Identifiability of deep generative models
under mixture priors without auxiliary information

Abstract

We prove identifiability of a broad class of deep
latent variable models that (a) have universal ap-
proximation capabilities and (b) are the decoders of
variational autoencoders that are commonly used
in practice. Unlike existing work, our analysis does
not require weak supervision, auxiliary informa-
tion, or conditioning in the latent space. The mod-
els we consider are tightly connected with autoen-
coder architectures used in practice that leverage
mixture priors in the latent space and ReLU/leaky-
ReLU activations in the encoder. Our main result
is an identifiability hierarchy that significantly gen-
eralizes previous work and exposes how different
assumptions lead to different “strengths” of iden-
tifiability. For example, our weakest result estab-
lishes (unsupervised) identifiability up to an affine
transformation, which already improves existing
work. It’s well known that these models have uni-
versal approximation capabilities and moreover,
they have been extensively used in practice to learn
representations of data.

1 INTRODUCTION

One of the key paradigm shifts in machine learning (ML)
over the past decade has been the transition from hand-
crafted features to automated, data-driven representation
learning, typically via deep neural networks. One compli-
cation of automating this step in the ML pipeline is that
it is difficult to provide guarantees on what features will
(or won’t) be learned. As these methods are being used in
high stakes settings such as medicine, health care, law, and
finance where accountability and transparency are not just
desirable but often legally required, it has become necessary
to place representation learning on a rigourous scientific
footing. In order to do this, it is crucial to be able to discuss

ideal, target features and the underlying representations that
define these features. As a result, the ML literature has be-
gun to move beyond consideration solely of downstream
tasks (e.g. classification, prediction, sampling, etc.) in or-
der to better understand the structural foundations of deep
models.

Deep generative models (DGMs) such as variational autoen-
coders (VAEs) [Kingma and Welling| 2013| |Rezende et al.,
2014] are a prominent example of such a model, and are
a powerful tool for unsupervised learning of latent repre-
sentations, useful for a variety of downstream tasks such as
sampling, prediction, classification, and clustering. Despite
these successes, training DGMs is an intricate task: They
are susceptible to posterior collapse and poor local minima
[Yacoby et al.,[2020} |Dai et al.| 2020, He et al., 2018, [Wang
et al.,|2021], and characterizing their latent space remains a
difficult problem [e.g. Klys et al.| 2018 |Van Den Oord et al.,
2017]]. For example, does the latent space represent seman-
tically meaningful or practically useful features? Are the
learned representations stable, or are they simply artifacts
of peculiar choices of hyperparameters? These questions
have been the subject of numerous studies in recent years
[e.g.|Schott et al., 2021} |Luise et al., 2020, [Locatello et al.,
2019, [Bansal et al., 2021} |Csiszarik et al., 2021, [ILenc and
Vedaldi, [2015]], and in order to better understand the be-
haviour of these models and address these questions, the
machine learning literature has recently turned its attention
to fundamental identifiability questions [Khemakhem et al.,
2020a, D’ Amour et al.| 2020, [Wang et al., 2021]]. Identifi-
ability is a crucial primitive in machine learning tasks that
is useful for probing stability, consistency, and robustness.
Without identifiability, the output of a model can be unstable
and unreliable, in the sense that retraining under small per-
turbations of the data and/or hyperparameters may result in
wildly different modelsIn the context of deep generative
models, the model output of interest is the latent space and
the associated representations induced by the model.

"Formally, identifiability means the parametrization of the
model is injective. See Section@for details.
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In this paper, we revisit the identifiability problem in deep
latent variable models and prove a surprising new result:
Identifiability is possible under commonly adopted assump-
tions and without conditioning in the latent space, or equiv-
alently, without weak supervision or side information in the
form of auxiliary variables. This contrasts a recent line of
work that has established fundamental new results regard-
ing the identifiability of VAEs that requires conditioning
on an auxiliary variable w that renders each latent dimen-
sion conditionally independent [Khemakhem et al.| [2020a].
While this result has been generalized and relaxed in sev-
eral directions [[Hilvd and Hyvarinen, 2020, |[Hilva et al.|
2021, Khemakhem et al., 2020b}, |L1 et al., {2019, Mita et al.,
2021, |Sorrenson et al.l 2019, [Yang et al.; 2021 |[Klindt et al.,
2020, | Brehmer et al.l 2022f], fundamentally these results
still crucially rely on the side information . We show that
this is in fact unnecessary—confirming existing empirical
studies [e.g Willetts and Paige, [2021] [Falck et al., 2021]]—
and do so without sacrificing any representational capacity.
What’s more, the model we analyze is closely related to
deep architectures that have been widely used in practice
[Dilokthanakul et al., 2016, |[Falck et al.,[2021} Jiang et al.,
2016, Johnson et al., 2016, Lee et al., 2020, [L1 et al., 2018,
Willetts et al., 2019, [Lee et al.l [2020]: We show that there is
good reason for this, provide new insight into the properties
of these models and support for their continued use.

