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Abstract— We consider a nonprehensile manipulation task
in which a mobile manipulator must balance objects on its
end effector without grasping them—known as the waiter’s
problem—while moving to a desired location. In contrast to
existing approaches, our focus is on fast online planning
in response to new and changing environments. Our main
contribution is a whole-body constrained model predictive
controller (MPC) for a mobile manipulator that balances
objects and avoids collisions. Furthermore, we propose planning
using the minimum statically-feasible friction coefficients, which
provides robustness to frictional uncertainty and other force
disturbances while also substantially reducing the compute time
required to update the MPC policy. Notably, we demonstrate
a projectile avoidance task in which our mobile manipulator
avoids a thrown ball while balancing a tall bottle.

I. INTRODUCTION

We consider the nonprehensile object transportation task
known as the waiter’s problem [1], which requires the robot to
transport objects from one location to another while keeping
them balanced on a tray at the end effector (EE), like a
restaurant waiter. Nonprehensile manipulation [2] refers to
the case when the manipulated objects are subject only
to unilateral constraints [3] and thus retain some degrees
of freedom (DOFs); that is, they are not fully grasped. In
contrast to prehensile manipulation, a nonprehensile approach
allows the robot to carry many objects at once with a simple,
non-articulated EE (e.g., a tray; see Fig. 1). Furthermore, a
nonprehensile approach skips the potentially slow grasping
and ungrasping processes, and can handle small or delicate
objects which cannot be adequately grasped [4]. Beyond food
service, efficient object transportation is useful across many
industries, such as warehouse fulfilment and manufacturing.

Specifically, we address the waiter’s problem using a
wheeled mobile manipulator. Mobile manipulators are capable
of performing a wide variety of tasks due to the combination
of the large workspace of a mobile base and the manipulation
capabilities of robotic arms. We are particularly interested
in having the mobile manipulator move and react quickly,
whether to avoid obstacles or simply for efficiency. However,
a challenge of mobile manipulation is that moving across
the ground causes vibration at the EE, which requires our
object balancing strategy to be robust to such disturbances.
We assume that the geometry, inertial properties, and initial
poses of the objects are known, but we do not assume that
feedback of the objects’ poses is available online. A full
version of this paper is available in [5].
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Fig. 1: Our mobile manipulator balancing a pink bottle while avoiding
a thrown volleyball (ball circled in red with approximate trajectory in
white; approximate end effector trajectory in blue). The controller has less
than 0.75 s between first observing the ball and a potential collision. A video
of our experiments is available at http://tiny.cc/keep-it-upright.

A. Contributions
We propose the first whole-body model predictive controller

(MPC) for a mobile manipulator solving the waiter’s problem.
Furthermore, the controller uses the minimum statically-
feasible friction coefficients, which provides robustness to
frictional uncertainty, vibration, and other real-world dis-
turbances. When the minimum statically-feasible friction
coefficients are zero, we show that the MPC problem can be
solved more efficiently. We also demonstrate experiments on
a real velocity-controlled mobile manipulator balancing up
to seven objects; balancing an assembly of stacked objects;
and avoiding a thrown volleyball (see Fig. 1). Our code is
available at https://github.com/utiasDSL/upright.

B. Related Work
Prior examples of robots directly inspired by waiters in a

restaurant include [6]–[8], but these are mobile robots without
manipulator arms. In contrast, a mobile manipulator has addi-
tional DOFs that provide redundancy and a larger workspace,
at the cost of requiring a larger and more computationally-
demanding control problem. The waiter’s problem has also
been addressed using offline motion planning [1], [4], [9], [10],
but these approaches cannot react quickly to changes in the
environment. In [11]–[13], a reactive controller automatically
regulates the commanded motion to ensure the object remains
balanced. One of the only works to use a full mobile
manipulator (a quadruped) for the waiter’s problem is [13], but
it is demonstrated only in simulation and does not consider
dynamic obstacles. To our knowledge, the only physical
mobile manipulator experiments for the waiter’s problem
have been performed on a humanoid in [14], but they focus
on the detection and rejection of disturbances to the object’s
stability rather than fast object transportation.



Finally, like us, some recent works use MPC to address the
waiter’s problem. In [15], a dual-arm approach is proposed in
which a time-optimal trajectory is planned and MPC is used
to compute the applied wrench required to realize the object’s
trajectory. Another MPC approach is described in [16], which
is designed to track a manipulator’s joint-space reference
trajectory. In contrast, our MPC approach optimizes the joint-
space trajectory online while considering task-space objectives
and constraints, which allows us to respond quickly to changes
in the environment like dynamic obstacles, and we also
show how reducing the friction coefficients in the controller
constraints can provide robustness and computational savings.

II. METHODOLOGY

In this section we present the system model and controller.

