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Abstract
Core-set selection (CS) for deep learning has be-
come crucial for enhancing training efficiency and
understanding datasets by identifying the most in-
formative subsets. However, most existing meth-
ods rely on heuristics or complex optimization,
struggling to balance efficiency and effectiveness.
To address this, we propose a novel CS objec-
tive that adaptively balances losses between core-
set and non-core-set samples by minimizing the
sum of squared loss across all samples. Build-
ing on this objective, we introduce the Maximum
Reduction as Maximum Contribution criterion
(MRMC), which identifies samples with the max-
imal reduction in loss as those making the max-
imal contribution to overall convergence. Addi-
tionally, a balance constraint is incorporated to
ensure an even distribution of contributions from
the core-set. Experimental results demonstrate
that MRMC improves training efficiency signifi-
cantly while preserving model performance with
minimal computational cost.

1. Introduction
Data-driven deep learning heavily depends on large-scale
datasets, but the growing size of models has led to expo-
nentially increasing computational costs. This issue is par-
ticularly critical in resource-constrained scenarios, making
efficient learning an area of rising interest (Shen et al., 2023).
Core-set selection (CS), one of the tasks in efficient learning,
focuses on selecting a small, yet representative subset (core-
set) from the original dataset to reduce sample size while
preserving model performance (Katharopoulos & Fleuret,
2018; Coleman et al., 2020). By optimizing data utilization,
CS plays a crucial role in alleviating the tension between
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rapidly growing data scales and constrained resources.

CS is often regarded as a static data pruning technique,
in contrast to dynamic data pruning (DDP) (Raju et al.,
2021; Nguyen et al., 2023; Qin et al., 2024). Both aim
to enhance training efficiency but differ significantly: CS
retains only selected data, while DDP requires access to the
full dataset. Moreover, CS focuses on data value, whereas
DDP emphasizes the model and training process. While
both are valuable, this work mainly focuses on CS.

Mainstream CS methods can be categorized into four types:
1⃝ Geometry-based methods analyze data distribution in

the feature space and select representative samples by clus-
tering algorithms, that cover the data distribution, ensur-
ing diversity and consistency (Sorscher et al., 2022; Xia
et al., 2023). 2⃝ Uncertainty-based methods prioritize sam-
ples that provide the highest information gain based on the
model’s prediction uncertainty. Heuristic metrics include
forgetting events (Toneva et al., 2019), gradient norms (Paul
et al., 2021), loss variance (He et al., 2024), and decision
boundary errors (Yang et al., 2024). 3⃝ Optimization-based
methods frame CS as a mathematical optimization problem,
aiming to maximize the core-set’s ability to substitute the
original dataset from the perspective of model parameter op-
timization (Killamsetty et al., 2021b;a). 4⃝ Hybrid methods
combine geometric properties and uncertainty metrics to
balance diversity and information gain (Zheng et al., 2023).

With the rise of large-scale models like large language mod-
els and multimodal systems, CS has gained new importance.
Recent studies focus on tailoring CS techniques to the spe-
cific characteristics of data and models, optimizing both
training and fine-tuning processes (Xia et al., 2024a; Wang
et al., 2024b; Evans et al., 2024).

Despite significant progress in CS, several challenges re-
main to be addressed. First, balancing diversity and un-
certainty remains challenging. Diverse samples reflect the
global distribution, while uncertain samples emphasize lo-
cal information gain. Diversity can be understood as the
uncertainty of the overall distribution given known local
information. Therefore, both factors are essential for a core-
set, but their conflicting objectives complicate achieving an
effective balance. Second, there is a gap between heuristic
and principled methods. Heuristic methods are simple but
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lack theoretical rigor, while principled methods are resource-
intensive and often fall short in practical applications.

To address these challenges, we propose a novel CS objec-
tive that replaces complex bi-level optimization strategies
in principled methods with a simpler goal: to minimize the
sum of squared loss of all samples, i.e., minΣ(li)

2. The L2
norm amplifies the penalty on high-loss samples, preventing
overfitting to the core-set and promoting generalization to
the non-core-set, achieving an adaptive balance between the
two. Assuming consistent initial loss values, the objective
can be reformulated into two components: maximizing loss
reduction and balancing loss reduction.

Building on this objective, we introduce the Maximum
Reduction as Maximum Contribution criterion (MRMC),
which leverages the concept of loss reduction attribution
to evaluate mutual sample contributions to loss reduction.
MRMC addresses the two components as follows: 1⃝Max-
imizing loss reduction prioritizes samples with significant
contributions, identified by their loss reduction during the
initial training process. Samples with high contribution
are those that substantially reduce the overall dataset loss.
2⃝ Balancing loss reduction employs a proxy-based reg-
ularization to adjust selection weights, ensuring balanced
contributions and promoting diversity. The MRMC criterion
is simple to implement and is theoretically inspired.

