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Abstract
Persistent homology is arguably the most success-
ful technique in Topological Data Analysis. It
combines homology, a topological feature of a
data set, with persistence, which tracks the evo-
lution of homology over different scales. The
persistent Laplacian is a recent theoretical devel-
opment that combines persistence with the com-
binatorial Laplacian, the higher-order extension
of the well-known graph Laplacian. Crucially,
the Laplacian encodes both the homology of a
data set, and some additional geometric informa-
tion not captured by the homology. Here, we
provide the first investigation into the efficacy
of the persistent Laplacian as an embedding of
data for downstream classification and regression
tasks. We extend the persistent Laplacian to cubi-
cal complexes so it can be used on images, then
evaluate its performance as an embedding method
on the MNIST and MoleculeNet datasets, demon-
strating that it consistently outperforms persistent
homology.

1. Introduction
Topological Data Analysis (TDA) encompasses a group of
techniques that use topologically-inspired methods in data
analysis (Edelsbrunner & Harer, 2022; Dey & Wang, 2022).
Topology studies the same objects as geometry (‘shapes’)
but allows extreme deformations such as stretching, twisting,
or bending, and thus it is concerned with properties (called
‘topological invariants’) that remain unchanged under such
deformations. Although we should think of ‘shapes’ as
continuous objects, we can discretise them without losing
any topological information, and, indeed, many topological
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invariants are calculated directly on these discretizations.
Using these, we can convert ‘data’ into ‘shape’, by construct-
ing one of these discretizations from a data set (typically a
simplicial or cubical complex), and then extracting topolog-
ical features – this is the standard TDA workflow.

A key idea behind many TDA techniques is that of persis-
tence. Instead of counting a topological feature (e.g. number
of connected pieces), we track its evolution on a family of
increasing discretizations, called a filtration, that encodes a
‘shape’, or data set, at different ‘scales’. The combination of
persistence with homology, a powerful topological invariant,
is by far the most successful TDA technique in applications
across a variety of domains (see e.g., Bukkuri et al. (2021)
and Pritchard et al. (2022)).

A natural extension of this approach, moving towards what
one could call Geometric Data Analysis, would be to incor-
porate more geometrical information missed by homology,
that is, to supplement homology, a purely topological invari-
ant, with some geometrical information of the underlying
data set. The combinatorial, or discrete, Laplacian operator
(Horak & Jost, 2013), a higher-order generalization of the
well-known graph Laplacian (Eckmann, 1944; Goldberg,
2002), is the perfect candidate for this task. It incorporates
the homology, as its 0-eigenspace, while the non-zero spec-
trum captures aspects of the geometry. As an illustration,
the 0-eigenvalues of the graph Laplacian correspond to the
connected components of a graph (its 0-homology, a topo-
logical invariant), while the non-zero eigenvalues relate to
clusters, or ‘almost connected components’, a geometric fea-
ture undetected by homology, and the basis of the spectral
clustering algorithms (Von Luxburg, 2007).

The persistent Laplacian, a recent theoretical development
(Lieutier, 2014; Wang et al., 2020; Mémoli et al., 2022), ex-
tends the higher-order Laplacian operator to the persistence
setting. In particular, the 0-eigenvalues of the persistent
Laplacians recover information about the persistent homol-
ogy (Mémoli et al., 2022). This gives a powerful new way
to summarise data that combines topological and geometric
information with the persistence TDA hallmark.

In this article, we introduce the persistent Laplacian to the
Machine Learning community as a feature vector which
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encodes persistent homology plus additional aspects of the
underlying geometry, and assess its usefulness in practical
applications. Namely, we empirically investigate its efficacy
in comparison to other topological and geometric techniques
at MNIST classification and the prediction of molecular
properties from the MoleculeNet dataset (Wu et al., 2018).
Additionally, we evaluate the importance of utilising the
filtration in the persistent Laplacian and different magnitude
eigenvalues to the success on the downstream task. Our
code is available on GitHub.1

As far as we know, this article is the first empirical evidence
that the persistent Laplacians outperforms the current main-
stream topological tools on real-life datasets, paving the way
for its wider use by the ML and TDA communities.

1.1. Related Work

The theory for the persistent Laplacian has only recently
been developed, and we believe we provide the first eval-
uation of the persistent Laplacian as an applied tool. The
(non-persistent) combinatorial Laplacian can be used as an
update step for graph neural networks on simplicial com-
plexes (Bodnar et al., 2021), analogously to how the graph
Laplacian is used as an update step for graph convolutional
networks (Kipf & Welling, 2017). It is also used to analyze
protein datasets by Wang et al. (2020; 2021); Meng & Xia
(2021); Wee & Xia (2022), chromosomal structure in Gong
et al. (2022), and for drug design applications in Jiang et al.
(2022). In each of these applications the authors compute
the combinatorial Laplacian over a filtration, rather than the
persistent Laplacian, as they do not define the Laplacian via
the persistent boundary operator and related chain groups
(see Section 2.5 for details). An implementation of the per-
sistent Laplacian was provided in Matlab by Mémoli et al.
(2022), but was not used for data analysis applications in
their paper.

The work in Qiu & Wei (2023) similarly investigates spec-
tral techniques, linking their methods back to the persistent
Laplacian. This work is distinct from ours as although they
demonstrate how their methods are related to the persistent
Laplacian, they do not use it as a feature vector. In partic-
ular, when using the persistent Laplacian the authors ‘only
extracted features from harmonic spectra of persistent Lapla-
cians coding topological invariants for the high-dimensional
interactions’. This corresponds exactly to persistent homol-
ogy by Mémoli et al. (2022, Theorem 2.7).

1.2. Our Contributions

The purpose of this paper is to introduce the persistent Lapla-
cian to practitioners within TDA and, more broadly, those

1https://github.com/tomogwen/
persistentlaplaciandatascience

interested in encoding structure in a data set using topologi-
cal and geometrical features. Alongside accessible explana-
tions of the necessary theoretical background, our research
contributions demonstrate its added value in practical Ma-
chine Learning applications, compared to purely topological
methods. The three primary contributions of this paper are
as follows.

(i) Extension to cubical complexes. We extend the
theory behind the persistent Laplacian from simpli-
cial complexes (original setting) to cubical complexes,
making these methods immediately applicable to im-
age data sets.

(ii) Baselines. We evaluate the persistent Laplacian spec-
trum as a feature vector and find that it consistently
outperforms persistent homology across digit recogni-
tion and molecular property prediction tasks. It also
equals or outperforms its non-persistent versions, the
graph and combinatorial Laplacians.

(iii) Python implementation. We provide the first imple-
mentation of the persistent Laplacian in Python. We
have released a full version of the codebase on GitHub,
making the persistent Laplacian readily available to
non-specialists working as data science practitioners.