A. System Model

1) Robot Model: We consider a velocity-controlled mobile
manipulator with state x = [qT ,vT , v̇T ]T , where q is the
generalized position, which includes the pose of the mobile
base and the arm’s joint angles, and v is the generalized
velocity. We include acceleration in the state and take the
input u to be jerk, which ensures a continuous acceleration
profile [16]. The input is double-integrated to obtain the
velocity commands sent to the actual robot. We require
only a kinematic model, which we represent generically as
ẋ = a(x) + B(x)u, with a(x) ∈ Rdim(x) and B(x) ∈
Rdim(x)×dim(u).

2) Object Model: We model each object O as a rigid body
subject to the Newton-Euler equations

wC +wGI = 0, (1)

where wC is the total contact wrench and wGI is the gravito-
inertial wrench, expressed in the body frame as

wGI ,

[
fGI

τGI

]
= −

[
m(v̇o −Rog)

Jω̇o + ωo × Jωo

]
,

where fGI and τGI are the gravito-inertial force and torque, m
is the object’s mass, vo and ωo are the body-frame linear and
angular velocity of the object’s CoM, g is the gravitational
acceleration, J is the object’s inertia matrix taken about the
CoM, and Ro is the rotation matrix representing the object’s
orientation with respect to the world. We assume that m, c,
and J are known.

B. Nominal Balancing Constraints

Our approach for balancing objects is to generate motion
so that objects are in a dynamic grasp [2]—that is, they do
not move with respect to the EE. Similar to [11] and [16],
we do so by including all of the contact forces into the
optimal control problem and constraining the solution to be
consistent with the dynamic grasp. We do not use online
feedback of the object state—given the initial object poses
with respect to the EE, the controller generates trajectories to
keep those poses constant in an open-loop manner. Assuming
the object is in a dynamic grasp, we define the object’s
orientation as Ro = Re, such that it is aligned with the EE’s
orientation Re. Furthermore, we have vo = ve + ωe × c
and ωo = ωe, where ve and ωe are the EE’s linear and

angular velocity in the body frame and c is the position of
the object’s CoM with respect to the EE. Thus we can write
the object’s gravito-inertial wrench as

wGI = −
[
m(v̇e −Reg) +m(ω̇×e + ω×e ω

×
e )c

Jω̇e + ω×e Jωe

]
, (2)

where (·)× converts a vector to a skew-symmetric matrix
such that a×b = a× b for any a, b ∈ R3. Let us define the
EE state as the tuple e = (Re, re,$e, $̇e), where re is the
EE position and $e = [vTe ,ω

T
e ]T is the EE’s generalized

velocity. We can compute e from the robot state x via forward
kinematics, in which case we may explicitly write e(x).

Now consider an arrangement of objects with N total con-
tact points {Ci}i∈I and corresponding contact forces {fi}i∈I ,
where I = {1, . . . , N} (see Fig. 2). By Coulomb’s law,
each fi must be inside its friction cone. We use an inner
pyramidal approximation of the friction cone

‖f ti ‖1 ≤ µifni , (3)

where fni , n̂Ti fi is the force along the contact normal n̂i,
f ti is the force tangent to n̂i, and µi is the friction coefficient.
The total contact wrench acting on an individual object is

wC ,

[
fC
τC

]
=
∑
j∈J

[
fj

rj × fj

]
, (4)

where fC and τC are the total contact force and torque, J ⊆
I is the subset of contact indices for this particular object,
and rj is the location of Cj with respect to the object’s CoM.
The object is successfully balanced for a given e if a set of
contact forces can be found each satisfying (3) and consistent
with (1), (2), and (4). Like [11] we assume each contact patch
can be represented as a quadrilateral with contact points at
the vertices and uniform µ. We also need an extra constraint
for each contact point shared between two objects: let Oa
and Ob be two objects in contact at some point Ci, and
denote fai and f bi the corresponding contact forces acting
on Oa and Ob, respectively. Then we have the constraint

fai = −f bi . (5)

To lighten the notation going forward, we gather all contact
forces into the vector ξ = [fT1 , . . . ,f

T
N ]T , and write (e, ξ) ∈

B to indicate that the balancing constraints (1)–(5) are
satisfied for all objects.

C. Robust Contact Force Constraints

The constraint (3) ensures all contact forces are inside their
respective friction cones, but the friction coefficients may be
uncertain or the constraint may be violated by disturbances
like vibrations and air resistance. To improve the controller’s
robustness, it is thus desirable for the tangential contact forces
to be small, keeping the forces away from the friction cone
boundaries [11]. We propose to plan trajectories using the
minimum statically-feasible values of the friction coefficients;
that is, the smallest coefficients for which there exists an EE
orientation Re and contact forces ξ satisfying the balancing
constraints with zero EE velocity and acceleration, which
ensures that the controller can always converge to a stationary
position. Here we will focus on the common case when the
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Fig. 2: A bottle (red) and globe (blue) balanced on a tray. This arrangement
has a total of N = 9 contact points (black dots), with each object having n =
5 (C5 is shared). Contact forces (arrows) at each contact point must belong
to their friction cones (one shown in green). The circular contact patch of the
bottle is approximated by a quadrilateral. The contact force acting on each
object at the shared contact point C5 must be equal and opposite. If µi = 0,
the friction cone at Ci collapses to the line along the normal n̂i.