We evaluate MRMC on image recognition tasks, demon-
strating strong performance in low-resource settings and
consistently outperforming other methods. Parameter sen-
sitivity analysis further confirms the effectiveness of the
criterion and regularization technique.

The contributions of our work are as follows:

1. We propose a novel CS objective based on minimizing
the sum of squared loss, which balances convergence
between the core-set and non-core-set samples while
being intuitive and easy to solve.

2. We introduce the concept of loss reduction attribution
to quantify sample interactions, bridging the gap be-
tween the objective and the solution algorithm.

3. We propose the MRMC criterion to identify high-
contribution samples and introduce a regularization
to ensure balanced contributions. Both approaches are
easy to implement.

4. Experiments on image recognition tasks demonstrate
its superior performance across various core-set sizes
and validate the reliability of its key modules and pa-
rameters.

2. Related Work
Geometry-based methods leverage the spatial structure
of sample features to select core-sets that preserve data
diversity and distribution consistency. Theoretically, diver-
sity can enhance model robustness by increasing intra-class
feature variance (Yu et al., 2020; Chan et al., 2022). Rep-
resentative methods include clustering algorithms based on
Euclidean distance, such as K-center (Sener & Savarese,
2018) and K-means (Sorscher et al., 2022), which improve
feature diversity by removing redundant samples. Addition-
ally, Moderate-DS (Xia et al., 2023) prioritizes samples near
the median of intra-class centers to maintain distribution
consistency. FastCore (Chai et al., 2023) ensures that the
core-set retains gradient information by maximizing the dis-
tances between a sample and others within the same cluster.
However, these methods heavily rely on the reliability of fea-
ture representations. Low-quality or insufficiently trained
encoders are likely to undermine their effectiveness.

Uncertainty-based methods assume that samples with
higher uncertainty contain more information and thus have
greater learning value. Classical uncertainty measures, such
as Least Confidence (Wang & Shang, 2014) and Entropy
(Coleman et al., 2020), are widely utilized in various ap-
plications. In CS methods, forgetting events (Toneva et al.,
2019) capture samples that are repeatedly forgotten by the
model. EL2N and GraDN (Paul et al., 2021) quantify the
uncertainty of the sample through prediction errors and gra-
dient norms. Additionally, the distance between a sample
and the decision boundary is another critical measure of
uncertainty (Liu et al., 2019). (Yang et al., 2024) proposes
selecting samples near the decision boundary to preserve
the original decision boundary. Although uncertainty-based
methods are simple and efficient, their heuristic nature of-
ten lacks a rigorous theoretical justification. Furthermore,
noisy samples may also exhibit high uncertainty, potentially
interfering with the performance.

Optimization-based methods focuses on model optimiza-
tion, aiming to ensure that the contribution of the core-set
to parameters is consistent with that of the original dataset.
These methods typically rely on sample gradient informa-
tion. CRAIG (Mirzasoleiman et al., 2020) and GradMatch
(Killamsetty et al., 2021a) select samples by minimizing
the gradient difference between the core-set and the orig-
inal dataset. ADACORE (Pooladzandi et al., 2022) em-
ploys exponentially weighted Hessian approximations to
estimate loss curvature and construct the core-set. RCS
(Xia et al., 2024b) employs lexicographic optimization to
balance model performance while reducing data size. An-
other widely used tool is Data Shapley (Ghorbani & Zou,
2019), which quantifies each sample’s contribution to the
model and selects the core-set accordingly (Wang et al.,
2024a). Although optimization-based methods are theoret-
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ically well-founded, their high computational complexity
poses significant challenges in practice.

Hybrid methods aim to integrate the strengths of various
approaches. For example, (Sorscher et al., 2022) incorpo-
rates geometric distances and uncertainty metrics to improve
the selection process. D2Pruning (Maharana et al., 2024)
employs a graph-based message-passing mechanism, where
sample scores are iteratively refined based on the difficulty
scores and feature distances of neighboring nodes. MolPeg
(Chen et al., 2024) adopts a dual-model training strategy
to select both representative and challenging samples. By
combining diverse characteristics, hybrid methods not only
enhance the core-set quality but also offer a fresh perspec-
tive for developing unified theories and frameworks.

3. Preliminary
Consider a dataset D = {zi}ni=1 = {(xi, yi)}ni=1, consist-
ing of n samples, where each sample zi is composed of an
input xi and its corresponding label yi. We aim to train a
deep learning model parameterized by θ by minimizing a
loss function L. The training process employs mini-batch
stochastic gradient descent (SGD) to update the parameters
over K steps. Let θt denote the parameter values after the
t-th update, and let the loss for sample zi at these parameter
values be lti = L(zi, θt).

