators,
outperforming baselines by a large margin of up to +37.0 points. This suggests that ExaGPT is the
most effective detector in practical scenarios, where we need to minimize the false positives.

Summary. From the experiments on interpretability and classification performance of detectors,
we observe that ExaGPT achieves both superior interpretability of the detection and exceptional
detection performance compared to previous interpretable detectors.

Table 2: Comparison of detection performances of ExaGPT and baseline detectors on texts
from various domains and generators. ACC. indicates the detection accuracy at 1% FPR. Avg.
indicates the average performance within each row across domains. Bold and Underline indicate
the best and runner-up performance for each combination of domains and generators, respectively.
ExaGPT achieves the best average detection performance on all three generators in practical scenarios,
measured by accuracy at 1% FPR.

Generator Detector
Wikipedia Reddit WikiHow arXiv Avg.

AUROC ACC. AUROC ACC. AUROC ACC. AUROC ACC. AUROC ACC.

ChatGPT
RoBERTa 100.0 77.1 99.8 61.0 100.0 50.0 100.0 87.3 100.0 68.9
LR-GLTR 95.0 60.0 99.4 94.0 97.5 85.8 99.8 97.7 97.9 84.4
DNA-GPT 84.8 49.4 92.3 62.9 99.4 93.5 89.0 59.9 91.4 66.4
ExaGPT 98.6 92.3 98.9 86.6 99.5 96.0 99.6 95.8 99.2 92.7

GPT-4
RoBERTa 100.0 87.8 100.0 66.4 100.0 77.4 100.0 68.6 100.0 75.1
LR-GLTR 97.8 85.7 99.6 97.2 94.8 77.8 100.0 98.5 98.1 89.8
DNA-GPT 40.3 48.1 71.9 68.6 44.6 49.9 72.2 54.4 57.3 55.3
ExaGPT 98.3 87.3 99.3 91.1 98.8 92.2 99.7 98.7 99.0 92.3

Dolly-v2
RoBERTa 100.0 61.8 100.0 50.0 100.0 70.8 100.0 82.8 100.0 66.4
LR-GLTR 79.7 57.7 95.3 79.0 72.4 55.0 93.7 78.2 85.3 67.5
DNA-GPT 68.0 61.5 67.5 66.1 87.7 82.3 64.9 57.7 72.0 66.9
ExaGPT 85.8 63.8 96.2 76.6 94.3 75.6 85.2 67.3 90.4 70.8

4 ANALYSIS

What Makes ExaGPT Interpretable. Our human evaluations demonstrate that ExaGPT provides
highly interpretable evidence for its detection compared to prior detectors. To explore the reason
for this, we investigated the difference in the characteristics of the selected spans as a final output
between correct and incorrect predictions by ExaGPT. Specifically, we focused on span length and
mean similarity between each target span and the retrieved spans (reliability score R), which are
prioritized in the span selection. We randomly selected 1,000 correct and 1,000 incorrect ExaGPT
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Table 3: Examples of k-NN spans for a target span retrieved by ExaGPT. The colored part represents
the original label for each span (LLM in blue and Human in red, respectively). In the part of k-NN
spans, the similarity between the target span and each k-NN span is added.

Target Span LLM published in 1993. The novel tells the story of a young Jewish slave, Hadassah,

k-NN Spans

LLM (0.92) and was first published in 1936. The book tells the story of three orphaned sisters,
LLM (0.92) published in 2012. The novel revolves around the story of a young woman
LLM (0.90) and published in 2010. The novel tells the story of Michael Beard, a
LLM (0.90) ling of the biblical book, Song of Solomon, and is considered one of the
LLM (0.90) man and published in 1963. The book was later adapted into a Disney film of the
LLM (0.90) . The film tells the story of a young

Human (0.89) the Xanth series. It is the second book of a trilogy beginning with Vale of the
LLM (0.89) published in 1959. The novel is set in the Arctic region and follows the story of Dr.

Human (0.89) . It is the third novel in the Dahak trilogy, after the de
LLM (0.89) for his semi-autobiographical novel, “The Watch that Ends the Night”. Born in

predictions on our test splits across all combinations of domains and generators. Figure 4 presents
the reliability score distributions of long spans (n ≥ 10) in the correct and in the incorrect samples.

