
Training a Generally Curious Agent

Fahim Tajwar * 1 Yiding Jiang * 1 Abitha Thankaraj 1 Sumaita Sadia Rahman 2 J Zico Kolter 1 Jeff Schneider 1

Russ Salakhutdinov 1

Abstract
Efficient exploration is essential for intelligent
systems interacting with their environment, but
existing language models often fall short in sce-
narios that require strategic information gathering.
In this paper, we present PAPRIKA, a fine-tuning
approach that enables language models to develop
general decision-making capabilities that are not
confined to particular environments. By training
on synthetic interaction data from different tasks
that require diverse strategies, PAPRIKA teaches
models to explore and adapt their behavior on
a new task based on environment feedback in-
context without more gradient updates. Experi-
mental results show that models fine-tuned with
PAPRIKA can effectively transfer their learned
decision-making capabilities to entirely unseen
tasks without additional training. Unlike tradi-
tional training, our approach’s primary bottleneck
lies in sampling useful interaction data instead
of model updates. To improve sample efficiency,
we propose a curriculum learning strategy that
prioritizes sampling trajectories from tasks with
high learning potential. These results suggest
a promising path towards AI systems that can
autonomously solve novel sequential decision-
making problems that require interactions with
the external world.

1. Introduction
Large language models (LLMs) are considered to be a
promising foundation for autonomous agents, systems capa-
ble of achieving goals independently with minimal human
supervision or intervention. A crucial requirement for such
systems is the ability to interact effectively with external en-
vironments and gather the information necessary to achieve
their objectives. This capability can be formalized as solving

*Equal contribution 1CMU 2North Carolina State University.
Correspondence to: Fahim Tajwar <ftajwar@cs.cmu.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

sequential decision-making problems or performing rein-
forcement learning (RL) with language models as the agent.
However, two challenges hinder the development of these
interactive capabilities. First, most naturally occurring data
lacks the structure and context needed to model interactions.
Second, directly deploying models into the real world to
collect interaction data can produce critical errors, which is
expensive and potentially risky.

Given the impracticality of direct deployment in the wild,
a natural alternative is to generate interaction data syntheti-
cally. Although generating synthetic data for every possible
problem is infeasible, LLMs possess the capacity for in-
context learning (ICL), which allows them to adapt to new
tasks with minimal demonstrations (Brown et al., 2020).
Instead of teaching the model to do all the interaction tasks
that we care about, we should instead teach the model in-
context reinforcement learning (Laskin et al., 2022) so that
the model can solve new problems without being trained on
them a priori. It shifts the focus from training the model on
particular problems to training it on the general process of
solving problems. This paradigm shares similarities with
the supervised fine-tuning (SFT) and reinforcement learning
from human feedback (RLHF) stages of training a language
model (vs pretraining) where only a relatively small number
of examples is needed to produce a model that can generate
responses to a wide range of queries that they are not trained
on. Our approach is also closely related to the principles of
meta reinforcement learning (Beck et al., 2023).

In this work, we explore the feasibility of teaching LLMs
to perform in-context RL that generalizes across different
tasks, with the specific goal of training a curious agent with
general information gathering capability. A popular notion
of curiosity is intrinsic motivation which has been used
to train agents with an exploration bonus not necessarily
related to the success of any particular task (Schmidhuber,
1991; 2007). Our work differs from this notion of curiosity
in that we do not leverage intrinsic motivation. Instead,
we train our agents to explore and interact with an entirely
unseen environment to gather information that is needed
for completing the task at hand. PAPRIKA can be thought
of as a form of amortized exploration, since our goal is
to learn good exploration strategies from trajectories from
many different environments to make exploration on a new

1

Training a Generally Curious Agent

.........

Is the topic an
animal?

You are playing the
game 20 questions.

[...]

No.

Is the topic a
person?

Could you tell me your
address?

I just moved to a new
place and my wifi is not

working.

42 Binary Boulevard,
Circuit City, APT #314

What is the serial
number of your router?

Crane

You are playing wordle.
[...]

Bears
Construct

preference pairs
&

perform policy
optimization

Test PhaseTraining Phase

Wordle20 Questions Customer Service

Figure 1. (Overview of PAPRIKA) We design a diverse set of tasks where an LLM agent needs strategic information gathering to succeed,
then train an LLM on self-generated data to prefer higher performing trajectories. The resulting behavior learned by PAPRIKA can transfer
zero-shot to unseen tasks, showcasing its potential to build general decision making agents.

problem more efficient (see Appendix A for more details).

We begin by designing a diverse suite of textual decision-
making tasks that require active information gathering and
decision-making based on interaction outcomes. Using a
base model, we generate interaction trajectories and as-
sign scores based on their success in achieving the tasks’
objectives. We then apply a sequential variant of Direct
Preference Optimization (Rafailov et al., 2024b, DPO) to
increase the relative likelihood of successful trajectories.
Unlike traditional training where computational costs are
dominated by model updates, our approach’s primary bot-
tleneck lies in sampling useful interaction data. To improve
sample efficiency, we propose a curriculum learning strategy
that prioritizes sampling trajectories from tasks with high
learning potential.

We refer to the overall framework as PAPRIKA1. Our results
demonstrate that training on different subsets of these tasks
improves the performance of the model on unseen tasks.
More broadly, our result highlights the potential of using
synthetic data to learn in-context RL which would equip
LLMs with the capability to interact with the world and
solve different decision-making problems without requiring
task-specific fine-tuning.

2. Preliminary
Many decision making problems can be formalized as a
partially observable Markov decision process (POMDP).
We assume each task, τ , is a POMDP although we will not
draw on the details of the POMDP formalism in this work.

1The name is inspired by the movie “Paprika” (2006), where a
dream detective navigates vast and strange dream worlds to solve
different mysteries.

As a concrete example, guessing the word “apple” would
be a task in 20 questions. We will use group (or task group,
used interchangeably), G = {τ1, τ2, . . . , τ|G|}, to refer to
a high-level grouping of different tasks (e.g., the game 20
questions would be a group). Tasks in a group should share
similar strategies but it is not always true that they share
the same optimal policy as such constraints may be overly
stringent. From the agent’s perspective, each task is a black
box function that takes in the agent’s action at (and possibly
the whole interaction history) and outputs an observation
ot. Both at and ot are strings. In a game of 20 questions,
at could be “Is the word an animal?” and the ot
could be “No.”. In other words, each task employs an envi-
ronment that the agent interacts with to obtain intermediate
observations.

An episode contains the agent’s interaction trajectory within
a single task. Unlike the conventional RL structure, we
will assume that the transition-level reward is either 0 or
must be inferred from ot, and that the individual tasks can
flexibly implement different observation spaces and termi-
nation conditions. An episode terminates when the agent
achieves the objective of the task or when the maximum
number of interactions allowed within the task is reached.
We will use h = (o0, a0, . . . , oH , aH) to denote an episode
of length H , ht = (ot, at) to denote a single step of h,
and hp:q = (op, ap, . . . , oq, aq) to denote a slice of h sim-
ilar to array slicing. At the end of an episode, the envi-
ronment emits a single score, r(h), that evaluates the per-
formance of the agent. Let π denote the LLM agent and
h ∼ π ◦ τ denote sampling a trajectory from task τ using
policy π. The performance of a policy on a group would be:
Perf(G) = 1

|G|
∑

τ∈G Eh∼π◦τ [r(h)]. The agent is trained
on a finite set of groups, Gtrain, and the goal is to perform
well on unseen groups, Gtest.

2

Training a Generally Curious Agent

Table 1. Summary of the task groups used by PAPRIKA.

Task Group # Train Tasks # Test Tasks Maximum Turns Env Feedback Uses COT

Twenty questions 1499 367 20 LLM generated ✗
Guess my city 500 185 20 LLM generated ✗

Wordle 1515 800 6 Hardcoded program ✓
Cellular automata 1000 500 6 Hardcoded program ✓
Customer service 628 200 20 LLM generated ✗
Murder mystery 203 50 20 LLM generated ✗

Mastermind 1000 500 12 Hardcoded program ✓
Battleship 1000 200 20 Hardcoded program ✓

Minesweeper 1000 200 20 Hardcoded program ✓
Bandit best arm selection 81 1 21 Hardcoded program ✓

3. PAPRIKA

The goal of our paper is to develop a scalable method to
instill better strategic exploration and sequential decision-
making capabilities into LLMs. Prior works (Krishnamurthy
et al., 2024) have shown that LLMs can perform poorly
on even the simple decision making task of multi-armed
bandits. Nie et al. (2024) has since then demonstrated that
LLMs can be taught to perform better on bandits after fine-
tuning them on synthetic trajectories generated by known
algorithms such as UCB. However, this idea is limited in
scope for three reasons: (1) we want LLMs to perform
strategic exploration and decision making in more complex
settings, (2) for most tasks, there is no known algorithm like
UCB to generate good synthetic trajectories from, (3) it can
be infeasible to collect data for all tasks that we care about.

We aim to solve these issues using our method, PAPRIKA.
First, we design a suite of complex decision-making tasks
that require strategic information gathering to succeed. Next,
we show that in the absence of known good algorithms,
existing LLMs can generate trajectories with better decision
making behaviors through diversity-encouraging sampling.
We then finetune the LLMs to prefer higher performing
trajectories (in a fashion similar to STaR (Zelikman et al.,
2022)) and show that this leads to better decision making
abilities at test-time. More importantly, these behaviors
often generalize to unseen task groups without additional
training. Finally, we propose a general curriculum learning
algorithm that can dynamically choose which subset of tasks
to train on next to improve data efficiency of such training
methods. We next describe each component of PAPRIKA.

3.1. Task Design

The first component of PAPRIKA is to design a set of task
groups that we can evaluate and train LLMs on. The task
groups we want should have the following desired proper-
ties: (1) they are purely text based, (2) they require multi-
turn interaction, where the agents have to both understand

prior history in its context and choose actions that maximize
the probability of success in the future, (3) they are partially
observable, i.e., the observations do not capture the full state
or hidden information, so the agents must simultaneously
explore to reveal more information and exploit to solve the
task efficiently, (4) they are diverse and require different
strategies to succeed.

With these requirements in mind, we design 10 task groups
in our paper. On all of them, we employ an LLM as the
agent that is given a task it needs to solve through sequen-
tial interaction with the task-specific environment, which
provides both observations for intermediate timesteps given
the agent’s actions and also a task reward at the end of an
episode. For tasks requiring general knowledge about the
world to generate intermediate observations, we employ an-
other LLM (typically GPT-4o-mini) as the environment. For
tasks that have rule-based observations and rewards, we find
that using hardcoded programs as the verifier/observation
generator is more reliable than LLMs, similar to DeepSeek-
AI et al. (2025). In order to prevent reward hacking, we
also use either another LLM or a hardcoded program as a
judge to filter out unsuccessful trajectories that got incor-
rectly labeled as successful by the task environment (see
Appendix D for more on environment hacking). We also find
that for task groups requiring complex reasoning, letting the
agent think using chain-of-thought (COT) prompting (Wei
et al., 2022; Kojima et al., 2022) before generating a final
answer improves its performance significantly, similar to
ReAct (Yao et al., 2023). We provide a brief description
of our task groups here, please refer to Table 1 for their
summary and Appendix B for more details.

Following prior work (Abdulhai et al., 2023), we include
classic guessing games like twenty questions and guess my
city in our list of task groups. They require guessing a secret
topic as quickly as possible by asking a sequence of ques-
tions and observing the answers. We also employ Wordle
and Mastermind, where the agent needs to guess a secret 5-
letter word and 4-digit code respectively. The environments

3

Training a Generally Curious Agent

for these task groups provide feedback in terms of similarity
between the guess and the target word/code, and the agent
needs to refine their guesses in future turns to maximize
information gathering. We design customer service and
murder mystery as dynamic text-based task groups: an LLM
plays the role of the task environment, which is provided
with the criterion for task success and generates dynamic
intermediate observations based on this criterion.

A desirable capability in LLMs is to code and refine based
on interpreter feedback. To simulate this process with a
toy case, we design Cellular Automata, where the agent
needs to make inferences about the transition rule in 1D
elementary cellular automata (Wolfram, 1983; Cook et al.,
2004) by observing inputs and outputs. The agent receives
the outputs generated from their predicted transition rule and
they have to refine their predictions based on it. Next, we
incorporate Minesweeper and Battleship based on classical
games, which require the agent to interact with 2D grids to
find hidden items within a fixed number of turns and refine
their guesses based on per-turn observations.

Finally, we incorporate a modified version of the multi-
armed bandit (Slivkins, 2024) task group from prior
works (Krishnamurthy et al., 2024; Nie et al., 2024) with the
following distinctions: (1) we let the agent employ chain-
of-thought reasoning before choosing arms so that they can
transfer good strategies learned from other tasks, (2) we let
the agent interact with the task environment in a multiturn
way, (3) instead of reducing regret, we work on the bandit
best arm selection (Audibert & Bubeck, 2010; Wang et al.,
2024a) problem, where we let the agent choose arms and ob-
serve rewards for a fixed number of turns and then measure
its accuracy in deciding the arm with the highest reward.
This is done to reduce computational cost over generating
COTs for a large number of turns, since the difference in
regret between different models is not meaningful when the
number of turns is not large enough.

3.2. Dataset construction

In order to learn from these task groups, we must first gen-
erate data from them. It is crucial that the data we generate
are diverse which would allow the model to learn differ-
ent strategies without the risk of overfitting. We accom-
plish this by generating a large number of trajectories at
a high temperature with Min-p sampling (Nguyen et al.,
2024). Min-p sampling works by using an adaptive thresh-
old pscaled ∝ pmax, where pmax is the highest probability
predicted by the model on the next token, to truncate the vo-
cabulary to tokens that have a probability larger than pscaled
and sample from them — this enables us to generate di-
verse yet coherent trajectories at a higher temperature. We
note that training data generation for PAPRIKA could be
improved by adopting more advanced methods for guiding

exploration such as Murty et al. (2024); Yang et al. (2024);
however, we opt for sampling with high temperature for its
simplicity and leave these other options for future work.

For each task in a set of chosen tasks (e.g., uniformly sam-
pled), we generate nsample trajectories and then construct
a preference pair (hw, hl) where hw is the highest scoring
trajectory (trajectory that succeeds and does so at the fewest
number of turns) and hl is randomly sampled from the lower
scoring (failed or takes substantially more turns to succeed)
trajectories. We choose hl randomly instead of choosing
the worst one to increase the diversity of our dataset. We
treat hw and hl as proxies for desirable and undesirable

behaviors. A dataset D =
{(

hw, hl
)(i)}N

i=1
is a collection

of such trajectory pairs.

3.3. Optimization

Supervised fine-tuning. If we take the winning episodes
as the expert behavior, then we can discard the losing
episode and maximize the likelihood of winning episodes:

LSFT(DSFT) = −EDSFT

 1∑|hw|
t=0 |awt |

|hw|∑
t=0

log πθ (a
w
t | hw

:t)

(1)

where DSFT is the dataset used for supervised fine-tuning
and |a| is the number of tokens for the agent response (dis-
carding the environment generation). This is akin to rejec-
tion sampling fine-tuning (Gulcehre et al., 2023; Dong et al.,
2023; Mukobi et al., 2023) seen in prior work.

Direct preference optimization. A popular approach for
finetuning LLMs is DPO (Rafailov et al., 2024b) where
one directly optimizes the Bradley-Terry model (Bradley &
Terry, 1952) for preferences. In our setting, each trajectory
consists of multiple rounds of interactions so the original
DPO objective does not apply. We instead use a multi-turn
version of DPO introduced in Rafailov et al. (2024a):

LDPO(DDPO) = −EDDPO

[
log σ

(|hw|∑
t=0

β log
πθ(a

w
t | hw

:t)

πref(awt | hw
:t)

−
|hl|∑
t=0

β log
πθ(a

l
t | hl

:t)

πref(alt | hl
:t)

)]
(2)

where DDPO is the preference dataset, awt and alt are the ac-
tion tokens generated by the model at turn t in the preferred
and dispreferred trajectories, hw and hl, respectively. πref
is the reference policy, for which we use the initial model.
The main difference with standard DPO here is that we only

4

Training a Generally Curious Agent

calculate the loss on the action tokens — the log probability
ratios of the environment generated tokens are not included
in the loss.

We note that we use DPO because it is less compute inten-
sive. DPO allows us to decouple the data collection and
policy improvement steps and offload them on different ma-
chines. However, in principle, one could also employ online
RL with more resources. Following prior work that shows
the efficacy of online RL compared to offline algorithms (Xu
et al., 2024; Tajwar et al., 2024), we expect doing PAPRIKA
with online RL would lead to even stronger results.

Combining objectives. Finally, prior works have noted
DPO having the unintended effect of reducing the probabil-
ity of preferred trajectories as well, known as unintentional
unalignment (Razin et al., 2024), which can affect model
performance. The RPO objective (Pang et al., 2024), by
combining SFT and DPO loss, has shown promising results
in mitigating this issue. Formally, the RPO loss is:

LRPO(DDPO) = LDPO(DDPO) + αLSFT(DDPO) (3)

where α is a hyper-parameter. Following Pang et al. (2024),
we set α to be 1.0 for the rest of this paper.

3.4. Scalable Online Curriculum Learning

The core idea of PAPRIKA is to fine-tune the model on a
large number of decision making problems to acquire gen-
eral decision making ability. It is relatively easy to design
a large number of tasks, but it is harder to decide which
task to train on. A major obstacle is that different tasks may
have a large range of difficulty. Unlike pretraining where
the model can generally make progress on any given sam-
ple (i.e., decrease next-token prediction loss), an RL agent
cannot make meaningful progress without collecting good
experience. As such, if a task is too difficult for the cur-
rent model, the model would not generate trajectories with
meaningful learning signals. Since generating a trajectory
is expensive, it stands to reason that we want to prioritize
the tasks where the model can make meaningful progress,
which is a form of curriculum learning (Bengio et al., 2009).

Without additional assumptions, the only way to know
whether a task would yield good learning signals is to actu-
ally perform a rollout in that task, which is expensive. In
fact, in this particular scenario, the major cost for training is
actually data generation rather than model updates. As such,
this naive approach would not save us time or computation.
A desideratum for an efficient curriculum is the ability to
know whether certain tasks will yield data with learning
signals without actually performing the rollout. A natural
assumption is that similar tasks would have similar levels of
learning signal. These groupings can be obtained through

Algorithm 1 Task selection with UCB
1: Input: Number of arms K, number of samples C, num-

ber of rounds T , model π
2: Initialize: sk = 0, nk = 0, Buffer
3: for each round t = 1, 2, . . . , T do

4: Compute θk = sk
nk

+

√
2 log

∑K
k=1 nk

nk
for each k

5: Select k⋆ = argmaxk θk
6: Sample τ from group k⋆

7: Sample C trajectories from τ and add to Buffer
8: Compute an estimate for ν̂π(τ) using Eq 4
9: Update: sk⋆ = sk⋆ + ν̂π(τ), nk⋆ = nk⋆ + 1

10: end for
11: Construct D from Buffer and train the model π

meta data or prior knowledge.2

Measuring learning potential. We will use h ∼ π ◦ τ
to denote sampling one episode from the task τ using
the policy π. The average performance of π on τ is
Rπ(τ) = Eh∼π◦τ [r(h)] and the variance is σ2

π(τ) =
Eh∼π◦τ

[
(r(h)−Rπ(τ))

2
]
. Based on these, we can define:

νπ(τ) =

√
σ2
π(τ)

Rπ(τ)
. (4)

This quantity is known as the coefficient of variation in
statistics, a dimensionless quantity that measures the popu-
lation’s variability relative to the mean.

We argue that this quantity is an ideal measure of the learn-
ing potential for a single task. DPO requires a pair of posi-
tive and negative samples 3. Intuitively, the pair should be
sufficiently different so the model can tell the two apart —
for example, prior work (Pal et al., 2024) has shown that
DPO suffers when the edit distance between preferred and
dispreferred responses is not large enough. Variance natu-
rally measures the possibility of getting diverse trajectories
from sampling. On the other hand, different tasks could
have vastly different reward scales. Without loss of general-
ity, if we assume that all rewards are positive, the average
reward of each task is a measurement of the reward scale.
Normalizing the standard deviation with the reward scale
allows us to compare different tasks directly.

Sampling tasks. Each group contains a large number of
different tasks. Since it is infeasible to evaluate νπ(τ) for
all tasks, we instead sample tasks from the group. This
induces a scalar distribution that describes the distribution

2While this requirement may seem restrictive, we believe as-
sumptions of similar effects are likely needed for any form of
curriculum learning to be computationally efficient.

3We hypothesize this quantity would also apply to online RL
since if all sampled trajectories have the same reward the policy
gradient update would be 0.

5

Training a Generally Curious Agent

30

36

42

48

54

Av
g

Su
cc

es
s R

at
e

(%
) Twenty Questions

0

2

4

6

8

Av
g

Su
cc

es
s R

at
e

(%
) Mastermind

4

7

10

13

16

Av
g

Su
cc

es
s R

at
e

(%
) Cellular Automata

2

8

14

20

26

Av
g

Su
cc

es
s R

at
e

(%
) Battleship

8

11

14

17

20

Av
g

Su
cc

es
s R

at
e

(%
) Minesweeper

70

74

78

82

86

Av
g

Su
cc

es
s R

at
e

(%
) Customer Service

50

55

60

65

70
Av

g
Su

cc
es

s R
at

e
(%

) Murder Mystery

4

11

18

25

32

Av
g

Su
cc

es
s R

at
e

(%
) Wordle

30

40

50

60

70

Av
g

Su
cc

es
s R

at
e

(%
) Guess My City

40

52

64

76

88

Av
g

Su
cc

es
s R

at
e

(%
) Bandit Best Arm Selection

Llama-3.1-8B-Instruct Paprika (Llama-3.1-8B-Instruct) Gemma-3-12B-IT Paprika (Gemma-3-12B-IT) gpt-4o-mini

Figure 2. (PAPRIKA improves success rate on a diverse range of task groups) Average success rate on all 10 task groups at temperature
0.7. PAPRIKA generally improves performance of both Llama-3.1-8B-Instruct and Gemma-3-12B-IT models.

of νπ(τ) for all tasks in the group G. Given a collection
of K groups (G1, . . . , GK), a reasonable objective would
be to maximize the learning potential of the tasks sampled.
This problem can be formulated as a multi-armed bandit
(MAB). Many algorithms for MAB exist; for simplicity, we
choose the Upper Confidence Bound (Auer, 2000, UCB).