φ

g

Fig. 3: Planar view of two arrangements of objects, each with two objects
balanced on a tray and a total of four contact points (black dots). Left: the
support planes (dashed lines) of each object are parallel, so the orientation
shown is feasible in the presence of gravity with no friction forces (i.e., we
can take µi = 0 for all i ∈ I). Right: the support planes are not parallel,
so some friction is always required to balance this arrangement.

support planes of each object are parallel to each other (see
Fig. 3), so the minimum statically-feasible friction coefficients
are simply µi = 0 for all i ∈ I, but in general we can solve
an optimization problem to find the minimum values (see [5]).

While choosing the minimum friction coefficients may
appear overly conservative, this approach has a number of
benefits. First, it removes the need for accurate friction
coefficient estimates, which requires time-consuming physical
manipulation of the objects to estimate. Second, mobile
manipulation can produce significant EE vibration, requiring
robust motions to ensure objects are balanced. Third, in the
common case when µi = 0 for all i ∈ I , the optimal control
problem can be simplified as follows. In general we require
one contact force variable fi ∈ R3 per contact point, each
constrained to satisfy (3). However, when µi = 0, we can
parameterize the force with a single scalar fi ≥ 0 such
that fi = fin̂i. This reduces the number of force decision
variables by two thirds and replaces (3) with a simple bound,
making the optimization problem faster to solve.

D. Constrained Model Predictive Controller
We now formulate a model predictive controller to solve the

waiter’s problem. The controller optimizes trajectories x(τ),
u(τ), and ξ(τ) over a time horizon τ ∈ [t, t+ T ] by solving
a nonlinear optimization problem at each control timestep t.
Suppressing the time dependencies, the problem is

argmin
x,u,ξ

1

2

∫ t+T

τ=t

L(x,u, ξ) dτ

subject to ẋ = a(x) +B(x)u (system model)
(e(x), ξ) ∈ B (balancing)
0 ≤ d(x) (collision)

¯
x ≤ x ≤ x̄ (state limits)

¯
u ≤ u ≤ ū (input limits)

(6)

Fig. 4: Bottle, Arch, and Cups object arrangements used for experiments.
The arch is an example of non-coplanar contact (the three blocks composing
the arch are not attached together). The bottle is filled with sugar and the
cups each contain bean bags instead of liquid to avoid spills in the lab.

where the stage cost is

L(x,u, ξ) = ‖∆r(x)‖2Wr
+ ‖x‖2Wx

+ ‖u‖2Wu
+ ‖ξ‖2Wf

,

with ‖ · ‖2W = (·)TW (·) for weight matrix W . The EE
position error is ∆r(x) = rd − re(x). We focus on the
case where the desired position rd is constant, to assess the
ability of our controller to rapidly move to a new position
without a priori trajectory information. The matrices Wr

and Wx are positive semidefinite; Wu and Wf are positive
definite. Notice that we do not include a desired orientation:
we allow the balancing constraints to handle orientation as
needed. If µi = 0, then only a scalar fi is included as a
decision variable for each contact force (contained in ξ)
and (3) is replaced by the constraint fi ≥ 0. The vector d(x)
contains the distances between all pairs of collision spheres
representing obstacles and the robot body, which must be
non-negative to avoid collisions. When dynamic obstacles
are used, then we also augment the state x to predict their
motion (see Sec. III-B). We discretize the prediction horizon
of (6) with a fixed timestep ∆t and solve it online using
sequential quadratic programming (SQP) via the open-source
framework OCS2 [17].

III. EXPERIMENTS

We perform experiments on a real 9-DOF velocity-
controller mobile manipulator consisting of a Ridgeback
mobile base and UR10 arm, depicted in Fig. 1. In all
experiments we use ∆t = 0.1 s, T = 2 s, and weights

Wr = I3, Wx = diag(0I9, 0.1I9, 0.01I9),

Wu = 0.001I9, Wf = 0.001Idim(ξ),

where In is the n × n identity matrix. We use a single
SQP iteration per control policy update. Position feedback is
provided for the arm by joint encoders and for the base by a
Vicon motion capture system, which is used in a Kalman filter
to estimate the full robot state. We also use motion capture
to track the position of the balanced objects, which is only
used for error reporting. The controller is run on a standard
laptop with eight Intel Xeon CPUs at 3 GHz and 16 GB of
RAM. The balanced objects are shown in Fig. 4.