1.3. Paper Structure

In Section 2, we introduce the necessary theory behind the
persistent Laplacian, including how it relates, and super-
sedes, the graph Laplacian and its higher-dimensional gen-
eralization, the combinatorial Laplacian. In Section 3, we
introduce cubical complexes, explain how to efficiently com-
pute the persistent Laplacian using the Schur complement,
and extend this computation to the cubical case. In Section
4, we build intuition for the persistent Laplacian eigenval-
ues, using simple synthetic data, and MNIST, and illustrate
how we compute and represent the persistent Laplacian as
a feature vector. Finally, in Section 5, we run experiments
on MNIST and MoleculeNet, using persistent homology,
the graph Laplacian, and the combinatorial Laplacian as
baselines.

2. Theoretical Background
2.1. Simplicial Complexes

A key data structure for both persistent homology and the
Laplacian is the simplicial complex. A simplicial complex
is a collection of p-dimensional triangles, called p-simplices,
i.e., vertices, edges, triangles, tetrahedrons, and so on. Note
that if we just consider the first two dimensions, we have
vertices (0-simplices) and edges (1-simplices), resulting in a
graph, so we can view simplicial complexes as a generaliza-
tion of a graph that can represent higher-order interactions
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Figure 1: A filtration of cubical complexes K0 ↪K1 ↪K2 of an MNIST digit, alongside the eigenvalues of the persistent
Laplacian. The x axis is the eigenvalue position and the y axis is its value (i.e., the y value at x = a is the value of the ath
smallest eigenvalue).

and structures in data (p-simplices corresponding to (p+ 1)-
cliques in the graph). Beyond extending graphs, simplicial
complexes provide a natural discretization of continuous
‘shapes’ (e.g. a tessellation of a surface into triangles) and
data sets (with data points as vertices). We identify a sim-
plex with its set of vertices, and call it oriented if we fix
an orientation, that is, an ordering of its vertices. We write
{a}, {a, b}, {a, b, c}, etc, respectively [a], [a, b], [a, b, c]
etc, for vertices, edges, triangles etc, respectively oriented
vertices, edges, triangles etc (so that {a, b} = {b, a} but
[a, b] ≠ [b, a], for example).

2.2. Boundary Operators and Homology

Given a simplicial complex K, the (oriented) p-dimensional
simplices can be viewed as generators for a vector space
called the p-chain group CK

p , made of linear combinations
of p-simplices. The boundary operator on these chain
groups is a linear map ∂K

p ∶ CK
p → CK

p−1 that sends a
p-dimensional simplex to its p − 1 boundary. For exam-
ple, it sends a triangle to its constituent edges (namely,
∂2([a, b, c]) = [b, c] − [a, c] + [a, b], a linear combination
of its 3 edges). The boundary operator corresponds to mul-
tiplication by the boundary matrix BK

p , whose (i, j)-entry
is ±1 if the jth (oriented) (p − 1)-simplex is a constituent
of the ith (oriented) p-simplex, and 0 otherwise, with sign
depending on orientations. All in all, we are able to convert
purely topological information (simplices and boundary re-
lations) into purely algebraic information (vector spaces and
linear maps).

The chain groups and boundary operators form a chain
complex,

. . . CK
p+1 CK

p CK
p−1 . . . ,

∂K
p+2 ∂K

p+1 ∂K
p ∂K

p−1

that is, a sequence of linear maps satisfying ∂K
p ○ ∂K

p+1 = 0
(this can be shown from the choice of orientation signs in
the definition of boundary operator). In particular, an ele-

ment in the image of one boundary map, is in the kernel
of the next one, and we can define the homology groups
HK

p = ZK
p /BK

p+1, where ZK
p = ker∂K

p and BK
p+1 = im ∂K

p+1.
Although not obvious from the definition, these homology
groups capture important topological properties of the sim-
plicial complex K. For instance, their rank, called the Betti
number βK

p = rank HK
p , captures the number of connected

components for k = 0, the number of holes for k = 1, the
number of voids for k = 2, and so on.

2.3. Persistent Homology

Simplicial complexes can be constructed from data in a
number of ways, but typically by a parameterized method
like the Vietoris-Rips complex, which connects k + 1 points
into a k-simplex when they are pairwise within ϵ distance
of each other. The choice of parameter ϵ varies the topologi-
cal properties of the simplicial complex. The idea behind
persistence is to allow all choices simultaneously, that is, to
consider a family of increasing simplicial complexes, called
a filtration, and track the evolution of homology over the
filtration. Formally, we define a simplicial pair, written
K ⊆ L, as two simplicial complexes K and L with the same
set of vertices and such that all simplices of K are simplices
of L. Then, a filtration is a family {Kt}t∈R of simplicial
complexes with a simplicial pair Kt ⊆Kt′ whenever t ≤ t′.

If K ⊆ L, the boundary maps of K and of L can be writ-
ten as a commutative diagram where vertical arrows are
inclusion maps

. . . CK
p+1 CK

p CK
p−1 . . .

. . . CL
p+1 CL

p CL
p−1 . . .

∂K
p+1 ∂K

p

∂L
p+1 ∂L

p

Now we can define persistent homology on a simplicial
complex pair K ↪ L as HK,L

p = ZK
p /(BL

p ∩ ZK
p ). This

represents topological features present in K that persist to
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L, i.e., are still present (non-zero) in L. We can similarly de-
fine the persistent Betti number βK,L

p = rank HK,L
p , which

counts topological features persisting from K to L.

2.4. The Graph and Combinatorial Laplacian

The graph Laplacian can also be seen in terms of the bound-
ary operator, which makes the connection to homology
clearer. If G is a graph, the boundary operator ∂1∶C1 → C0

sends an oriented edge [a, b] to [b] − [a]. In matrix form,
this operator corresponds to multiplication by the incidence
matrix B of the oriented graph (the graph with an arbitrary,
but fixed, orientation of the edges), that is, the matrix with
(i, j)-entry 1, respectively −1, if the jth vertex is the source,
respectively target, of the ith edge. We have a dual map in
the other direction, (∂1)∗∶C0 → C1, called the coboundary
operator, which corresponds simply to multiplication by
the transpose matrix BT . The graph Laplacian operator
∆0 is then defined as the composition of the boundary and
coboundary operators, ∆0∶C0 → C0, ∆0 = ∂1 ○ (∂1)∗. In
matrix terms, this corresponds to the matrix BBT , which
equals D −A (regardless of the chosen edge orientations),
where A is the adjacency matrix of the graph, and D the
diagonal matrix of vertex degrees, recovering the standard
definition of the graph Laplacian matrix.

The above interpretation in terms of boundary and cobound-
ary operators give a straightforward definition of Laplacian
for arbitrary simplicial complexes (see (Horak & Jost, 2013)
for details). Consider a simplicial complex K, and the
boundary and coboundary operators at each dimension,

. . . CK
p+1 CK

p CK
p−1 . . .