We conduct the task selection in a sequential manner us-
ing the original UCB algorithm, but we expect a batched
variant of UCB could be used to parallelize the experience
collection. Each action corresponds to a group of tasks, and
we then uniformly sample one task from the chosen group
to evaluate the model performance with C rollouts. These
statistics are then used to update the mean estimate of that
group. After a sufficient amount of episodes are sampled,
we construct the dataset and train the model with objectives
in Section 3.3. See Algorithm 3.4 for the pseudocode.

Note. An important role of νπ is to make different task
groups comparable. The specific selection algorithms could
likely be replaced with other more sophisticated online learn-
ing methods. More importantly, recent breakthroughs such
as OpenAI et al. (2024b) and DeepSeek-AI et al. (2025)
mark the beginning of applying RL to a broad range of
reasoning problems. Moving forward, we anticipate a pro-
liferation of different RL tasks for LLMs. In this emerging
paradigm, a scalable meta algorithm for selecting which
tasks to train on will be essential, and we believe PAPRIKA’s
curriculum learning approach will be a promising founda-
tion for future algorithms.

4. Empirical Results
In this section, we will present the results of our empirical
study to answer the following research questions: (1) Can
training on self-generated trajectories from a diverse range
of task groups equip LLMs with sequential decision making

capabilities that generalize to unseen task groups without the
need to train on them? (2) Can curriculum learning improve
the data efficiency of our training mechanism? (3) Finally,
does PAPRIKA hurt the model’s regular abilities, and can
fine-tuning on existing multiturn interaction data that do not
have any sequential decision making structure also improve
these capabilities? We first describe our experimental setup,
and then report our empirical observations.

Experimental Setup. For experiments in this paper,
we use Llama-3.1-8B-Instruct (MetaAI et al., 2024) and
Gemma-3-12B-IT (Gemma-Team et al., 2025) models. For
data generation, we use Min-p sampling (Nguyen et al.,
2024) with temperature 1.5 and Min-p parameter 0.3, as we
saw that this setting consistently generated diverse training
data that resulted in higher test-time accuracy. For each task
in the training split, we generate nsample = 20 trajectories
to construct our training dataset (except for mastermind,
where we sample nsample = 100 trajectories per task). Af-
ter filtering, this results in 17,181 training trajectories for
supervised fine-tuning and 5,260 trajectory pairs for RPO
over all task groups. Unless explicitly mentioned otherwise,
we use learning rate of 10−6 for supervised fine-tuning and
2 × 10−7 for RPO. We use batch size 32 for all training
runs. We generally always run supervised fine-tuning first
and then further fine-tune with the RPO objective to obtain
the final model unless explicitly mentioned otherwise. We
use an AdamW optimizer (Loshchilov & Hutter, 2019) with
a cosine annealing learning rate scheduler and warmup ratio
0.04 (Loshchilov & Hutter, 2017) to train all our models.

During evaluation, in order to account for variability of both
the environment and the agent, we generate 4 trajectories
for each task in the test set and report the average success
rate (we also report pass@4 success rates in Appendix I).
We use Min-p sampling with parameter 0.3 for evaluation.
Default temperature for evaluation is set to 0.7. Finally,

6

Training a Generally Curious Agent

30

33

36

39

42

Av
g

Su
cc

es
s R

at
e

(%
) Twenty Questions

0

2

4

6

8

Av
g

Su
cc

es
s R

at
e

(%
) Mastermind

6

7

8

9

10

Av
g

Su
cc

es
s R

at
e

(%
) Cellular Automata

2

4

6

8

10

Av
g

Su
cc

es
s R

at
e

(%
) Battleship

8

10

12

14

16

Av
g

Su
cc

es
s R

at
e

(%
) Minesweeper

72

73

74

75

76

Av
g

Su
cc

es
s R

at
e

(%
) Customer Service

54

58

62

66

70

Av
g

Su
cc

es
s R

at
e

(%
) Murder Mystery

4

7

10

13

16

Av
g

Su
cc

es
s R

at
e

(%
) Wordle

30

35

40

45

50

Av
g

Su
cc

es
s R

at
e

(%
) Guess My City

40

50

60

70

80

Av
g

Su
cc

es
s R

at
e

(%
) Bandit Best Arm Selection

Llama-3.1-8B-Instruct Paprika (Full) Paprika (LOO) Paprika (Single Task Group)

Figure 3. (Testing generalization of PAPRIKA via leave-one-out and single task group experiments) We test PAPRIKA’s zero-shot
performance on unseen task groups by leave-one-out (LOO) experiments, where we train the LLM on every task group except the group
we test on. We also report the performance of PAPRIKA (Single Task Group), where we train and test the LLM on a single group. Our
experiments demonstrate that PAPRIKA can teach an LLM decision making abilities that often transfer well to new tasks without any
additional training, and the model also generally learns better in-group strategies when it observes trajectories from other task groups.

for task groups with hardcoded feedback mechanism, we
consider a failure to follow formatting instructions to be a
failure in the task.

PAPRIKA improves LLM decision making abilties. We
motivate this question by looking into the toy task group of
bandit best arm selection more closely. This task requires
strategic use of the fixed sampling budget (20) to quickly
discard arms that are unlikely to have a high mean reward,
and use most of the sampling budget on the few top arms
to decide the best arm among them. Previous work (Nie
et al., 2024) has shown that training on synthetic trajectories
from optimal bandit algorithms can significantly improve
LLMs’ performance on them. Contrary to that, we show that
LLMs can learn generalizable strategies from other decision
making task groups that then transfer to this bandit group,
without needing an optimal algorithm to generate synthetic
trajectories. Figure 3 shows that PAPRIKA improves aver-
age success rate of Llama-3.1-8B-Instruct from 42.25% to
62.25% on the bandit task after only seeing trajectories from
other task groups.

Motivated by this, we next study whether PAPRIKA can
also improve performance on more complex tasks. Fig-
ure 2 shows our main findings: PAPRIKA, when trained
on a dataset consisting of filtered trajectories from all 10
task groups, improves the success rate of both Llama-3.1-
8B-Instruct and Gemma-3-12B-It models (see Appendix I
for complete results). Averaged across all 10 task groups,
PAPRIKA increases the Llama-3.1-8B-Instruct model’s per-
formance by 47% of its original success rate after training
with only about 22,500 trajectories.

PAPRIKA can teach LLMs generalizable strategies.
The next important question we want to study is whether
the strategies learned by PAPRIKA can zero-shot transfer

to entirely different groups of tasks. We saw already that
PAPRIKA (LOO) improved the success rate on the bandit
group without the need to train on it, now we explore this
possibility for more complex decision making tasks. To do
so, we perform a set of leave-one-out (LOO) experiments:
we randomly choose one group (e.g., 20 questions) from
our set of task groups, train the LLM on trajectories gener-
ated from every other group, and test the resulting model’s
performance on the left-out group. Additionally, we run an
experiment where for each task group, we train and test the
LLM on only this single group (using separate splits). We
use Llama-3.1-8B-Instruct for this set of experiments.

Figure 3 shows our results: remarkably, we observe that
the LOO models can match or sometimes even exceed the
performance of group-specific training, demonstrating gen-
uine cross-task group generalization. Concretely, PAPRIKA
(LOO) improves success rate on 9 out of 10 task groups
compared to the initial model. Moreover, PAPRIKA (full),
trained on all 10 task groups, outperform PAPRIKA (Single
Task Group) in 7 out of 10 task groups, showing that the
model learns better in-group strategies when it observes
trajectories from other task groups. Note that we do not
expect PAPRIKA (LOO) to always generalize to a new task
group. While PAPRIKA (LOO) generalizes better to some
task groups vs others (e.g., the improvement on mastermind
is minimal), and for some task groups there is no transfer at
all or negative transfer (wordle), we hypothesize that scaling
up the number of task groups could keep improving LLMs’
zero-shot decision-making abilities. Overall, these results
demonstrate that PAPRIKA is a potentially scalable solution
for teaching LLMs how to do in-context RL.

Curriculum learning can improve data efficiency of PA-
PRIKA. The biggest bottleneck of PAPRIKA is the time
required to generate a large number of trajectories for each.

7

Training a Generally Curious Agent

0 1 2 3
Training Round

35

40

45

Su
cc

es
s R

at
e

(%
)

Average Success Rate

0 1 2 3
Training Round

60

65

70

75

Su
cc

es
s R

at
e

(%
)

Pass@4 Success Rate

Easy Medium Hard
Task Groups

0

15

30

45

60

Av
g

Su
cc

es
s R

at
e

(%
)

Per Group Success Rate

Curriculum Uniform Llama-3.1-8B-Instruct

Figure 4. (Multi-round training with curriculum on twenty questions) We demonstrate the efficacy of our curriculum learning
algorithm for sampling training tasks by comparing its performance against uniform sampling for multi-round training. All experiments
use Llama-3.1-8B-Instruct as the initial model, evaluations are done at temperature 0.7, and shaded regions represent standard error over 3
seeds. (Left) Average success rate at each round. (Middle) Pass@4 success rate at each round. (Right) Success rate per each of easy,
medium, and hard task groups. Overall, our curriculum learning algorithm shows 1.4% and 3.3% improvement over the uniform sampling
baseline at average and pass@4 success rate respectively.

Some tasks are naturally harder than others, which means
that spending an equal sampling budget on the harder tasks
gives us a smaller learning signal. We study a curriculum
learning version of PAPRIKA where we have a grouping
over our tasks according to task difficulty. For this, we use
GPT-4o-mini to classify the tasks in twenty questions into
3 categories: easy, medium, and hard. This results in 477
easy, 726 medium, and 296 hard topics in the train split and
127 easy, 172 medium, and 68 hard topics in the test split.

Next, we run the curriculum learning algorithm described in
Section 3.4 for 3 rounds on a Llama-3.1-8B-Instruct model:
at each round, we sample 250 tasks from the train set accord-
ing to Section 3.4. We use the number of turns it took the
agent to solve a task across multiple trajectories as a proxy
for reward in Equation (4) to calculate νπ (see Appendix H
for more details). 20 trajectories are generated for each task
using the previous round’s model checkpoint and we train
that checkpoint on the resulting dataset (for DPO, we use
the prior round’s checkpoint instead of the initial model as
the reference policy). We compare our curriculum against
the baseline of sampling 250 tasks uniformly at random
from the train set at each round. Figure 4 shows our results:
after three rounds of training, our curriculum outperforms
uniform sampling by 1.4% and 3.3% at average and pass@4
accuracy respectively.

4.1. Analysis

PAPRIKA improves LLMs’ task efficiency. In this sec-
tion, we want to analyze the sequential decision-making
abilities learned by PAPRIKA beyond just success rate on
individual task groups. Note that our tasks are designed
in a way such that an agent capable of better strategic ex-
ploration would solve them faster, eg., an agent capable of
asking better yes/no questions would guess the secret topic

using fewer number of turns. We leverage this property
of our tasks and conduct both quantitative and qualitative
analysis on the behaviors of the regular instruct model and
PAPRIKA — (1) Figure 7 shows that PAPRIKA reduces the
average number of turns it takes for the agent to solve tasks,
implying that PAPRIKA is choosing more optimal actions at
intermediate steps, (2) Appendix K shows qualitative differ-
ence between the behavior of the regular instruct model and
PAPRIKA on twenty questions and wordle, with PAPRIKA
generally generating more sensible responses.

PAPRIKA does not hurt LLMs’ regular capabilities. We
have demonstrated the efficacy of PAPRIKA in instilling de-
cision making capabilities into LLMs efficiently. However,
to scale up PAPRIKA, one would potentially use online rein-
forcement learning on such decision making tasks, and an
important question is whether PAPRIKA fine-tuning would
hurt the LLM’s regular capabilities which would hinder scal-
ing it up. To study this question, we run a set of standard
evaluations (see Appendix I.12) on our PAPRIKA fine-tuned
model and compare its performance against Llama-3.1-8B-
Instruct. Table 2 shows our findings: PAPRIKA does not
result in any noticeable performance degradation.

5. Related Works
LLM alignment. Alignment or post-training is a crucial
step for creating helpful LLM assistant. Existing post-
training pipeline typically involves instruction tuning and
then reinforcement learning from human feedback (Chris-
tiano et al., 2017, RLHF) where one either performs RL
against a reward model trained on human preference data via
Proximal Policy Optimization (Schulman et al., 2017, PPO)
or sidesteps reward model training via Direct Preference
Optimization (Rafailov et al., 2024b, DPO). Most methods

8

Training a Generally Curious Agent

Table 2. (Evaluation of PAPRIKA on standard tasks) Evaluation of PAPRIKA vs Llama-3.1-8B-Instruct on standard benchmarks
(numbers in parenthesis represent standard error over 3 seeds). PAPRIKA does not result in significant model degradation.

Model MT-Bench AlpacaEval GPQA Math (Hard) MMLU-Pro IFEval

Llama-3.1-8B-Instruct 7.88 33.6 33.5 24.6 46.7 84.4
+ PAPRIKA 8.14 (0.03) 33.5 (0.3) 32.8 (1.5) 25.3 (0.3) 46.2 (0.1) 85.4 (0.3)

focus on single-turn interactions where the model generates
a single response to a query. We focus on the multi-turn
setting where the agent has to interact with an environment
iteratively, similar to Rafailov et al. (2024a). There are a
few existing environments and datasets that focus on multi-
turn interactions (Abdulhai et al., 2023; Sun et al., 2023;
Kwan et al., 2024; Wang et al., 2024b). LMRL-Gym (Ab-
dulhai et al., 2023) implements a suite of textual RL en-
vironment, some of which we build on. Concurrent work
such as Narayanan et al. (2024) has designed environments
based on scientific tasks (such as molecule cloning and pro-
tein stability) for LLMs to interact with and showed that
behavior cloning and expert iteration (Anthony et al., 2017;
2019; Havrilla et al., 2024) can improve an LLM’s multi-
turn interaction capabilities on these tasks. Most of these
environments focus on interactions with humans. Rather
than any particular task, we focus on evaluating LLMs’ gen-
eral ability to solve sequential decision making problems
where the agent needs to explore and exploit.

In-context reinforcement learning. In-context learning
(ICL) is the ability where LLMs can learn a new task from
a small number of demonstrations without any gradient up-
date (Brown et al., 2020). Existing ICL usually focuses on
a single-turn interaction. We focus on in-context reinforce-
ment learning (Laskin et al., 2022; Raparthy et al., 2023; Lee
et al., 2024; Lin et al., 2024) instead. Existing work in this
field has focused on environments where RL is convention-
ally applied (e.g., grid world, bandits, and maze) (Monea
et al., 2025), and the training data are generated by either
random policies or pre-existing RL algorithms. In compari-
son, we focus on diverse environments and study how well
the decision making abilities generalize to completely new
environments. Concurrent work has also studied improving
LLMs’ information seeking abilities (Li et al., 2025) for
medical reasoning, whereas we work on general informa-
tion seeking abilities applicable to a diverse range of tasks.
Moreover, Harris & Slivkins (2025) has studied using an
LLM to assist a decision-making agent navigate exploration-
exploitation tradeoff, whereas we use an LLM directly as
the decision making agent and teach it this capability.

Curriculum learning in RL. Curriculum learning (Ben-
gio et al., 2009) shows the data to the model in a non-
uniform order. This idea is inspired by the fact that humans
tend to learn skills in a sequential order (Skinner, 1958),

and is particularly appealing for RL because learning easier
tasks first could build scaffold toward solving difficult tasks
that the agent could not solve otherwise (Andrychowicz
et al., 2017; Florensa et al., 2017; Fang et al., 2019; Portelas
et al., 2020a). Concurrent work such as Foster & Foerster
(2025) has studied curriculum learning for training LLMs
to improve their reasoning capabilities. While their work
requires generating rollouts per each example to determine
the learnability, we show that given access to some group-
ing metadata, one can design an effective curriculum using
only a constant number of rollouts generated from each task
group. Another related line of work is environment design,
where a second process controls the distribution over dif-
ferent environments or directly generates environments in a
procedural manner to maximize various notions of learning
progress (Wang et al., 2019; Dennis et al., 2020; Jiang et al.,
2021b;a; Bruce et al., 2024). Since this is a field of extensive
existing literature, we refer the interested reader to Portelas
et al. (2020b) for a comprehensive survey.

6. Discussion
In this paper, we presented a scalable fine-tuning method
to improve multi-turn decision making abilities of LLMs.
Moreover, we showed that the strategies learned by the LLM
from our method can generalize zero-shot to unseen tasks.
There are a few limitations to our approach. Firstly, we use
rejection sampling on self-generated data to teach the model
better behaviors. In order to get good performance, the start-
ing model need to exhibit good behavior within a reasonable
generation budget, so PAPRIKA would perform worse in the
absence of a good base model. Next, we use offline prefer-
ence tuning algorithms to train our models due to the lack
of computational resources. A possible future direction for
our work is to run online RL on diverse tasks instead: due
to its recent success in other domains (DeepSeek-AI et al.,
2025), we expect it will give a larger improvement in LLMs’
in-context RL capabilities. Our environments, despite being
designed with the help of GPT-4o-mini, required a lot of
human effort for implementation. A new axis of improve-
ment can be training an LLM to scalably generate suitable
tasks that can then be used to train the agent. Finally, the
performance of our curriculum learning algorithm heavily
depends on the quality of the task group clusters which is
not ideal, and one can study possible improvements of this
algorithm. We leave these directions for future work.

9

Training a Generally Curious Agent

Impact Statement
Our work can be used to train large language models that
have better strategic exploration and decision making capa-
bilities, which can have potential impact in the real world if
agentic systems become wide spread. Our experiments are
conducted in relatively simple and controlled environments
and it is an open question what kind of impacts truly agentic
systems will have on society. Other than that, this paper
presents work whose goal is to advance the field of Ma-
chine Learning. There are many potential overall societal
consequences of our work, none of which we feel must be
specifically highlighted here.

Reproducibility Statement
We provide sufficient details about our implementation, hy-
perparameters, environment design and dataset construc-
tion in the main paper and the appendix to effectively
reproduce the results in this paper. Our code, training
dataset and models can be found via the project website:
https://paprika-llm.github.io/

Acknowledgement

This work was supported in part by the U.S. Army Futures
Command under Contract No. W519TC-23-C-0030. More-
over, it has greatly benefited from using the Delta advanced
computing and data resource supported by the National Sci-
ence Foundation (OAC 2005572) and the State of Illinois, as
part of ACCESS-approved compute grants (Boerner et al.,
2023). Subsequent larger scale experiments on Gemma-
3-12B-IT models were run using Bridges-2 (Brown et al.,
2021) at Pittsburgh Supercomputing Center through AC-
CESS allocation CIS240901 from the Advanced Cyberin-
frastructure Coordination Ecosystem: Services & Support
(ACCESS) program, which is supported by National Sci-
ence Foundation grants #2138259, #2138286, #2138307,
#2137603, and #2138296. The authors thank Brandon
Pusateri, Jillian Lehosky and Greg Bauer from ACCESS
Support Staff for their incredible help at approving supple-
ments and renewals for ACCESS compute grants throughout
this project. Moreover, the work would not have finished so
quickly without the help of Brett Bode from NCSA Delta
Support Staff, who provided the authors critical help about
properly utilizing the Delta cluster. FT and YJ gratefully ac-
knowledge Samuel Sokota, Daman Arora, Andrea Zanette,
Yuda Song, Gaurav Ghosal, Yutong He, So Yeon Min, Kevin
Li, Wen-Tse Chen, Xintong Duan and other members of
Russ, Auton, Locus and AIRe lab for feedback received
on an earlier versions of this work. FT greatly benefited
from his discussions with Prof. Aviral Kumar and his lab’s
computational resources. YJ gratefully acknowledges the
support of the Google PhD Fellowship.

References
Abdulhai, M., White, I., Snell, C., Sun, C., Hong, J., Zhai,

Y., Xu, K., and Levine, S. Lmrl gym: Benchmarks for
multi-turn reinforcement learning with language models.
arXiv preprint arXiv:2311.18232, 2023.

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong,
R., Welinder, P., McGrew, B., Tobin, J., Pieter Abbeel, O.,
and Zaremba, W. Hindsight experience replay. Advances
in neural information processing systems, 30, 2017.

Anthony, T., Tian, Z., and Barber, D. Thinking fast and
slow with deep learning and tree search, 2017. URL
https://arxiv.org/abs/1705.08439.

Anthony, T., Nishihara, R., Moritz, P., Salimans, T., and
Schulman, J. Policy gradient search: Online planning
and expert iteration without search trees, 2019. URL
https://arxiv.org/abs/1904.03646.

Audibert, J.-Y. and Bubeck, S. Best Arm Identification in
Multi-Armed Bandits. In COLT 2010 - Proceedings, pp.
13 p., Haifa, Israel, June 2010. URL https://enpc.
hal.science/hal-00654404.

Auer, P. Using upper confidence bounds for online learning.
In Proceedings 41st annual symposium on foundations of
computer science, pp. 270–279. IEEE, 2000.

Auer, P., Cesa-Bianchi, N., and Fischer, P. Finite-time
analysis of the multiarmed bandit problem. Machine
learning, 47:235–256, 2002.

Beck, J., Vuorio, R., Liu, E. Z., Xiong, Z., Zintgraf, L., Finn,
C., and Whiteson, S. A survey of meta-reinforcement
learning. arXiv preprint arXiv:2301.08028, 2023.

Bengio, Y., Louradour, J., Collobert, R., and Weston, J.
Curriculum learning. In Proceedings of the 26th annual
international conference on machine learning, pp. 41–48,
2009.

Boerner, T. J., Deems, S., Furlani, T. R., Knuth, S. L.,
and Towns, J. Access: Advancing innovation: Nsf’s
advanced cyberinfrastructure coordination ecosystem:
Services & support. In Practice and Experience in
Advanced Research Computing 2023: Computing for
the Common Good, PEARC ’23, pp. 173–176, New
York, NY, USA, 2023. Association for Computing
Machinery. ISBN 9781450399852. doi: 10.1145/
3569951.3597559. URL https://doi.org/10.
1145/3569951.3597559.

Bradley, R. A. and Terry, M. E. Rank analysis of incom-
plete block designs: I. the method of paired comparisons.
Biometrika, 39(3/4):324–345, 1952.

