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ABSTRACT

Retrieval-Augmented Generation (RAG) has significantly advanced LLM perfor-
mance in knowledge-intensive tasks. However, when LLMs misinterpret retrieved
content, they often revert to pre-trained parametric knowledge or generate halluci-
nated responses, undermining RAG effectiveness. In this work we try to explore
this problem by proposing DEgree-based uNcertainty with Semantically Equivalent
contexts (DENSE), a training-free and model-agnostic method to evaluate LLM
understanding of retrieved documents. DENSE constructs semantically equiva-
lent context and introduces a degree-based entropy to quantify response semantic
uncertainty. Building on DENSE, we further introduce DENSE-RAG, which in-
cludes two training-free DENSE-guided modules: adaptive semantic chunking
and iterative context refinement. Experiments on open-book QA datasets show
that higher DENSE uncertainty correlates with lower QA performance, validating
DENSE as a reliable indicator of LLM understanding measurement. DENSE-RAG
also achieves performance competitive with state-of-the-art baselines approaches
without introducing additional model or fine-tuning.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable success in NLP tasks. However, the
reliance on parametric knowledge alone leads to knowledge cut-off issues and hallucination, making
Retrieval-Augmented Generation (RAG) a crucial paradigm for knowledge-intensive tasks. In a
RAG system, an information retrieval system fetches relevant documents from an external corpus,
and LLMs generate the answer based on the retrieved documents. Recent research has advanced
RAG by improving retrievers Shi et al. (2023); Lin et al. (2023b;a); Xu et al. (2024); Zhang et al.
(2025) or through end-to-end fine-tuning of LLMs Yu et al. (2024); Izacard et al. (2023); Asai
et al. (2023); Wang et al. (2024a); Huang et al. (2023). However, an essential research problem
remains underexplored: how to measure LLM’s understanding of the retrieved context? When
LLMs fail to comprehend the input context, LLMs are observed to misinterpret contexts and make up
unfaithful responses to the retrieved context Barnett et al. (2024); Song et al. (2024); Saad-Falcon et al.
(2024). Consequently, the ability to assess an LLM’s understanding of retrieved content represents a
promising direction for evaluating and improving the reliability of RAG systems.

In this paper, we attempt to explore this problem through a semantic perspective. Consider two
simple sentences, “Bob is a physics teacher/Bob teaches physics”, which express the same meaning
with different syntactic expressions. When asked “What is Bob’s occupation?”, a human reader
would give the same answer regardless of which sentence is provided as context. This illustrates two
key principles : (1) the same semantics can be conveyed through different textual expressions;
and (2) if an LLM truly understands the context, semantically equivalent inputs should yield
semantically equivalent responses.

Based on these insights, we propose DEgree-based uNcertainty with Semantically Equivalent contexts
(DENSE), for measuring LLM’s understanding of contexts by evaluating the semantic consistency
between multiple responses. DENSE is an unsupervised, training-free method that could be
applied to any LLMs. According to the principles, we construct semantically equivalent contexts and
quantify the semantic uncertainty reflected in LLM responses across these contexts. DENSE captures
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semantic variation directly from response-level outputs and further enables fine-grained attribution of
uncertainty to specific retrieved chunks. Experiments on open-book QA datasets show that LLMs
perform significantly worse on questions with high DENSE uncertainty, demonstrating that DENSE
provides a reliable indicator of contextual understanding.

On the basis of effective understanding measurement, we further leverage DENSE to enhance RAG
performance. Specifically, we design two unsupervised modules: Adaptive Semantic Chunking,
which leverages DENSE to trigger semantic chunking only under high uncertainty to improve intra-
chunk semantic coherence, and Iterative Context Refinement, which incrementally supplements
and reorganizes chunks guided by DENSE to enhance inter-chunk semantic completeness. Extensive
experiments across diverse datasets and LLM backbones show that DENSE-RAG achieves competi-
tive performance compared to state-of-the-art baselines, while offering a model-agnostic framework
for both diagnosing and improving RAG systems.