∂K
p+1

(∂K
p+1)

∗

∂K
p

(∂K
p )

∗

We define the up and down combinatorial Laplacians as the
linear maps

∆K
p,up = ∂K

p+1 ○ (∂K
p+1)∗ and ∆K

p,down = (∂K
p )∗ ○ ∂K

p

respectively, and the combinatorial Laplacian as ∆K
p =

∆K
p,up + ∆K

p,down. For a graph, the up 0-Laplacian coin-
cides with the graph Laplacian (see above), and the down
0-Laplacian is zero. In terms of matrix representations,
the combinatorial Laplacian ∆K

p corresponds to the ma-
trix BK

p+1 ⋅ (BK
p+1)T + (BK

p )T ⋅BK
p , where BK

p etc are the
boundary matrices described in Section 2.2.

Moreover, the combinatorial Laplacian captures the non-
persistent homology at each dimension. Explicitly, one can
show that HK

p = ker(∆k
p), a discrete version of a classical

result in Hodge Theory (see Horak & Jost (2013)). The
non-zero spectrum of the combinatorial Laplacian is less
well-understood and one goal of this article is to shed light
on its significance.

2.5. The Persistent Laplacian

Lieutier (2014) and Wang et al. (2020) independently de-
veloped the persistent Laplacian, a persistent version of the
combinatorial Laplacian which makes the combinatorial
Laplacian applicable to scenarios (filtrations of simplicial
complexes) that were previously the sole domain of per-
sistent homology. Recent work by Mémoli et al. (2022)
established various theoretical properties of the persistent
Laplacian as well as efficient algorithms for computing ma-
trix representations of persistent Laplacians. We will now
introduce a definition of the persistent Laplacian following
the notation from Mémoli et al. (2022).

Let K ⊆ L be a simplicial pair and consider the subspace of
CL

p given by

CL,K
p = {c ∈ CL

p ∶ ∂L
p (c) ∈ CK

p−1} ⊆ CL
p . (1)

That is, CL,K
p consists of all simplices in the larger simpli-

cial complex, that is, in CL
p , that have their boundary in the

smaller simplicial complex, that is, in CK
p−1 ⊆ CL

p−1. Write
∂L,K
p for the restriction to this subspace ∂L

p ∣CL,K
p

. Then, the
p-persistent Laplacian is defined by

∆K,L
p = ∂L,K

p+1 ○ (∂
L,K
p+1 )

∗
+ (∂K

p )∗ ○ ∂K
p , (2)

with the up p-persistent Laplacian given by ∆K,L
p,up = ∂L,K

p+1 ○
(∂L,K

p+1 )
∗
. The relation between each operator is shown in

the diagram from Mémoli et al. (2022) below.

CK
p+1 CK

p CK
p−1

CL,K
p+1 CL,K

p+1

CL
p+1 CL

p CL
p−1

∂K
p+1

(∂L,K
p+1 )

∗

∂K
p

(∂K
p )

∗

∂L,K
p

∂L
p+1 ∂L

p

A key property of the persistent Laplacian is that the number
of zero eigenvalues of ∆K,L

p is equal to βK,L
p , the p-th

persistent Betti number (cf. Theorem 2.7 in Mémoli et al.
(2022)). That is, the kernel of the persistent Laplacian
captures the rank of the p-th persistent homology groups.
As mentioned already in Mémoli et al. (2022, Example 2.3),
when K and L are both graphs with the same vertex set,
then ∆K,L

0 reduces to the usual graph Laplacian ∆L
0 of the

larger graph L.

Despite the intimidating operator definition in Equation (2),
a succinct matrix representation of the persistent Laplacian
can be obtained via the Schur complement as we now ex-
plain (Mémoli et al., 2022).
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Consider a block matrix M = (A B
C D

) ∈ Rn×n where D is

a d × d matrix. The (generalized) Schur complement of D
in M , denoted by M/D, is defined as M/D ∶= A −BD†C,
where D† denotes the Moore-Penrose pseudoinverse of D.

In Mémoli et al. (2022), it is shown that the matrix represen-
tation for up persistent Laplacians of simplicial pairs can be
computed via Schur complement of certain matrices. More
precisely, let K ↪ L be a simplicial pair, write ∆∆∆L

up,p for
the matrix representation of the p-th up Laplacian ∆L

up,p

of L, and let ILK be the submatrix of ∆∆∆L
up,p with rows (or

columns) corresponding to p-simplices not belonging to K.
Then ∆∆∆K,L

up,p ∶=∆∆∆L
up,p/∆∆∆L

up,p(ILK , ILK).

Q

Figure 2: The boundary of Q is a signed sum of the geo-
metric boundary edges of the square. Formally, ∂2([n,n +
1] × [m,m + 1]) = [n + 1] × [m,m + 1] + [n] × [m,m +
1] − [n,n + 1] × [m + 1] − [n,n + 1] × [m] the sum of the
vertical edges minus the horizontal edges.

3. Extension to Cubical Complexes
Just as a simplicial complex is built using simplices, a cubi-
cal complex is an analogue whose building blocks are cubes.
Cubical complexes are useful for representing 2D/3D mod-
els in computer graphics, as pixels and voxels are easier to
represented using squares and cubes rather than triangles
and tetrahedra. They have also been studied in the field of
persistent homology (Strömbom, 2007). We briefly recall
some notions related to cubical complexes below and then
establish how the persistent Laplacian theory can be applied
to study cubical complexes.

Intervals in R of the form [m,m + 1] or [m,m] for m ∈ N
are called elementary intervals. [m,m + 1] is also called a
1-cube whereas [m,m] is called a degenerate elementary in-
terval or a 0-cube. In Rn, elementary cubes or n-cubes Q are
defined to be products of n elementary intervals I1, . . . , In,
i.e., Q = I1 ×⋯ × In. We let dim(Q) denote the number of
non-degenerate components Ii. A subset K ⊆ Rn is called
a cubical complex if it is the finite union of n-cubes.

One can define chain groups for K for each k ∈ N: CK
k is

generated by all k-cubes Q with dim(Q) = k. We endow
an inner product on CK

k such that the set of k-cubes is an
orthonormal basis. We also define boundary maps ∂k ∶
CK

k → CK
k−1, as follows. For a 0-cube [m] = [m,m], its

boundary ∂0([m]) is defined as0. For a 1-cube [m,m + 1],

the boundary is defined as ∂1([m,m+1]) ∶= [m+1]−[m].
Now, given k > 1 and a k-cube Q = I1×⋯×Ik of dimension
k, its boundary is recursively defined as

∂kQ ∶= ∂1(I1)×I2×⋯×Ik+(−1)dim(I1)I1×∂k−1(I2×⋯×Ik).

(See Figure 2 for an illustration.)

Following this definition, it is easy to check that ∂k○∂k+1 = 0
for any k ∈ N (see for example (Strömbom, 2007) for more
details) and, in particular, a cubical complex K gives rise to
a chain complex

. . . CK
p+1 CK

p CK
p−1 . . .