The task of CS, which is the focus of this study, involves
selecting a subset C ⊂ D from the dataset according to a
selection ratio ω < 1, such that |C| = ⌊ωn⌋. This subset
C serves as the core-set, replacing the original dataset for
model training. The objective is to reduce the data size and
improve training efficiency, while preserving model quality
as much as possible.

4. Proposed Method
This section begins with the motivation for minimizing the
sum of the squared loss of all samples, followed by the
introduction of the concept of loss reduction attribution.
Finally, it presents the MRMC criterion and the proxy-based
regularization balancing technique.

4.1. Motivation and Objective

The training objective of deep learning models is typically to
fit a given dataset D by minimizing a loss function, which
can be formalized as: min

∑
zi∈D lKi , where lKi denotes

the loss value of the i-th sample after K iterations. In CS,
only the core-set C ⊂ D participates in training. However,
the model must also generalize to the non-core-set samples
zi ∈ D \ C). Consequently, the objective is often defined

as a bi-level optimization problem:

min
C

∑
zi∈D

L(zi, θKC ),

θKC = argmin
θ∗

∑
zi∈C

L(zi, θ∗),
(1)

where θKC is obtained by solving the inner optimization prob-
lem. Although bi-level optimization captures the objective
of CS, it is computationally expensive because each outer-
loop optimization requires solving the inner problem, which
may be high-dimensional and non-convex. This contradicts
the motivation of CS, which is to improve efficiency.

To address these challenges, we propose a simple and ef-
ficient first-order optimization objective. Specifically, the
objective is reformulated as minimizing the squared loss
over the entire dataset:

min
∑
zi∈D

(L(zi, θKC ))2 = min
∑
zi∈D

(lKi )2. (2)

The squared loss reduces overall loss while suppressing
extreme values, balancing losses across samples, and im-
proving generalization.

The final loss lKi can be expressed as the initial loss minus
the reduction in loss during training: lKi = l0i − ∆li. As-
suming that the initial loss is constant across all samples (
∀zi ∈ D, l0i = l0), the objective can be rewritten as:

min
∑
zi∈D

(lKi )2 = min
∑
zi∈D

(l0 −∆li)
2. (3)

Expanding and ignoring constants gives:

min−
∑
zi∈D

∆li +
1

2l0

∑
zi∈D

(∆li)
2. (4)

This objective function consists of two components:

• The optimization term: −
∑

zi∈D ∆li, which maxi-
mizes the total reduction in loss. This aligns with the
fundamental goal of training deep learning models.

• The regularization term: 1
2l0

∑
zi∈D(∆li)

2, which
controls the balance of loss reduction. This prevents
overfitting to the core-set samples, serving a role simi-
lar to regularization.

Notably, a similar optimization problem is also discussed in
(Jain et al., 2023).

4.2. Loss Reduction Attribution

The objective function in Equation (4) uses the loss reduc-
tion ∆li as the variables. The reduction in loss is achieved
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through updates to the model parameters θ using SGD. Dur-
ing the t-th parameter update, given a mini-batch Bt and
learning rate η, the parameter update is computed as:

θt = θt−1 − η
∑

zj∈Bt

∇θL(zj , θt−1), (5)

where∇θL(zj , θt−1) represents the gradient of the loss for
sample zj under the parameter θt−1.

Based on first-order Taylor expansion approximations and
the assumption of local smoothness, the change in the loss
value for sample zi between consecutive updates, denoted
as ∆lti , can be approximated as:

∆lti = L(zi, θt−1)− L(zi, θt)
≈ ∇θL(zi, θt−1)T (θt−1 − θt)

= η
∑

zj∈Bt

∇θL(zi, θt−1)T∇θL(zj , θt−1).
(6)

For simplicity, let us denote the gradient inner product as
G(zi, zj , θ

t−1) = ∇θL(zi, θt−1)T∇θL(zj , θt−1).

On a larger scale, when the model is trained on the dataset
D over K iterations, the total loss reduction of sample zi
can be expressed as:

∆li =

K∑
t=1

∆lti = η

K∑
t=1

∑
zj∈Bt

G(zi, zj , θ
t−1)

= η
∑
zj∈D

(
K∑
t=1

G(zi, zj , θ
t−1)I(zj ∈ Bt)

)
,

(7)

where I(zj ∈ Bt) is an indicator function that equals 1 if
zj is included in mini-batch Bt, and 0 otherwise. From the
above equations, it can be observed that the loss reduction
∆li of sample zi is determined by the cumulative contribu-
tions of the gradient inner product G(zi, zj , θ

t−1) from all
training samples. This observation inspires the definition of
a concept: Loss Reduction Attribution.