Our contributions can be summarized as follows:

• We introduce DENSE, an unsupervised, training-free method to assess LLMs’ understanding of
retrieved contexts by measuring response uncertainty. Unlike prior work that primarily quantifies
LLM inherent uncertainty, DENSE connect the presence of uncertainty to specific chunk, enabling
targeted improvement to enhance RAG performance.

• We propose DENSE-RAG, which leverages DENSE to enhance RAG performance through two mod-
ules: Adaptive Semantic Chunking, which improves intra-chunk coherence under high uncertainty,
and Iterative Context Refinement, which enhances inter-chunk completeness by reorganizing contexts
in a DENSE-guided manner.

• We conduct extensive experiments on four open-book QA datasets with five LLMs of different scales,
demonstrating that DENSE effectively evaluates LLM’s understanding of contexts and is predictive of
RAG performance. The proposed DENSE-RAG improves QA performance on challenging questions
with high uncertainty, achieving competitive performance against state-of-the-art baselines, while
maintaining flexibility and generality as a model-agnostic framework.

2 RELATED WORK

In Retrieval-augmented generation, a retriever Karpukhin et al. (2020); Douze et al. (2024) is
employed to obtain relevant document chunks from an external corpus, then LLM takes the retrieved
context to generate replies Gao et al. (2023). Enhancing LLMs’ understanding of retrieved documents
to improve the overall alignment of the system remains a significant challenge. Some works improve
retrievers to align the needs of LLMs Shi et al. (2023); Lin et al. (2023b;a) or add-on moderate-size
models Xu et al. (2024); Zhang et al. (2025). Despite providing stronger retrievers, one potential
approach is to finetune LLM in an end-to-end manner Yu et al. (2024); Izacard et al. (2023); Asai
et al. (2023); Wang et al. (2024a); Huang et al. (2023); Yoran et al. (2023).

Enhancing the reliability of the generation by measuring the uncertainty in LLM responses has
emerged as a promising direction Kuhn et al. (2023); Farquhar et al. (2024); Hou et al. (2024); Jiang
et al. (2024). Semantic uncertainty was proposed to estimate uncertainty in language generation tasks
in an unsupervised manner Kuhn et al. (2023). By quantifying the semantic differences among the
responses, researchers can effectively measure the impact of hallucinations in LLMs Farquhar et al.
(2024). Hou et al. (2024) proposed a method to decompose uncertainty by generating clarifications
and ensembling. While many works discuss the uncertainty in LLMs in unsuperivsed scope Lin et al.
(2024); Jiang et al. (2024), some works also try to identify uncertainty and improve the performance
of LLMs in a supervised manner Kweon et al. (2025); Liu et al. (2024a); Arteaga et al. (2025).
Several works have investigated how LLM uncertainty manifests in RAG settings. Dai et al. (2025)
quantify the utility of retrieval by capturing LLM’s internal belief in RAG scenarios. Hasegawa
et al. (2024) measured certainty in retrieval and generation seperately through Rouge-L or the BERT
score. Perez-Beltrachini & Lapata (2025) trained a passage utility model to predict the utility of each
passage in the context of LLMs. However, these studies often focus on how to measure uncertainty
within the system, while how to effectively link uncertainty to the retrieved documents and leverage
it to improve the performance of RAG systems remains largely underexplored.
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Semantic Entropy in RAG

Query Who beat Tim Henman in his first Wimbledon singles semifinal?
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Figure 1: Overview of DENSE. DENSE leverage context rephrasing and degree-based semantic
uncertainty to (1) ensure that all semantic variation in the output arises from the LLM’s interpretation
of the rephrased chunks, and (2) identify the specific chunks responsible for such variation.

3 PRELIMINARIES

To lay the groundwork for analyzing LLMs’ understanding of retrieved content, we first introduce the
RAG task formulation, semantic-related formulations and properties. Given a question q, a retriever
fetches top-k documents from a knowledge base to construct context C = [c1, c2, ..., ck] that are
most relevant to q. LLM fθ is used to produce the response r:

r = fθ(q, C), (1)

where r could be a short phrase or sentence. Kuhn et al. (2023) discuss the meanings and forms of
natural language, “Although models’ input is words, but for almost all applications we care about
meanings”. This observation underlines the central role of semantics in NLP tasks, we summarize
the relationship between semantic meaning and retrieved context in RAG as two formulations.