Overview More specifically, we consider the following
generative model for observations z = (z1,...,z,) € R™:

z=f(z)+e ey

where the latent variable z = (z1,...,2,) € R™ follows
a Gaussian mixture model (GMM), f : R™ — R™ is a
piecewise affine nonlinearity such as a ReLU network, and
¢ € R" is independent, random noiseE] We do not assume
that the number of mixture components, nor the architecture
of the ReLLU network, are known in advance, nor do we
assume that z has independent components. Both the mix-
ture model and neural network may be arbitrarily complex,
and we allow for the discrete hidden state that generates the
latent mixture prior to be high-dimensional and dependent.
This includes classical ICA models (i.e. for which the la-
tent variables are mutually independent) as a special case.
Since both z and f are allowed to be arbitrarily complex, the
model (T) has universal approximation capabilities, which
is crucial for modern applications.

This model has been widely studied in the literature from a
variety of different perspectives:

* Nonlinear ICA. When the z; are mutually independent,
recovers the standard nonlinear ICA model that has
been extensively studied in the literature [Hyvirinen
and Pajunen, (1999, |/Achard and Jutten, 2005, [Zhang

2Our results include the noiseless case € = 0 as a special case.

and Chanl 2008, [Hyvarinen and Moriokal 2017, Hy+
varinen et al., 2019, |Hyvarinen and Morioka, 2016].
Although our most general results do not make inde-
pendence assumptions, our results cover nonlinear ICA
as a special case when f is piecewise affine.

» VAE with mixture priors. When the prior over z is a
mixture model (e.g. such as a GMM), the model
is closely related to popular autoencoder architectures
such as VaDE [Jiang et al., 2016], SVAE [Johnson
et al.l [2016]], GMVAE |[Dilokthanakul et al., 2016],
DLGMM [Nalisnick et al., 2016|], VampPrior [Tom/{
czak and Welling, [2018]], etc. Although such VAEs
with mixture priors have been extensively studied, the-
oretical results are missing.

* Warped mixtures. Another closely related model is the
warped mixture model of [Iwata et al., 2013]], which
is a Bayesian version of (I). Once again, theoretical
guarantees for these models are lacking.

* iVAE. Finally, (T) is also the basis of the iVAE model
introduced by [Khemakhem et al.,|2020a], where iden-
tifiability (up to certain equivalences) is proved when
there is an additional auxiliary variable u that is ob-
served such that z; AL z; | u.

Contributions Driven by this recent interest from both
applied and theoretical perspectives, our main result (The-
orem shows that the model () is identifiable up to
various linear equivalences, without conditioning or auxil-
iary information in the latent space. In fact, we develop a
hierarchy of results under progressively stronger assump-
tions on the model, beginning with affine equivalence and
ending up with a much stronger equivalence up to permuta-
tions only. Notably, under the weakest set of assumptions,
our results already generalize existing work (Corollary [3.1)
and answer an open question raised by [Wang et al.|[2021]].
Full technical proofs are omitted and have been deferred to
the full version of the paper.

Related work Classical results on nonlinear ICA [Hyvari{
nen and Pajunen, [1999]] establish the nonidentifiability of
the general model (i.e. without restrictions on z and f); see
also [Darmois| (1951} Jutten et al 2003]]. More recently,
Khemakhem et al.|[2020a] proved a major breakthrough
by showing that given side information u, identifiability of
the entire generative model is possible up to certain (non-
linear) equivalences. Since this pathbreaking work, many
generalizations have been proposed [Hélva and Hyvarinen,
2020, Halva et al.l 2021, [Khemakhem et al., 2020b, |Li
et al.,[2019, Mita et al., | 2021} |Sorrenson et al., 2019} |Yang
et al., 2021} [Klindt et al.l 2020, [Brehmer et al.| [2022]], all
of which require some form of auxiliary information. Other
approaches to identifiability include various forms of weak
supervision such as contrastive learning [Zimmermann et al.,
2021]), group-based disentanglement [Locatello et al.|[2020],



and independent mechanisms [Gresele et al., |2021]]. Non-
identifiability has also been singled out as a contributing
factor to practical issues such as posterior collapse in VAEs
[Wang et al., 2021} |Yacoby et al., [2020].