Definition 4.1 (Loss Reduction Attribution). Assume a loss
function L(·, θ), optimized over dataset D through K SGD
updates. The loss reduction attribution expresses the total
loss reduction ∆li of the sample zi ∈ D as the sum of
attribution values (contributions) of all training samples
zj ∈ D, plus a negligible residual ϵ:

∆li =
∑
zj∈D

aj,i + ϵ, (8)

where the attribution value aj,i is defined as:

aj,i = η

K∑
t=1

G(zi, zj , θ
(t−1))I(zj ∈ Bt). (9)

Here, aj,i represents the contribution of the training sample
zj to the loss reduction of zi, thereby capturing the sample
relationships during the learning process.

When training a model with the core-set C, the loss re-
duction attribution can expressed as ∆li =

∑
zj∈C aj,i.

Assuming the attribution values {aj,i} are stable (i.e., they
do not vary significantly across different core-sets), and in-
corporating the objective function from Equation (4), the
optimal core-set C∗ is defined as:

C∗ = argmin
C⊂S,|C|=⌊ωn⌋

[ϕopt(C) + γϕreg(C)] , (10)

where the optimization term ϕopt(C) and the regularization
term ϕreg(C) are given by:

ϕopt(C) = −
∑
zi∈D

∑
zj∈C

aj,i, (11)

ϕreg(C) =
∑
zi∈D

∑
zj∈C

aj,i

2

. (12)

The hyperparameter γ controls the trade-off between the two
terms. Specifically, the optimization term ϕopt(C) focuses
on selecting samples that contribute most to the overall
dataset’s loss reduction. The regularization term ϕreg(C)
ensures that contributions are distributed more evenly across
all samples in the dataset, rather than being dominated by
a few samples. To meet these two requirements, we will
design algorithms to address them separately.

4.3. MRMC Criterion

To solve the optimization term ϕopt(C), we leverage the
approximate symmetry of the attribution values. For any
pair of samples (zi, zj), we assume |aj,i − ai,j | < λi,j ,
where λi,j denotes a permissible symmetry error. Referring
to Equation (9), the gradient inner product used to compute
the attribution values satisfies the commutative property,
i.e., G(zi, zj , θ

(t−1)) = G(zj , zi, θ
(t−1)). However, the

symmetry may be affected by the indicator function I(zj ∈
Bt). Specifically, if zi ∈ Ba and zj ∈ Bb during an epoch,
their gradient inner products are calculated using different
parameters θa−1 and θb−1. Such differences may cause
deviations in the gradient inner products. Nevertheless,
under small learning rates in SGD, parameter updates are
minimal, allowing us to approximate attribution values as
symmetric.

Based on this assumption of approximate symmetry, the
optimization term can be reformulated as:

ϕopt(C) = −
∑
zi∈D

∑
zj∈C

aj,i = −
∑
zj∈C

∑
zi∈D

aj,i

= −
∑
zj∈C

∑
zi∈D

(ai,j ± λi,j),
(13)
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and by ignoring the symmetry error (i.e., λi,j = 0), and
referring to Equation (8), we derive:

ϕopt(C) ≈ −
∑
zj∈C

∆lj . (14)

This linear additive relationship suggests that minimizing
ϕopt(C) can be achieved by selecting samples with the
largest ∆lj , as these samples tend to contribute most signif-
icantly to other samples during training. We thus propose
the Maximum Reduction as Maximum Contribution cri-
terion (MRMC), expressed as: φMRMC(zj) = ∆lj .

To compute ∆lj , we argue that only a small number of
training epochs on all samples is sufficient. As training pro-
gresses, a sample’s self-contribution continuously accumu-
lates and becomes significantly larger than its contribution
to other samples, i.e., aj,j ≫ ai,j ,∀i ̸= j. However, CS
places greater emphasis on a sample’s contribution to other
samples. Therefore, only minimal training is required to
measure sample contributions, aligning with the motivation
of CS to improve efficiency.

Specifically, we train the model on the original dataset
D for R epochs to compute φMRMC(zi), during which
each sample zj is associated with a loss sequence Lj =

[l
(1)
j , l

(2)
j , . . . , l

(R)
j ]. Due to the stochasticity of SGD, we

avoid directly computing the difference between initial and
final loss values. Instead, we adopt a simple mathemati-
cal model, assuming the loss values decrease following a
negative exponential trend:

l
(r)
j ≈ qj · w−r

j . (15)

By fitting qj and wj to each loss sequence Lj , the MRMC
criterion is computed as:

φMRMC(zj) = ∆lj = qj(1− w−R
j ). (16)

Samples with higher MRMC criteria make greater contribu-
tions to the dataset and should be prioritized for selection.

4.4. Proxy-based Regularization

Minimizing the regularization term involves solving a
quadratic optimization problem, which is challenging to
address directly. To simplify, we further expand the regular-
ization term as:

ϕreg(C) =
∑
zi∈D

∑
zj∈C

aj,i

2

= |C|
∑
zj∈C

∑
zi∈D

a2j,i

+
∑
zj∈C

∑
zk∈C

∑
zi∈D

aj,iak,i I(k ̸= j).