Formulation 1: For natural language context C and question q, there is a semantic space S and a
mapping function π, that maps q, C to its underlying semantic π(q, C) in semantic space S.

Formulation 2: If there exists C ′ ̸= C such that π(q, C ′) = π(q, C), then C ′ and C are semantically
equivalent under question q in the semantic space S .

According to these formulations, two different textual contexts C and C ′ can yield the same semantics
for a given question q. If a human reader or an LLM fully understands C, it should also produce a
semantically equivalent response when given C ′. This property is commonly referred as semantic
consistency in prior work Rabinovich et al. (2023). Accordingly, we extend this notion of semantic
consistency in the RAG setting and propose the following property:

Property 1: If an LLM fθ can understand C while answering question q. With π(q, C) = π(q, C ′),
the LLM’s responses under C and C ′ should be semantically equivalent:

π(q, C) = π(q, C ′)→ π(fθ(q, C)) = π(fθ(q, C
′)) (2)

This property highlights that if an LLM produces diverse semantic under semantically equivalent
contexts, the discrepancy signals a misalignment in its interpretation of input semantics.

4 EVALUATING LLM’S UNDERSTANDING OF RETRIEVED CONTEXT

Building on the aforementioned property, we can examine whether the LLM has adequately under-
stood the retrieved context by measuring its semantic variance under C and C ′. As we shown in
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Figure 1, prior work on semantic uncertainty in language generation focuses on sampling-based
decoding to probe LLM’s inherent randomness (Kuhn et al., 2023; Lin et al., 2024) rather than
uncertainty arising from the retrieved context. Moreover, these methods produce query-level uncer-
tainty scores and cannot indicate which retrieved chunks drive semantic variance. Therefore, we
introduce DENSE (DEgree-based uNcertainty with Semantically Equivalent contexts), to evaluate
LLM’s understanding of contexts. DENSE consists of two main steps: we first construct semantically
equivalent contexts through rephrasing and obtain responses via greedy decoding to isolate the
influence of LLM sampling; then degree-based uncertainty measure is proposed to capture semantic
variations across responses, which enables us to localize the chunks that contribute to the uncertainty.

4.1 SEMANTICALLY EQUIVALENT CONTEXT REPHRASING

We first construct semantically equivalent and textually diverse contexts C ′. Specifically, we use
an LLM to rephrase each retrieved chunk in isolation so that any semantic variation in the model’s
responses can be attributed to a single chunk without cross-chunk interference. For a retrieved context
C0 = [c1, . . . , ck], we obtain a rephrased c′i for each chunk ci:

c′ = fθ(pr(c)), where π(c
′) = π(c), and c′ ̸= c (3)

pr is the rephrasing prompt (see Appendix B.1). This yields a set of rephrased chunks {c′1, . . . , c′k}.
We then construct k single-edit contexts by replacing exactly one chunk at a time:

Ci[j] =

{
c′i, if j = i

cj , otherwise
for j = 1, . . . , k (4)

In this manner, we obtain k+1 contexts in total: the original C0 and k semantically equivalent
variants C1, . . . , Ck. To ensure that rephrasing preserves the original semantics, we check the
semantic shift between rephrased chunks and their original counterparts. The detailed results are
shown in Appendix D. Over 95% of the rephrased chunks are identified as semantically entailment
to the originals. This demonstrates that the LLM is fully capable of performing faithful rephrasing,
and it introduces only negligible semantic variation within the DENSE framework. To ensure that
rephrasing preserves the original semantics, we also empirically compare QA results with and without
rephrasing in Section 6.2, demonstrating the robustness of LLM rephrasing.

By greedy decoding, we disentangle LLM’s inherent randomness ensuring that when the input is
identical, the LLM always produces the same output. This guarantees that any semantic variation
observed in our experiments arises solely from the LLM’s understanding of rephrased contexts.
Supporting experiments and detailed discussion are provided in Appendix C. Under this setup,
generating with semantically equivalent contexts yields a reply set R = {r0, r1, . . . , rk+1}.