∂K
p+2 ∂K

p+1 ∂K
p ∂K

p−1

In this way, one can also develop the Laplacian theory for
cubical complexes as already done in Duval et al. (2011).
Similarly, we develop a persistent version of the Laplacian
theory for cubical complexes. Given two cubical complexes
K and L with K ⊆ L, we call them a cubical pair. As in the
case of simplicial complexes, we define the subspace CL,K

p

as in Equation (1), and the (up) persistent Laplacian ∆K,L
p

on CK
p as in Equation (2).

We similarly extend the notation and terminology to the case
of cubical pair K ↪ L and, in particular, we can show that
∆∆∆K,L

up,p ∶=∆∆∆L
up,p/∆∆∆L

up,p(ILK , ILK) is the matrix representation
of ∆K,L

up,p. This can be proved by directly adapting the proof
of Theorem 4.6 in Mémoli et al. (2022), although it also
follows from a more general result in Gülen et al. (2023)
(see Appendix A for details).

4. The Persistent Laplacian as a Feature
Vector

We have explained the theory behind the persistent Lapla-
cian, and shown that we can also use it with cubical com-
plexes, but it remains to be seen it is best utilized as a feature
vector use in downstream tasks. Typically in Topological
Data Analysis we will be working with a filtration: a collec-
tion of complexes Ki such that Ki ⊆Kj , with i a continu-
ous real parameter in some range [i0, iT ]. Algorithms from
persistent homology theory can handle the entire filtration
efficiently and generate the so-called ‘persistence diagram’
(or ‘barcodes’) as the topological summary of the filtra-
tion, enabling us to understand the whole filtration via the
births and deaths of topological features (Edelsbrunner et al.,
2002). On the other hand, the persistent Laplacian ∆K,L

p

is defined for just two complexes: a complex pair (either a
simplicial pair or a cubical pair) K ↪ L. The first question
we must answer is given a filtration, which complex pairs
we select to compute the persistent Laplacian. The second
question is which dimensions of the persistent Laplacian to
compute - in our investigations, we will typically compute
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Given data X
Compute persistent

Laplacians
Embed into simplicial
or cubical filtration

Compute eigenvalues
and truncate

Flatten into
feature vector

∆0,1
0 ∆0,2

0 ∆0,3
0

∆1,3
0∆1,2

0

∆2,3
0

∆0,1
1 ∆0,2

1 ∆0,3
1

∆1,3
1∆1,2

1

∆2,3
1

λ0,1
0,∗ λ0,2

0,∗ λ0,3
0,∗

λ1,3
0,∗λ1,2

0,∗

λ2,3
0,∗

λ0,1
1,∗ λ0,2

1,∗ λ0,3
1,∗

λ1,3
1,∗λ1,2

1,∗

λ2,3
1,∗

α0

α1

α2
...
αn

Figure 3: The pipeline to compute feature vectors from data using the persistent Laplacian. We first embed the data into a
filtration of cubical or simplicial complexes, then compute the persistent Laplacian for a selection of complex pairs and
dimensions, before taking the eigenvalues, truncating/zero-padding (if necessary), then flattening into a feature vector.

the first two or three dimensions of the persistent Laplacian,
as is commonly done in TDA.

To answer the first question, we point out that the time com-
plexity for computing the persistent Laplacian for a given
simplicial pair K ↪ L is similar to (and sometimes faster
than) the one for computing the persistent homology for
the pair (Mémoli et al., 2022). However, computing the
persistent Laplacian for each pair of simplicial complexes
inside a filtration is time consuming. In particular, consider a
simplex-wise filtration K1 ⊆ ⋯ ⊆KN , i.e., Ki and Ki+1 dif-
fer by only one simplex for i = 1, . . . ,N −1. Assume further
that K1 is just a single vertex, so that N coincides with the
total number of simplices in KN . Let q ∶= dim(KN) and let
np denote the number of p-simplices in KN . By Theorem
5.1 in Mémoli et al. (2022), given any p = 0, . . . , q, com-
puting {∆i,j

p }1≤i≤j≤N takes time O (N2(np)2 +Nnp+1).
Then, to compute {∆i,j

p }1≤i≤j≤N,0≤p≤q , one needs time

O
⎛
⎝
N2

q

∑
p=0

n2
p +N

q

∑
p=0

np+1
⎞
⎠
= O
⎛
⎝
N2

q

∑
p=0

n2
p

⎞
⎠
.

Note that ∑p n
2
p ≥ (∑p np)2/(q + 1) = N2/(q + 1). Hence,

the total time complexity is O(N4/(q+1)) which is asymp-
totically larger than O(N3), an upper bound for computing
persistence diagrams of all dimensions using the standard
persistent homology algorithm.

Based on the discussion above, we compute the persistent
Laplacian only for pairs in a small subset of the filtration.
We first select a resolution R (in practice, we found R =
4 to be effective). Then, we compute an increment I =
(iT − i0)/R to obtain a subset of the filtration F = [i0, i0 +
I, i0 + 2I, . . . , i0 + RI = iT ]. We then consider complex
pairs Ki ↪ Kj where i, j ∈ F and i ≤ j. An example of
a sequence of complexes is given in Figure 1, where we

show three sequential cubical complexes generated from
an MNIST digit. Given the complex pairs, we compute
their Laplacian and corresponding eigenvalues using our
codebase. In Figure 1 we compute the persistent Laplacian
for the three inclusion pairs generated from the subset of the
filtration parameter F = [0,1,2] and for dimension p = 0,1.
The plots reveal distinct differences among the eigenvalues.

To maintain consistent feature vector length, eigenvalues of
the Laplacian cannot be directly concatenated due to vary-
ing complex sizes throughout the filtration. To address this,
a length parameter is set to truncate or zero pad eigenvalues,
ensuring uniform length regardless of the complex. Flatten-
ing eigenvalues across complex pairs and dimensions yields
the final feature vector. With resolution R, max dimension
D and truncating/zero padding eigenvalues to length L, we
end with a 1

2
R(R + 1)DL dimensional feature vector. The

entire process is captured in Figure 4, which showcases the
pipeline.

5. Experimental Details
We evaluate the persistent Laplacian against other topologi-
cal and geometric feature embedding techniques. The main
baseline we are comparing against is persistent homology,
as this is the primary technique used for topological embed-
dings in TDA. Our specific embedding of the persistence
diagram (a summary of persistent homology over a filtration)
once computed depends on the application: we typically
use persistence images (Adams et al., 2017) but use other
embeddings if they are better according to published base-
lines. We also compare against the graph Laplacian and
(where there is data with more than edgewise interactions)
the combinatorial Laplacian, as these represent the non-
persistent versions of the k-persistent Laplacian for k = 0

6
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Table 1: Results across Persistent Homology (PH), Graph Laplacian (GL), Combinatorial Laplacian (CL) and Persistent
Laplacian (PL) methods, on the MNIST and MoleculeNet QM7/QM7b datasets. We report the accuracy for MNIST and the
mean absolute error (MAE) for QM7/QM7b.