Figure 4: Reliability score distributions of
long spans (n ≥ 10) in correct and incorrect
samples of ExaGPT, respectively.

A rightward shift indicates that correct samples of
ExaGPT include more long spans with higher reli-
ability scores than incorrect ones. From the shift,
we empirically observe that offering long spans with
high reliability scores helps users judge the correct-
ness of the detections. Table 3 presents examples of
long spans (n = 19) with high reliability scores for a
target span retrieved by ExaGPT. We can see that the
retrieved spans are well-balanced, and are lexically
and semantically similar to the target span.

Impact of α. In our experiments, we determined
the optimal interpolation coefficient α of ExaGPT
(as used in Equation 4), where it exhibits the best
detection performance on our validation split. To in-
vestigate the robustness of ExaGPT against the choice
of α, we examine the detection performance varia-
tion according to the multiple choices of α. Figure 5
depicts the relationship between α and the detection performance of ExaGPT across four domains
and three generators: α ranges between 0.0 and 1.0 with 0.125 intervals, and we observe that the
higher the α, the lower the detection performance. This implies that taking the reliability score more
into account (i.e., selecting target spans that are more similar to spans in the datastore) can improve
detection performance. On the other hand, across four domains, the lowest performance of AUROC

Figure 5: Impact of α on the detection perfor-
mance of ExaGPT, including the AUROC and the
accuracy at 1% FPR, across four domains using
ChatGPT.

Figure 6: Impact of the datastore size on the
detection performance of ExaGPT, including the
AUROC and the accuracy at 1% FPR, across four
domains using ChatGPT.
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is 98.5%. This suggests that the variation of α in ExaGPT does not lead to its substantial performance
drop that could greatly affect the performance ranking of detectors. We find similar overall trends of
the impact of α for other LLMs, including GPT-4 and Dolly-v2 as generators. The impact of α on
detection performance of ExaGPT in all generators can be found in Appendix D.

Impact of Datastore Size. In our evaluation, ExaGPT leverages our train split as the datastore
from which it retrieves top-k similar spans for each span in a target text. To explore the robustness of
ExaGPT against the size of the datastore, we examine the detection performance variation according
to various datastore sizes. Specifically, our train split contains 2,000 pairs of human-written and
LLM-generated texts. We randomly sample {500, 1,000, 1,500, 2,000} pairs from our train split as
datastores of different sizes.

Figure 6 presents the relationship between the datastore size and the detection performance of
ExaGPT across four domains using ChatGPT as a generator. Overall, we find that ExaGPT performs
robustly across the size of the datastore with only considerable performance drops. Interestingly,
we also observe that ExaGPT with a datastore of 500 pairs, rather than 2,000, achieves comparable
detection performance on accuracy at 1% FPR. See Appendix D for consistent trends in all generators,
including GPT-4 and Dolly-v2.

5 RELATED WORK

LLM-Generated Text Detection. Prior studies have presented various types of detection algorithms
for LLM-generated texts. They primarily fall into three categories: text watermarking, metrics-based,
and supervised classifiers. Text watermarking is a detection approach by calculating the ratio of secret
tokens in a target text. Such tokens are randomly selected by a hash function, and their probabilities
are intentionally increased at each time step during the LLM decoding process (Kirchenbauer et al.,
2023). The metrics-based methods mainly catch the probabilistic discrepancy of a text with the
predicted distribution of LLMs. These metrics include token log probabilities (Gehrmann et al., 2019),
token ranks (Solaiman et al., 2019; Su et al., 2023b), entropy (Lavergne et al., 2008), perplexity
(Beresneva, 2016; Hans et al., 2024), and negative curvature of perturbed text probabilities (Mitchell
et al., 2023; Bao et al., 2024). The supervised classifiers are basically models specifically fine-tuned
to discern human-written and LLM-generated texts with labeled datasets. The classifiers vary from
probabilistic (Ippolito et al., 2020; Crothers et al., 2023) to neural methods (Uchendu et al., 2020;
Rodriguez et al., 2022; Guo et al., 2023).