4.2 DEGREE-BASED SEMANTIC UNCERTAINTY

Given reply set R under semantically equivalent contexts, the next step is to assess the semantic
variation in the LLM responses. To this end, we propose Degree-based Semantic Entropy, an effective
method to quantify semantic uncertainty across these responses.

Semantic entropy was introduced by Kuhn et al. (2023), which measures uncertainty by clustering
responses into semantic groups. However, since each generation in our setting is conditioned on a
rephrased context, we need to further identify semantic variations introduced at the chunk level. In
this case, semantic entropy becomes inadequate for capturing such reply-grained uncertainty.

We therefore propose degree-based semantic entropy to compute entropy directly in response level.
Instead of clustering, we treat each response as a graph node, and construct a semantic adjacency
matrix W using the entailment scores between multiple responses Jiang et al. (2024); Lin et al.
(2024):

wij = ((NLI(ri, rj) +NLI(rj , ri))/2)i,j∈[0,...,k], (5)
where a natural language inference model(NLI) is used to classify whether ri and rj are entailment(1)
or neutral(0), wij represents the link between two responses. In DENSE, an LLM is employed to
make the classification and the prompt is in Appendix B.2. After constructing W , we compute the
degree-based semantic uncertainty as follows:

DSE(q, C) = −(k + 1)−1
k+1∑
i=1

log
Di

k + 1
, (6)
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Figure 2: Overview of DENSE-RAG framework. Adaptive semantic chunking improves intra-chunk
coherence, and iterative context refinement enhances inter-chunk completeness.

where Di =
∑k

j=0 wij , is the degree of response ri. The degree of a response represents how many
other responses are semantically aligned with it in the graph, corresponding to the number of adjacent
nodes in the semantic graph. Di

k+1 represents the average link strength of response ri with respect to
all other responses. Degree-based semantic entropy is a non-clustered variant of semantic entropy,
we discuss the relationship of DSE and semantic entropy in Appendix E and provide the pseudocode
of the DENSE in Appendix F.1.

We empirically verify that DENSE effectively reflects LLMs’ understanding of retrieved contexts,
where higher DENSE scores consistently correlate with worse QA performance. The experimental
setup, results, and corresponding discussions are presented in Section 6.

5 IMPROVING CONTEXT QUALITY WITH DENSE GUIDANCE

In the previous section, we proposed DENSE as an indicator of the LLM’s ability to understand
retrieved contexts. Building on this foundation, we move beyond measurement and leverage DENSE
to improve context quality. Since higher uncertainty indicates worse performance, we categorize
questions into certain (DENSE ≤ 0.2) and uncertain (DENSE > 0.2). We propose two model-
agnostic, training-free modules that enhance intra-chunk semantic consistency and inter-chunk
completeness, thereby improving LLM performance on uncertain questions.

5.1 ADAPTIVE SEMANTIC CHUNKING

Chunking strategies in RAG face a fundamental trade-off: fixed-size chunking is efficient but often
splits contextually related sentences, disrupting semantic coherence Gao et al. (2023); Finardi et al.
(2024); semantic chunking, which groups sentences by embedding similarity, can better preserve
semantic but its computational cost frequently outweighs its performance gains Qu et al. (2024).

To address this trade-off, we design a DENSE-driven adaptation mechanism that selectively applies
semantic chunking only when high uncertainty is detected under fixed-size chunking. The intuition
is that uncertain questions are more likely to suffer from semantic inconsistencies in the retrieved
chunks, and thus benefit more from semantic chunking. As illustrated in Figure 2, given a question
q, we first run fixed-size chunking on the given documents d, use the top-k chunks for DENSE
evaluation, and classify q as certain or uncertain. If q is a certain question, we directly output the
response. Otherwise, we split the original documents into sentences d = {s1, s2, s3, ...}, encode
each sentence si into a vector ei, and iteratively merge si+1 into chunk cj if