Dataset PH GL CL PL

MNIST (Accuracy) 0.625 ± 0.010 0.768 ± 0.006 0.798 ± 0.006 0.821 ± 0.011
QM7-3D (MAE) 92.43 ± 0.629 69.23 ± 0.388 68.85 ± 0.421 68.86 ± 0.431

QM7-CM Filtration 1 (MAE) 232.0 ± 6.435 12.42 ± 0.191 – 12.38 ± 0.188
QM7-CM Filtration 2 (MAE) 45.47 ± 1.438 23.19 ± 0.809 23.33 ± 0.785 21.94 ± 0.737

QM7b-CM-0 Filtration 1(MAE) 73.12 ± 1.893 12.39 ± 0.599 – 12.35 ± 0.597
QM7b-CM-0 Filtration 2 (MAE) 84.53 ± 1.804 22.59 ± 0.535 22.85 ± 0.511 26.14 ± 0.479

and k > 0 respectively. We run experiments on the MNIST
handwritten digit dataset (LeCun et al., 2010) to provide a
base demonstration of value in a machine learning setting,
and the MoleculeNet dataset (Wu et al., 2018), a collection
of molecular data along with chemical properties to predict.
The MoleculeNet data serves to evaluate the applicability
of the persistent Laplacian to realistic application scenarios.
In the remainder of this section we expand on our exact
methodology for each dataset and baseline, and specify pre-
cisely the data and tasks we consider for MoleculeNet.

MNIST is a standard dataset consisting of 28x28 grayscale
images (LeCun et al., 2010). Each image is one handwrit-
ten digit, and the task is to classify that digit. Each of our
baselines takes a filtration as input, so we need to embed
grayscale images. According to the Giotto-TDA documenta-
tion2 the best performing filtration for persistent homology
is the height filtration with direction [1,0] . To implement
this we first threshold the image, discarding all pixels with
a grayscale value less than 0.4 (which is in fact the optimal
value for our primary competitor, persistent homology). The
distance from the plane defined by our direction (in this case,
the leftmost edge of the image) gives the value at which each
cube (a pixel or 2x2 collection of pixels, as we are using a
cubical complex) enters the filtration. We then compute the
persistent Laplacian feature vector as defined in Section 4,
with resolution R = 4 and using dimensions p = 0,1. We
compute the persisent homology and diagrams using Giotto-
TDA, then embed it as they do, using persistence entropy
and diagram amplitudes with a collection of metrics.3 The
graph Laplacian and combinatorial Laplacian are vectorized
identically to the persistent Laplacian, only as they cannot
work with persistence we simply compute them at the start
values of the complex pairs. In the notation of Section 4,
given discrete values of our filtration F = [α,β, , . . . ], we

2https://giotto-ai.github.io/gtda-docs/0.
3.1/notebooks/MNIST_classification.html

3Note that they also use 17 filtrations to produce their feature
vector. We only use one filtration for all of our baselines, so we do
the same in this experiment to make the information equal across
the board. We select the directional filtration with direction [1,0],
as that is the one they state has the best performance with TDA.

compute ∆Kα
p ,∆

Kβ
p , . . . with p = 0 for the graph Laplacian

and p = 0,1 for the combinatorial Laplacian. We then em-
bed the eigenvalues in the same way as the combinatorial
Laplacian.

MoleculeNet is a collection of benchmark datasets designed
to evaluate machine learning methods for prediction of
molecular properties (Wu et al., 2018). We focus on two
subsets of MoleculeNet, QM7 (Blum & Reymond, 2009;
Rupp et al., 2012b) and QM7b (Blum & Reymond, 2009;
Montavon et al., 2013). The data comes in two forms: 3D
coordinates of the atoms in each molecule, and the Coulomb
matrix of each molecule, a matrix M = [mi,j]i∈I for some
list of nuclei I , where mi,j is the electrostatis interaction
between atomic nuclei in the molecule (Rupp et al., 2012b).
We embed the 3D coordinates into a simplicial complex
using the Vietoris-Rips construction (Vietoris, 1927): we
add k points to the complex as a (k − 1)-simplex when they
are pairwise within distance ϵ of each other. The parameter
ϵ then defines our filtration.

For the Coulomb matrices, we consider two types of filtra-
tions. For the first filtration (Filtration 1), we let each nuclei
i ∈ I enter the filtration as a point at time 0, then adding
edges ij at their electrostatic interaction value mi,j . In this
way we use the electrostatic interactions to induce the fil-
tration. However, we note that for this particular filtration,
the persistent Laplacian method will be almost identical
to the graph Laplacian method. Recall from Section 2.5
that ∆K,L

0 = ∆L
0 when K and L have the same vertex set.

Hence, under our pipeline, for the filtration indexed by
{Ki}Ni=1, the graph Laplacian method extracts features from
{∆K1

0 ,∆K1

0 , . . . ,∆KN

0 } whereas the persistent Laplacian
uses features from {∆K2

0 ,∆K3

0 , . . . ,∆KN

0 } (we do not use
1-dim persistent Laplacians in this case since there will be
no meaningful 1-dim up persistent Laplacians for graphs);
note the subtle difference at starting point. Due to this simi-
larity, to fully utilize the power of persistent Laplacian, we
also consider another more complicated filtration (Filtration
2). In Filtration 2, a nuclei i ∈ I is added into the filtration
at minj∼imij and a k-simplex σ = {i0, . . . , ik} is added at
maxa,bmia,ib . For this filtration, we will use both 0 and 1
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Figure 4: We aggregate feature importance by the complex pair and magnitude of the eigenvalues, and across dimensions 0
and 1. We can see that the persistence is being utilized, as there are discriminative features across the eigenvalues of each
complex pair.

dimensional persistent Laplacians.

Each of the MoleculeNet tasks we consider is a regression
task for which we must predict specific electrochemical
properties. For QM7 the task is to predict the atomization
energy of each molecule (Blum & Reymond, 2009), and we
do so with both the 3D coordinates and Couloumb matrices
(CM). For QM7b, there are only CM matrices available, and
the specific tasks are reported in Appendix B, Table 2.

6. Results and Discussion
Table 1 shows our results for the persistent homology-based
embeddings (PH), Graph Laplacian (GL), combinatorial
Laplacian (CL, when higher-order interactions are present in
the data), and the persistent Laplacian embeddings (PL). The
reported score is the accuracy for the MNIST classification
task, and the mean absolute error (MAE) for the remaining
regression tasks.

In this article, we aim to demonstrate the value of the per-
sistent Laplacian at incorporating and extending persistent
homology, the primary tool in TDA. Looking at Table 1, we
see that we typically exceed the performance of persistent
homology with the persistent Laplacian embedding across
both MNIST and MoleculeNet tasks. Particularly interesting
is the performance of the persistent Laplacian on MNIST,
attaining 82% performance with a simple embedding and
vastly outperforming the 62.5% accuracy attained by per-
sistent homology. We consider this performance strong
evidence for the suitability of the persistent Laplacian for
feature embeddings in Topological Data Analysis.