(17)

The first term represents the L2-norm of all attribution val-
ues within the core-set. The second term reflects the total

pairwise interaction of attribution values between core-set
samples across the entire dataset D. Our focus is on the sec-
ond term, which captures the interrelations of attributions
across samples.

Observing the attribution value based on gradient inner prod-
ucts in Equation (9), we find that a sufficient condition for
the second term to zero is:
Theorem 4.2. If the gradients of two samples are orthogo-
nal, their attribution interaction is zero.

Proof. The interaction between attribution values can be
simplified by ignoring the indicator function term:

aj,iak,i ∝ G(zi, zj , θ)G(zi, zk, θ). (18)

Here, the gradient inner products G(zi, zj , θ) and
G(zi, zk, θ) quantify the similarity of zj and zk to zi via
their gradients. If the gradients of zj and zk satisfy orthogo-
nality, then

∀zi ∈ D,G(zi, zj , θ)G(zi, zk, θ) = 0. (19)

The gradients of the core-set samples are expected to be
orthogonal. This implies that the core-set samples must
satisfy diversity constraints.

To achieve this, we propose a proxy-based regularization
technique to enhance the diversity of the core-set. Specifi-
cally, we decompose the selection of core-set samples into
a two-stage optimization process. In the first stage, we com-
pute φMRMC(zj) as described in the previous section and
select the top ρ|C| (ρ < 1) samples with the highest scores
to form an initial subset C ′. Since these samples have high
contributions, they are very likely to remain part of the core-
set, even after considering the regularization term. In the
second stage, we aim to enhance diversity by optimizing the
selection of the remaining (1−ρ)|C| samples such that their
gradient directions differ from those of the initial subset C ′.

We train a small proxy model (using only the output layer)
on the features FC′ and labels YC′ of samples in C ′. The
model θ′ is trained for a few epochs until convergence. For
any remaining sample zi ∈ D\C ′, the loss value isL(zi, θ′).
If the proxy model poorly fits zi, it suggests that zi has
gradient differences from the initial subset C ′. Thus, the
regularization score for the remaining samples is defined as:

φreg(zi) = exp
(
− L(zi, θ′)

)
. (20)

The exponential operation normalizes the scores, thereby en-
hancing regularization performance in practice. By combin-
ing the MRMC criterion with the regularization constraint,
we define the final scoring function as:

φ(zj) = φMRMC(zj)− γ · φreg(zj), (21)

where the (1 − ρ)|C| samples with the highest scores are
selected for inclusion in the core-set.
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4.5. Selection Algorithm

Given a model and a loss function L(·, θ), as well as the
entire dataset D, the detailed algorithm (see Algorithm 1)
proceeds as follows:

1. Initial training and observation: First, the model is
trained on the full dataset D for R epochs to observe the loss
sequences across samples and obtain their feature represen-
tations. This step is standard for most CS algorithms. The
advantage of our algorithm is that R is very small, requiring
minimal resources.

2. MRMC criterion computation: Using Equations (15)
and (16), the MRMC criterion for each sample is calculated
based on the observed loss sequence.

3. CS without regularization: If regularization is not
applied, the top |C| samples with the highest MRMC values
are selected to form the core-set. The process ends here.

4. CS with regularization: If regularization is applied, an
initial subset C ′ is first constructed by selecting the top ρ|C|
samples with the highest MRMC values. A lightweight
proxy model θ′ is then trained on the samples in C ′. For the
remaining samples D \ C ′, the top (1− ρ)|C| samples are
selected based on their combined scores, computed using
Equations (20) and (21). These selected samples are then
added to the core-set.

Efficiency Analysis. Our method is characterized by high
efficiency. It requires only a few epochs of model training,
significantly reducing the cost of preparation. The selec-
tion algorithm operates with near O(N) complexity and
relies solely on each sample’s loss change, avoiding expen-
sive pairwise distance calculations. Additionally, the proxy
model for computing is a simple linear layer, which ensures
extremely high training efficiency.

5. Experiments
This section includes four groups of experiments: 1⃝ Com-
paring MRMC with strong baselines; 2⃝ Verifying the ef-
fectiveness of balancing the losses; 3⃝ validating the as-
sumptions behind loss reduction attribution; 4⃝ Sensitivity
analysis of key parameters.

5.1. Experimental Setup

Datasets. We use four widely adopted datasets to evaluate
the effectiveness of the proposed method, namely CIFAR-
10, CIFAR-100, Tiny-ImageNet, and ImageNet-1k. The
scale and complexity of these datasets increase progres-
sively, with the number of classes ranging from 10 to 1000.
These datasets enables the evaluation of CS algorithms un-
der different task complexities.