10

https://paprika-llm.github.io/
https://arxiv.org/abs/1705.08439
https://arxiv.org/abs/1904.03646
https://enpc.hal.science/hal-00654404
https://enpc.hal.science/hal-00654404
https://doi.org/10.1145/3569951.3597559
https://doi.org/10.1145/3569951.3597559

Training a Generally Curious Agent

Brown, S. T., Buitrago, P., Hanna, E., Sanielevici, S.,
Scibek, R., and Nystrom, N. A. Bridges-2: A plat-
form for rapidly-evolving and data intensive research.
In Practice and Experience in Advanced Research Com-
puting 2021: Evolution Across All Dimensions, PEARC
’21, New York, NY, USA, 2021. Association for Com-
puting Machinery. ISBN 9781450382922. doi: 10.
1145/3437359.3465593. URL https://doi.org/
10.1145/3437359.3465593.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Bruce, J., Dennis, M. D., Edwards, A., Parker-Holder, J.,
Shi, Y., Hughes, E., Lai, M., Mavalankar, A., Steiger-
wald, R., Apps, C., et al. Genie: Generative interactive
environments. In Forty-first International Conference on
Machine Learning, 2024.

Burda, Y., Edwards, H., Storkey, A., and Klimov, O. Ex-
ploration by random network distillation. arXiv preprint
arXiv:1810.12894, 2018.

Chen, J., Qadri, R., Wen, Y., Jain, N., Kirchenbauer, J.,
Zhou, T., and Goldstein, T. Genqa: Generating millions
of instructions from a handful of prompts, 2024. URL
https://arxiv.org/abs/2406.10323.

Chen, R. Y., Sidor, S., Abbeel, P., and Schulman, J.
Ucb exploration via q-ensembles. arXiv preprint
arXiv:1706.01502, 2017.

Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg,
S., and Amodei, D. Deep reinforcement learning from
human preferences. Advances in neural information pro-
cessing systems, 30, 2017.

Cook, M. et al. Universality in elementary cellular automata.
Complex systems, 15(1):1–40, 2004.

Côté, M.-A., Ákos Kádár, Yuan, X., Kybartas, B., Barnes,
T., Fine, E., Moore, J., Tao, R. Y., Hausknecht, M., Asri,
L. E., Adada, M., Tay, W., and Trischler, A. Textworld:
A learning environment for text-based games, 2019. URL
https://arxiv.org/abs/1806.11532.

Dao, T. FlashAttention-2: Faster attention with better paral-
lelism and work partitioning. In International Conference
on Learning Representations (ICLR), 2024.

Dao, T., Fu, D. Y., Ermon, S., Rudra, A., and Ré, C. FlashAt-
tention: Fast and memory-efficient exact attention with
IO-awareness. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2022.

DeepSeek-AI, Guo, D., Yang, D., Zhang, H., Song, J.,
Zhang, R., Xu, R., Zhu, Q., Ma, S., Wang, P., et al.
Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning, 2025. URL https://
arxiv.org/abs/2501.12948.

Dennis, M., Jaques, N., Vinitsky, E., Bayen, A., Russell,
S., Critch, A., and Levine, S. Emergent complexity and
zero-shot transfer via unsupervised environment design.
Advances in neural information processing systems, 33:
13049–13061, 2020.

Dong, H., Xiong, W., Goyal, D., Zhang, Y., Chow, W.,
Pan, R., Diao, S., Zhang, J., SHUM, K., and Zhang, T.
RAFT: Reward ranked finetuning for generative founda-
tion model alignment. Transactions on Machine Learn-
ing Research, 2023. ISSN 2835-8856. URL https:
//openreview.net/forum?id=m7p5O7zblY.

Dubois, Y., Li, X., Taori, R., Zhang, T., Gulrajani, I., Ba,
J., Guestrin, C., Liang, P., and Hashimoto, T. B. Alpaca-
farm: A simulation framework for methods that learn
from human feedback, 2023.

Dubois, Y., Galambosi, B., Liang, P., and Hashimoto, T. B.
Length-controlled alpacaeval: A simple way to debias
automatic evaluators. arXiv preprint arXiv:2404.04475,
2024.

Ethayarajh, K., Xu, W., Muennighoff, N., Jurafsky, D., and
Kiela, D. Kto: Model alignment as prospect theoretic op-
timization, 2024. URL https://arxiv.org/abs/
2402.01306.

Eysenbach, B., Gupta, A., Ibarz, J., and Levine, S. Diversity
is all you need: Learning skills without a reward function.
arXiv preprint arXiv:1802.06070, 2018.

Fang, M., Zhou, T., Du, Y., Han, L., and Zhang, Z.
Curriculum-guided hindsight experience replay. Ad-
vances in neural information processing systems, 32,
2019.

Florensa, C., Held, D., Wulfmeier, M., Zhang, M., and
Abbeel, P. Reverse curriculum generation for reinforce-
ment learning. In Conference on robot learning, pp. 482–
495. PMLR, 2017.

Foster, T. and Foerster, J. Learning to reason at the frontier
of learnability, 2025. URL https://arxiv.org/
abs/2502.12272.

Gemma-Team, Kamath, A., Ferret, J., Pathak, S., Vieillard,
N., Merhej, R., Perrin, S., Matejovicova, T., Ramé, A.,
Rivière, M., Rouillard, L., Mesnard, T., et al. Gemma 3
technical report, 2025. URL https://arxiv.org/
abs/2503.19786.

11

https://doi.org/10.1145/3437359.3465593
https://doi.org/10.1145/3437359.3465593
https://arxiv.org/abs/2406.10323
https://arxiv.org/abs/1806.11532
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://openreview.net/forum?id=m7p5O7zblY
https://openreview.net/forum?id=m7p5O7zblY
https://arxiv.org/abs/2402.01306
https://arxiv.org/abs/2402.01306
https://arxiv.org/abs/2502.12272
https://arxiv.org/abs/2502.12272
https://arxiv.org/abs/2503.19786
https://arxiv.org/abs/2503.19786

Training a Generally Curious Agent

Gulcehre, C., Paine, T. L., Srinivasan, S., Konyushkova, K.,
Weerts, L., Sharma, A., Siddhant, A., Ahern, A., Wang,
M., Gu, C., Macherey, W., Doucet, A., Firat, O., and
de Freitas, N. Reinforced self-training (rest) for language
modeling, 2023. URL https://arxiv.org/abs/
2308.08998.

Harris, K. and Slivkins, A. Should you use your large
language model to explore or exploit?, 2025. URL
https://arxiv.org/abs/2502.00225.

Hausknecht, M., Ammanabrolu, P., Côté, M.-A., and Yuan,
X. Interactive fiction games: A colossal adventure, 2020a.
URL https://arxiv.org/abs/1909.05398.

Hausknecht, M., Ammanabrolu, P., Côté, M.-A., and Yuan,
X. Interactive fiction games: A colossal adventure, 2020b.
URL https://arxiv.org/abs/1909.05398.

Havrilla, A., Du, Y., Raparthy, S. C., Nalmpantis,
C., Dwivedi-Yu, J., Zhuravinskyi, M., Hambro, E.,
Sukhbaatar, S., and Raileanu, R. Teaching large language
models to reason with reinforcement learning, 2024. URL
https://arxiv.org/abs/2403.04642.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring math-
ematical problem solving with the math dataset, 2021.
URL https://arxiv.org/abs/2103.03874.

Hurst, A., Lerer, A., Goucher, A. P., Perelman, A., Ramesh,
A., Clark, A., Ostrow, A., Welihinda, A., Hayes, A.,
Radford, A., et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Jansen, P., Côté, M.-A., Khot, T., Bransom, E., Mishra,
B. D., Majumder, B. P., Tafjord, O., and Clark, P. Dis-
coveryworld: A virtual environment for developing and
evaluating automated scientific discovery agents, 2024.
URL https://arxiv.org/abs/2406.06769.

Jansen, P. A. A systematic survey of text worlds as embodied
natural language environments, 2021. URL https://
arxiv.org/abs/2107.04132.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., de las Casas, D., Bressand, F., Lengyel,
G., Lample, G., Saulnier, L., Lavaud, L. R., Lachaux, M.-
A., Stock, P., Scao, T. L., Lavril, T., Wang, T., Lacroix,
T., and Sayed, W. E. Mistral 7b, 2023a. URL https:
//arxiv.org/abs/2310.06825.

Jiang, M., Dennis, M., Parker-Holder, J., Foerster, J., Grefen-
stette, E., and Rocktäschel, T. Replay-guided adversarial
environment design. Advances in Neural Information
Processing Systems, 34:1884–1897, 2021a.

Jiang, M., Grefenstette, E., and Rocktäschel, T. Prioritized
level replay. In International Conference on Machine
Learning, pp. 4940–4950. PMLR, 2021b.

Jiang, Y., Kolter, J. Z., and Raileanu, R. On the importance
of exploration for generalization in reinforcement learn-
ing. Advances in Neural Information Processing Systems,
36:12951–12986, 2023b.

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa,
Y. Large language models are zero-shot reasoners. Ad-
vances in neural information processing systems, 35:
22199–22213, 2022.

Krishnamurthy, A., Harris, K., Foster, D. J., Zhang, C.,
and Slivkins, A. Can large language models explore in-
context?, 2024. URL https://arxiv.org/abs/
2403.15371.

Kwan, W.-C., Zeng, X., Jiang, Y., Wang, Y., Li, L., Shang,
L., Jiang, X., Liu, Q., and Wong, K.-F. Mt-eval: A multi-
turn capabilities evaluation benchmark for large language
models. arXiv preprint arXiv:2401.16745, 2024.

Laskin, M., Wang, L., Oh, J., Parisotto, E., Spencer, S.,
Steigerwald, R., Strouse, D., Hansen, S., Filos, A.,
Brooks, E., et al. In-context reinforcement learning with
algorithm distillation. arXiv preprint arXiv:2210.14215,
2022.

Lee, J., Xie, A., Pacchiano, A., Chandak, Y., Finn, C.,
Nachum, O., and Brunskill, E. Supervised pretraining
can learn in-context reinforcement learning. Advances in
Neural Information Processing Systems, 36, 2024.

Li, S. S., Mun, J., Brahman, F., Ilgen, J. S., Tsvetkov, Y., and
Sap, M. Aligning llms to ask good questions a case study
in clinical reasoning, 2025. URL https://arxiv.
org/abs/2502.14860.

Li, X., Zhang, T., Dubois, Y., Taori, R., Gulrajani, I.,
Guestrin, C., Liang, P., and Hashimoto, T. B. Alpacae-
val: An automatic evaluator of instruction-following
models. https://github.com/tatsu-lab/
alpaca_eval, 5 2023.

Lin, L., Bai, Y., and Mei, S. Transformers as decision mak-
ers: Provable in-context reinforcement learning via super-
vised pretraining. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https:
//openreview.net/forum?id=yN4Wv17ss3.

Loshchilov, I. and Hutter, F. Sgdr: Stochastic gradi-
ent descent with warm restarts, 2017. URL https:
//arxiv.org/abs/1608.03983.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization, 2019. URL https://arxiv.org/abs/
1711.05101.

12

https://arxiv.org/abs/2308.08998
https://arxiv.org/abs/2308.08998
https://arxiv.org/abs/2502.00225
https://arxiv.org/abs/1909.05398
https://arxiv.org/abs/1909.05398
https://arxiv.org/abs/2403.04642
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2406.06769
https://arxiv.org/abs/2107.04132
https://arxiv.org/abs/2107.04132
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2403.15371
https://arxiv.org/abs/2403.15371
https://arxiv.org/abs/2502.14860
https://arxiv.org/abs/2502.14860
https://github.com/tatsu-lab/alpaca_eval
https://github.com/tatsu-lab/alpaca_eval
https://openreview.net/forum?id=yN4Wv17ss3
https://openreview.net/forum?id=yN4Wv17ss3
https://arxiv.org/abs/1608.03983
https://arxiv.org/abs/1608.03983
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101

Training a Generally Curious Agent

MetaAI, Grattafiori, A., Dubey, A., Jauhri, A., Pandey, A.,
Kadian, A., Al-Dahle, A., Letman, A., Mathur, A., et al.
The llama 3 herd of models, 2024. URL https://
arxiv.org/abs/2407.21783.

Monea, G., Bosselut, A., Brantley, K., and Artzi, Y. Llms
are in-context bandit reinforcement learners, 2025. URL
https://arxiv.org/abs/2410.05362.

Mukobi, G., Chatain, P., Fong, S., Windesheim, R., Ku-
tyniok, G., Bhatia, K., and Alberti, S. Superhf: Super-
vised iterative learning from human feedback, 2023. URL
https://arxiv.org/abs/2310.16763.

Murty, S., Manning, C. D., Shaw, P., Joshi, M., and Lee,
K. BAGEL: Bootstrapping agents by guiding explo-
ration with language. In Forty-first International Con-
ference on Machine Learning, 2024. URL https:
//openreview.net/forum?id=VsvfSMI5bs.

Narayanan, S., Braza, J. D., Griffiths, R.-R., Ponnapati, M.,
Bou, A., Laurent, J., Kabeli, O., Wellawatte, G., Cox,
S., Rodriques, S. G., and White, A. D. Aviary: training
language agents on challenging scientific tasks, 2024.
URL https://arxiv.org/abs/2412.21154.

Nguyen, M., Baker, A., Neo, C., Roush, A., Kirsch, A., and
Shwartz-Ziv, R. Turning up the heat: Min-p sampling
for creative and coherent llm outputs. arXiv preprint
arXiv:2407.01082, 2024.

Nie, A., Su, Y., Chang, B., Lee, J. N., Chi, E. H., Le, Q. V.,
and Chen, M. Evolve: Evaluating and optimizing llms
for exploration, 2024. URL https://arxiv.org/
abs/2410.06238.

OpenAI, Achiam, J., Adler, S., Agarwal, S., Ahmad, L.,
Akkaya, I., Aleman, F. L., Almeida, D., Altenschmidt,
J., et al. Gpt-4 technical report, 2024a. URL https:
//arxiv.org/abs/2303.08774.

OpenAI, Jaech, A., Kalai, A., Lerer, A., Richardson, A., El-
Kishky, A., Low, A., Helyar, A., Madry, A., Beutel, A.,
Carney, A., et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024b.

Osband, I., Blundell, C., Pritzel, A., and Van Roy, B. Deep
exploration via bootstrapped dqn. Advances in neural
information processing systems, 29, 2016.

Pal, A., Karkhanis, D., Dooley, S., Roberts, M., Naidu, S.,
and White, C. Smaug: Fixing failure modes of preference
optimisation with dpo-positive, 2024. URL https://
arxiv.org/abs/2402.13228.

Pang, R. Y., Yuan, W., Cho, K., He, H., Sukhbaatar, S.,
and Weston, J. Iterative reasoning preference optimiza-
tion, 2024. URL https://arxiv.org/abs/2404.
19733.

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T.
Curiosity-driven exploration by self-supervised predic-
tion. In International conference on machine learning,
pp. 2778–2787. PMLR, 2017.

Pathak, D., Gandhi, D., and Gupta, A. Self-supervised
exploration via disagreement. In International conference
on machine learning, pp. 5062–5071. PMLR, 2019.

Portelas, R., Colas, C., Hofmann, K., and Oudeyer, P.-Y.
Teacher algorithms for curriculum learning of deep rl in
continuously parameterized environments. In Conference
on Robot Learning, pp. 835–853. PMLR, 2020a.

Portelas, R., Colas, C., Weng, L., Hofmann, K., and
Oudeyer, P.-Y. Automatic curriculum learning for deep rl:
A short survey. arXiv preprint arXiv:2003.04664, 2020b.

Qwen, Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B.,
Yu, B., Li, C., Liu, D., Huang, F., Wei, H., Lin, H., Yang,
J., Tu, J., Zhang, J., Yang, J., Yang, J., et al. Qwen2.5
technical report, 2025. URL https://arxiv.org/
abs/2412.15115.

Rafailov, R., Hejna, J., Park, R., and Finn, C. From r to
q∗: Your language model is secretly a q-function, 2024a.
URL https://arxiv.org/abs/2404.12358.

Rafailov, R., Sharma, A., Mitchell, E., Manning, C. D., Er-
mon, S., and Finn, C. Direct preference optimization:
Your language model is secretly a reward model. Ad-
vances in Neural Information Processing Systems, 36,
2024b.

Raparthy, S. C., Hambro, E., Kirk, R., Henaff, M., and
Raileanu, R. Generalization to new sequential decision
making tasks with in-context learning. arXiv preprint
arXiv:2312.03801, 2023.

Razin, N., Malladi, S., Bhaskar, A., Chen, D., Arora, S., and
Hanin, B. Unintentional unalignment: Likelihood dis-
placement in direct preference optimization, 2024. URL
https://arxiv.org/abs/2410.08847.

Rein, D., Hou, B. L., Stickland, A. C., Petty, J., Pang, R. Y.,
Dirani, J., Michael, J., and Bowman, S. R. Gpqa: A
graduate-level google-proof q&a benchmark, 2023. URL
https://arxiv.org/abs/2311.12022.

Schmidhuber, J. Curious model-building control systems. In
Proc. international joint conference on neural networks,
pp. 1458–1463, 1991.

Schmidhuber, J. Gödel machines: Fully self-referential
optimal universal self-improvers. In Artificial general
intelligence, pp. 199–226. Springer, 2007.

13

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2410.05362
https://arxiv.org/abs/2310.16763
https://openreview.net/forum?id=VsvfSMI5bs
https://openreview.net/forum?id=VsvfSMI5bs
https://arxiv.org/abs/2412.21154
https://arxiv.org/abs/2410.06238
https://arxiv.org/abs/2410.06238
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2402.13228
https://arxiv.org/abs/2402.13228
https://arxiv.org/abs/2404.19733
https://arxiv.org/abs/2404.19733
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2404.12358
https://arxiv.org/abs/2410.08847
https://arxiv.org/abs/2311.12022

Training a Generally Curious Agent

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Sharma, A., Gu, S., Levine, S., Kumar, V., and Hausman, K.
Dynamics-aware unsupervised discovery of skills. arXiv
preprint arXiv:1907.01657, 2019.

Skinner, B. F. Reinforcement today. American Psychologist,
13(3):94, 1958.

Slivkins, A. Introduction to multi-armed bandits, 2024.
URL https://arxiv.org/abs/1904.07272.

Sokal, R. and Rohlf, F. Biometry : the principles and
practice of statistics in biological research / robert r. sokal
and f. james rohlf, 04 2013.

Sun, Y., Liu, C., Huang, J., Song, R., Zhang, F., Zhang,
D., Wang, Z., and Gai, K. Parrot: Enhancing multi-turn
chat models by learning to ask questions. arXiv preprint
arXiv:2310.07301, 2023.

Sutton, R. S., Barto, A. G., et al. Reinforcement learning:
An introduction, volume 1. MIT press Cambridge, 1998.

Tajwar, F., Singh, A., Sharma, A., Rafailov, R., Schneider,
J., Xie, T., Ermon, S., Finn, C., and Kumar, A. Preference
fine-tuning of llms should leverage suboptimal, on-policy
data, 2024. URL https://arxiv.org/abs/2404.
14367.

Thompson, W. R. On the likelihood that one unknown
probability exceeds another in view of the evidence of
two samples. Biometrika, 25(3-4):285–294, 1933.

Wang, P.-A., Tzeng, R.-C., and Proutiere, A. Best arm
identification with fixed budget: A large deviation per-
spective, 2024a. URL https://arxiv.org/abs/
2312.12137.

Wang, R., Lehman, J., Clune, J., and Stanley, K. O. Paired
open-ended trailblazer (poet): Endlessly generating in-
creasingly complex and diverse learning environments
and their solutions. arXiv preprint arXiv:1901.01753,
2019.

Wang, R., Jansen, P., Côté, M.-A., and Ammanabrolu, P. Sci-
enceworld: Is your agent smarter than a 5th grader?, 2022.
URL https://arxiv.org/abs/2203.07540.

Wang, X., Wang, Z., Liu, J., Chen, Y., Yuan, L., Peng, H.,
and Ji, H. MINT: Evaluating LLMs in multi-turn inter-
action with tools and language feedback. In The Twelfth
International Conference on Learning Representations,
2024b. URL https://openreview.net/forum?
id=jp3gWrMuIZ.

Wang, Y., Ma, X., Zhang, G., Ni, Y., Chandra, A., Guo,
S., Ren, W., Arulraj, A., He, X., Jiang, Z., Li, T., Ku,
M., Wang, K., Zhuang, A., Fan, R., Yue, X., and Chen,
W. Mmlu-pro: A more robust and challenging multi-
task language understanding benchmark, 2024c. URL
https://arxiv.org/abs/2406.01574.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E., Le, Q. V., Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837,
2022.

Wolfram, S. Statistical mechanics of cellular automata.
Reviews of modern physics, 55(3):601, 1983.

Xu, S., Fu, W., Gao, J., Ye, W., Liu, W., Mei, Z., Wang,
G., Yu, C., and Wu, Y. Is dpo superior to ppo for llm
alignment? a comprehensive study, 2024. URL https:
//arxiv.org/abs/2404.10719.

Yang, Z., Li, P., Yan, M., Zhang, J., Huang, F., and Liu,
Y. React meets actre: Autonomous annotation of agent
trajectories for contrastive self-training. In First Con-
ference on Language Modeling, 2024. URL https:
//openreview.net/forum?id=0VLBwQGWpA.

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan,
K., and Cao, Y. React: Synergizing reasoning and act-
ing in language models, 2023. URL https://arxiv.
org/abs/2210.03629.

Zelikman, E., Wu, Y., Mu, J., and Goodman, N. D. Star:
Bootstrapping reasoning with reasoning, 2022. URL
https://arxiv.org/abs/2203.14465.

Zhao, W., Ren, X., Hessel, J., Cardie, C., Choi, Y., and Deng,
Y. Wildchat: 1m chatgpt interaction logs in the wild, 2024.
URL https://arxiv.org/abs/2405.01470.

Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z.,
Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E. P., Zhang,
H., Gonzalez, J. E., and Stoica, I. Judging llm-as-a-judge
with mt-bench and chatbot arena, 2023. URL https:
//arxiv.org/abs/2306.05685.

Zhou, J., Lu, T., Mishra, S., Brahma, S., Basu, S., Luan,
Y., Zhou, D., and Hou, L. Instruction-following evalu-
ation for large language models, 2023. URL https:
//arxiv.org/abs/2311.07911.