Our approach is to avoid additional forms of supervision
altogether, and enforce identifiability in a purely unsuper-
vised fashion. Recent work along these lines includes [Wang
et al., 2021]], who propose to use Brenier maps and input
convex neural networks, and [Moran et al., 2021]] who lever-
age sparsity and an anchor feature assumption. Aside from
different assumptions, the main difference between this line
of work and our work is that their work only identifies the
latent space P(Z), whereas our focus is on jointly identify-
ing both P(Z) and f. In fact, we provide a decoupled set of
assumptions that allow f or P(Z) or both to be identified.
Thus, we partially resolve in the affirmative an open prob-
lem regarding model identifiability raised by the authors in
their discussion.

Another distinction between this line of work and the current
work is our focus on architectures and modeling assump-
tions that are standard in the deep generative modeling
literature, specifically ReLU nonlinearities and mixture pri-
ors. As noted above, there is a recent tradition of training
variational autoencoders with mixture priors [Dilokthanakul
et al., 2016/, [Falck et al.| 2021} Jiang et al., 2016} Johnson
et al., 2016} |Lee et al.,[2020, L1 et al., 2018, [Willetts et al.,
2019, [Lee et al., [2020]]. Our work builds upon this empir-
ical literature, showing that there is good reason to study
such models: Not only have they been shown to be more
effective compared to vanilla VAEs, we show that they have
appealing theoretical properties as well. In fact, recent work
[Willetts and Paige}, 2021} [Falck et al., 2021]] has observed
precisely the identifiability phenomena studied in our paper,
however, this work lacks rigourous theoretical results to
explain these observations.

2 PRELIMINARIES

We first introduce the main generative model that we study
and its properties, and then proceed with a brief review of
identifiability in deep generative models.

Generative model The observations x € R"™ are realiza-
tions of a random vector X, and are generated according
to the generative model (I, where z € R™ represents real-
izations of an unobserved random vector Z. We make the
following assumptions on Z and f ﬂ

(P1) P(Z) is a Gaussian mixture model with an unknown

3In the sequel, we will use (P#) to index assumptions on the
prior P(Z), and (F#) to index assumptions on the decoder f.

number of components, i.e., for A; > 0

J
p(z2) =Y Nz, S5, Y A =1, (2
j=1

j=1

where p(z) is the density of P(Z) with respect to some
base measure, and ¢(z; 11, X;) is the gaussian density
with mean f; and covariance ;.

(F1) f is a piecewise affine function, such as a multilayer
perceptron with ReLU (or leaky ReL.U) activations.

Recall that an affine function is a function z — Az + b for
some matrix A. As already discussed, special cases of this
model have been extensively studied in both applications
and theory, and both are quite standard in the
literature on deep generative models and represent a useful
model that is widely used in practice [e.g. [Dilokthanakul
et al., 2016 [Falck et al.| 2021}, Jiang et al., 2016} Johnson
et al., 2016, |Lee et al., 2020, L1 et al., 2018, [Willetts et al.,
2019, Lee et al., [2020]]. In particular, when J = 1 this is
simply a classical VAE with an isotropic Gaussian prior.

Identifiability A statistical model is specified by a (possi-
bly infinite-dimensional, as in our setting) parameter space
O, a family of distributions P, and a mapping 7 : © — P;
i.e.m(#) € P foreach § € O.In more conventional notation,
we define P = {pp : 6 € O}, in which case py = 7(0). A
statistical model is called identifiable if the parameter map-
ping 7 is one-to-one (injective). In practical applications, the
strict definition of identifiability is too strong, and relaxed
notions of identifiability are sufficient. Classical examples
include identifiability up to permutation, re-scaling, or or-
thogonal transformation. More generally, a statistical model
is identifiable up to an equivalence relation ~ defined on
Oif 7(d) = 7(f’) = 6 ~ #'. For more details on the
different notions of identifiability in deep generative models,
see [Khemakhem et al.|[2020alb]], [Roeder et al.|[2021]].

More precisely, we use the following definition. Let f; P
denote the pushforward measure of P by f.

Definition 2.1. Let P be a family of probability distribu-
tions on R™ and F be a family of functions f : R™ — R”.

1. For (P, f) € P x F we say that P is identifiable
(from f3P) up to an affine transformation if for any
(P',f") € Px Fst fyP = fiP' there exists an
invertible affine map h : R™ — R™ such that P’ =
hgP (i.e., P’ is the pushforward measure of P by h).