Models and training. For CIFAR-10 and CIFAR-100,

Algorithm 1 Core-set Selection Algorithm
Input: Model L(·, θ), dataset D, core-set size |C|, hyper-
parameters {R, ρ, γ}
Output: Core-set C
for r = 1 to R do

Update θ with mini-batch SGD on D

Collect the loss values {l(r)i | zi ∈ D}
end for
Compute {φMRMC(zi) | zi ∈ D} using Eqs. (15)–(16)
if ρ = 1 then

C ← Topk(D, |C|, φMRMC(zi))
else if ρ < 1 then

C ′ ← Topk(D, ρ|C|, φMRMC(zi))
Train a lightweight proxy model θ′ using C ′

Compute {φ(zi) | zi ∈ D \ C ′} using Eqs. (20)–(21)
C ← C ′ ∪ Topk(D \ C ′, (1− ρ)|C|, φ(zi))

end if

we use ResNet-18 (11.2M parameters) and train with a
batch size of 128 for 200 epochs. For Tiny-ImageNet and
ImageNet-1k, we use ResNet-34 (21.3M parameters) with
a batch size of 256, training for 100 and 60 epochs, respec-
tively. The optimizer is SGD across all datasets, with an
initial learning rate of 0.1, momentum 0.9, and weight decay
of 5 × 10−4 (CIFAR) or 1 × 10−4 (others). A cosine an-
nealing schedule reduces the learning rate to a minimum of
1× 10−4, and data augmentation includes random horizon-
tal flipping and cropping. The number of training epochs is
fixed for all core-set sizes to ensure smaller core-sets reduce
training time, aligning with the goal of efficiency.

Competitors. We compare the proposed method with the
following classic or recently proposed CS algorithms1: Ran-
dom selection; EL2N & GraNd (Paul et al., 2021) mea-
sures and selects samples with high uncertainty; Glister
(Killamsetty et al., 2021b) formulates a bilevel optimiza-
tion problem to maximize the log-likelihood on the entire
dataset. CCS (Zheng et al., 2023) improves the coverage of
core-set data by applying stratified sampling based on EL2N
scores; Moderate prioritizes samples that are at intermedi-
ate distances from class centers; Dyn-Unc (He et al., 2024)
selects samples with high uncertainty based on the standard
deviation of loss values during the training process; Bound-
aryCCS (Yang et al., 2024) identifies the distance of sam-
ples to the decision boundary using adversarial learning and
combines CCS to improve sample coverage; D2pruning
(Maharana et al., 2024) computes sample difficulty based
on EL2N scores and improves core-set diversity using a
graph-based propagation method.

Evaluation protocols. We evaluate both the quality and
efficiency of CS algorithm. Core-set quality is assessed

1Label balance constraint was not enforced in reproduction.
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Table 1. Comparison of model accuracy (%) under two protocols for different core-set selection algorithms.

Dataset CIFAR-10 (95.44) CIFAR-100 (79.37) Tiny-ImageNet (62.40)

Selection ratio ω 70% 50% 30% Avg 70% 50% 30% Avg 70% 50% 30% Avg

Full
training
protocol

Random 94.45 93.60 91.06 93.04 76.09 72.83 67.01 71.98 58.14 52.43 45.25 51.94
Glister 94.80 94.20 90.15 93.05 76.80 73.21 66.90 72.30 57.20 55.05 48.23 53.49
Moderate 94.25 92.43 89.22 91.97 76.38 73.22 67.14 72.25 57.54 52.94 44.32 51.60
Dyn-Unc 91.50 89.59 85.82 88.97 73.91 70.09 64.06 69.35 52.98 44.43 35.57 44.33
Boundary 94.72 93.18 91.21 93.04 75.95 73.22 65.48 71.55 57.88 53.12 44.65 51.88
D2pruning 92.76 91.31 88.97 91.01 77.79 74.10 69.65 73.85 60.05 57.37 49.04 55.49

Early
training
protocol
R = 20

EL2N 95.40 95.23 91.94 94.19 77.61 67.60 32.55 59.25 56.08 38.96 13.79 36.28
GraNd 95.01 94.59 88.91 92.83 77.02 65.58 49.23 63.94 55.98 39.67 20.41 38.68
Glister 94.05 92.59 89.10 91.91 76.39 72.49 66.05 71.64 56.50 53.98 47.68 52.72
CCS 95.40 95.03 92.65 94.36 75.31 71.15 64.63 70.36 56.51 51.46 43.72 50.56
Moderate 94.20 92.94 91.51 92.88 76.27 72.97 66.58 71.94 57.32 52.01 44.37 51.23
Dyn-Unc 92.72 87.86 79.47 86.68 75.29 67.05 47.78 63.37 56.66 39.97 12.57 36.40
Boundary 94.50 93.68 92.08 93.42 75.94 72.16 66.10 71.40 57.76 53.01 45.01 51.93
D2pruning 92.22 90.89 87.95 90.35 75.97 73.56 69.21 72.91 59.42 56.88 50.15 55.48