For the MoleculeNet QM7 and QM7b datasets (for space
concern, we only included one task for QM7b dataset in
Table 1; see full results in Table 3), the persistent Lapla-
cian also outperforms persistent homology in most cases,
although there are some tasks on which PH performs better.

The fact that the persistent Laplacian outperforms the graph

and combinatorial Laplacian on MNIST, suggests that the
filtration contains vital information in this case. This makes
sense, as in our choice of filtration the digit is ‘unveiled’
over the course of the filtration. On QM7 and QM7b, on the
other hand, we see an almost identical performance between
the persistent Laplacian and its non-persistent versions for
Filtration 1 as we expected since the persistent Laplacian
method is almost identical to the graph Laplacian method
for Filtration 1 regarding the Coulomb matrices. For Filtra-
tion 2, however, although PL features should theoretically
contain almost all GL features, we do not see much im-
provement in performance (sometimes the performances are
worse); this may be due to the fact that our choice of filtra-
tion does not encode enough additional information in this
dataset. However, we remark that using graph Laplacians
across filtrations is not standard in the literature (this has
been explored in only a handful of studies, which we cover
in the Related Work, Section 1.1) which should be viewed
as a simple instance of our persistent Laplacian method.

6.1. Feature Importance

We also evaluate the feature importance that the models
assign to each eigenvalue, in terms of the Mean Decrease
in Impurity metric (Scornet, 2023). In Figure 4, we dis-
play the feature importance grouped both by the complex
pair (i.e., the position in the filtration), and by the size of
the eigenvalue, in order to ascertain the effect of that on
the discriminative information it contains. For the complex
pair feature importance plots,our x axis is the start value of
the filtration, and the y axis is the shift forwards through
the filtration. For example, if the start value is 1 and the
shift forward is 2, then our complex pair is K1 ↪K3. We
compute the feature importance plots for the MNIST model.
From the feature importance by filtration plots (Figure 4,
left), it is clear that the model is using features from each
of the complex pairs that we generate. This means that per-
sistence is providing valuable discriminative information
that the model is utilizing. This is particularly true in the

8
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(a) The effect of truncation. (b) The effect of R.

Figure 5: We investigate the effect of eigenvalue truncation and the parameter R on the efficacy of the persistent Laplacian
on the MNIST classification task.

0-persistent Laplacian, but also for the 1-persistent Lapla-
cian. Next, we consider the plots that relate the size of the
eigenvalue to the feature importance (Figure 4, right). Note
that the smallest eigenvalue of the 0-persistent Laplacian
has zero importance. This makes sense, as we know from
Section 2 that this eigenvalue will always be 0, as there is
always at least one connected component, and the nullity
of 0-PL is the number of connected components. The spike
immediately following it also makes sense, as the number
of following zero eigenvalues gives topological informa-
tion, namely the number of connected components, and the
smallest following non-zero eigenvalues are known to con-
tain significant information about the structure of the graph.
Moving onto the 1-persistent Laplacian, we see, unsurpris-
ingly, that the zero eigenvalues having high importance, as
they quantify the number of holes present in the complex. It
is interesting that there remains high feature importance for
the small non-zero eigenvalues, as this implies they are also
capturing discriminative information.

6.2. Ablation Studies

Embedding the persistent Laplacian into a feature vector
over a whole filtration as we describe in Section 4 requires
two parameters: the truncation parameter, which determines
how many of the eigenvalues in the spectra of each persistent
Laplacian we consider, and the resolution R, which deter-
mines how we uniformly sample the continuous filtration to
choose complex pairs to compute the persistent Laplacian
of. We ran ablation studies using the MNIST dataset to
consider how each of these choices effects the performance
of the downstream classification task. The results of these
experiments are shown in Figure 5.

Truncation. We investigated two different truncation strate-
gies: truncating to the smallest n eigenvalues and to the
largest n eigenvalues, the results of which are shown in Fig-

ure 5a. We found that truncating to the smallest eigenvalues
(i.e., dropping the large eigenvalues) performed significantly
better than truncating the largest eigenvalues (i.e., dropping
the small eigenvalues). In practice, then, we would recom-
mend using only a small number of eigenvalues - the exact
number will be data-specific.

Resolution. For very low values of R, the performance is
not good - presumably because the model cannot exploit
the additional information contained in the filtration. As
we increase R, and finer details about the filtration become
available via the feature vector, performance increases.

6.3. Non-Topological Baselines

We also compare our results to non-topological baselines.
In particular, for MNIST we evaluate a Random Forest
on the flattened raw images and a CNN implemented in
PyTorch. For MoleculeNet, we evaluate a Random Forest
and Kernel Ridge Regression, which is in the literature as the
best performing ‘traditional’ technique. We also report Deep
Tensor Neural Networks (Schütt et al., 2017) and Gated
Graph Recurrent Neural Networks Shindo & Matsumoto
(2019) results from the literature. Typically the persistent
Laplacian outperforms shallow methods but is worse than
deep methods - we discuss this in detail in Appendix C.

7. Conclusions
We have demonstrated that the persistent Laplacian can con-
sistently outperform the widely used persistent homology
by incorporating non-topological information in the filtra-
tion representation of a data set. This suggests that this
new theoretical development, which is able to seamlessly
and efficiently combine topological and geometric informa-
tion, should be more broadly researched and utilized in data
analysis applications.
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A. The Schur Complement Formulation for the Persistent Laplacian
In Gülen et al. (2023), the Schur complement is interpreted as an operator, as follows. Let M denote the matrix representation
of some operatorM ∶ Rn → Rn and let V denote the vector space spanned by the first n − d columns of M . We explicitly

write M = (A B
C D

) ∈ Rn×n as a block matrix where D is a d × d matrix. Then, M/D is the matrix representation of an

operator called the Schur restriction ofM on V , denoted by Sch(M, V ), with respect to the already chosen basis on V
(i.e., the first n − d columns of M ).

Lemma A.1 ((Gülen et al., 2023, Proposition 3.2)). Let f ∶ U → V be a linear map between finite dimensional linear
product spaces. Let W ⊆ V be a subspace and let fW ∶= f ∣f−1(W ) be the restriction of f on the linear subspace f−1(W ) of
U . Consider the operator L ∶= f ○ f∗ ∶ V → V . Then,

Sch(L,W ) = fW ○ f∗W .