2. If there exists such h, such that f = f o h~! and
P’ = hyP, we say that (P, f) is identifiable (from
f(P)) up to an affine transformation.

This definition can be extended to transformations besides
affine transformations (e.g. permutations, translations, etc.)
in the obvious way.



Identifiability is a crucial property for a statistical model:
Without identifiability, different training runs may lead to
very different parameters, making training unpredictable
and replication difficult. The failure of identifiability, also
known as underspecification and ill-posedness, has recently
been flagged in the ML literature as a root cause of many
failure modes that arise in practice [D’ Amour et al., 2020,
Yacoby et al.l 2020, Wang et al.| 2021]]. As a result, there
has been a growing emphasis on identification in the deep
learning literature, which motivates the current work. Fi-
nally, in addition to these reproducibility and interpretability
concerns, identifiability is a key component in many ap-
plications of latent variable models including causal rep-
resentation learning [Scholkopf et al., [2021]], independent
component analysis [[Comon) [1994], and topic modeling
[[Arora et al., {2012, /Anandkumar et al., 2013]]. See [Ran and
Hu, |2017]] for additional discussion and examples.

Auxiliary information and iVAE It is well-known that
assuming independence of the latent factors—i.e. Z; I
Z;—is insufficient for identifiability [Locatello et al., 2019].
Recent work, starting with iVAE, shows identifiability by ad-
ditionally assuming that a k-dimensional auxiliary variable
u is observed such that p(z | u) is conditionally factorial, i.e.
Z; 1L Z;|U. This extra information serves to break sym-
metries in the latent space and is crucial to existing proofs
of identifiability.

To make the connection with this work clear, observe that
assumption is equivalent to assuming that there is a
discrete hidden state U € {1,...,J} such that P(Z =
z|U = j) = pj(2) and P(U = j) = A;. More generally,
U = (Uy,...,Uy) may be multivariate. In this way, a direct
parallel between our work and previous work is evident,
with several crucial caveats:

* We do not assume that U is observed—even partially—
or known in any way;

* We allow for the Z; to be arbtrarily dependent even
after conditioning on U, and this dependence need not
be known;

* We do not even require the number of states J to be
known, and we do not require any bounds on J (e.g.
iVAE requires J > m + 1).

* Inthe case where U is multivariate (i.e k := dim(U) >
1), we do not require the number of latent dimensions
k, the state spaces, or their dependencies to be known.

In order to break the symmetry without knowing anything
about U or its dependencies, we must develop fundamen-
tally new insights into nonparametric identifiability of latent
variable models.

3 MAIN RESULTS

For any positive integer d, let [d] = {1,...,d}. By|PD)] we
can write the model (I)) as follows. Let U = (Uy,...,Uy) €
[d1] X -+ - X [dg] where d; := dim(U;) and k := dim(U);
we allow U to be multivariate (¢ > 1) and dependent—i.e.,
we do not assume that the U; are marginally independent.
It follows trivially from that P(Uy = uy,..., U, =
ur) € {\,..., Ay} and J = [], d;, where we recall that
J is the unknown number of mixture components in P(Z).
Denote the marginal distribution of U, which depends on
Aj, by Py. The variables (U, Z) are unobserved and encode
the underlying latent structure:

UZUNP)\(U:’U,)
[Z1U = u] ~ N (ppu; Zur)
[X|Z =z2]~ f(2)+e,

= U—->Z—-X. 3

Here, P, is the distribution on U described above. Our
goal is to identify the latent distribution P(U, Z) and/or the
nonlinear decoder f from the marginal distribution P(X)
induced by (3).

Our main result, Theorem [3.5] provide a hierarchy of pro-
gressively stronger conditions under which P(U, Z), f, or
both, can be identified in progressively stronger ways. The
idea is to illustrate explicitly what conditions are sufficient
to identify the latent structure up to the corresponding equiv-
alence relation.

We defer the statement of the main results to Section [3.3}
after the main conditions have been described. As a preview
to the main results, we first present the following corollary:

Corollary 3.1. Suppose k = dim(U) =1, J > 1, (U, Z)
are unobserved, and X is observed. (a) If f is an invertible
ReLU network, then both P(U, Z) and [ are identifiable up
to an affine transformation. (b) If f is only weakly injective,
then P(U, Z) is identifiable up to an affine transformation.