MRMC 94.94 94.61 92.27 93.94 77.76 74.43 67.28 73.16 59.89 56.89 49.99 55.59
MRMC-R 95.46 95.24 93.13 94.61 77.17 74.46 68.66 73.43 60.42 57.03 50.88 56.11

The best results are highlighted in bold, and the second-best results are indicated with an underline.

by the accuracy of the model on the test set after training
on the selected core-set. Following standard practices, we
prepare core-sets of varying sizes and compare the model’s
performance trained on core-sets selected by different algo-
rithms. Higher test accuracy indicates better core-set quality.
For selection efficiency, the main computational cost arises
from training the model prior to selection to obtain sample
uncertainties or feature representations. Methods such as
MRMC and EL2N suggest this cost can be reduced by train-
ing for only a few epochs. Hence, we adopt two protocols:
(1) Full training protocol: CS is performed after fully train-
ing the model (all epochs). (2) Early training protocol:
CS is performed after training the model for only R = 20
epochs. Core-set quality is evaluated under both protocols
for all algorithms except EL2N, CCS, and MRMC. Most
experiments are conducted three times with different seeds.

Hyperparameters. For MRMC, the number of initial train-
ing epochs is set to R = 20. For the regularized version
(MRMC-R), the regularization parameters are set to ρ = 0.3
and γ = 2. The proxy model is trained with SGD (learning
rate 0.01, batch size 512) for 10 epochs. For competitor
algorithms, we follow the publicly available hyperparameter
settings during reproduction.

5.2. Comparison with Baselines

We compare MRMC with other CS algorithms across the
CIFAR-10/100 and Tiny-imagenet datasets. Table 1 presents
the model performance under different core-set sizes.

On CIFAR-10, MRMC-R achieves the best performance
across all core-set sizes, with CCS as the second-best.

D2pruning performs differently from the original results
(Maharana et al., 2024), likely due to differences in training
iterations. Under the early training protocol, Moderate and
Boundary outperform, indicating that full training model
may lead to overfitting on simpler tasks.

Table 2. Comparison results on ImageNet-1K.
Selection ratio 50% 30% 10% Avg

Random 68.51 64.57 48.26 60.45
D2pruning 68.71 65.26 52.14 62.04
MRMC 69.81 66.47 50.48 62.25
MRMC-R 69.85 66.05 49.66 61.85

On CIFAR-100, D2pruning achieves the best results, fol-
lowed by MRMC-R. However, under the early training pro-
tocol, most methods degrade, while MRMC-R becomes the
best. Even the basic MRMC without regularziation also
outperforms others. Notably, when compared to EL2N and
Dyn-Unc, both of which are similarly simple algorithms
that observe and leverage outputs from the model during
training, our MRMC criterion proves to be more effective.

The results on Tiny-ImageNet are similar to those on CIFAR-
100. Both MRMC and D2pruning demonstrate superior
performance. This suggests that for more complex tasks,
it is critical for CS to balance diversity and uncertainty.
Furthermore, employing the MRMC criterion alone can
achieve comparable outcomes, as it inherently adapts to
balance diversity and uncertainty.

The results on ImageNet-1K under the early training proto-
col are shown in Table 2. With a fixed training of 60 epochs,
MRMC outperforms Random and D2pruning at selection
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(a) CIFAR-10 ω =70% (b) CIFAR-10 ω =50% (c) CIFAR-10 ω =30%

(d) CIFAR-100 ω =70% (e) CIFAR-100 ω =50% (f) CIFAR-100 ω =30%

(g) Tiny-ImageNet ω =70% (h) Tiny-ImageNet ω =50% (i) Tiny-ImageNet ω =30%

Figure 1. Relationships between non-core-set loss (lines) and test accuracy (bars) across different algorithms in the early training protocol.

ratios of 50% and 30%. The suboptimal performance of
MRMC-R is likely due to hyperparameter settings.

For the time cost of sample selection on CIFAR-10/100
and Tiny-ImageNet, methods such as MRMC(-R), EL2N,
GraNd, CCS, Moderate, and Dyn-Unc operate at a second-
level scale with near-linear complexity. In contrast, Glister
and D2Pruning require tens of seconds, while Boundary
incurs a significantly higher cost, taking hundreds of sec-
onds due to adversarial training. On ImageNet-1K, MRMC-
R completes sample selection in approximately 1 minute,
whereas D2Pruning takes around 6 minutes.