14

https://arxiv.org/abs/1904.07272
https://arxiv.org/abs/2404.14367
https://arxiv.org/abs/2404.14367
https://arxiv.org/abs/2312.12137
https://arxiv.org/abs/2312.12137
https://arxiv.org/abs/2203.07540
https://openreview.net/forum?id=jp3gWrMuIZ
https://openreview.net/forum?id=jp3gWrMuIZ
https://arxiv.org/abs/2406.01574
https://arxiv.org/abs/2404.10719
https://arxiv.org/abs/2404.10719
https://openreview.net/forum?id=0VLBwQGWpA
https://openreview.net/forum?id=0VLBwQGWpA
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2203.14465
https://arxiv.org/abs/2405.01470
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2311.07911

Training a Generally Curious Agent

A. Note on Curiosity
The concept of curiosity has been used in many different machine learning contexts. A popular notion of curiosity is
intrinsic motivation, where the agent is driven by an exploration bonus that is not necessarily related to the task to be
achieved (Schmidhuber, 1991; 2007). Many works build on this notion to handle problems with sparse reward or no reward
at all (Pathak et al., 2017; Eysenbach et al., 2018; Burda et al., 2018; Sharma et al., 2019; Pathak et al., 2019). The curiosity
in this work differs from intrinsic motivation in that we focus on gathering only the information required to solve a given
task rather than all the knowable information. This is closer in spirit to the original exploration-exploitation trade-off in
reinforcement learning (Sutton et al., 1998; Auer et al., 2002; Thompson, 1933). The goal is to explore to the extent that
the problem can be solved but not over-explore at the cost of efficiency. Most existing works based on this principle are
tabula rasa (Osband et al., 2016; Chen et al., 2017). This class of exploration algorithms has been shown to improve
the generalization ability of non-LLM-based RL agents (Jiang et al., 2023b). PAPRIKA differs from these approaches by
learning good exploration strategies from trajectories from many different environments to make exploration on a new
problem more efficient. This can be thought of as a form of amortized exploration.

B. Details on Task Design
B.1. Summary of Task Groups

Twenty questions: Twenty questions challenges the agent to identify a secret topic by asking up to 20 yes-or-no questions.
The goal is to guess the topic in as few questions as possible by interpreting previous answers and strategizing to maximize
information gained. Twenty questions has been studied in prior benchmarks such as LMRL-Gym (Abdulhai et al., 2023):
here we expand upon their environment with a more diverse and difficult set of secret topics. Our secret topics come from a
diverse range of scenarios, including famous people, historical events, scientific concepts, locations, etc. Each secret topic
corresponds to a task, and we have generated a set of 1499 train and 367 test tasks. In order to generate a diverse set of
topics, we use prompting techniques from GenQA (Chen et al., 2024) on GPT-4o-mini. The topics to guess in our training
and test sets are distinct from one another and also the set of topics included in LMRL-Gym (159 topics), which use as an
additional evaluation set. We use GPT-4o-mini (Hurst et al., 2024; OpenAI et al., 2024a) as the task environment to provide
yes/no answers at every turn, and also as a judge to make sure task success label is correct. We use strict string matching to
make sure the intermediate observations are only ‘yes’, ‘no’ or ‘Goal reached’. We also maintain train and test set separation
to accurately test generalization unlike previous works.

Guess my city: Following LMRL-Gym, this task group requires the agent to guess a secret city after asking a maximum
of 20 questions. But unlike twenty questions, the questions here can be broader than just yes/no questions, for example,
“What is your city most popular for?” so long as the answer to the question does not reveal the name of the city directly. We
generated a train set of 500 and test set of 185 distinct cities using GPT-4o-mini and GenQA (Chen et al., 2024) prompting
techniques. In addition, we also evaluated our models on the list of 91 cities from LMRL-Gym, which does not overlap with
our training and test set. We maintain train and test set separation.

Customer service: In this task group, we test for efficient directed exploration —- the LLM must act as a support agent
who asks maximally informative questions to diagnose problems and minimize the number of interactions needed to resolve
the customer’s query. To do so, we simulate realistic troubleshooting scenarios ranging from electronic device issues to
automobile maintenance. We use GPT-4o-mini to simulate a customer with limited technical expertise, and use another
LLM to act as a customer service agent whose role is to listen to the responses from the customer and suggest a sequence
of actions that lead to solving the customer’s problem in as few turns as possible. The customer service troubleshooting
scenarios are generated by GPT-4o-mini, using prompting techniques from GenQA.

Murder mystery: Text-based interactive fiction (IF) environments can be a good benchmark to test LLMs’ decision
making and interaction abilities. Inspired by Hausknecht et al. (2020a), we design our murder mystery task group, where an
LLM is given a crime scene with a possible list of suspects, witnesses, and clues, and it needs to take actions to uncover
more information to successfully determine the culprit. The environments provided in Hausknecht et al. (2020a) proved
difficult to incorporate directly in our setup, since they have a predefined list of valid actions and uses text-based parsing on
the LLM generation to match against the list, making it difficult for LLMs to play the games. Instead, we use GPT-4o-mini
to simulate the environment that can provide dynamic feedback to the agent’s actions. The murder mystery scenarios are
generated by GPT-4o-mini, using prompting techniques from GenQA.

15

Training a Generally Curious Agent

Wordle: Wordle tests an LLM’s deductive reasoning abilities. The agent must guess a secret 5-letter word within 6
attempts. After each guess, the environment provides feedback for each letter: correct letter in correct position, correct letter
in wrong position, or letter not in the word. The agent must use this feedback strategically to maximize information gained
with each guess. We found that LLMs like GPT-4o-mini cannot generate accurate environment feedback for Wordle, so we
use hardcoded rules to generate it instead. We also saw that prompting the LLM agent to do chain-of-thought reasoning
before outputting its final guess significantly improves its performance, so we use that here unlike the environments above.
The secret words are generated by looking at 5-letter words from an English dictionary.

Cellular Automata: A key trait of LLM agents is the ability to code and refine based on interpreter feedback. To model
this, we create a cellular automata-based environment. Here, a binary string (e.g., 1010) represents cells, and a transition
rule defines a cell’s next state based on itself and its neighbors (e.g., 100: 1 means a 0 cell with 1 and 0 neighbors turns into
1). We randomly select a transition rule (one of 256) and up to three input strings and their corresponding outputs generated
by the transition rule. The LLM must infer the rule by analyzing input-output pairs. If its guess generates correct outputs, it
wins; otherwise, it gets feedback and can refine its guess. The task ends in failure if the correct rule isn’t found within six
turns. We use chain-of-thought prompting for the agent and a hardcoded program to generate environment feedback. The
tasks are generated by sampling transition rules and inputs randomly.

Mastermind: Similar to Wordle, Mastermind challenges agents to deduce a 4-digit secret code within 12 turns. After
each guess, environment feedback indicates two values: the number of digits that are correct and in the right position (exact
matches), and the number of digits that appear in the code but in wrong positions (partial matches). Agents must use this
feedback to iteratively refine subsequent guesses. We use chain-of-thought prompting for the agent and a hardcoded program
to generate environment feedback. The tasks are generated by randomly sampling (without replacement) secret codes from
all possible 10,000 four digit codes.

Battleship: Battleship tests an LLM’s ability to balance exploration and exploitation. The environment features a 2D
square grid where three ships are hidden: a carrier (5 cells), a battleship (4 cells), and a destroyer (2 cells). Ships are placed
horizontally or vertically. At each turn, the agent targets one cell with a missile. The environment environment reports either
a hit (including the ship type) or a miss. A ship sinks when all its cells are hit. The agent must sink all ships within 20 turns.
This environment environment requires grid exploration to locate ships and once located, exploitation in the form of targeted
attacks to sink them. We use chain-of-thought prompting for the agent and a hardcoded program to generate environment
feedback. The tasks are generated by randomly choosing the ship locations at each iteration.

Minesweeper: We include minesweeper to test an LLM’s sequential logical reasoning ability. The agent interacts with a
2D rectangular grid containing hidden mines. At each turn, the agent reveals one cell. The first move is always safe since
mines are placed afterwards. If a mine is revealed, the task ends in failure. To win, the agent must reveal all mine-free
cells within 20 turns. When a cell is revealed, it displays a number indicating how many mines are in adjacent cells. If
a revealed cell has no adjacent mines (shown as ‘0’), all neighboring mine-free cells are automatically revealed. We use
chain-of-thought prompting for the agent and a hardcoded program to generate environment feedback. The tasks are
generated by randomly placing mines in the 2D grid at each generation.

Bandit Best Arm Selection: Multi-arm bandits are a classic test for an agent’s ability to perform sequential decision
making — LLMs have been tested on this task in prior works such as Krishnamurthy et al. (2024); Nie et al. (2024). In this
environment, an LLM is presented with a hypothetical scenario where it can select arms at every turn and observe the reward
chosen from a Bernoulli distribution with a fixed but unknown mean attached to that arm. We created a modified version
of their environment with three key distinctions: 1) prior works operated on bandits in a single-turn fashion: at each turn,
LLMs were given the problem setup and history of past interactions within a single user prompt and asked to choose the
next arm. Instead, our design employs multi-turn interactions, where the task description is given in the first turn, and later
turns only provide rewards for the selected arm. 2) Prior works required the LLM to output only the chosen arm, whereas we
employ chain-of-thought (COT) prompting to let the LLM think before it chooses an arm. 3) Instead of minimizing regret
over a long time horizon, we instead work on the bandit best arm selection problem, where the LLM gets to choose arms and
observe rewards for 20 turns, and then is prompted to choose what it thinks is the arm with the highest mean reward. This
is done mainly to control for context length when employing COT, as we could not run inference for more than 20 turns
without running into computational issues, and the observed regret between multiple models is too small if horizon length is
20. We randomize the arm rewards at every iteration. For evaluation, we use the same bandit description as Krishnamurthy

16

Training a Generally Curious Agent

et al. (2024), for training, we use GPT-4o-mini to generate 81 diverse scenarios that are similar to it but has randomly chosen
arm names and hypothetical scenarios. We also note that if the two best arms have very close mean reward (for example, 0.7
and 0.65), then it can be very difficult to identify the best arm within 20 turns. Following Krishnamurthy et al. (2024); Nie
et al. (2024), we set the mean reward of the best arm to be above a certain threshold over the mean rewards of the other arms.

Finally, all the task instructions for the agents, task environments and LLM-judges were written by GPT-4o-mini, which we
report next for the sake of reproducibility.

B.1.1. NOTE ON TASK PROMPTS

We provide the task information in the first user prompt given to the agent. The system prompt for the agent on all task
groups remains the same: “You are a helpful assistant.”. Our initial experiments suggested that giving the task instruction in
the first user prompt was more fruitful than providing it in the system prompt, though we suggest further investigation of
this phenomenon.

B.2. Note on Text-based Games

The goal of PAPRIKA is to train an LLM agent to be better at information-seeking, and to test whether these information-
seeking behavior learned from a few task groups also generalizes to a new domain. To do so, we design our own task groups
that require gather information to succeed. While a lot of the task groups resemble text-based games, our focus is not on
them; rather text-based games are simpler information-seeking tasks that can be solved and learned reliably by language
models of 8-12B parameter range, and we expect these ideas to extend to much more complicated domains given sufficiently
powerful initial models.

Text-based games are an active area of research, and we would like to mention some related works here. Hausknecht et al.
(2020b) utilizes interactive fiction games as a testbed for studying language based autonomous agents and their ability to
handle dynamic action spaces. While our ‘Murder Mystery’ task group is inspired by Hausknecht et al. (2020b), particularly
Detective, we choose to implement it separately instead of using their task environment directly, primarily due to their
implementation relying on a manual parser to extract action from the LLM’s generation and relying on it to take steps
in the environment. The LLMs we experimented with had difficulty outputting responses in the exact format their task
environment required, and we found using GPT-4o-mini to simulate the task environment to be easier while also providing
more dynamic environment responses. Future work can try to directly incorporate games from Hausknecht et al. (2020b)
into PAPRIKA. Similarly, text-based task groups from Côté et al. (2019); Wang et al. (2022); Jansen et al. (2024) can provide
a further set of rich environments to train and test PAPRIKA-based agents on. This is a growing field with many interesting
directions, we direct the readers to Jansen (2021) for a comprehensive study.

17

Training a Generally Curious Agent

B.3. Comparison of action and observation spaces between the task groups

Table 3. Summary of the initial state received by the agent, the action, and the observation spaces on all 10 task groups.
Task Group Initial State Action Intermediate Observations
Twenty Questions User message describing the

task, and the type of the se-
cret topic (e.g., ‘a concept’ or
‘a famous person’) that the
agent needs to guess within
20 questions

A yes/no question about the
secret topic the agent needs
to guess

GPT-4o-mini generated
yes/no answer

Guess My City User message describing the
task

An open-ended question
about the secret city the
model needs to guess

GPT-4o-mini generated an-
swer

Customer Service User message describing the
task, which includes a de-
scription of the problem the
customer is facing

A customer service agent’s
troubleshooting question that
aims to identify the action
that will resolve the cus-
tomer’s problem

GPT-4o-mini simulated cus-
tomer response

Murder Mystery User message describing the
task and the particular muder
mystery scenario, including
the victim, supsects and wit-
nesses of the crime scenario

An action the detective takes
in the game, aimed at iden-
tifying the perpetrator (for
example, asking a suspect
where they were)

GPT-4o-mini simulated
game environment, e.g,
the suspect answering the
detective’s questions

Wordle User message describing the
Wordle game, nature of inter-
mediate feedback and rules
the agent needs to follow

Step-by-step thinking fol-
lowed by a 5 letter word
guess

Feedback related to the com-
mon letters between the cor-
rect word and the guess

Cellular Automata User message describing the
task, and example inputs and
corresponding outputs from
which the agent needs to de-
duce the transition rule

Step-by-step thinking and
then Deduction about the
transition rules in a 1D cel-
lular automaton

Inputs, true outputs, outputs
generated by the transition
rule the agent deduced

Mastermind User message describing the
rules of the task

Step-by-step thinking about
past guesses and observed
feedback, followed by a 4
digit secret code guess

Feedback related to the com-
mon digits between the cor-
rect code and the guess made
by the agent

Battleship User message describing the
task, and the initial board
state of the game

A particular cell that the
agent wants to hit with a mis-
sile

Whether the cell contains a
ship and what type of ship,
followed by the current state
of the board given the agent’s
past actions

Minesweeper User message describing the
task and the initial state of
the grid

A particular cell that the
agent wants to declare ‘mine-
free’

Whether the cell is mine free,
followed by the current state
of the grid following rules of
the game

Bandit Best Arm Selection User message describing the
bandit game in text, includ-
ing the number of turns and
the possible arm names from
which the agent needs to pick
arm with the best reward

A particular arm in the multi-
armed bandit problem that
the agent chooses

Observed reward from choos-
ing that arm, sampled from
its corresponding Bernoulli
distribution with fixed but un-
known mean

Table 3 shows a summary of how the task groups differ from each other.

18

Training a Generally Curious Agent

B.4. Details of Individual Task Groups

B.4.1. TWENTY QUESTIONS

For twenty questions, we provide the LLM agent with general instructions about the task, and the type of hidden topic (e.g.,
person, location, food etc.) that it needs to guess in the first user prompt. An example is given below.

Twenty Questions Agent Prompt

You are playing a game of 20 Questions. Your goal is to guess the name of a thing or person by asking up to 20
yes-or-no questions. After each question, you will receive an answer: ‘Yes’ or ‘No.’ Use the answers provided to
refine your guesses.
Here are your instructions:
- You can ask only yes-or-no questions.
- After receiving each answer, you should adapt your questions based on the new information.
- Your goal is to guess the topic in as few questions as possible.
- If you’re confident, you can make a guess before reaching 20 questions.
The game starts now. You are trying to guess a clothing. Ask your first question!

We use another LLM (usually GPT-4o-mini unless explicitly mentioned otherwise) to simulate the task environment that
provides yes/no answers. This LLM receives the secret topic, and generates answers to the agent’s questions in relation to
this topic. An example system prompt for the task environment is given below.

Twenty Questions Environment Prompt

You are the environment for a game of 20 Questions. You will be given a topic (e.g., cat, deer, Abraham Lincoln),
and your role is to answer ‘Yes’ or ‘No’ to questions about the topic. Respond strictly with ‘Yes’ or ‘No’ only,
based on the truth of the matter. Do not provide any additional information. If the user guesses the correct answer,
respond with ‘Goal reached.’ Enforce a strict match before saying ‘Goal reached.’, for example, if the user guesses
‘Is the occupation Engineer?’ and the topic was software engineering, say ‘No’. However, if the user guesses ’Is the
occupation a type of engineering?’, say ‘Yes’. Wait for the user’s questions and respond accordingly.
For example:
- User: ‘Is this person alive?’
- You: ‘No’
- User: ‘Is this a living creature?’
- You: ‘Yes’
The player is trying to guess a clothing, and the correct answer is Gloves.

To prevent task environment hacking, we additionally perform string matching to ensure the response from the task
environment is yes, no or ‘Goal reached’. We discard trajectories where the task environment responds with something else
everytime within 5 attempts. Additionally, we notice that the task environment LLM can respond with ‘Goal reached’ even
when the agent has not succeeded in guessing the secret topic. We use an additional API call to GPT-4o-mini as a judge to
filter these trajectories. An example system prompt for this LLM judge is as follows:

19

Training a Generally Curious Agent

Twenty Questions Judge Prompt

You are an expert judge for the game of 20 questions. You will be given a question asked by the player, and you
need to judge if it successfully guesses the correct topic.
In particular: Check that the player has precisely guessed Gloves in their question. Reply with <VALID> or
<NOTVALID>. Reply with <VALID> if and only if the given question successfully ends the game by guessing the
correct clothing, which is: Gloves, otherwise reply with <NOTVALID>.
Example 1: Topic to Guess: Car
Player: Is the invention a car?
Answer: <VALID>
Example 2: Topic to Guess: Car
Player: Does the invention have wheels?
Answer: <NOTVALID>
Example 3: Topic to Guess: Apple, Inc.
Player: Does this company produce IPhones?
Answer: <NOTVALID>
The conversation begins here:
Agent: Based on the fact that the clothing is worn for warmth and on the hands, I’m going to guess that the clothing
is a glove.
(End of Agent Turn)
Now judge whether the player has successfully guessed the correct clothing, which is Gloves in this particular game.
Reply with <VALID> only if the player has guessed Gloves in the question, otherwise reply with <NOTVALID>.
Note that guessing a particular characteristics of Gloves is not enough, the player needs to arrive at the final answer
in order for you to reply with <VALID>.
Answer:

20

Training a Generally Curious Agent

B.4.2. GUESS MY CITY

An example prompt for the agent is listed below:

Guess My City Agent Prompt

You are playing a game called ‘Guess My City.’ Your task is to guess the home city of the other player within 20
questions.
You must follow these rules:
1. You may ask open-ended questions about the city’s characteristics, such as geography, culture, landmarks, cuisine,
climate, or other unique traits.
2. Do not ask directly for the name of the city or country.
3. Use the answers from the other player to strategically decide the next question, your goal is to arrive at the correct
city with as few questions as possible.
4. After gathering enough information, you can attempt to guess the city, but each guess counts as one of your 20
questions.
Example questions: ‘What is your favorite cuisine from your home city?’, ‘Is your home city located near the
coastline?’, ‘What kind of landmarks is your city known for?’ Your goal is to identify the city through deduction,
pattern recognition, and strategic questioning.
4. When you are confident, make a guess, by mentioning the name of the city and the country it is in, for example,
‘Is the city Jakarta, Indonesia?’
The game starts now, and start asking your questions.

We use GPT-4o-mini to simulate the task environment. We provide the name of the city the agent needs to guess to the
environment and instruct it to generate answers related to this target city, without giving away the name of the city unless the
agent guesses it. An example system prompt for the task environment is listed below:

Guess My City Environment Prompt

You are the environment in a game called ’Guess My City.’ You will be given a specific home city (e.g., London,
United Kingdom) and you have to respond to the player’s questions to help them guess this city.
Follow these rules:
1. Answer the agent player’s questions honestly and correctly (i.e., the answers need to be true given the home city
given to you at the start of the game), but do not mention the name of your city or its country explicitly. However,
you can verify the player’s guess about a particular city/country. For example, if the player asks, ‘What is your home
country?’ You should not respond to this question. However, if they ask ‘Is your home country United Kingdom?’
You should reply with the correct answer based on the home city given to you.
2. Your answers should provide useful clues about your city’s geography, culture, landmarks, cuisine, climate, or
other unique characteristics.
3. Be as informative as possible to guide the agent player within the rules. Example answers: If the agent asks about
cuisine, you could say: ‘My city is famous for its seafood dishes and has a vibrant food market scene.’ If the agent
asks about geography, you might say: ‘My city is located near a major river and has a historic port.’
4. You should respond with ‘Goal reached’ if the player has successfully guessed your home city. Ignore minor
variations in the spelling of the city, but only if these variations are common.
Remember, you are here to help the agent guess your city through clues, but you must not reveal the city’s name or
its country directly UNDER ANY CIRCUMSTANCES. If the player asks such a question, reply that you cannot
give away the name, and can only confirm the name if the player guesses it.
The game starts now, and the player is trying to guess the city Surat, India

To prevent the task environment from getting hacked, we use GPT-4o-mini as a judge similar to twenty questions. An
example system prompt for the judge is listed below.

21

Training a Generally Curious Agent

Guess My City Judge Prompt

You are the judge in a game called ‘Guess My City’. Your role is to verify if the player has won the game by
correctly guessing the city chosen by the environment (env) player.
To determine this, follow these rules:
1. Check the agent player’s question to ensure they have not directly asked the environment for the name of the city
or country. Any question explicitly requesting the city’s name, such as ‘What is the name of your city?’ or ‘What
country is your city in?’ violates the rules.
2. Verify that the player has explicitly mentioned the correct name of the city in their guess. Ignore minor variations
in the spelling of the city (for example, Kiev and Kyiv refer to the same city). If these two conditions are met, the
player wins the game. Otherwise, the agent has not won.
3.Your role is purely evaluative, ensuring adherence to the rules and confirming or denying the win based on the
criteria above.
4. Reply <VALID> if the player has successfully guessed the city, and followed the specified rules. Otherwise, reply
<NOTVALID>
The conversation begins here:
Agent: I’m not giving up yet. Based on your previous answers, I’m going to try again. Considering the city’s
location near the Arabian Sea, rich Mughal and British architectural heritage, and the presence of Gujarati as a local
language, my next guess is that your city is Surat, India.
(End of Agent Turn)
Now judge whether the player has successfully guessed the correct city, which is Surat, India in this particular game.
Reply with <VALID> only if the player has guessed Surat, India (or other variations in name, if both names refer to
the same city) in their response, otherwise reply with <NOTVALID>. Ignore variations in the name of the city if the
city is known by both names (for example, Kyiv and Kiev). Note that guessing a particular characteristics of this
city is not enough, the player needs to successfully guess the correct city by name in their response in order for you
to reply with <VALID>.
Answer:

22

Training a Generally Curious Agent

B.4.3. CUSTOMER SERVICE

For this task group, we require the agent to act as a customer service agent, with the following prompt:

Customer Service Agent Prompt

You are going to role-play as a customer service agent and you have to help a customer resolve their issue. Your
goal is to gather enough information to diagnose the problem and provide solution.
Your instructions are the following:
1.You will need to ask targeted questions or suggest particular actions to the customer to gather the necessary details.
2. The customer may not be technically inclined, so keep your language simple and clear.
3.Avoid making assumptions — ask specific questions to determine the potential causes. You should guide the
customer through basic troubleshooting steps and gather data on the situation.
4. Refine your questions in a strategic way based on the customer’s responses for earlier questions.
5.You should ask questions in an efficient manner, to make the customer satisfied and resolve their problem as
quickly as possible. You should also keep your responses short and concise.
6. If the customer mentions a specific product they are using (for example, ABC electronics), then you are the
customer support agent for that product/company, i.e., you represent that product or company and have to take
appropriate actions without referring the customer to somewhere else.
Your specific scenario is this: The customer’s refrigerator is beeping continuously and is not cooling effectively.
Please start helping the customer now by asking your first question.