Now, we let U = CL
p+1, V = CL

p , f = ∂L
p+1 and W = CK

p . It is easy to check that L = f ○ f∗ =∆L
up,p, f−1(W ) = CL,K

p+1 and
fW = ∂L,K

p+1 . Hence, by definition one has fW ○ f∗W =∆K,L
up,p. Now, since ∆∆∆L

up,p/∆∆∆L
up,p(ILK , ILK) is the matrix representation

of Sch(L,W ), by applying the above lemma one has that ∆∆∆L
up,p/∆∆∆L

up,p(ILK , ILK) is the matrix representation of the up
persistent Laplacian ∆K,L

up,p.

B. Additional Experimental Details
The specifics of the MoleculeNet QM7b tasks that we evaluate are in Table 2. Full results regarding tasks for QM7 and
QM7b datasets with Coulomb matrices are provided in Table 3 (for Filtration 1) and Table 4 (for Filtration 2).

Table 2: The QM7b tasks are as follows. Each of these is a property of the molecule being described, evaluated with different
methods. For full details of the tasks please see Montavon et al. (2013).

Task ID Evaluation Method Description
0 PBE0 Activation energy
1 ZINDO Excitation energy with the most absorption
2 ZINDO Highest absorption
3 ZINDO HOMO
4 ZINDO LUMO
5 ZINDO 1st excitation energy
6 ZINDO Ionization potential
7 ZINDO Electron affinity
8 KS HOMO
9 KS LUMO
10 GW HOMO
11 GW LUMO
12 PBE Polarisability
13 SCS Polarisability

C. Comparison to Non-topological Methods
We have demonstrated that the persistent Laplacian can outperform other topological baselines in MNIST and consistently
outperform persistent homology in MoleculeNet, as well as discussed the additional information it can represent due to its
theoretical properties. We consider some additional baselines here. Firstly, for MNIST, we evaluated the efficacy of using
the flattened raw image as input into a random forest, as well as a convolutional neural network (LeCun & Bengio, 1998).
Both significantly outperformed our topological methods, with the random forest scoring an accuracy of 0.9387 ± 0.0022
and the CNN scoring an accuracy of 0.9918± 0.0002. In comparison, the persistent Laplacian is the best scoring topological
method, with an accuracy of 0.821 ± 0.011 (with R = 5 and truncating to the mean number of eigenvalues). In Table 5 we
compare the performance of the persistent Laplacian to techniques from shallow and deep learning. Note that we do not use
the QM7-3D dataset, as the coulomb matrix is typically used as the representation of the data for non-topological methods
Rupp et al. (2012a). In particular, we evaluated the performance of random forests (RF) and kernel ridge regression (KRR)

12



The Persistent Laplacian for Data Science: Evaluating Higher-Order Persistent Spectral Representations of Data

Table 3: Results across Persistent Homology (PH), Graph Laplacian (GL), Combinatorial Laplacian (CL) and Persistent
Laplacian (PL) methods, on all QM7b-CM tasks, using Filtration 1. We report the mean absolute error (MAE) for
QM7/QM7b.

Dataset PH GL CL PL

QM7-CM 232.0 ± 6.435 12.42 ± 0.191 – 12.38 ± 0.188
QM7b-CM-0 73.12 ± 1.893 12.39 ± 0.599 – 12.35 ± 0.597
QM7b-CM-1 1.916 ± 0.047 1.731 ± 0.038 – 1.729 ± 0.037
QM7b-CM-2 0.122 ± 0.004 0.096 ± 0.004 – 0.095 ± 0.004
QM7b-CM-3 0.484 ± 0.009 0.393 ± 0.008 – 0.393 ± 0.007
QM7b-CM-4 0.510 ± 0.009 0.362 ± 0.008 – 0.361 ± 0.007
QM7b-CM-5 0.651 ± 0.027 0.427 ± 0.010 – 0.426 ± 0.011
QM7b-CM-6 0.485 ± 0.011 0.406 ± 0.006 – 0.406 ± 0.007
QM7b-CM-7 0.548 ± 0.009 0.393 ± 0.010 – 0.392 ± 0.009
QM7b-CM-8 0.302 ± 0.005 0.272 ± 0.005 – 0.272 ± 0.005
QM7b-CM-9 0.305 ± 0.009 0.226 ± 0.006 – 0.226 ± 0.007
QM7b-CM-10 0.335 ± 0.007 0.306 ± 0.006 – 0.305 ± 0.006
QM7b-CM-11 0.236 ± 0.006 0.197 ± 0.004 – 0.197 ± 0.004
QM7b-CM-12 0.696 ± 0.015 0.352 ± 0.011 – 0.352 ± 0.012
QM7b-CM-13 0.726 ± 0.016 0.285 ± 0.009 – 0.284 ± 0.009

Table 4: Results across Persistent Homology (PH), Graph Laplacian (GL), Combinatorial Laplacian (CL) and Persistent
Laplacian (PL) methods, on all QM7b-CM tasks, using Filtration 2. We report the mean absolute error (MAE) for
QM7/QM7b.

Dataset PH GL CL PL

QM7-CM 45.47 ± 1.438 23.19 ± 0.809 23.33 ± 0.785 21.94 ± 0.737
QM7b-CM-0 84.53 ± 1.804 22.59 ± 0.535 22.85 ± 0.511 26.14 ± 0.479
QM7b-CM-1 2.585 ± 0.033 1.988 ± 0.046 2.014 ± 0.048 2.236 ± 0.035
QM7b-CM-2 0.151 ± 0.004 0.111 ± 0.005 0.112 ± 0.005 0.122 ± 0.005
QM7b-CM-3 0.785 ± 0.013 0.517 ± 0.013 0.521 ± 0.011 0.586 ± 0.012
QM7b-CM-4 0.884 ± 0.020 0.481 ± 0.017 0.481 ± 0.017 0.526 ± 0.012
QM7b-CM-5 1.219 ± 0.044 0.612 ± 0.011 0.611 ± 0.014 0.683 ± 0.014
QM7b-CM-6 0.790 ± 0.012 0.533 ± 0.015 0.536 ± 0.014 0.600 ± 0.013
QM7b-CM-7 0.973 ± 0.025 0.532 ± 0.020 0.532 ± 0.019 0.586 ± 0.014
QM7b-CM-8 0.496 ± 0.009 0.346 ± 0.009 0.345 ± 0.008 0.385 ± 0.008
QM7b-CM-9 0.431 ± 0.012 0.263 ± 0.008 0.263 ± 0.009 0.283 ± 0.008

QM7b-CM-10 0.558 ± 0.007 0.393 ± 0.010 0.394 ± 0.010 0.436 ± 0.008
QM7b-CM-11 0.300 ± 0.009 0.225 ± 0.007 0.226 ± 0.007 0.239 ± 0.005
QM7b-CM-12 0.883 ± 0.028 0.458 ± 0.013 0.462 ± 0.013 0.545 ± 0.011
QM7b-CM-13 0.866 ± 0.029 0.376 ± 0.008 0.384 ± 0.008 0.465 ± 0.010
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on the flattened coulomb matrices. We also report the deep learning SOTA using deep tensor neural networks (DTNN) (Wu
et al., 2018; Schütt et al., 2017) and gated graph recurrent neural networks (Shindo & Matsumoto, 2019). We find that we
outperform the shallow methods, but are once again beaten by methods from deep learning.