For comparison, Corollary [3.1] already strengthens existing
results, since U is not required to be known and we are able
to identify f. In fact, the latter answers an open question
raised by [Wang et al.,|2021]]. What’s more, this is just the
weakest result implied by our main results: Under stronger
assumptions on the latent structure, the affine equivalence
presented above can be strengthened further.

Taken together, the results in this section have the following
concrete implication for practitioners: For stably training
variational autoencoders, there is now compelling justifi-
cation to work with a GMM prior and deep ReLU/Leaky-
ReLU networks. As we saw above, this is commonly done
in practice already.



3.1 POSSIBLE ASSUMPTIONS ON f

To distinguish cases where f is and is not identifiable, we
require the following technical definition. Recall that for
sets A, B, f~1(A) = {x: f(x) € A} and f(B) = {f(z) :
x € B}. A function need not be invertible for the preimage
f71(A) to be well-defined.

Definition 3.2. Letm < nand f: R™ — R".

(F2) We say that f is weakly injective if (i) there exists
zo € R"and § > 0s.t. | f~*({z})| = 1 forevery z €
B(xg,8) N f(R™), and (ii) {x € R : |f~*({z})| =
oo} C f(R™) has measure zero with respect to the
Lebesgue measure on f(R™).

(F3) We say that f is injective if | f~1({x})| = 1 for every
x € f(R™).

Example 3.3. For example, although z — ReLU(x) is
not injective, it is weakly injective, where ReLU(z) =
max{0,x} is the usual rectified linear unit. To see this,
note that image of ReLU is the set R> = {y | y > 0},
and ReLU has the unique preimage for every y € Ry, =
{y | y > 0}. Clearly, (R> \ R>) = {0} has measure zero
inside R>. Under simple assumptions on the architecture of
a RelU network, it is generically weakly injective. At the
same time, 2 — 0 and x — |x| are not weakly injective.

In general, a deep ReLU network may be even injective, e.g.
ReLU(z) + ReLU(—2) = « for x € R).

3.2 POSSIBLE ASSUMPTIONS ON Z

Our weakest result requires no additional assumptions on Z
beyond|[(PT)} see Corollary[3.1} Under stronger assumptions,
more can be concluded. As with the previous section, the
assumptions presented here are not necessary, but may be
imposed in order to extract stronger results.

The first condition is a mild condition that allows us to
strengthen affine identifiability:

(P2) Z; L Z; | U for all ¢ # j and there exist a
pair of states U = wuj and U = wuy such that all
(Bur)y / (Bus)yy | t € [m]) are distinct.

The second condition is more technical, and is only nec-
essary if £ > 1 and we wish to identify P(U) in addition
to P(Z). In fact, not only will we recover P(U), but also
the (unknown) number of hidden variables (i.e. k) and their
state spaces (i.e. d;). Note that P(U) is not needed to sam-
ple from (I, as long as we have P(Z). Before introducing
this condition, we need a preliminary definition.

Definition 3.4. Let U_; denote {U; : j # i}. We de-
fine ne(U;) = [m]\ {¢t : Z, L U; | U-;} and
ne(Z;) = {t : Z; € ne(Uy)}. For a subset Z' C Z,
ne(Z') = Ug,cz ne(Z;).

The neighborhood ne(U;) collects the variables Z; that de-
pend on U; directly.

(P3) The following conditions hold:
(a) For all Z' C Z and uy # ug, P(Z'| ne(Z’) =
uy) # P(Z' | ne(Z') = ua);
(b) If P(U',Z,X) = P(U,Z,X), then dim(U") <
dim(U);
(c) For any U; # Uj;, ne(U;) is not a subset of ne(Uj).

Condition [(P3)]is a “maximality” condition that is adapted
from [Kivva et al., [2021]]: We are interested in identifying
the most complex latent structure with the most number
of hidden variables. This is in fact necessary since we can
always merge two (or more) hidden variables into a single
hidden variable without changing the joint distribution.

3.3 MAIN IDENTIFIABILITY RESULT

When dim(U) = 1, there is no additional structure in U to
learn, and so the setting simplifies considerably. In particular,
learning P(Z) is equivalent to P(U, Z).

The case dim(U) > 1 is especially challenging: Unlike
previous work such as iVAE that assumes U (and hence its
structure) to be known, we do not assume anything about U
is known. Thus, everything about U must be reconstructed
based on P(X) alone, hence the need for [(P3)|to identify
P(U) below. Note, when dim(U) = 1,[(P3)|holds.