Similar to the two prior task groups, we use another LLM (usually GPT-4o-mini) to simulate the task environment. We
specifically instruct it to act as a customer without much technical knowledge.

Customer Service Environment Prompt

You are going to role-play as a customer experiencing a specific issue.
You must adhere to the following guidelines:
1. Only respond to the agent’s questions and provide relevant information when prompted.
2.Your responses should be concise and reflect a typical, non-technical customer’s knowledge level.
3. You are going to know what the solution for the specific issue is, but do not give away this information at any
point. Your goal is to observe if the customer service agent can ask relevant questions and arrive at the specific issue.
4.When the agent asks you about a potential solution, you should determine what the outcome would be based on
your knowledge about the true underlying problem, and let the agent know the result. For example, if your car is not
starting because of lack of fuel, and the agent suggests you to check the fuel level in your car, it should fix your
issue. Use your reasoning ability to decide whether the suggested solution works, given that the solution to your
problem is: The refrigerator door is slightly ajar, and properly closing it will stop the beeping and restore cooling.
5. Reply with ’Goal reached’ (and nothing more) if the agent has reached or solved your particular issue.
Your role-play starts now. The particular problem you, as the customer, are facing is: The customer’s refrigerator
is beeping continuously and is not cooling effectively., and the solution to this problem is: The refrigerator door
is slightly ajar, and properly closing it will stop the beeping and restore cooling.. Note that you should never give
away or tell the agent what will solve your particular problem, your goal is to see if the agent can come up with the
potential solution themselves.

Finally, we use an LLM judge at every turn similar to twenty questions and guess my city, to filter trajectories that may have
hacked the task environment.

23

Training a Generally Curious Agent

Customer Service Judge Prompt

You are the judge of a customer service agent trying to help a customer in a particular scenario. You would be given
the the agent’s response, and you have to verify whether the agent has been able to solve the problem of the customer
correctly.
The particular scenario the customer is facing is: The customer’s refrigerator is beeping continuously and is not
cooling effectively., and the solution to their problem is: The refrigerator door is slightly ajar, and properly closing it
will stop the beeping and restore cooling.
Reply with <VALID> if the agent is successful in suggesting the correct solution, otherwise reply with
<NOTVALID>.
The conversation begins here:
Agent: A steady beep can indicate a specific issue.
Have you checked the temperature settings on your refrigerator? Is it set to the correct temperature, and are the
doors closed properly?
(End of Agent Turn)
Now judge whether the agent has been successful in making the correct suggestion to solve the customer’s problem.
Use your reasoning ability to decide whether the agent’s response would solve the customer’s problem, which is The
refrigerator door is slightly ajar, and properly closing it will stop the beeping and restore cooling.
For example, if the customer’s car is not starting because of a lack of fuel, and the agent suggests to check the fuel
level in the car, it should fix the issue. Reply with <VALID> if they have been successful, otherwise reply with
<NOTVALID>.
Answer:

24

Training a Generally Curious Agent

B.4.4. MURDER MYSTERY

For this task group, we prompt the LLM agent with a particular murder mystery scenario. An example prompt is given
below.

Murder Mystery Agent Prompt

You are playing the role of a detective in a murder mystery game.
The setup for the game is:
1.You will be provided with a scenario describing a crime and its key elements. Your goal is to solve the mystery by
asking questions, examining evidence, and drawing logical conclusions.
2. For every action you take or question you ask, you will receive feedback from the game.
3. Your questions and actions should be precise and logical, aimed at uncovering clues, verifying alibis, and piecing
together the sequence of events. You should stretegically choose the next action, given the information you have
already obtained from the game, and choose actions that lets you catch the culprit as quickly as possible.
4. You can only take a single action at every turn.
5. You have to consider all pieces of information, and scrutinize all the characters in the game, including the
witnesses or background characters, since the true culprit maybe a witness or a background character, and might not
always be one of the primary suspects declared at the beginning of the game. Do not focus on any character too
early in the game, rather try to see if anyone’s statements are contradictory.
6. You should always gather enough information before making a decision — try not to make a mistake! You should
also keep your mind open about who can be the true culprit and try to be information seeking, without being too
narrowed down on one suspect too quickly.
7. Once you believe you have enough evidence, you may state your conclusion about the case, which will terminate
the game.
The game starts now. The particular scenario you have is: You are a detective investigating the death of Aiko
Nakamura, a curator found dead during the exhibition of a centuries-old scroll at Tokyo’s National Museum of Art.
The suspects are her protégé Hiroshi, sponsor Ms. Tanaka, and rival curator Dr. Saito. Witnesses include Akiko,
a janitor who was cleaning nearby. Investigate the scroll’s history and the black market connections to find the
murderer.

25

Training a Generally Curious Agent

The corresponding environment prompt for the same task is as follows (given to GPT-4o-mini to simulate the task
environment):

Murder Mystery Environment Prompt

You are an advanced AI responsible for simulating a challenging and immersive murder mystery game environment.
You are provided with the full details of the scenario, including the characters, their backstories, motives, alibis, the
sequence of events, and the true culprit. Your task is to respond to the actions and inquiries of the detective player in
a manner that maintains the game’s logic and adds complexity to the mystery.
Your instructions are:
1. Provide only the information directly prompted by the detective’s actions or questions, avoiding any unnecessary
hints or details. Keep your responses ambiguous and concise to encourage deeper investigation.
2. If the detective inspects an item, describe its condition, appearance, and only the most relevant clues, avoiding
overly revealing details unless the detective’s inspection is exceptionally thorough or precise. If they interview a
character, simulate realistic behavior and speech based on the character’s personality, motivations, and knowledge.
Characters will actively avoid implicating themselves and may misdirect suspicion.
3. Allow for logical consequences of the detective’s actions, such as making certain items available for inspection,
unlocking additional questions, or creating natural developments in the storyline. Maintain consistency in responses
and adjust dynamically to the detective’s progress.
4. When the detective declares their final accusation, reply with ’Goal reached’, and do not say anything else.
5. Characters will never explicitly admit to guilt but will respond realistically under pressure. Create a dynamic and
challenging experience by balancing character responses between truth, omission, and plausible misdirection.
6. Always strive to make the game enjoyable and intriguing while revealing the absolute minimum information
required for the detective to progress logically.
The game begins now. The specific scenario for this session is: In Tokyo’s National Museum of Art, a renowned
curator, Aiko Nakamura, is found dead during the exhibition of a centuries-old scroll. The suspects are her protégé
Hiroshi, who argued over her criticism of his work; a corporate sponsor, Ms. Tanaka, who pushed for the scroll’s
relocation; and a rival curator, Dr. Saito, who claimed the scroll was a forgery. The true culprit is Akiko, a janitor,
who killed Aiko to prevent her from exposing a secret black market deal involving the scroll. Key evidence includes
Akiko’s fingerprints on the exhibit case, forged documents in her locker, and surveillance footage showing her
entering the gallery after hours.

26

Training a Generally Curious Agent

Finally, similar to the prior task groups, we also use GPT-4o-mini as a judge to verify the task success rewards, with the
following example prompt.

Murder Mystery Judge Prompt

You are the judge in a murder mystery game. Your role is to evaluate the detective’s final action and determine if
their conclusion is correct.
You will be provided with two inputs:
1.the true crime scenario, which includes the actual culprit. The true game scenario in this round is this: In Tokyo’s
National Museum of Art, a renowned curator, Aiko Nakamura, is found dead during the exhibition of a centuries-old
scroll. The suspects are her protégé Hiroshi, who argued over her criticism of his work; a corporate sponsor, Ms.
Tanaka, who pushed for the scroll’s relocation; and a rival curator, Dr. Saito, who claimed the scroll was a forgery.
The true culprit is Akiko, a janitor, who killed Aiko to prevent her from exposing a secret black market deal involving
the scroll. Key evidence includes Akiko’s fingerprints on the exhibit case, forged documents in her locker, and
surveillance footage showing her entering the gallery after hours.
2. The detective’s last response.
Compare the detective’s action to the true crime scenario. Reply with <VALID> or <NOTVALID> strictly. You
should reply <VALID> if and only if the detective has successfully caught the true culprit in their response, and
otherwise respond with <NOTVALID>.
The conversation begins here:
Agent: Akiko’s panic and desperation suggest that she’s hiding something, and her story about hearing Aiko talking
to someone in the back room raises more questions than answers. I believe I have enough evidence to make an
accusation. Based on the inconsistencies in Akiko’s story, her nervous behavior, and her knowledge of the hidden
compartment in the scroll, I believe Akiko is the culprit. I accuse Akiko of murdering Aiko Nakamura.
(End of Agent Turn)
Now judge whether the detective has successfully accused the person who truly committed the crime in their last
response. Here is the true crime scenario: In Tokyo’s National Museum of Art, a renowned curator, Aiko Nakamura,
is found dead during the exhibition of a centuries-old scroll. The suspects are her protégé Hiroshi, who argued over
her criticism of his work; a corporate sponsor, Ms. Tanaka, who pushed for the scroll’s relocation; and a rival curator,
Dr. Saito, who claimed the scroll was a forgery. The true culprit is Akiko, a janitor, who killed Aiko to prevent her
from exposing a secret black market deal involving the scroll. Key evidence includes Akiko’s fingerprints on the
exhibit case, forged documents in her locker, and surveillance footage showing her entering the gallery after hours.
Respond with <VALID> if the detective is successful, otherwise reply with <NOTVALID>. Note that the detective
has to announce their accusation in order for you to respond with <VALID>, and merely confronting a character is
not enough.

27

Training a Generally Curious Agent

B.4.5. WORDLE

For wordle, we use a hardcoded program as the task environment, that generates intermediate observations and eventual task
reward. The LLM agent playing wordle receives the instructions for this task in its prompt. Furthermore, we prompt it to
use chain-of-thought before generating a final response:

Wordle Agent Prompt

You are playing a game of Wordle. Your goal is to guess the secret five-letter word within six attempts. After
each guess, you will receive feedback in the form of a series of statements describing how the letters in your guess
compare to the secret word. Each statement corresponds to a letter in your guess:
- ‘First letter is correct and in the correct position in the target word’ means the letter is correct and in the right
position.
- ‘First letter exists in the target word, but in a different position’ means the letter is correct but in the wrong position.
- ‘First letter does not exist in the target word’ means the letter is not in the word at all.
Use this feedback to refine your guesses and try to guess the secret word within six attempts. You should try to
strategically choose your guesses based on prior guesses (if any) and corresponding feedback you received, so that
you can guess the secret word as quickly as possible.
You have to refine your guess based on this provided feedback. Keep guessing until you either guess the word
correctly or use up all your attempts.
Please try to be concise. Format your response in the following way: <Think> Any step-by-step, short and concise
thinking to strategically determine the next guess for the secret word </Think>
<Answer> your guess of what the word should be </Answer>
The game begins now, please make your first guess about the secret five-letter word!

We also provide an example of the task environment feedback: given the secret word ‘toast’ and the agent’s guess ‘boost’,
we generate the following feedback:

Wordle Task Environment Feedback

First letter, b, is not in the target word
Second letter, o, is correct and in the correct position in the target word
Third letter, o, exists in the target word but in a different position
Fourth letter, s, is correct and in the correct position in the target word
Fifth letter, t, is correct and in the correct position in the target word
Make your next guess about the hidden word. Please try to be concise. Format your response in the following way:
<Think> Any step-by-step, short and concise thinking to strategically determine the next guess for the secret word
</Think>
<Answer> your guess of what the word should be </Answer>

28

Training a Generally Curious Agent

B.4.6. CELLULAR AUTOMATA

For this task group, we want an LLM to be able to infer the transition rule of 1D elementary cellular automation by observing
the inputs and outputs of its previously inferred transition rule, plus the correct outputs for the same inputs if the inferred
transition rule was wrong. Recall that for 1D cellular automation, we have binary strings consisting of ‘1’ and ‘0’ as a state,
e.g., ‘111010’ can be a state. Each ‘1’ and ‘0’ are referred to as a cell within the state. We also have a transition rule that
defines how each cell would transform in the next state given its left and right neighbor. For any cell c, we call (left neighbor,
cell, right neighbor) the neighborhood of c.

For example, consider the following transition rule:

Neighborhood of center cell 111 110 101 100 011 010 001 000
New state for center cell 0 1 1 0 1 1 1 0

Here 111 → 0 implies that if a cell is ‘1’ and both its left and right neighbors are ‘1’, then the cell will become ‘0’ in the
next time step. We adopt the convention that for the left-most cell in the state, we consider the right-most cell as its left
neighbor, and similarly for the right-most cell, we consider the left-most cell as its right neighbor.

Now we would show an example for how to calculate the output state given the input state and the transition rule. Assume
the input state is ‘10110’, and we want to apply the transition rule from above. Then we compute the next state as follows:

1. The first cell is 1, the last cell is 0 (which will be considered as the first cell’s left neighbor), and the second cell is 0.
So the neighborhood of the first cell is ‘010’. For this neighborhood, we have the transition rule 010 → 1, so the first
cell remains 1

2. Similarly, the neighborhood of the second cell is 101. Now 101 → 1, so the second cell becomes 1 from 0

3. 011 → 1, so the third cell remains 1

4. 110 → 1, so the fourth cell remains 1

5. 101 → 1, so the fifth cell becomes 1 from 0

Therefore, the next state becomes ‘11111’ from ‘10110’.

Note that there are 256 possible transition rules. In the first user prompt, we choose a few random binary strings as input
states. We also pick one of the 256 transition rules randomly and use it to generate the next states given the input states and
this transition rule. We then provide the LLM with these (input state, output state) pairs, and ask it to infer the transition rule.
There can be multiple correct transition rules that generate the same output states from the input states (since the input states
may not have all 8 possible neighborhood configurations), so we declare task success if the guessed transition rule by the
agent generates outputs that match the given output states (we do not require the guessed transition rule to exactly match the
hidden transition rule, as long as it generates correct outputs from the given inputs). If the LLM generated transition rule
does not generate the correct output for all given inputs, we provide it with the outputs its predicted rule would generate and
ask it to try again. This is intended to simulate the ability to code a function given inputs and desired outputs from the user,
and then refine previously written code using feedback from an available interpreter.

An example instruction prompt for this task group is given next.

29

Training a Generally Curious Agent

Cellular Automata Agent Prompt

You are a reasoning assistant participating in a game where you must deduce the hidden rule governing a 1D cellular
automaton. In each round, you are provided with 3 inputs (the initial state of the automaton) and the corresponding
outputs after applying the hidden rule for one step. Your task is to analyze the input-output pairs and deduce the
hidden rule that governs the automaton’s behavior. If your guessed rule generates the correct outputs for the given
inputs, you win the game. If your guess is incorrect, the game will provide you with the outputs generated by your
guessed rule for the same inputs as feedback. Use this feedback to refine your guess in subsequent rounds. Your
goal is to try to guess the correct hidden rule as quickly as possible.
The rule governs the behavior of each cell in the automaton based on its state and the state of its immediate neighbors
(left, center, and right). There are 8 possible configurations of these states, each represented as a 3-bit binary number
(e.g., ‘111’, ‘110’, ‘101’, etc.). For the first and last cells, we warp around the edges, i.e., the left neighbor of the
first cell is last cell, and the right neighbor of the last cell is the first cell. Your guess must specify the next state for
each configuration in the following format:
‘<Think> step-by-step thinking to deduce the correct hidden rule </Think>
<Answer>
<rule> 111: next state </rule> <rule> 110: next state </rule> <rule> 101: next state </rule>
<rule> 100: next state </rule> <rule> 011: next state </rule> <rule> 010: next state </rule>
<rule> 001: next state </rule> <rule> 000: next state </rule> </Answer>’
Explanation of the format:
- ‘<rule> 111: 0 </rule>’ means if the current cell and both of its neighbors (left and right) are in state 1, then
the current cell will transition to state 0 in the next iteration.
- Similarly, ‘<rule> 110: 1 </rule>’ means if the left and center cells are in state 1 and the right cell is in state
0, then the current cell will transition to state 1 in the next iteration.
Example Round:
Input and Output Provided:
Input 1: 0 1 1 1 1 0
Output 1: 1 1 0 0 1 0
Your Response:
‘<Think> Based on the provided example, I observe that cells transition to state 0 when surrounded by 1s, and
cells surrounded by exactly two active neighbors transition to state 1. Using this reasoning, I deduce the following
rule: </Think>
<Answer>
<rule> 111: 0 </rule> <rule> 110: 1 </rule> <rule> 101: 1 </rule> <rule> 100: 0 </rule>
<rule> 011: 1 </rule> <rule> 010: 0 </rule> <rule> 001: 1 </rule> <rule> 000: 0 </rule>
</Answer>
If your guessed rule does not produce the correct outputs, you will receive feedback. For instance:
Input: 0 1 1 1 1 0
Your Output: 1 0 0 1 0 0
Use this feedback to refine your rule in the next round. Continue iterating until your guessed rule generates outputs
matching the true outputs for the provided inputs. Aim to win the game by accurately deducing the hidden rule as
quickly as possible.
The game begins now, and your (input, output) pairs are:
Input 1: 0 0 0
Output 1: 0 0 0
Input 2: 1 1 1 1 1 0 0 0 1
Output 2: 0 0 0 0 0 1 0 1 1
Input 3: 1 0 0 1 1 1 0 0
Output 3: 1 1 1 1 0 0 1 1

30

Training a Generally Curious Agent

When the agent makes a wrong guess, it receives feedback from the task environment as follows:

Cellular Automata Environment Feedback

Sorry, the automation rule you guessed does not generate the correct outputs for all the given inputs. I will give you
the outputs from the rules that you gave last time. Please use them to refine your guess about the automation rule.
Input 1: 0 0 0
True Output 1: 0 0 0
Output generated by the last rule you gave: 0 0 0
Input 2: 1 1 1 1 1 0 0 0 1
True Output 2: 0 0 0 0 0 1 0 1 1
Output generated by the last rule you gave: 0 0 0 0 0 0 0 0 0
Input 3: 1 0 0 1 1 1 0 0
True Output 3: 1 1 1 1 0 0 1 1
Output generated by the last rule you gave: 0 0 0 0 0 0 0 0
Make your next guess about the hidden rule. Format your response in the following way:
‘<Think> step-by-step thinking to deduce the correct hidden rule </Think>
<Answer>
<rule> 111: next state </rule> <rule> 110: next state </rule> <rule> 101: next state </rule>
<rule> 100: next state </rule> <rule> 011: next state </rule> <rule> 010: next state </rule>
<rule> 001: next state </rule> <rule> 000: next state </rule> </Answer>’
Keep your thinking concise.

31

Training a Generally Curious Agent

B.4.7. MASTERMIND

For mastermind, we have a secret 4-digit code (each digit can be anything between 0 and 9), and ask an LLM agent to guess
it. The agent starts with a 4-digit guess, and the task environment provides feedback in terms of:

• Exact matches: How many of the digits in the guess are also in the target secret code, and exactly in the same position?
In other words, the number of exact matches reflects the number of positions that are exactly the same between the
guess and target code.

• Partial matches: Discounting the exact match digits, how many of the other digits in the guess code are in the target
secret code? In other words, the number of partial matches reflect the digits in the guessed code that are in the secret
code but in different positions.

For a concrete example, assume the secret code is ‘1706’, and the LLM at a particular iteration has guessed ‘1608’. Then it
would receive the following feedback:

• There are two exact matches. The two exact matches are 1 and 0, in first and third position, though this information
would not be revealed to the LLM, it must reason about this by looking at the information from all previous turns.

• There are one partial match. This is the digit 6, which is in the target secret code, but in a different position. The LLM
would only receive the information that there is 1 partial match, and not the information about which digit corresponds
to that match.

Now that we have explained the rules of the task, we would provide the instruction prompt describing the task to the LLM
agent, which also describes the complete rules for this task:

Mastermind Agent Prompt

You are an AI playing the game Mastermind with digits. The objective of the game is for you, the codebreaker, to
guess a secret code of 4 digits, where each digit ranges from 0 to 9. The code is created by the codemaster and can
include repeated digits.
The gameplay proceeds as follows:
1. You make a guess by proposing a 4 digit code. You should state your guess as 4 digits separated by a space.
2. After each guess, the codemaster provides feedback in the form of two numbers:
- ‘Exact matches’ – The number of digits in your guess that are correct and in the correct position.
- ‘Partial matches’ – The number of digits (distinct from exact matches) in your guess that are correct but in the
wrong position.
Given this feedback, DO NOT simply assume any particular digit is an exact or partial match or not in the secret
code, you should have strong reasoning based on obtained feedbacks to make deductions on particular digits.
3. Using this feedback, you refine your future guesses, aiming to deduce the secret code.
Rules for feedback:
- Each digit in the secret code can only contribute to feedback once.
- If a digit is correct but occurs more times in your guess than in the code, the extra occurrences are ignored for
partial matches.
The game ends when you correctly guess the code, achieving 4 exact matches.
Your goal is to refine your guess about the secret code using the feedback provided by the codemaster, and
strategically choose your next guess so as to be able to guess the correct code as quickly as possible.
The game starts now, make your first guess! You should format your response as: <Think> Any step-by-step, short
and concise thinking to determine what the next guess should be </Think>
<Answer> your guess on the 4 digit code </Answer>

32

Training a Generally Curious Agent

Below is an example of hardcoded task environment feedback, when the true secret code is ‘5959’, and then LLM agent has
guessed ‘5789’:

Mastermind Task Environment Feedback

Your last guess has 2 exact matches with the secret code. In other words, exactly 2 digit(s) in your last guess, 5 7 8 9,
are in the correct position in the secret code. (We won’t reveal the particular digits within your guess that are exact
matches, they can be any digit within your guess) Your last guess also has 0 partial matches. In other words, 0 digits
in your guess, 5 7 8 9, are in the secret code, but in the wrong position. (We won’t reveal which digits within your
guess are partial matches, they can be any, you must deduce them with reasoning and further guesses and feedbacks.)
Now make your next guess about the secret code. Please format your response as: <Think> Any step-by-step,
short and concise thinking to determine what the next guess should be </Think>
<Answer> your guess on the 4 digit code </Answer>

33

Training a Generally Curious Agent

B.4.8. BATTLESHIP

We employ a modified version of the battleship game here as one of our task groups: https://en.wikipedia.org/
wiki/Battleship_(game). The main modifications are:

• We make an entirely text-based version of this game for the purpose of our paper.