Interpretability of the Detection Results. To minimize the undesired consequences of LLM
detection (e.g., undermining student’s academic dignity), there is need to develop an LLM detector that
provides interpretable evidence for the decision. While most detectors output only binary predicted
labels, there have been a few studies aiming to provide interpretable evidence. Gehrmann et al.
(2019) built a detection tool (called GLTR) that color-highlights tokens in a text with high likelihood
under the predicted distribution of LMs. Mitrović et al. (2023); Wang et al. (2024) used explainable
machine learning methods, such as LIME (Ribeiro et al., 2016) and SHAP (Lundberg & Lee, 2017),
to supervised classifiers. Both explanation approaches basically apply random perturbations to a text
and estimate the contribution of each feature to the decision based on the prediction shift. Yang et al.
(2023) presented DNA-GPT, a detection method by examining the average ratio of overlapped n-gram
spans between a truncated target text and multiple LLM-generated continuations. This approach can
provide actual LLM-generated texts, including n-gram overlaps with the target text as evidence of
the detection.

Unlike prior interpretable detectors, our ExaGPT is grounded by the human decision-making process
(Maurer et al., 2006; Barrón-Cedeño et al., 2013) of verifying the origin of a text and can provide
more interpretable evidence, as explained in the previous sections.

Example Retrieval for Interpretability. Beyond the field of LLM text detection, presenting
retrieved similar examples has contributed to improving the interpretability of models in various
natural language processing tasks. These tasks range from text generation, e.g., machine translation
(Khandelwal et al., 2020), to sequential text classification, e.g., part-of-speech tagging (Wiseman &
Stratos, 2019), named entity recognition (Jurafsky et al., 2020), and grammatical error correction
(Kaneko et al., 2022). At each time step, these methods predict a token or a label from the output
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distribution of a base model interpolated with the distribution derived from retrieved nearest neighbor
examples.

Our work has a similar direction of using retrieved similar examples for better interpretability with
prior studies in other NLP tasks. In LLM text detection, it is particularly crucial to segment the
target text into n-gram spans for better interpretability, with labels assigned individually (Cheng
et al., 2025). Thus, ExaGPT offers a unique mechanism that retrieves similar span examples for each
n-gram span in the target text and optimizes the final span segmentation based on the examples using
dynamic programming.

6 CONCLUSION

We introduced ExaGPT, an interpretable human vs. machine detection approach grounded in the
human decision-making process of verifying the origin of a text. In particular, ExaGPT classifies a
text by examining whether it shares more verbatim and semantically similar spans with human-written
vs. with LLM-generated texts from an available datastore. As evidence of the detection, ExaGPT
offers similar span examples for each span in the text. The human evaluation and further analysis
show that providing similar span examples allows users to judge the correctness of the detection more
effectively than prior interpretable detectors. Moreover, extensive experiments in various domains
and generators revealed that ExaGPT has shown notably superior detection performance compared to
previous strong detectors, even at a false positive rate of 1%. These results indicate that ExaGPT is a
detector with both high interpretability in its decision and high detection performance.

7 ETHICS AND BROADER IMPACT

Human Subject Considerations. In our study, human subjects are engaged in identifying the
correctness of the detection based on evidence. All annotators provided informed consent, were fully
aware of the study’s objectives, and had the right to withdraw at any time.

Transparency and Reproducibility. To promote open research, we release our code and data to
the public, including all human annotations.
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A LIMITATIONS

Inference Cost. ExaGPT includes a mechanism for retrieving similar spans with each target span
from a datastore. In our experiments, the datastore consists of n-gram spans (1 ≤ n ≤ 20) from a
pair of 2,000 human-written and 2,000 LLM-generated texts. We used four NVIDIA A6000 GPUs
to perform the detection within a reasonable time by searching through a vast number of the span
instances, which is relatively costly. We could reduce this cost a bit by decreasing the size of the
datastore without sacrificing the detection performance (as explained in §4).

Bias in the Human Judgments. Human judgments always carry the risk of subjectivity. Moreover,
our evaluation of detector interpretability involves four participants, all of whom are familiar with
natural language processing, but in reality, most detector users would not have such expertise. This
should be taken into account when interpreting our evaluation results on interpretability.