Theorem 3.5. Under|(PI1){(F1)| we have the following:

(a) (F2)) = P(Z) is identifiable from P(X) up to an
affine transformation.

(b) (F2)H(P2)|=—> P(Z) is identifiable from P(X) up to
permutation, scaling, and/or translation.

(c) (F2)H(P2)H(P3) = (k,d1,...,dx, P(U,Z)) are
identifiable from P(X) up to a permutation of U, and
permutation, scaling, and/or translation of Z.

(d) If additionally|(F3)|holds, and f is continuous, then f
is also identifiable from P(X) up to an affine transfor-
mation.

If the assumption [(F2)[(f is weakly injective) is removed,
then the claim of Theorem 3.3lis not true.

4 EXPERIMENTS

There has been extensive work already to verify empirically
that the model (I)) under [PDH(FI))is identifiable. For exam-
ple, [Willetts and Paigel 2021]] observe that deep generative
models with clustered latent spaces are empirically iden-
tifiable, and compared this directly to models that rely on
side information, and [[Falck et al.,[2021]] show that mean-
ingful latent variables can be learned consistently in a fully
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Figure 1: Selected examples of negative log-likelihood for different runs. Vertical lines indicate the ground truth and (global)

minimizer, which always coincide.
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Figure 2: Recovered latent spaces for 5 runs of VaDE on pinwheel dataset with 3 clusters

unsupervised manner even when U has high-dimensional
structure. Moreover, [Falck et al.| 2021]] indicate that high-
dimensional structure is important for improved perfor-
mance. Beyond these, it is well-known that VAEs with
mixture priors such as VaDE [Jiang et al.| [2016]] achieve
competitive performance on many benchmark tasks; see
[Dilokthanakul et al.l 2016} Falck et al.l 2021} Johnson
et al., 2016, |Lee et al., 2020, L1 et al., 2018, [Willetts et al.,
2019, |Lee et al., |2020] for additional experiments and ver-
ification. Building upon the established success of these
methods, we augment these experiments as follows: 1) We
use simple examples to verify that the likelihood indeed
has a unique minimizer at the ground truth parameters; 2)
We train VaDE on (misspecified) simulated toy models; and
3) We measure stability (up to affine transformations) of
the learnt latent spaces on real data. To measure this, we
report the Mean Correlation Coefficient [Khemakhem et al.}
2020b, Appendix A.2] metric, which is standard.

Maximum likelihood We simulated models satisfying
[PDHFT)| by randomly choosing weights and biases for
a single-layer ReLLU network and randomly generating a
GMM with J = 2 or 3 components. These models are sim-
ple enough that exact computation of the MLE along with
the likelihood surface is feasible via numerical integration
(Figure[T). In all our simulations (50 total), the ground truth
was the unique minimizer of the negative log-likelihood,
as predicted by the theory. These examples also illustrate a
small-scale test of misspecification in the theoretical model:
We include cases where J is misspecified and f fails to
satisfy [(F3)] but the MLE succeeds anyway.

Simulated data In our experiments on synthetic datasets
we fit VaDE to observed data 5 times. Let Z(V), ... Z(5)

be the learned latent spaces. For every pair Z(*), Z() we
evaluate the MCC For instance, for the pinwheel dataset
with three clusters the average weak MCC is 0.87 and the
average strong MCC is 1.0. This shows strong evidence of
recovery of the latent space up to affine transformations.

Real data We measure stability of the learnt latent space
by training MFCVAE Falck et al.|[2021]] on MNIST 10 times
with different initializations and then comparing the latent
representations learnt. The strong MCCs are computed to
be 0.7 (ReLU), 0.69 (LeakyReLU) and the weak MCCs are
computed to be 0.91 (ReLLU), 0.94 (LeakyReL.U). These
observations validate the observations first made in Willetts
and Paige([2021]], who ran extensive experiments on VaDE
and iVAE on several large datasets including MNIST, SVHN
and CIFAR10. These strong correlations confirm our theory
and are of particular importance to practitioners for whom
stability of learning is of the essence.

S CONCLUSION

We have a proved a general series of results describing a
hierarchy of identifiability for deep generative models that
are currently used in practice. Our experiments confirm both
on exact and approximate simulations that identifiability in-
deed holds in practice. An obvious direction for future work
is to study finite-sample identifiability problems such as
sample complexity and robustness (i.e. how many samples
are needed to ensure that the global minimizer of the likeli-
hood is reliably the ground truth?). It is an important open
question to use these insights to develop better algorithms
and optimization techniques that work on finite-samples
with misspecified models (i.e. real data).
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