We would argue that despite methods from deep learning beating the persistent Laplacian as a feature vector, we retain
several advantages over deep methods.

(i) Firstly, the persistent Laplacian is being used as a feature vectorization for downstream input into a simple classifier.
It is a technique that relies heavily on theory, making the feature vector itself related to real-world understanding of
shape and structure. In comparison, deep learning is famously a black box, and attempts to improve explainability and
interpretability struggle in practice Belle & Papantonis (2021).

(ii) Secondly, the featurization of the persistent Laplacian relies only on two understandable parameters (Section 6.2), and is
easily reproducible. In comparison, deep learning techniques are often very sensitive to many opaque hyperparameters.
Reproducing reported models is often impossible, with the ‘reproducibility crisis’ a known problem in the deep
learning research community (Jean-Paul et al., 2019) .

Despite these points, clearly deep learning is a vastly powerful tool. In fact, topological tools are often at their most powerful
when partnered with deep learning, as evidenced by the increasing popularity of Topological Machine Learning (Hensel
et al., 2021). Research such as ours, which introduces a featurization of the persistent Laplacian for embedding data and
evaluates the persistent Laplacian on ML baselines, provides a strong base for future work on the integration of the persistent
Laplacian into Topological machine learning.

Table 5: We also compare the persistent Laplacian to non-topological baselines. We trained random forests (RF) and kernel
ridge regression (KRR) models on the flattened Coulomb matrices, as is standard in the literature (Rupp et al., 2012a). We
also report the results from the SOTA in deep learning: deep tensor neural networks (DTNN) (Schütt et al., 2017) and gated
graph recurrent neural networks (GGRNN) (Shindo & Matsumoto, 2019). Our techniques outperform the shallow methods,
but are beaten by deep learning. In the discussion we consider the place of topological techniques within the context of deep
learning.

Shallow Learning TDA Deep Learning
Dataset RF KRR PL (Filt. 1) PL (Filt. 2) DTNN GGRNN

QM7-CM 11.20 ± 0.261 26.16 ± 0.651 12.38 ± 0.188 21.936 ± 0.737 8.75 –
QM7b-CM-0 38.17 ± 0.730 140.0 ± 3.752 12.35 ± 0.597 26.141 ± 0.479 21.5 13.7
QM7b-CM-1 2.473 ± 0.027 2.668 ± 0.061 1.729 ± 0.037 2.236 ± 0.035 1.26 1.02
QM7b-CM-2 0.130 ± 0.003 0.164 ± 0.004 0.095 ± 0.004 0.122 ± 0.005 0.074 0.072
QM7b-CM-3 0.708 ± 0.011 1.192 ± 0.042 0.393 ± 0.007 0.586 ± 0.012 0.192 0.140
QM7b-CM-4 0.768 ± 0.016 0.813 ± 0.02 0.361 ± 0.007 0.526 ± 0.012 0.159 0.0915
QM7b-CM-5 1.057 ± 0.022 1.185 ± 0.034 0.426 ± 0.011 0.683 ± 0.014 0.296 0.121
QM7b-CM-6 0.713 ± 0.011 1.181 ± 0.043 0.406 ± 0.007 0.600 ± 0.013 0.214 0.176
QM7b-CM-7 0.853 ± 0.016 0.896 ± 0.022 0.392 ± 0.009 0.586 ± 0.014 0.174 0.0940
QM7b-CM-8 0.437 ± 0.009 0.906 ± 0.027 0.272 ± 0.005 0.385 ± 0.008 0.155 0.142
QM7b-CM-9 0.376 ± 0.012 0.426 ± 0.013 0.226 ± 0.007 0.283 ± 0.008 0.129 0.092

QM7b-CM-10 0.495 ± 0.010 1.134 ± 0.036 0.305 ± 0.006 0.436 ± 0.008 0.166 0.142
QM7b-CM-11 0.271 ± 0.007 0.312 ± 0.007 0.197 ± 0.004 0.239 ± 0.005 0.139 0.118
QM7b-CM-12 0.693 ± 0.017 1.348 ± 0.026 0.352 ± 0.012 0.545 ± 0.011 0.173 0.100
QM7b-CM-13 0.624 ± 0.015 1.362 ± 0.029 0.284 ± 0.009 0.465 ± 0.010 0.149 0.0578

D. Runtimes
We report the runtimes for pre-processing (embedding data into filtrations of simplicial/cubical complexes), embeddings
(computing the topological summaries), and post-processing (mapping the topological summaries into a persistence diagram).
Note that each of these timing experiments are run on one core of a 2021 MacBook Pro with an M1 Pro chip. We report
the time in seconds. Note that in these tables we reference others’ implementation; if there is no reference then it is our
implementation. We repeat each timing experiment 100 times. The error bounds are typically in the order of 10−5, so for
readability we do not report them. Note that the time taken for the computation of the persistent Laplacian for one simplicial
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complex pair is of the same order of magnitude as the persistent Laplacian. As you increase R, and thus the number of
persistent Laplacians computed increases, the time taken will similarly increase. The time taken for the cubical complex
persistent Laplacian is several orders of magnitude larger - this is due to our implementation of the cubical boundary.

Table 6: Time taken to pre-process the raw data, in seconds.

Pre-Processing Time (seconds)

Height Filtration4 0.000376
Induced from coulomb matrix (QM7/QM7b) 0.000376

Table 7: Time taken to embed the pre-processed data, in seconds.

Embedding Time (seconds)

Persistent Homology (p = 0,1)5 0.000231
Cubical Homology (p = 0,1)4 0.000231

Graph Laplacian 0.0000292
Combinatorial Laplacian 0.000382

Persistent Laplacian (p = 0,1, simplicial complex pair) 0.000380
Persistent Laplacian (p = 0,1, cubical complex pair) 1.855

Table 8: Time taken to post-process the embedded data, in seconds.

Post-Processing Time (seconds)

MNIST Baseline Embedding4 (Garin & Tauzin, 2019) 0.000376
Persistence Images6 0.00188

Persistent Laplacian Vectorization (Section 4) 0.00330

Table 9: Time taken to compute Vietoris-Rips persistence, in seconds.

Post-Processing Time (seconds)

Vietoris-Rips Persistence (p = 0,1) 4 0.000578
Vietoris-Rips Persistence (p = 0,1,2) 4 0.000912

As we used the Vietoris-Rips persistence function in Giotto-TDA (Tauzin et al., 2020) for the QM7 3D coordinate experiments
we cannot disentangle the time taken for pre-processing and computing the topological embedding. We report the total time
to compute the Vietoris-Rips persistent homology of one set of 3d coordinates from QM7.

4Using Giotto-TDA (Tauzin et al., 2020).
5Using Dionysus 2.
6Using Persim.
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