• We want to test strategic exploration and decision-making capabilities of LLMs without having to worry about an
adversary, so we make the game single player, where the agent just needs to find and sink all of the enemy ships in the
grid within a certain number of turns to achieve victory (and does not need to consider their own ships getting sunk by
an adversary). We leave the two-player version of this game for future work.

In our version of the game, we start with a N1 ×N2 grid, where we place 3 ships: a carrier requiring 5 contiguous horizontal
or vertical cells within the grid, a battleship requiring 4 cells, and a destroyer requiring 2 cells. The ships are placed randomly
at every iteration, and the ships locations are hidden from the agent. Imagine the true board state looks like following:

1 2 3 4 5
A Carrier Carrier Carrier Carrier Carrier
B Battleship
C Battleship
D Battleship Destroyer Destroyer
E Battleship

The co-ordinates in the grid are marked by row identifiers (letters starting from ‘A’) and column identifiers (numbers starting
from 1). For example, in the above board, the carrier is placed on cells A1, A2 upto A5. At every turn, the agent gets to
choose a particular cell (for example, ‘C2’) to hit with a missile. It then receives the following feedback from the task
environment:

• If the cell was targeted in an earlier turn, nothing happens, and the agent is informed about this.

• If the cell was not targeted before and is empty, then the agent is informed that their choice was a miss.

• If the cell was not targeted before and has a ship in it, then the task environment informs the agent that their choice of
the cell resulted in a hit. It also announces what type of ship was hit by the agent. If the agent has hit all the cells in the
grid pertaining to a particular ship, then the task environment also announces that the particular ship has been sunk.

• If the agent has sunk all 3 ships, then the task results in success. Otherwise, if the all of the allowed number of turns
has passed and there is at least one ship remaining in the grid, then the task ends in failure.

After every turn, the agent gets an updated view of the board with the hits and misses clearly marked out. For example, if we
mark misses with an ‘M’, successful hits with an ‘X’, and hidden cells with an ‘.’, and if the agent chooses to target C2 and
A1 in the first two turns respectively, then the corresponding board that the agent will observe at the beginning of the third
turn looks like the following:

1 2 3 4 5
A X
B
C . M . . .
D
E

In order to be successful at battleship, agents need to balance between exploration and exploitation similar to the
bandit setting, but without well-known optimal algorithms. At the start of the game, an agent needs to explore the board
effectively to find ship locations, and once it has a hit a particular ship, it would need to exploit around that particular cell to
find all cells pertaining to the ship to be able to sink it completely.

34

https://en.wikipedia.org/wiki/Battleship_(game)
https://en.wikipedia.org/wiki/Battleship_(game)

Training a Generally Curious Agent

Next, we provide the description of the task given to the LLM agent at the start of the task, explaining the rules:

Battleship Agent Prompt

You are playing a single-player version of the Battleship game. Your objective is to sink all ships on the board in as
few attempts as possible, with a maximum of 20 attempts. The game is played on a grid size: 6 x 6 grid, and the
board uses the following symbols:
- ‘.’ represents a hidden cell that has not been hit.
- ‘X’ represents a cell where you successfully hit a ship.
- ‘M’ represents a cell you have hit previously, which was a miss, i.e., there were no ships in that cell.
Rules:
1. There are 3 ships hidden on the board:
- Carrier: size 5
- Battleship: size 4
- Destroyer: size 2
2. Ships are placed either horizontally or vertically and do not overlap.
3. On each turn, choose a cell to attack by providing its coordinates (e.g., A1, B3).
4. If you hit a ship, the cell will change to ’X’.
5. If you miss, the cell will change to ’M’.
6. The game ends when all ships are sunk or after 20 attempts. After every attempt, I will show you the current
board state.
Use logic to deduce the possible locations of remaining ships as the board fills in.
Remember to focus on sinking the ships efficiently while minimizing wasted turns.
Cells are represented with the row being denoted with a letter, starting from A and and so on, and the columns being
denoted by 1, 2, 3, and so on.
The cell in the first row and column is labeled A1, the second cell in the second column is labeled B2, etc.
You should format your response as the following:
<Think> Any step-by-step, short and concise thinking to strategically determine which cell you should hit next
</Think>
<Answer> the cell you chose to hit </Answer>
The game begins now, with the board looking like the following:
1 2 3 4 5 6
A
B
C
D
E
F
Please make your first move!

In the above example, there was no ships placed at D1, and if the agent chooses to target it, it will give the following task
environment feedback:

Battleship Environment Feedback Example 1

Miss at D3. There is no ship in this co-ordinate. Here is how the board looks now:
1 2 3 4 5 6
A
B
C
D . . M . . .
E
F
Please make your next move.

35

Training a Generally Curious Agent

After a few turns, the agent chooses to target the cell A2, which has a carrier secretly placed in it. Then it receives the
following feedback:

Battleship Environment Feedback Example 2

Hit at A2! You have hit a Carrier, which occupies 5 cells in the grid.
Here is how the board looks now:
1 2 3 4 5 6
A M X
B
C
D . M M . . .
E
F M
Please make your next move.

The other types of feedback are provided in a similar fashion, which we omit here for the sake of brevity.

36

Training a Generally Curious Agent

B.4.9. MINESWEEPER

We adopt a text-based version of minesweeper (https://en.wikipedia.org/wiki/Minesweeper_(video_
game)), a logic puzzle game, as a task group for PAPRIKA. The task rules are as follows:

1. Setup

The game board is an m× n grid. Each cell is either empty or contains a mine. Mines are placed randomly and remain
hidden until revealed. Hidden cells are represented with ‘#’. Number of mines is also chosen randomly.

2. Cell Reveal

The agent selects a cell to reveal. If the cell contains a mine, the game ends. The first cell the agent chooses to reveal has no
mines, and mines are only placed randomly along the grid after the first cell has been chosen by the agent to be revealed,
excluding the first chosen cell. If the cell is empty, it displays a number indicating the count of mines in its 8 adjacent cells
(or ‘*’ if the number is 0).

3. Numbered Cells

A revealed cell shows a number between 1 and 8, and ‘*’ if it has no mines and none of its neighbors also has mines. The
number represents how many mines are adjacent to that cell (including diagonals).

4. Reveal Mechanism

If a revealed cell has a zero, it automatically reveals all adjacent cells. This process continues recursively for adjacent ‘*’
cells. The chain stops when cells with non-zero numbers are reached.

We will give an example game-play here to make the rules clearer. Imagine we start with a 5× 5 grid. The initial board will
look like the following:

#
#
#
#
#

Next, the agent chooses to reveal the cell at row 2, column 2 (0-indexed). The task environment then randomly places mines,
and produces the following board after executing the reveal mechanism above:

1 * *
1 1 1 * *
* * * * *
* 1 1 1 *
* 1 # 1 *

It is easy to see that the cell at (4, 2) and (0, 1) have mines. So the only cell left without a mine is (0, 0), and if the agent
chooses to reveal it, then the task ends with success. If the agent chooses to reveal (4, 2) or (0, 1), then the task ends with
failure. If the agent chooses to reveal any other cell, nothing happens and just a turn gets wasted.

37

https://en.wikipedia.org/wiki/Minesweeper_(video_game)
https://en.wikipedia.org/wiki/Minesweeper_(video_game)

Training a Generally Curious Agent

Now we provide an example instruction prompt given to the agent for this task group, describing the rules of this task:

Minesweeper Agent Prompt

You are a playing the game of Minesweeper. You will be given a two dimensional board that looks like:
#
#
#
with each row of the board presented sequentially, and different rows separated by newline. The game board is
represented by a grid of characters:
(a) ‘#’ indicates a hidden cell; in other words, you do not whether this cell has a mine in it or not,
(b) ‘*’ indicates a revealed empty cell, i.e., a cell marked with ‘*’ has been revealed and it does not have any mines,
and
(c) digits (1 through 8) indicate the count of mines in adjacent cells (for example, if a cell has digit 3 on it, it means
3 out of 8 of its adjacent cells have mines, but it does not tell you if this particular cell has mines or not).
You will be given the current board state from a user. Your task is to analyze it, apply standard Minesweeper logic,
and suggest the next move(s).
The rows and columns in this game use 0-based indexing, i.e., the first row is indexed by 0, the second row is
indexed by 1, and so on.
Provide step-by-step, short and concise reasoning for how you identify any guaranteed safe cells and guaranteed
mines, then propose the final move.
If multiple moves are possible, choose the most logical option.
Follow these instructions carefully and maintain consistency with the rules of Minesweeper. Your goal is to reveal
all the empty cells, without revealing any of the cells that has mines. You should make logical deductions to avoid
cells you think can have mines, while choosing the next cell to reveal.
You should format your response as follows:
<Think> Any step-by-step, short and concise thinking to strategically determine the next guess for the secret word
</Think>
<Answer> reveal row column </Answer>
Here row and col refer to the 0-index row and column that you want to reveal.
The game starts now, with the following board:
#
#
#
#
#
Please make your first move!

After choosing to reveal (2, 2), the agent receives the following feedback from the task environment:

Minesweeper Environment Feedback Example

1 * *
1 1 1 * *
* * * * *
* 1 1 1 *
* 1 # 1 *
Make your next move for this game of minesweeper. Please try to be concise. You should format your response as
follows: <Think> Any step-by-step, short and concise thinking to strategically determine the next guess for the
secret word </Think>
<Answer> reveal row column </Answer>

Other task environment feedback can be designed in a similar way, we omit them here for the sake of brevity.

38

Training a Generally Curious Agent

B.4.10. BANDIT BEST ARM SELECTION

For this task group, we choose randomly a bandit scenario described in text from our set of predefined tasks (81 for training, 1
for testing). Each scenario has a set of k arms, with each arm’s reward being distributed according to a Bernoulli distribution
with a fixed but unknown mean. At the beginning of each iteration, we choose these unknown means: first, we pick ϵ
uniformly random from [0.1, 0.2]. Then we pick one arm randomly to be the best arm, and set its mean reward to be 0.5 + ϵ.
For all other arms, we pick their mean reward uniformly at random from [0, 0.5− ϵ].

Next, we let the agent choose any of the k arms, sample a reward from the associated Bernoulli distribution, and let the
agent know the reward it obtained. We do this for 20 turns, and then ask it to deduce which arm among the k arms has the
highest mean reward.

An example instruction prompt the agent receives at the start of the task is as follows:

Bandit Best Arm Selection Agent Prompt

You are in a room with 5 buttons labeled blue, green, red, yellow, purple. Each button is associated with a Bernoulli
distribution with a fixed but unknown mean; the means for the buttons could be different. For each button, when you
press it, you will get a reward that is sampled from the button’s associated distribution. You have 20 time steps and,
on each time step, you can choose any button and receive the reward.
Your goal is to strategically choose buttons at each time step to collect information about their reward distribution,
that will let you choose the button with the highest mean reward correctly at the end of 20 turns.
This is the first timestep. Make your choice. You should format your answer as:
<Think> Any optional thinking to determine your choice, that will give you the most amount of information
</Think>
<Answer> your next choice, which should be precisely one of blue, green, red, yellow, purple, and nothing else
</Answer>
Keep any thinking short and concise.

Once the agent picks an arm, for example say ‘red’, it observes the following information:

Bandit Best Arm Selection Environment Feedback Example

You have received reward 1

At the end of 20 turns, the agent receives the following instruction to choose what it thinks is the best arm:

Bandit Best Arm Selection Agent Final Instruction

You have received reward 0
You have exhausted your budget for trying out different choices and observe their rewards. Now make a deduction
about what the best choice is. In other words, deduce the choice with the highest mean reward. Format your answer
as follows:
<Think> Any optional thinking to go over the interaction history so far that will help decide what the best choice
is </Think>
<Answer> your decision about the best choice in this scenario </Answer>

For evaluation, we run 100 trials on the single evaluation task and report the average performance. For each trial, we
randomly choose the arm rewards as described above, and generate 4 trajectories per a particular arm reward setting.

Finally, a key difference with prior works such as Nie et al. (2024), is that our setting is more general and employs multi-turn
interactions between the agent and task description — the agent needs to look at the entire conversation history to understand
the relationship between chosen arms and rewards obtained, whereas Nie et al. (2024) starts a new conversation at every
turn, provides the interaction history from prior turns (either raw history or with exploration bonuses) in the user prompt and
asks the agent to make a single step decision, i.e., employs single-turn interactions.

39

Training a Generally Curious Agent

C. Details of Training Dataset Construction
Here we describe the training dataset construction and associated statistics for the Llama-3.1-8B-Instruct model (the process
on Gemma-3-12B-IT is similar with slightly different training set statistics). For generating the training data on all task
groups, we employ the Llama-3.1-8B-Instruct model on the training split of these task groups, and generate 20 trajectories
per each task (except for mastermind, where we generate 100 trajectories per each task due to the Llama model’s low success
rate on this task). We use temperature 1.5 and Min-p parameter 0.3 for all cases: we observed that generating a large number
of trajectories with a high temperature results in diverse and high quality data. We ran an initial ablation on the twenty
question task group to determine the temperature and Min-p parameter for training data generation, based on downstream
performance of the fine-tuned model on a held-out validation split. We use the same configuration for all task groups.

For supervised finetuning, we collect all successful trajectories that all have distinct number of turns per each task and put
them in our training dataset. Additionally, we throw out trajectories where the total number of tokens is larger than 12000 —
this is done mostly for memory issues that arises from large context lengths despite using Flash-Attention (Dao et al., 2022;
Dao, 2024).

For DPO, we take the best performing trajectory (the one that succeeds and does so at the lowest number of turn) per task
as the preferred trajectory, and randomly choose one of the lower performing trajectory (which either failed the task or
succeeded using a lot more turns compared to the best trajectory) per task as the dispreferred trajectory. Two key design
decisions we made: (1) we create one trajectory pair per task instead of multiple pairs, as opposed to SFT, where we had
multiple trajectories per task (this is done since we observed having multiple pairs for the same task leads to higher degrees
of unintentional unalignment (Razin et al., 2024)), (2) We sample the dispreferred trajectory randomly instead of picking
the worst one, we observed this leads to higher dataset diversity and performance. Similar to the SFT phase, we throw out
trajectories with number of tokens larger than 8192, which is done to prevent running out of GPU memory during training.

Table 4. Summary of training dataset by task group.

Task Group Best-of-K accuracy # SFT trajectories # DPO trajectory pairs

Twenty questions 84.0% 6,257 1,259
Guess my city 95.8% 2,576 479

Wordle 45.3% 1,453 687
Cellular automata 73.7% 1,780 715
Customer service 96.0% 1,467 603
Murder mystery 95.1% 435 193

Mastermind 38.9% 889 389
Battleship 39.8% 614 390

Minesweeper 46.6% 1,089 465
Bandit best arm selection 100.0% 621 80

Total 17,181 5260

Table 4 shows the summary statistics of our training data.

Note that for task groups that require the agent to output answers with specific formatting instructions (e.g., enclosing the
final answer within <Answer> and </Answer>), failure to follow these instructions at any turn result in a failure at the
task (both for evaluation and training data generation) — we terminate that trajectory at that particular turn and filter it away.
Other than that, we do not perform any other filtering mechanism, though some of them such as Razin et al. (2024) can
further improve PAPRIKA’s performance. We leave these for future work.

Finally, we remark that technically RPO or DPO is not the correct way to handle minesweeper. For this task group, the task
environment depends on the first agent action, since mines are randomly placed in the 2D grid after the first reveal action
from the agent. For simplicity, we did not control the first action of the agent while generating training data, and hence
(successful, unsuccessful) trajectory pairs generated from minesweeper should not be used for DPO without filtering based
on first agent action. In practice, we observe that this do not have any significant effect on the model performance, though a
preference learning algorithm that can operate with unpaired preference data (only a set of preferred trajectories and another
set of unpreferred trajectories without any one-to-one mapping between them), such as KTO (Ethayarajh et al., 2024), might
be more suitable here.

40

Training a Generally Curious Agent

D. Note about Task Environment Hacking
For task groups that do not use a hardcoded program as the task environment (twenty questions, guess my city, customer
service and murder mystery), we have to consider the fact that another LLM acting as the task environment can be hacked to
produce wrong intermediate observations and task success reward. While for twenty questions, we can somewhat mitigate
this issue by strict string matching of the task environment responses (they can only be ‘yes’, ‘no’ and ‘Goal reached’), it is
impossible to do for open-ended tasks like guess my city, customer service and murder mystery. To mitigate this issue, we
use a separate conversation with GPT-4o-mini at every turn to act as an LLM-judge, that filters away trajectories that are
mistakenly identified as successful by the LLM simulated task environment.

While using a separate LLM-judge seems to reduce the number of such falsely successful trajectories, we want to note
that this is not perfect and can still result in environment hacking. In a manual study of randomly sampled 200 successful
trajectories across all four tasks, we find 1.5% (3) of them to show environment hacking. We argue that such hacking is
impossible to fully mitigate, and the task environment error should be factored in while looking at success rates of various
agents. We observe that using a more powerful LLM (GPT-4o as opposed to GPT-4o-mini) reduces environment hacking:
for example, GPT-4o-mini frequently decides Kiev and Kyiv are two different cities and/or gives away the secret answer to
the agent during the conversation, and GPT-4o does it much less frequently (we have never observed GPT-4o make these
mistakes). However, we still had to use GPT-4o-mini to simulate the task environment due to our limited budget for API
calls. Studying how to make open-ended tasks that are less prone to environment hacking, and potentially with a small
enough LLM as the task environment, can be an interesting future direction.

Next, we give part of an example trajectory from the ‘guess my city’ task group that shows environment hacking (note that
the user, in this case GPT-4o-mini, giving away the answer to the agent after being asked about it, and the GPT-4o-mini judge
fails to catch this) in Table 5. This happens despite the explicit command in the system prompt for the task environment:
“Remember, you are here to help the agent guess your city through clues, but you must not reveal the city’s name or
its country directly UNDER ANY CIRCUMSTANCES. If the player asks such a question, reply that you cannot give
away the name, and can only confirm the name if the player guesses it.”

Table 5. Example of Task Environment Hacking in Guess My City.

LLM Response Note

Llama-3.1-8B-
Instruct (as agent)

Based on all the clues you’ve provided, I’m going to take a stab in the
dark and make a guess. I think the city you are thinking of is Santiago
de Cuba, Cuba. Please let me know if I’m correct or not! (Note: I’m
counting this as my 12th and final question.)

GPT-4o-mini (as task
environment)

That’s a great guess, but it is not correct. Thank you for playing! The
city I was thinking of is Camaguey.

Task Environment is hacked here, it
gives away the answer that the agent
had to guess

Llama-3.1-8B-
Instruct (as agent)

I was close, but I didn’t quite get it. Camaguey is a beautiful city in Cuba,
and I should have guessed it earlier, given the clues you provided. Thank
you for playing the game with me! It was a lot of fun, and I learned a lot
from the clues you provided. I’ll keep improving my question-asking
skills and try to guess cities more accurately in the future. Camaguey is a
great city, and I should have guessed it earlier, given the following clues:
* Spanish colonial influence * Carnival celebrations * Tropical climate *
Flat terrain with scenic hills and plains * Significant sugar production
industry * Transatlantic slave trade history * Afro-Caribbean population
* Mainland location * Significant rum industry. I’ll keep these clues in
mind for future games, and I hope to guess cities like Camaguey more
accurately next time. Thanks again for playing the game with me! If you
want to play again or try a different game, just let me know!

GPT-4o-mini (as task
environment)

Thank you for playing! I’m glad you enjoyed the game and found the
clues helpful. Camaguey is indeed a fascinating city with a rich history
and culture. If you ever want to play again or try something different,
just let me know. I’m here to help!

41

Training a Generally Curious Agent

E. More on LLM Inference Settings
For the 4 task groups (twenty questions, guess my city, customer service, and murder mystery) that use another LLM
(GPT-4o-mini in our experiments) to simulate the task environment and the judge, we use temp 0.0 to generate environment
and judge responses. We do this to keep the task environment and the judge as deterministic as possible for fair comparison
of different agents. We let the environment and the judge generate at most 1024 tokens at each turn.

For the agent, we always sample using Min-p parameter 0.3. Other than that, we set maximum number of tokens the agent
can generate to be 128 for twenty questions, 512 for guess my city, and 1024 for all other task groups.

F. Additional Experimental Details
All our Llama-3.1-8B-Instruct models were trained using a single node consisting of 8 NVIDIA L40S GPUs. For training
the Gemma-3-12B-IT models, we use a single node consisting of 8 NVIDIA H100 GPUs. For inference and generating data,
we use single NVIDIA A40 GPUs. The API cost for generating the training datasets and running evaluation for the entire
project is approximately 20,000 USD. To run all experiments once (both generating the data and running evaluations), we
estimate API costs to be no more than 1000 USD.

G. Public Release of Code, Model and Dataset
1. Our codebase to reproduce the results in this paper can be found here: https://github.com/tajwarfahim/

paprika

2. We also release the datasets used to train our models. Our supervised fine-tuning dataset can be found here: https:
//huggingface.co/datasets/ftajwar/paprika_SFT_dataset. The dataset used during RPO fine-
tuning can be found here: https://huggingface.co/datasets/ftajwar/paprika_preference_
dataset

3. To fascilitate further research, we also release a Llama-3.1-8B-Instruct model checkpoint trained with PAPRIKA, it can
be found here: https://huggingface.co/ftajwar/paprika_Meta-Llama-3.1-8B-Instruct

4. Project website for this paper can be found here: https://paprika-llm.github.io

42

https://github.com/tajwarfahim/paprika
https://github.com/tajwarfahim/paprika
https://huggingface.co/datasets/ftajwar/paprika_SFT_dataset
https://huggingface.co/datasets/ftajwar/paprika_SFT_dataset
https://huggingface.co/datasets/ftajwar/paprika_preference_dataset
https://huggingface.co/datasets/ftajwar/paprika_preference_dataset
https://huggingface.co/ftajwar/paprika_Meta-Llama-3.1-8B-Instruct
https://paprika-llm.github.io

Training a Generally Curious Agent

H. More Details on Curriculum Learning
First, we provide an example conversation used to generate the difficulty levels for twenty questions using gpt-4o-mini:

Twenty Questions Difficulty Generation

{
"judge_conversation": [

{
"role": "system",
"content": "You are an expert judge of the game of 20

questions. I will give you a topic, and you must classify
it into easy, medium or hard, based on an estimate of how
easy it is to guess the topic, and an estimate of how many
turns it will take to guess the topic. Respond in <EASY>,
<MEDIUM> or <HARD>."