A. Balancing Constraint Comparison

First, we perform experiments with different combinations
of objects and desired EE positions, and compare the
trajectories that result from imposing four different sets of
balancing constraints:
• None: No constraints.
• Upward: A constraint to keep the tray oriented upward.
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Fig. 5: Object error (top row) and policy compute time (bottom row) for
different combinations of objects, goal positions, and constraints in free
space. The object error is the maximum distance the object moves from its
initial position relative to the tray. In arrangements with multiple objects,
only a single one is tracked. The bar shows the average of three runs;
the error bars show the minimum and maximum values. The object was
completely dropped in all cases where the error extends beyond the axis
limits. The compute time is the average time required to compute an updated
MPC policy (i.e., one iteration of (6)). The bar shows the average across the
three runs (up to the first 6 s of the trajectory); the dot shows the average
maximum value across the three runs.

t t+ ∆ t+ 2∆ t+ 3∆

Fig. 6: Example of the robot dodging the volleyball (circled red) while
balancing the bottle, with frames spaced by ∆ = 0.15 s. Once the ball has
passed, the EE moves back to the initial position.

• Full: The full set of balancing constraints (e, ξ) ∈ B
with each µi set to 90% of the measured value.1

• Robust: The full set of constraints (e, ξ) ∈ B with
µi = 0 for all i ∈ I.

The desired positions (in meters) are rd1 = [−2, 1, 0]T , rd2 =
[2, 0,−0.25]T , and rd3 = [0, 2, 0.25]T . The object error and
controller compute time in an obstacle-free environment
are shown in Fig. 5. As expected, the None and Upward
approaches almost always fail—the notable exception is for
goal rd2 , which requires more base motion and is thus
slower than the other trajectories. The Robust constraints
typically produce the lowest object error or are close to
it. In addition, the Robust constraints scale much better
computationally with the number of contacts than the Full
constraints, since they require less decision variables and use
simpler bounds. The Full constraints also require reasonably
accurate friction coefficient estimates; the effectiveness of
the Robust constraints show that we need not fear frictional
uncertainty and (when statically feasible) can set µi = 0 for
all i ∈ I to reduce compute time.

B. Projectile Avoidance

We now consider an example of an environment that
changes over time due to a dynamic obstacle. We use a

1We only use 90% of the measured value to provide some robustness to
noise and other disturbances. We subtract a small margin from the support
area for the same reason.
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Fig. 7: The projectile avoidance results over 20 trials. In each plot the red dot
is the mean, the error bars represent the standard deviation, and the blue dots
are the minimum and maximum values. Left: The time at which collision
would first occur if the robot did not move. In all cases the controller has
less than 0.75 s to react. Right: Maximum penetration distance between
the (virtual) collision spheres around the ball and EE. The “Initial” values
represent the maximum penetration distances that would have occurred if
the robot had not moved. The “Actual” values are what really happened
given that the robot did move.

ball with position rb and state b = [rTb , ṙ
T
b ]T modelled as a

simple projectile with r̈b = g. The ball has a known radius
but the controller does not know its trajectory a priori. The
ball is thrown toward the EE, and the robot must move to
avoid the objects being hit while also keeping them balanced.
We use the Bottle arrangement and the Robust constraint
method. The state b is estimated using the motion capture
system and provided to the controller once the ball exceeds
the height of 1 m. The state b and the projectile dynamics
are added to (6) to predict the ball’s motion.

The results for 20 throws are shown in Fig. 7 and images
from one throw are shown in Fig. 6. Throws are split evenly
between two directions: toward the front of the EE and toward
its side. In all cases, the controller has less than 0.75 s to react
and avoid the ball. Out of the 20 trials, there is one in which
the ball would not have penetrated the collision sphere even
if the robot did not move; and another where the bottle was
actually dropped. This failure was not due to a collision, but
because the bottle tipped over due to the aggressive motion
used to avoid the ball. Also notice that the controller does not
always completely pull the robot out of collision: there is a
trade-off between balancing the object and avoiding collision.
However, since the collision spheres are conservatively large,
we did not experience any failures due to collisions. The
maximum object error and policy compute time were 32 mm
(ignoring the single failure) and 20 ms, respectively, across
the 20 trials.

IV. CONCLUSION

We presented an MPC-based approach for balancing
objects with a velocity-controlled mobile manipulator and
demonstrated its performance in a variety of real-world
experiments. In particular, our method is able to react quickly
to moving obstacles. We also proposed using minimal values
of µ to add robustness to frictional uncertainty and other force
disturbances, and demonstrated that this approach is effective
and computationally efficient. Future work will explore the
effect of uncertainty in the objects’ inertial parameters and
the use of object state feedback in the controller.
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