B DETAILED CONFIGURATIONS OF BASELINES

LR-GLTR. Following the setting of Wang et al. (2024), we leverage the two categories of GLTR
features: (1) the number of tokens in the top-{10, 100, 1,000, 1,000+} ranks in the predicted
probability distribution of LLMs (four features), and (2) the probability distribution of the word
divided by the maximum probability of any word at the same position over 10 bins between 0.0 and
1.0 (ten features).

DNA-GPT. For the parameter configuration of DNA-GPT, we set the truncation ratio γ to 0.7
and 0.5, and the number of re-generations K to 10 and 5 for closed-source and open-source LLMs,
respectively. We also ensured that the temperature is the same as the one used to generate a
target text and that the generation prompt is known. These configurations were found to ensure the
favorable performance of DNA-GPT in Yang et al. (2023). We set all other hyper-parameters to their
default values.

C DETECTION EVIDENCE OF BASELINES

RoBERTa with SHAP. Figure 7 depicts an example of evidence by RoBERTa with SHAP. We
visualize the evidence using the SHAP library10. Overall, the red parts are spans that contribute to

10https://shap.readthedocs.io/

12

https://aclanthology.org/2024.eacl-long.83/
https://aclanthology.org/P19-1533/
https://aclanthology.org/P19-1533/
https://arxiv.org/abs/2305.17359
https://shap.readthedocs.io/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Figure 7: Example of evidence by RoBERTa with SHAP.

predicting LLM-generated. The blue parts are spans that contribute to predicting human-written. In
the evidence, if the prediction value, f(inputs) moves further to the right compared to the base value
(the expected value across all data samples), it is more likely to be LLM-generated. When we hover
over a colored part, we can also see a score of how much the part contributes to the detection result.
The more a span contributes to the decision, the darker its color.

LR-GLTR. Figure 8 displays an example of evidence by LR-GLTR. We leverage a demo app11 of
GLTR, provided by Gehrmann et al. (2019). It highlights tokens in different colors based on their
rank of top-{10, 100, 1,000, 1,000+} in the predicted token distribution from an LLM. The higher
the rank of the token, the more likely an LLM is to generate the token. The green parts are spans that
an most likely LLM-generated. The degree decreases in the order of green, yellow, red, and purple.
When we hover the cursor on a colored part, we can also see the predicted token distribution of an
LLM.

Figure 8: Example of evidence by LR-GLTR.

DNA-GPT. Figure 9 shows an example of evidence by DNA-GPT. We implemented a demo app of
DNA-GPT with the streamlit framework12. It shows overlapped n-gram spans between a truncated
target text and multiple LLM-generated continuations. The more blue spans, the more likely the

11http://demo.gltr.io/client/index.html
12https://github.com/streamlit/streamlit
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Figure 9: Example of evidence by DNA-GPT.

text is LLM-generated. For span matching, we follow the original implementation of DNA-GPT13

where it was achieved by token-level matching based on preprocessing of the lower casing and
stemming. We also set n to 8 in order to show a large number of overlapped spans enough to interpret
as evidence.

D ANALYSIS DETAILS

Impact of α. Figure 10 showcases the impact of α on the detection performance of ExaGPT across
four domains and three generators. We found similar overall trends of the impact of α in other LLMs,
including GPT-4 and Dolly-v2, with the impact in ChatGPT, as explained in §4.

Figure 10: Impact of α on the detection performance of ExaGPT, including the AUROC and the
accuracy at 1% FPR, across four domains and three generators.

Impact of the Datastore Size. Figure 11 showcases the impact of the datastore size on the detection
performance of ExaGPT across four domains and three generators. We can observe similar overall
trends of the impact of datastore size in other LLMs, including GPT-4 and Dolly-v2, with the impact
in ChatGPT as explained in §4.

13https://github.com/Xianjun-Yang/DNA-GPT
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Figure 11: Impact of the datastore size on the detection performance of ExaGPT, including the
AUROC and the accuracy at 1% FPR, across four domains and three generators.
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