5.3. Effectiveness of Balancing Losses

The proposed MRMC and regularization techniques aim to
reduce and balance the losses of core-set and non-core-set
samples, allowing the model to better fit all data. Given that
core-set losses are generally minimized, our focus shifts
to the losses of non-core-set samples. Figure 1 shows the
relationship between non-core-set loss and test accuracy.

For MRMC and MRMC-R (last two columns), regulariza-
tion reduces non-core-set loss and improves model perfor-
mance in most cases. With small core-sets (ω =30%),
non-core-set loss directly correspond to model performance:
lower loss yield better accuracy. However, on CIFAR-100
and Tiny-ImageNet with large core-sets, uncertainty-based
methods (e.g., EL2N, Dyn-Unc) reduce non-core-set loss
but degrade overall performance. In contrast, diversity-

enhanced methods (e.g., D2Pruning, MRMC) retain higher
non-core-set loss while achieving superior accuracy. This
highlights the importance of introducing diverse samples
into the core-set for complex tasks.

5.4. Assumption Validation

We hypothesize that loss reduction attribution possesses
stability and symmetry. To validate this, we conduct a case
study. Specifically, we randomly sample 50 instances from
CIFAR-100 and compute their attribution scores over 10
training epochs under four settings: using the full dataset
and core-sets of 30%, 50%, and 70%. This results in four
50× 50 attribution matrices, as shown in Figure 2.

For stability, we normalize the attribution scores and calcu-
late the average relative error against the full-data attribu-
tion matrix. The relative errors for the 30%, 50%, and 70%
core-sets are 27%, 26%, and 22%, respectively, indicating
improved stability with larger core-sets.

For symmetry, visualizations of the attribution matrices
consistently exhibit strong diagonal symmetry across all set-
tings. The relative symmetry errors are 16%, 19%, 22%, and
24% for the 30%, 50%, 70% core-sets, and full dataset, re-
spectively—showing that symmetry decreases as the amount
of training samples increases.
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Figure 2. Visualization of loss reduction attribution values for the
same 50 samples under training with core-sets of different sizes.

Table 3. Results of parameter sensitivity validation experiments.
Dataset CIFAR-100 Tiny-ImageNet

Selection ratio 70% 30% 70% 30%

R = 30 77.83 66.38 60.25 49.66
R = 20 77.76 67.28 59.89 49.99
R = 10 76.52 67.82 58.74 48.73
R = 5 75.51 66.33 57.67 46.76

ρ = 0.8 77.81 66.98 58.87 47.2
ρ = 0.5 77.21 68.26 58.94 49.83
ρ = 0.3 77.17 68.62 60.42 50.88

γ = 5 77.73 63.61 60.24 48.79
γ = 2 77.21 68.26 58.94 49.83
γ = 1 77.08 67.51 59.86 50.26

5.5. Parameter Sensitivity Analysis

We analyze the sensitivity of three key parameters on
CIFAR-100 and Tiny-ImageNet datasets, using selection
ratios of 70% and 30%. The parameters include the number
of initial training epochs R, the scale of the regularization
subset size ρ, and the trade-off parameter γ. The results are
shown in Table 3.

Effect of R. Testing R = 5, 10, 20 and 30 with ρ = 1 (no
regularization), most results show that larger R improves
core-set quality. However, for the 30% core-set on CIFAR-
100, R = 10 performs best, while for the 30% core-set on
Tiny-ImageNet, R = 20 performs best. This suggests that
optimal Rdepends on core-set size and task complexity.

Effect of ρ. For ρ = 0.3, 0.5, and 0.8 with R = 20 and γ =
2, smaller ρ generally produces better performance, likely

due to better sensitivity to gradient differences. However,
for the 70% core-set on CIFAR-100, ρ = 0.8 performs
better, suggesting that larger initial subsets benefit from
regularization to capture uncertain samples.

Effect of γ. We compare γ = 1, 2, and 5 with R = 20 and
ρ = 0.5. The tradeoff parameter γ balances the MRMC
criterion and regularization. Results show that the optimal
γ varies with core-set size and task complexity.

6. Conclusion
We proposes a simple yet effective criterion (MRMC) for
CS, which identifies samples contributing most to loss re-
duction, thereby enhancing the model to fit the known data.
Compared to other algorithms, MRMC requires only lim-
ited initial training, offering advantages of simplicity and
low computational cost. Additionally, we introduce a proxy-
based regularization to enhance the diversity of core-sets.
This approach adaptively balances the losses of core-set and
non-core-set samples, improving the model performance.

Limitations and future work. We make several assump-
tions, such as the stability and symmetry of loss attribution
values. Further optimization is possible if loss attribution
can be efficiently computed and modeled. Furthermore, the
regularization technique relies on multiple hyperparameters,
which complicates practical implementation. Future work
should focus on reducing this dependency for applicability.
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