},
{

"role": "user",
"content": "Your topic is: Apple"

},
{

"role": "assistant",
"content": "<EASY>"

}
]

}

Secondly, to calculate Coefficient of variation on task t (in this case, a single secret topic in twenty questions), we generate
n = 20 trajectories for this task. Let these trajectories be τ1, . . . , τn. Let |τi| be the number of turns it takes for the agent to
succeed in the i-th trajectory — if the agent fails in the i-th trajectory, we set τi| = 20, which is also the maximum number
of turns in this environment. We use number of turns it takes the agent to solve the task as a proxy for reward, and measure
the coefficient of variation on number of turns to compare different tasks.

Since we use a small number of trajectories, instead of using ν = s
x̄ , where s and x̄ is the sample mean and standard

deviation of |τi| respectively, we assume the unbiased estimator for coefficient of variation for normally distributed data
instead (Sokal & Rohlf, 2013):

ν =

(
1 +

1

4n

)
s

x̄

43

Training a Generally Curious Agent

I. More Empirical Results
I.1. Success Rate Comparison with More Baselines

40

50

60

70

80

Pa
ss

@
4

Su
cc

es
s R

at
e

(%
) Twenty Questions

0

6

12

18

24

Pa
ss

@
4

Su
cc

es
s R

at
e

(%
) Mastermind

0

9

18

27

36

Pa
ss

@
4

Su
cc

es
s R

at
e

(%
) Cellular Automata

10

16

22

28

34

Pa
ss

@
4

Su
cc

es
s R

at
e

(%
) Minesweeper

0

15

30

45

60

Pa
ss

@
4

Su
cc

es
s R

at
e

(%
) Wordle

0.3 0.7 1.0
Temperature

40

55

70

85

100

Pa
ss

@
4

Su
cc

es
s R

at
e

(%
) Guess My City

0.3 0.7 1.0
Temperature

0

15

30

45

60

Pa
ss

@
4

Su
cc

es
s R

at
e

(%
) Battleship

0.3 0.7 1.0
Temperature

80

85

90

95

100

Pa
ss

@
4

Su
cc

es
s R

at
e

(%
) Customer Service

0.3 0.7 1.0
Temperature

60

70

80

90

100

Pa
ss

@
4

Su
cc

es
s R

at
e

(%
) Murder Mystery

0.3 0.7 1.0
Temperature

60

70

80

90

100

Pa
ss

@
4

Su
cc

es
s R

at
e

(%
) Bandit Best Arm Selection

Llama-3.1-8B-Instruct Paprika (Llama-3.1-8B-Instruct) gpt-4o-mini Finetuned on WildChat

Figure 5. (PAPRIKA improves success rate (pass@4)) Pass@4 success rate of PAPRIKA-finetuned Llama-3.1-8B-Instruct vs other
models evaluated across temperatures 0.3, 0.7 and 1.0. See that PAPRIKA, when trained on trajectories from all task groups, shows
significant improvement across all of them. We also compare against a Llama-3.1-8B-Instruct model finetuned on 100,000 trajectories
randomly sampled from the WildChat dataset. This model performs poorly on all tasks, possibly due to model collapse.

20

30

40

50

60

Av
g

Su
cc

es
s R

at
e

(%
)

Twenty Questions

0

2

4

6

8

Av
g

Su
cc

es
s R

at
e

(%
)

Mastermind

0

4

8

12

16

Av
g

Su
cc

es
s R

at
e

(%
)

Cellular Automata

4

8

12

16

20

Av
g

Su
cc

es
s R

at
e

(%
)

Minesweeper

0

8

16

24

32

Av
g

Su
cc

es
s R

at
e

(%
)

Wordle

0.3 0.7 1.0
Temperature

10

25

40

55

70

Av
g

Su
cc

es
s R

at
e

(%
)

Guess My City

0.3 0.7 1.0
Temperature

0

5

10

15

20

Av
g

Su
cc

es
s R

at
e

(%
)

Battleship

0.3 0.7 1.0
Temperature

50

60

70

80

90

Av
g

Su
cc

es
s R

at
e

(%
)

Customer Service

0.3 0.7 1.0
Temperature

20

35

50

65

80

Av
g

Su
cc

es
s R

at
e

(%
)

Murder Mystery

0.3 0.7 1.0
Temperature

10

30

50

70

90

Av
g

Su
cc

es
s R

at
e

(%
)

Bandit Best Arm Selection

Llama-3.1-8B-Instruct Paprika (Llama-3.1-8B-Instruct) gpt-4o-mini Finetuned on WildChat

Figure 6. (PAPRIKA improves success rate (average)) Average success rate of PAPRIKA-finetuned Llama-3.1-8B-Instruct vs other
models evaluated across temperatures 0.3, 0.7 and 1.0. As opposed to Figure 5, here we sample 4 trajectories per task, and plot the success
rate averaged across all trajectories and all tasks within a task group.

Figure 5 and Figure 6 shows the pass@4 and average success rate across 10 task groups, respectively. We see that PAPRIKA
improves Llama-3.1-8B-Instruct model’s performance on both metrics.

I.2. Task Efficiency Comparison with More Baselines

Figure 7 shows the average number of turns required for various models to solve a task, averaged across 4 trajectories per
task and all evaluation tasks per task groups. Note that for bandit best arm selection, the number of turns is fixed, so we do
not report it here. PAPRIKA generally improve the task efficiency/strategic exploration capabilities of the model by lowering
the number of turns taken to solve the tasks.

I.3. PAPRIKA Imporoves Task Success Rate on Gemma-3

To validate that the improvement demonstrated by PAPRIKA is not limited to the Llama-3.1-8B-Instruct model, we run our
entire pipeline on a Gemma-3-12B-IT (Gemma-Team et al., 2025) model, with the same set of hyperparameters used on
Llama-3.1-8B-Instruct.

Figures 8 and 9 shows the pass@4 and average success rate attained by a Gemma-3-12B-IT model after being finetuned

44

Training a Generally Curious Agent

16.0
16.2
16.4
16.6
16.8
17.0
17.2

Av
er

ag
e

Nu
m

 Tu
rn

s
Twenty Questions

11.75

11.80

11.85

11.90

11.95

Av
er

ag
e

Nu
m

 Tu
rn

s

Mastermind

5.5

5.6

5.7

5.8

5.9

Av
er

ag
e

Nu
m

 Tu
rn

s

Cellular Automata

17.6
17.8
18.0
18.2
18.4
18.6
18.8

Av
er

ag
e

Nu
m

 Tu
rn

s

Minesweeper

5.60
5.65
5.70
5.75
5.80
5.85
5.90
5.95

Av
er

ag
e

Nu
m

 Tu
rn

s

Wordle

14.5
15.0
15.5
16.0
16.5
17.0
17.5

Av
er

ag
e

Nu
m

 Tu
rn

s

Guess My City

0.3 0.7 1.0
Temperature

19.5
19.6
19.7
19.8
19.9

Av
er

ag
e

Nu
m

 Tu
rn

s

Battleship

0.3 0.7 1.0
Temperature

9.0
9.5

10.0
10.5
11.0
11.5

Av
er

ag
e

Nu
m

 Tu
rn

s

Customer Service

0.3 0.7 1.0
Temperature

13.5
14.0
14.5
15.0
15.5
16.0
16.5
17.0

Av
er

ag
e

Nu
m

 Tu
rn

s

Murder Mystery

Llama-3.1-8B-Instruct Paprika (Llama-3.1-8B-Instruct) gpt-4o-mini Finetuned on WildChat

Figure 7. (PAPRIKA improves task efficiency on all task groups) Average number of turns of PAPRIKA-finetuned Llama-3.1-8B-Instruct
vs other models, evaluated across temperatures 0.3, 0.7 and 1.0. Note that we do not measure number of turns on the bandit best arm
identification task, since it is fixed to be 20. PAPRIKA reduce the average number of turns it takes an LLM to solve tasks in all task groups,
which quantifies the better strategic exploration abilities learned by PAPRIKA.

with PAPRIKA, respectively. Our results show that PAPRIKA results in improved or comparable success rate on all task
groups. Moreover, on Gemma-3-12B-IT, which is larger than Llama-3.1-8B-Instruct with its 12B parameters, PAPRIKA
outperforms or reaches comparable performance with GPT-4o-mini on 7 out of 10 task groups in terms of pass@4 success
rate. Overall, our results show the general applicability of PAPRIKA in imbuing LLMs with better strategic exploration
capabilities across multiple models with varying parameter count and pre-training setup.

I.4. PAPRIKA Imporoves Task Efficiency on Gemma-3

Figure 10 shows the improvement in average number of turns on the Gemma-3-12B-IT model as a result of PAPRIKA-
finetuning. Similar to our experiments on Llama-3.1-8B-Instruct, PAPRIKA results in reduced number of turns on all task
groups, demonstrating the improved information-seeking behavior learned by PAPRIKA.

I.5. More Performance Metrics

So far we have reported Pass@4 and average success rates, and average number of turns to demonstrate that PAPRIKA teach
LLMs better decision making strategies. Here we report one additional metric of comparison, namely the pass@k success
rates for k ∈ {1, 2, 3, 4}.

Figures 11 and 12 shows our results for Llama-3.1-8B-Instruct and Gemma-3-12B-IT models, respectively. PAPRIKA-
finetuned models outperform their regular instruct model counterparts for different values of k.

45

Training a Generally Curious Agent

50

58

66

74

82

Pa
ss

@
4

Su
cc

es
s R

at
e

(%
) Twenty Questions

4

9

14

19

24

Pa
ss

@
4

Su
cc

es
s R

at
e

(%
) Mastermind

0

9

18

27

36

Pa
ss

@
4

Su
cc

es
s R

at
e

(%
) Cellular Automata

10

17

24

31

38

Pa
ss

@
4

Su
cc

es
s R

at
e

(%
) Minesweeper

28

36

44

52

60

Pa
ss

@
4

Su
cc

es
s R

at
e

(%
) Wordle

0.3 0.7 1.0
Temperature

70

76

82

88

94

Pa
ss

@
4

Su
cc

es
s R

at
e

(%
) Guess My City

0.3 0.7 1.0
Temperature

30

38

46

54

62

Pa
ss

@
4

Su
cc

es
s R

at
e

(%
) Battleship

0.3 0.7 1.0
Temperature

92

94

96

98

100

Pa
ss

@
4

Su
cc

es
s R

at
e

(%
) Customer Service

0.3 0.7 1.0
Temperature

80

85

90

95

100

Pa
ss

@
4

Su
cc

es
s R

at
e

(%
) Murder Mystery

0.3 0.7 1.0
Temperature

96

97

98

99

100

Pa
ss

@
4

Su
cc

es
s R

at
e

(%
) Bandit Best Arm Selection

Gemma-3-12B-IT Paprika (Gemma-3-12B-IT) gpt-4o-mini

Figure 8. (PAPRIKA improves success rate (pass@4) on Gemma-3) Pass@4 success rate of a Gemma-3-12B-IT model finetuned by
PAPRIKA, evaluated across temperatures 0.3, 0.7 and 1.0. Here we sample 4 trajectories per task, and plot the pass@4 success rate
averaged across all tasks within a task group.

30

36

42

48

54

Av
g

Su
cc

es
s R

at
e

(%
)

Twenty Questions

2

4

6

8

10

Av
g

Su
cc

es
s R

at
e

(%
)

Mastermind

0

4

8

12

16

Av
g

Su
cc

es
s R

at
e

(%
)

Cellular Automata

4

8

12

16

20

Av
g

Su
cc

es
s R

at
e

(%
)

Minesweeper

12

17

22

27

32

Av
g

Su
cc

es
s R

at
e

(%
)

Wordle

0.3 0.7 1.0
Temperature

40

48

56

64

72

Av
g

Su
cc

es
s R

at
e

(%
)

Guess My City

0.3 0.7 1.0
Temperature

12

17

22

27

32

Av
g

Su
cc

es
s R

at
e

(%
)

Battleship

0.3 0.7 1.0
Temperature

70

75

80

85

90

Av
g

Su
cc

es
s R

at
e

(%
)

Customer Service

0.3 0.7 1.0
Temperature

50

55

60

65

70
Av

g
Su

cc
es

s R
at

e
(%

)

Murder Mystery

0.3 0.7 1.0
Temperature

70

75

80

85

90

Av
g

Su
cc

es
s R

at
e

(%
)

Bandit Best Arm Selection

Gemma-3-12B-IT Paprika (Gemma-3-12B-IT) gpt-4o-mini

Figure 9. (PAPRIKA improves success rate (average) on Gemma-3) Average success rate of a Gemma-3-12B-IT model finetuned by
PAPRIKA, evaluated across temperatures 0.3, 0.7 and 1.0. Here we sample 4 trajectories per task, and plot the success rate averaged across
all trajectories and all tasks within a task group.

I.6. More Results on Generalization

Figure 13 shows the pass@4 success rate (as opposed to Figure 3, which shows average success rate) for leave-one-out
(LOO) and single task group training experiments.

I.7. Evaluation on LMRL-Gym split

In our paper, we construct a larger set of secret topics for twenty questions and guess my city, compared to LMRL-
Gym (Abdulhai et al., 2023). Our training and evaluation sets are filtered to not have any overlap with the LMRL-Gym
dataset. However, for the sake of fair comparison, we also report the performance of PAPRIKA on this dataset. Figure 14 and
Figure 15 shows the performance of PAPRIKA on the LMRL-Gym split of guess my city and twenty questions, respectively.
We see that the gains observed on our evaluation split translated to the set of secret topics in LMRL-Gym as well.

I.8. Experiments on Modified Wordle to Further Test Generalization

We provide one more experiment to test generalization of PAPRIKA: we create a modified version of wordle, where the
agent has to guess words consisting of 4, 6, 7, 8, 9 or 10 letters (excluding the 5-letter words used by original wordle) within
10 turns using a similar system of task environment feedback as wordle. Figure 16 shows our results: PAPRIKA retain good
strategies learned from the other 10 task groups and outperform Llama-3.1-8B-Instruct on this new task group without being
trained on it.

46

Training a Generally Curious Agent

16.0
16.2
16.4
16.6
16.8
17.0
17.2
17.4

Av
er

ag
e

Nu
m

 Tu
rn

s
Twenty Questions

11.74
11.76
11.78
11.80
11.82
11.84
11.86
11.88

Av
er

ag
e

Nu
m

 Tu
rn

s

Mastermind

5.50
5.55
5.60
5.65
5.70
5.75
5.80
5.85

Av
er

ag
e

Nu
m

 Tu
rn

s

Cellular Automata

17.00
17.25
17.50
17.75
18.00
18.25
18.50
18.75

Av
er

ag
e

Nu
m

 Tu
rn

s

Minesweeper

5.60

5.65

5.70

5.75

Av
er

ag
e

Nu
m

 Tu
rn

s

Wordle

14.6
14.8
15.0
15.2
15.4
15.6
15.8
16.0

Av
er

ag
e

Nu
m

 Tu
rn

s

Guess My City

0.3 0.7 1.0
Temperature

19.2

19.3

19.4

19.5

19.6

Av
er

ag
e

Nu
m

 Tu
rn

s

Battleship

0.3 0.7 1.0
Temperature

9.0
9.5

10.0
10.5
11.0
11.5

Av
er

ag
e

Nu
m

 Tu
rn

s

Customer Service

0.3 0.7 1.0
Temperature

11

12

13

14

15

Av
er

ag
e

Nu
m

 Tu
rn

s

Murder Mystery

Gemma-3-12B-IT Paprika (Gemma-3-12B-IT) gpt-4o-mini

Figure 10. (PAPRIKA improves task efficiency on all task groups on Gemma-3) Average number of turns of Gemma-3-12B-IT
finetuned with PAPRIKA, evaluated across temperatures 0.3, 0.7 and 1.0. Note that we do not measure number of turns on the bandit best
arm identification task, since it is fixed to be 20. Similar to the experiments with Llama-3.1-8B-Instruct, PAPRIKA reduce the average
number of turns it takes an LLM to solve tasks in all task groups.

40

50

60

70

Pa
ss

@
k

Su
cc

es
s R

at
e

(%
) Twenty Questions

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Pa
ss

@
k

Su
cc

es
s R

at
e

(%
) Mastermind

10
15
20
25
30

Pa
ss

@
k

Su
cc

es
s R

at
e

(%
) Cellular Automata

10

15

20

25

30

Pa
ss

@
k

Su
cc

es
s R

at
e

(%
) Minesweeper

10

20

30

40

50
Pa

ss
@

k
Su

cc
es

s R
at

e
(%

) Wordle

1 2 3 4
k

30
40
50
60
70
80
90

Pa
ss

@
k

Su
cc

es
s R

at
e

(%
) Guess My City

1 2 3 4
k

10

20

30

40

Pa
ss

@
k

Su
cc

es
s R

at
e

(%
) Battleship

1 2 3 4
k

70
75
80
85
90
95

Pa
ss

@
k

Su
cc

es
s R

at
e

(%
) Customer Service

1 2 3 4
k

60

70

80

90

100

Pa
ss

@
k

Su
cc

es
s R

at
e

(%
) Murder Mystery

1 2 3 4
k

70
75
80
85
90
95

100

Pa
ss

@
k

Su
cc

es
s R

at
e

(%
) Bandit Best Arm Selection

Llama-3.1-8B-Instruct Paprika (Llama-3.1-8B-Instruct) gpt-4o-mini

Figure 11. (PAPRIKA improves pass@k success rate on Llama-3.1-8B-Instruct for various values of k) Pass@k success rate of a
PAPRIKA-finetuned Llama-3.1-8B-Instruct model for k ∈ {1, 2, 3, 4}. PAPRIKA outperform the regular instruct model for all values of k.

I.9. Ablation Study over Different Finetuning Stages of PAPRIKA

An interesting question to ask is how important is the RPO stage for improving task success rate for PAPRIKA: can we
potentially get all the benefits with supervised fine-tuning (SFT) only? To answer this question, we run an ablation over 6
task groups where we evaluate both the SFT checkpoint and the checkpoint obtained from further fine-tuning the SFT model
with RPO. Figure 17 shows our results: on all 6 task groups, RPO employing negative or dispreferred trajectories improves
performance beyond the SFT model, similar to the observation made by Tajwar et al. (2024).

47

Training a Generally Curious Agent

30

40

50

60

70

Pa
ss

@
k

Su
cc

es
s R

at
e

(%
) Twenty Questions

2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Pa
ss

@
k

Su
cc

es
s R

at
e

(%
) Mastermind

5
10
15
20
25
30

Pa
ss

@
k

Su
cc

es
s R

at
e

(%
) Cellular Automata

10

15

20

25

30

Pa
ss

@
k

Su
cc

es
s R

at
e

(%
) Minesweeper

10

20

30

40

50

Pa
ss

@
k

Su
cc

es
s R

at
e

(%
) Wordle

1 2 3 4
k

50

60

70

80

90

Pa
ss

@
k

Su
cc

es
s R

at
e

(%
) Guess My City

1 2 3 4
k

20
25
30
35
40
45
50
55

Pa
ss

@
k

Su
cc

es
s R

at
e

(%
) Battleship

1 2 3 4
k

70
75
80
85
90
95

Pa
ss

@
k

Su
cc

es
s R

at
e

(%
) Customer Service

1 2 3 4
k

50

60

70

80

90

Pa
ss

@
k

Su
cc

es
s R

at
e

(%
) Murder Mystery

1 2 3 4
k

70
75
80
85
90
95

100

Pa
ss

@
k

Su
cc

es
s R

at
e

(%
) Bandit Best Arm Selection

Gemma-3-12B-IT Paprika (Gemma-3-12B-IT) gpt-4o-mini

Figure 12. (PAPRIKA improves pass@k success rate on Gemma-3-12B-IT for various values of k) Pass@k success rate of a PAPRIKA-
finetuned Gemma-3-12B-IT model for k ∈ {1, 2, 3, 4}. PAPRIKA outperform the regular instruct model for all values of k.

60

63

66

69

72

Pa
ss

@
4

Su
cc

es
s R

at
e

(%
) Twenty Questions

4

8

12

16

20

Pa
ss

@
4

Su
cc

es
s R

at
e

(%
) Mastermind

16

18

20

22

24

Pa
ss

@
4

Su
cc

es
s R

at
e

(%
) Cellular Automata

10

15

20

25

30

Pa
ss

@
4

Su
cc

es
s R

at
e

(%
) Battleship

20

23

26

29

32

Pa
ss

@
4

Su
cc

es
s R

at
e

(%
) Minesweeper

94

95

96

97

98

Pa
ss

@
4

Su
cc

es
s R

at
e

(%
) Customer Service

91

93

95

97

99

Pa
ss

@
4

Su
cc

es
s R

at
e

(%
) Murder Mystery

18

21

24

27

30

Pa
ss

@
4

Su
cc

es
s R

at
e

(%
) Wordle

62

67

72

77

82

Pa
ss

@
4

Su
cc

es
s R

at
e

(%
) Guess My City

88

91

94

97

100

Pa
ss

@
4

Su
cc

es
s R

at
e

(%
) Bandit Best Arm Selection

Llama-3.1-8B-Instruct Paprika (Full) Paprika (LOO) Paprika (Single Task Group)

Figure 13. (Testing generalization of PAPRIKA via leave-one-out and single task group experiments) We test PAPRIKA’s zero-shot
performance on unseen task groups by leave-one-out (LOO) experiments. We also test whether having access to trajectories from multiple
diverse task groups help as opposed to being trained on a single task group’s trajectories, by comparing PAPRIKA (Full) and PAPRIKA

(Single Task Group), where the latter employs training and testing on a single task group (using separate splits). All experiments use a
Llama-3.1-8B-Instruct model or its finetuned checkpoints on different sets of task groups. As opposed to Figure 3, we report pass@4
success rate here instead of the average success rate.

0.3 0.7 1.0
Temperature

30

35

40

45

50

Av
g

Su
cc

es
s R

at
e

(%
)

0.3 0.7 1.0
Temperature

13.0

13.5

14.0

14.5

15.0

15.5

Av
er

ag
e

Nu
m

 Tu
rn

s

Llama-3.1-8B-Instruct Paprika (Llama-3.1-8B-Instruct) gpt-4o-mini

Figure 14. (PAPRIKA evaluated on guess my city, LMRL-Gym split) We evaluate our method on the LMRL-Gym split (disjoint from
our training and test sets) for guess my city and report average task success rate (4 attempts per task). We see that the gains we saw on our
test set mostly translates to this dataset as well.

I.10. Finetuning on regular multiturn data does not help

A compelling hypothesis is that the instruct model has seen comparatively fewer multiturn trajectories during training, and
finetuning on such trajectories may naturally lead to performance improvement in sequential decision-making tasks, making

48

Training a Generally Curious Agent

0.3 0.7 1.0
Temperature

62

64

66

68

70

72

Av
g

Su
cc

es
s R

at
e

(%
)

0.3 0.7 1.0
Temperature

11.6
11.8
12.0
12.2
12.4
12.6
12.8

Av
er

ag
e

Nu
m

 Tu
rn

s

Llama-3.1-8B-Instruct Paprika (Llama-3.1-8B-Instruct) gpt-4o-mini

Figure 15. (PAPRIKA evaluated on twenty questions, LMRL-Gym split) We evaluate our method on the LMRL-Gym split (disjoint
from our training and test sets) for twenty questions and report average task success rate (4 attempts per task). We see that the gains we
saw on our test set mostly translates to this dataset as well.

0.3 0.7 1.0
Temperature

65

70

75

80

85

90

Av
g

Su
cc

es
s R

at
e

(%
)

0.3 0.7 1.0
Temperature

9.30

9.35

9.40

9.45

9.50

9.55

Av
er

ag
e

Nu
m

 Tu
rn

s

Llama-3.1-8B-Instruct Paprika (Llama-3.1-8B-Instruct)

Figure 16. (Further tests for generalization) PAPRIKA evaluated on a modified version of wordle, where the agent needs to guess words
that do not have five letters. We report average success rate over 1000 tasks, with shaded regions representing standard errors over 3
random seeds. PAPRIKA retain good strategies learned from other tasks and outperforms the starting model (Llama-3.1-8B-Instruct)
without explicitly being trained on this task group.

our complex data generation process unnecessary. To test this, we finetune the Llama-3.1-8B-Instruct model on 100,000
English language trajectories randomly sampled from WildChat (Zhao et al., 2024), which contains multiturn interactions
between GPT-4 and human users (we use the same hyperparamers as our other experiments). The results in Figures 5 to 7
show significant performance degradation on all task groups resulting from this fine-tuning. We speculate that this happens
because WildChat interactions prioritize coherence rather than information gathering, and training specifically on tasks that
require strategic exploration will be necessary to improve LLMs’ sequential decision-making abilities.

I.11. Performance comparison between different starting models

In our work, we use a Llama-3.1-8B-Instruct model for all of our experiments. For the sake of completeness, we have
also run evaluations on two other models with comparable parameter count, namely Qwen-2.5-7B-Instruct (Qwen et al.,
2025) and Mistral-7B-Instruct-v0.3 (Jiang et al., 2023a). Figure 18 shows their average success rate on 3 representative task
groups: with the performance ranking being Llama-3.1-8B-Instruct > Qwen-2.5-7B-Instruct > Mistral-7B-Instruct-v0.3 on
all 3 of them. We also experimented with the more recent reasoning models, particularly DeepSeek-R1 distilled Llama-8B
and Qwen-7B models (DeepSeek-AI et al., 2025). However, these models generate very long chain-of-thoughts, and we
could not obtain a final answer from them in our experiments even after generating 10,000 tokens. Overall, it would be
interesting to study how recent reasoning models perform on our sequential decision making tasks or if using online RL on
our tasks can lead to reasoning models for our tasks. We leave this direction for future work. We also hypothesize that the
gains from PAPRIKA are dependent on the base model’s quality and diversity since we use self-generated data for training.
Due to computational constraints, we do not fine-tune other base models with PAPRIKA and leave this direction also for
future research.

49

Training a Generally Curious Agent

35

37

39

41

43

Av
g

Su
cc

es
s R

at
e

(%
)

Twenty Questions

0

2

4

6

8

Av
g

Su
cc

es
s R

at
e

(%
)

Mastermind

5

6

7

8

9

Av
g

Su
cc

es
s R

at
e

(%
)

Cellular Automata

0.3 0.7 1.0
Temperature

4

8

12

16

20

Av
g

Su
cc

es
s R

at
e

(%
)

Minesweeper

0.3 0.7 1.0
Temperature

7

9

11

13

15

Av
g

Su
cc

es
s R

at
e

(%
)

Wordle

0.3 0.7 1.0
Temperature

30.0

35.5

41.0

46.5

52.0

Av
g

Su
cc

es
s R

at
e

(%
)

Guess My City

Llama-3.1-8B-Instruct Paprika (Llama-3.1-8B-Instruct) Paprika (SFT only)

Figure 17. (Comparison between PAPRIKA with SFT only vs SFT followed by RPO) Average success rate comparison between
PAPRIKA when we only run supervised finetuning, vs regular PAPRIKA which has an SFT stage followed by RPO finetuning. Our ablation
study shows that the RPO stage is necessary and generally gives a boost in performance on all cases.

I.12. Details on Standard Benchmarks

To show that PAPRIKA does not harm the starting model’s regular capabilities, we test PAPRIKA-finetuned models on a set
of standard tasks, namely MT-Bench (Zheng et al., 2023; Kwan et al., 2024), AlpacaEval (Dubois et al., 2023; 2024; Li
et al., 2023), GPQA (Rein et al., 2023), Math (Hendrycks et al., 2021), MMLU-Pro (Wang et al., 2024c) and IFEval (Zhou
et al., 2023). See the following for details on how we run our tests:

1. For MT-Bench, we use the code from this repo — https://github.com/lm-sys/FastChat/blob/main/
fastchat/llm_judge/README.md — to run our evaluations.

2. For AlpacaEval, we also use the original codebase provided here to run our evaluations: https://github.com/
tatsu-lab/alpaca_eval

3. For other tasks, we use the codebase provided by Llama Recipes to produce the num-
bers for all models: https://github.com/meta-llama/llama-cookbook/blob/

0.3 0.7 1.0
Temperature

10

18

26

34

42

Av
g

Su
cc

es
s R

at
e

(%
) Twenty Questions

0.3 0.7 1.0
Temperature

0.0

0.5

1.0

1.5

2.0

Av
g

Su
cc

es
s R

at
e

(%
) Mastermind

0.3 0.7 1.0
Temperature

0

2

4

6

8

Av
g

Su
cc

es
s R

at
e

(%
) Cellular Automata

Llama-3.1-8B-Instruct Qwen-2.5-7B-Instruct Mistral-7B-Instruct-v0.3

Figure 18. (Performance comparison between different models) Average success rate of 3 different models with comparable parameter
count, namely Llama-3.1-8B-Instruct, Qwen2.5-7B-Instruct, and Mistral-7B-Instruct-v0.3. We evalute the performance of these models
on 3 representative task groups, with shaded areas representing standard error over 3 random seeds.

50

https://github.com/lm-sys/FastChat/blob/main/fastchat/llm_judge/README.md
https://github.com/lm-sys/FastChat/blob/main/fastchat/llm_judge/README.md
https://github.com/tatsu-lab/alpaca_eval
https://github.com/tatsu-lab/alpaca_eval
https://github.com/meta-llama/llama-cookbook/blob/2501f519c7a775e3fab82ff286916671023ca9c6/tools/benchmarks/llm_eval_harness/meta_eval/README.md
https://github.com/meta-llama/llama-cookbook/blob/2501f519c7a775e3fab82ff286916671023ca9c6/tools/benchmarks/llm_eval_harness/meta_eval/README.md
https://github.com/meta-llama/llama-cookbook/blob/2501f519c7a775e3fab82ff286916671023ca9c6/tools/benchmarks/llm_eval_harness/meta_eval/README.md

Training a Generally Curious Agent

2501f519c7a775e3fab82ff286916671023ca9c6/tools/benchmarks/llm_eval_harness/
meta_eval/README.md

For MT-Bench, we report the usual scores. For AlpacaEval, we report length controlled winrate (Dubois et al., 2024) against
GPT-4-turbo. For GPQA, we report the strict match accuracy scores. For Math, following the recipe described above, we
report accuracies only on the Math (Hard) subset, using exact match. For MMLU-Pro, we also report the exact match
accuracy, and for IFEval we report instruction level loose accuracy.

J. Limitations of PAPRIKA: Evaluation on Standard Bandit

0 10 20 30 40 50
T

0

1

2

3

4

5

6

Em
pi

ric
al

 R
eg

re
t

Num Arms = 3

0 10 20 30 40 50
T

0

2

4

6
Em

pi
ric

al
 R

eg
re

t

Num Arms = 4

0 10 20 30 40 50
T

0

2

4

6

8

Em
pi

ric
al

 R
eg

re
t

Num Arms = 5

Llama-3.1-8B-Instruct Paprika (Llama-3.1-8B-Instruct) gpt-4o-mini UCB

Figure 19. (Evaluation on the bandit task from Krishnamurthy et al. (2024)) We evaluate various LLMs on the original bandit task
proposed by Krishnamurthy et al. (2024). While PAPRIKA show some improvement when the bandit tasks have a smaller number of arms
over Llama-3.1-8B-Instruct, we see the gap reduce as the number of arms increase.

As a sanity check, we also evaluate PAPRIKA-finetuned models on the bandit task proposed by Krishnamurthy et al. (2024).
Figure 19 shows our results, where we report empirical regret averaged across 100 trials. We use the following definition of
regret: if the optimal arm has reward r∗, and r(ât) is the reward of the arm chosen by a policy at timestep t, then empirical
regret is calculated as

∑T
t=1 [r

∗ − r(ât)], where T is the total number of timesteps.

Figure 19 demonstrates the limitations of PAPRIKA: without any explicit training on this bandit task group, PAPRIKA
improves empirical regret over Llama-3.1-8B-Instruct, but only when the number of arms is small. We see that the gap
vanishes when the number of arms grow. Nie et al. (2024) shows that training on synthetic trajectories obtained from a UCB
algorithm improves LLMs’ capabilities on this task group. We hypothesize that one could get the same result by directly
running reinforcement learning on the bandit task group, without requiring access to an optimal algorithm like UCB. We
leave this direction for future work.

51

https://github.com/meta-llama/llama-cookbook/blob/2501f519c7a775e3fab82ff286916671023ca9c6/tools/benchmarks/llm_eval_harness/meta_eval/README.md
https://github.com/meta-llama/llama-cookbook/blob/2501f519c7a775e3fab82ff286916671023ca9c6/tools/benchmarks/llm_eval_harness/meta_eval/README.md
https://github.com/meta-llama/llama-cookbook/blob/2501f519c7a775e3fab82ff286916671023ca9c6/tools/benchmarks/llm_eval_harness/meta_eval/README.md
https://github.com/meta-llama/llama-cookbook/blob/2501f519c7a775e3fab82ff286916671023ca9c6/tools/benchmarks/llm_eval_harness/meta_eval/README.md
https://github.com/meta-llama/llama-cookbook/blob/2501f519c7a775e3fab82ff286916671023ca9c6/tools/benchmarks/llm_eval_harness/meta_eval/README.md

Training a Generally Curious Agent

K. Example Trajectories
In this section, we provide some qualitative example of behaviors learned by PAPRIKA, to demonstrate that PAPRIKA imbues
LLMs with better decision making capabilities.

The first example is provided in Table 6: the example is from the twenty questions task group, with the agents being required
to guess ‘orca’. We show clear differences in the behaviors of Llama-3.1-8B-Instruct and PAPRIKA, the questions asked by
PAPRIKA is more concise and reaches the final topic quicker.

The second example is also from the twenty questions task group, provided in Table 7, where the agents are required to
guess a concept, with the current answer being ‘primary numbers’. Llama-3.1-8B-Instruct asks redundant questions like if
the concept can be held in someone’s hand, or if the concept is a type of rock or mineral. PAPRIKA demonstrate much better
quality questions and is able to guess the concept in 8 turns, whereas Llama-3.1-8B-Instruct is not able to guess it within 20
turns for all 4 attempts we made (we only show the first 9 turns for the sake of brevity).

The final exmaple is from the wordle task group, provided in Table 8. Notice the lack of conciseness in Llama-3.1-8B-
Instruct’s chain-of-thoughts compared to PAPRIKA. Llama-3.1-8B-Instruct also makes bad guesses/wrongfully reasons
against the correct answer.

Overall, PAPRIKA improves over Llama-3.1-8B-Instruct both quantitatively and qualitatively based on our limited evaluation
of the generated trajectories. We leave a detailed study of each model’s behavior/generation quality for future work.

52

Training a Generally Curious Agent

Table 6. Behavior comparison on twenty questions, where the secret topic to guess is an animal, with the current answer being ‘orca’. We
provide the first 11 turns and omit the rest for brevity, Llama-3.1-8B-Instruct fails to correctly guess this topic in all 4 attempts within
20 turns. Also, notice the bad questions colored in red. PAPRIKA asks the irrelevant question of whether the animal is a shark after
confirming it is a mammal. Llama-3.1-8B-Instruct asks whether the animal is a human after confirming it lives in water.

Role Llama-3.1-8B-Instruct PAPRIKA

Agent I’ll start asking questions to try to guess the animal.
Here’s my first question: 1. Does the animal have
four legs?

Is the animal a mammal?

Env No Yes
Agent That helps to rule out some possibilities. Here’s

my next question: 2. Can the animal fly?
Does the animal primarily live on land?

Env No No
Agent So the animal doesn’t have four legs and can’t fly.

Here’s my next question: 3. Does the animal live
in water?

Does the animal live in saltwater?

Env Yes Yes
Agent So the animal lives in water. Here’s my next ques-

tion: 4. Does the animal have a backbone?
Is the animal a carnivore?

Env Yes Yes
Agent Since the animal has a backbone and lives in water,

I’m starting to get a few ideas. Here’s my next
question: 5. Does the animal have gills?

Does the animal have fins?

Env Yes Yes
Agent So the animal lives in water, has a backbone, but

doesn’t have gills. Here’s my next question: 6.
Does the animal primarily eat fish?

Is the animal a shark?

Env Yes No
Agent So the animal lives in water, has a backbone, eats

fish, and doesn’t have gills. Here’s my next ques-
tion: 7. Is the animal a mammal?

Does the animal have a dorsal fin?

Env Yes Yes
Agent Since the animal is a mammal, lives in water, eats

fish, and has a backbone, I’m starting to get a good
idea. Here’s my next question: 8. Does the animal
give birth to live young?

Does the animal have a relatively small size, typi-
cally less than 6 feet long?

Env Yes No
Agent So the animal is a mammal, lives in water, eats

fish, has a backbone, gives birth to live young, and
doesn’t have gills. Here’s my next question: 9. Is
the animal a human?

Is the animal an orca (also known as a killer
whale)?

Env No Goal reached
Agent So the animal is a mammal, lives in water, eats

fish, has a backbone, gives birth to live young,
doesn’t have gills, and isn’t a human. Here’s my
next question: 10. Does the animal primarily live
in oceans?

Env Yes
Agent So the animal is a mammal, lives in oceans, eats

fish, has a backbone, gives birth to live young,
doesn’t have gills, and isn’t a human. Here’s my
next question: 11. Does the animal have a large
body size, typically over 1 meter in length?

Env Yes

53

Training a Generally Curious Agent

Table 7. Behavior comparison on twenty questions, where the secret topic to guess is a concept, with the current answer being ‘prime
numbers’. We provide the first 9 turns and omit the rest for brevity, Llama-3.1-8B-Instruct fails to correctly guess this topic in all 4
attempts.

Role Llama-3.1-8B-Instruct PAPRIKA

Agent Here’s my first question: 1. Is the concept you’re
thinking of something that exists in the real world?

I’m excited to play 20 Questions. Here’s my first
question: 1. Is the concept you’re thinking of some-
thing that exists in the physical world?

Env Yes No
Agent Here’s my next question: 2. Is the concept you’re

thinking of something that can be held in your
hand?

That helps to rule out a physical object or location.
Here’s my next question: 2. Is the concept you’re
thinking of an abstract idea or a theory?

Env No Yes
Agent That helps to rule out smaller objects. Here’s my

next question: 3. Is the concept you’re thinking of
a living thing?

That gives me a good direction to explore. Here’s
my next question: 3. Is the concept you’re thinking
of related to a field of study or a discipline, such as
mathematics, philosophy, or science?

Env No Yes
Agent That helps to rule out animals and plants. Here’s

my next question: 4. Is the concept you’re thinking
of man-made?

That helps to narrow it down to a specific area of
knowledge. Here’s my next question: 4. Is the
concept you’re thinking of a mathematical concept
or theory?

Env No Yes
Agent So the concept is a natural part of the real world,

but it’s not a living thing. Here’s my next question:
5. Is the concept you’re thinking of a geographical
feature?

That gives me a good starting point to explore math-
ematical ideas. Here’s my next question: 5. Is the
concept you’re thinking of a fundamental concept
in mathematics, such as a number, a geometric
shape, or a mathematical operation?

Env No Yes
Agent That helps to rule out mountains, rivers, and other

natural landforms. Here’s my next question: 6.
Is the concept you’re thinking of related to the
weather?

That helps to focus on basic mathematical building
blocks. Here’s my next question: 6. Is the concept
you’re thinking of a number?

Env No Yes
Agent That helps to rule out things like clouds, storms,

and other weather-related phenomena. Here’s my
next question: 7. Is the concept you’re thinking of
a natural phenomenon that occurs in the sky?

Now we’re getting close to a specific number.
Here’s my next question: 7. Is the concept you’re
thinking of a whole number (not a fraction or deci-
mal)?

Env No Yes
Agent That helps to rule out things like the sun, moon,

stars, and other celestial bodies. Here’s my next
question: 8. Is the concept you’re thinking of a
type of rock or mineral?

That helps to rule out fractions and decimals.
Here’s my next question: 8. Is the concept you’re
thinking of a prime number?

Env No Goal reached
Agent That helps to rule out specific types of rocks and

minerals. Here’s my next question: 9. Is the con-
cept you’re thinking of related to water in some
way?

Env No

54

Training a Generally Curious Agent

Table 8. Behavior comparison on Wordle, where the agents need to guess the secret word ‘toast’. We omit the task environment feedback
for the sake of brevity. Notice the conciseness and better quality of the guesses made by PAPRIKA. Also notice (marked in red) that
Llama-3.1-8B-Instruct reaches the correct answer but incorrectly deduces it is not the correct answer and thus makes a wrong guess,
showing poor decision making abilities compared to PAPRIKA.

Llama-3.1-8B-Instruct PAPRIKA

<Think> Since it’s the first guess, I’ll choose
a common five-letter word that has a good mix
of letters. I’ll start with a word that has a rela-
tively high frequency of letters in the English lan-
guage. A good starting point would be a word like
“house”. This word has a good balance of vowels
and consonants, and it’s a common enough word
that it’s likely to have some letters in common with
the secret word. </Think> </Answer> house
</Answer>

<Think> Since it’s the first guess, I’ll choose
a common and relatively short five-letter word to
maximize the chances of getting at least one correct
letter. I’ll go with a word that has a mix of vowels
and consonants. My first guess will be “house”.
<Think> <Answer> house </Answer>

<Think> Since the second letter “o” and fourth
letter “s” are correct and in the correct position,
I’ll keep those letters. I’ll replace the first letter
“h” with a new letter that is commonly used in
words. I’ll also replace the third letter “u” with a
new letter that is often paired with “o” and “s”. A
good combination could be the letters “t” and “e”
are not in the word, so I will try to avoid them. I’ll
try the word “torns” but since “t” is not a good fit,
I will try “ports” instead. </Think> <Answer>
ports </Answer>

<Think> Since “o” and “s” are in the correct po-
sitions, my next guess will focus on surrounding
them with letters that are likely to appear in com-
mon five-letter words. I’ll choose a word that has
a mix of vowels and consonants, and try to utilize
the given positions of “o” and “s”. My next guess
will be “boost”. </Think> <Answer> boost
</Answer>

<Think> Since the second letter “o” is correct
and in the correct position, I’ll keep that. The
fourth letter “t” and fifth letter “s” are correct but
in different positions, so I’ll try to swap them. I’ll
replace the first letter “p” with a new letter that is
commonly used in words. I’ll also replace the third
letter “r” with a new letter that is often paired with
“o”, “t”, and “s”. A good combination could be
the letters “a” or “n”. I’ll try the word “boats” but
since “b” is not a good fit, I will try “notes” instead.
</Think> <Answer> notes </Answer>

<Think> With “o”, “s”, and “t” in the correct
positions, and another “o” in a different position,
my next guess will try to utilize these letters and
find the correct placement of the remaining “o”. I’ll
choose a word that has a common combination of
letters. My next guess will be “coast”. </Think>
<Answer> coast </Answer>

<Think> Since the second letter “o” is correct
and in the correct position, I’ll keep that. The third
letter “t” and fifth letter “s” are correct but in differ-
ent positions, so I’ll try to swap them. I’ll replace
the first letter “n” with a new letter that is com-
monly used in words. I’ll also replace the fourth
letter “e” with a new letter that is often paired with
“o”, “t”, and “s”. A good combination could be
the letters “a” or “l”. I’ll try the word “lots” but
since “l” is not a good fit, I will try “mots” in-
stead. However, “m” is not a good fit, so I will
try “dots” instead. </Think> <Answer> dots
</Answer>

<Think> With “o”, “s”, “t”, and “a” in the cor-
rect positions, my next guess will try to find the
correct word by utilizing these letters. Since all
the letters are in the correct positions except for
the first letter, my next guess will be a common
five-letter word that fits the given letters. My next
guess will be “boast”. </Think> <Answer>
boast </Answer>

<Think> Since the second letter “o” is correct
and in the correct position, I’ll keep that. The third
letter “t” and fifth letter “s” are correct but in differ-
ent positions, so I’ll try to swap them. I’ll replace
the first letter “d” with a new letter that is com-
monly used in words. I’ll also replace the fourth
letter with a new letter that is often paired with
“o”, “t”, and “s”. A good combination could be the
letters “a” or “l”. I’ll try the word “toats” but since
“a” is not a good fit, I will try “toats” is not a good
fit, so I will try “toast” instead. However, “t” is
in the wrong position, so I will try “costs” instead.
</Think> <Answer> costs </Answer>

<Think>Given the letters “o”, “a”, “s”, and “t” in
the correct positions, my next guess will be a com-
mon five-letter word that fits these letters. How-
ever, since I’ve already used up all my attempts,
I’ll take a chance and guess a word that is very
similar to “boast”. My next guess will be “coast”
is already tried, so I will guess “toast”. <Think>
<Answer> toast </Answer>

55