ei · ei+1

∥ei∥∥ei+1∥
≥ τ and |cj ∪ si+1| ≤ Tmax, (7)
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where τ is the similarity threshold and Tmax is the maximum token length for a chunk. If the
condition is not satisfied, si+1 starts a new chunk cj+1. By adaptive semantic chunking, we change
the chunking strategies while LLM have a uncertain understanding on fixed-size chunking. And
during the adaptive semantic chunking, we only change the chunking strategy rather than introducing
additional documents. The pseudocode of adaptive chunking is provided in Appendix F.2. We
evaluate the effectiveness of Adaptive Chunking in Section 6. Our adaptive mechanism preserves the
strong performance of fixed-size chunking on certain cases while selectively leveraging semantic
chunking to enhance QA performance on uncertain ones.

5.2 ITERATIVE CONTEXT REFINEMENT

Semantic inconsistency can occur both within and across chunks. For complex questions, it is often
the case that an individual retrieved chunk is insufficient to answer the query, highlighting the need
for better inter-chunk coherence. To address this, we propose a DENSE based iterative context
refinement module. The module evaluates retrieved chunks using DENSE and categorizes them into
three types—certain, necessary, and unnecessary, based on their semantic contribution when serving
as context. Then the module refine context by retaining certain chunks, removing unnecessary ones,
and supplementing the context with new chunks guided by the necessary ones.

Localize the source of uncertainty. Since DENSE computes semantic adjacency W , and each
modified context Ci differs from the original C0 in exactly one rephrased chunk c′i, we can evaluate
the impact of each ci and classify it as certain or uncertain:

lcei = 1{wi,0=1}, (8)
where 1 denotes the indicator which equals 1 if wi,0 = 1 and 0 otherwise. If lcei = 1, chunk ci
is classified as a certain chunk, indicating that even after rephrasing, the corresponding response
ri remains semantically consistent with the original response r0. This suggests that the LLM’s
understanding of ci is robust and unaffected by rephrasing. Conversely, an uncertain chunk indicates
that the LLM fails to correctly capture the intended semantics when that chunk is rephrased.

After distinguishing between certain and uncertain chunks, we further analysis the uncertain ones.
Semantic uncertainty in LLM responses under a rephrased chunk can stem from two different
scenarios: (i) the chunk is topically relevant but lacks the answer, leading to uncertainty due to
incomplete information, or (ii) the chunk is weakly relevant(maybe total irrelevant) and contains
noise, which misleads the model and introduces spurious uncertainty. To differentiate these two
scenarios, we perform an ablation generation by masking each uncertain chunk:

ari = fθ(q, [c1, ..., ci−1, ci+1, ..., ck]), (9)
where ari denotes the response when chunk ci is absent. Then we employ the entailment in Equation 5
to evaluate whether chunk ci is necessary:

lnei = 1{[NLI(r0,ari)+NLI(ari,r0)]/2=0}, (10)
where r0 is the response under original context. If removing an uncertain chunk changes the model’s
answer, it implies that the chunk carries critical information, and we classify it as a necessary chunk.
Conversely, if its removal does not affect the answer, the chunk is unnecessary, as it is either irrelevant
or redundant. Through this process, DENSE together with ablation allows us to classify each chunk ci
into three types: certain (lcei = 1), necessary (lcei = 0, lnei = 1), and unnecessary (lcei = 0, lnei = 0).

Iterative refinement. After categorizing all chunks, we refine the context with two steps: (i) pruning,
which removes unnecessary chunks, and (ii) refilling, which adds new chunks most similar to the
necessary chunks based on cosine similarity of embeddings. The refinement proceeds iteratively
and after each update, we recompute DENSE and stop once either (a) DENSE falls below 0.2,
indicating LLM understands context with certainty, or (b) the LLM evaluates the context as sufficient
in self-evaluation. If neither condition is met after all candidate chunks are explored, we fall back to
the subset of chunks yielding the lowest DENSE score. The self-evaluation prompt is described in
Appendix B.3 and the complete pseudocode is provided in Appendix F.3.

6 EXPERIMENTS

In this section, we conduct experiments to demonstrate the effectiveness of DENSE-RAG and analyze
the contributions of each component. First we validate DENSE as an indicator of contextual under-

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

standing in Section 6.2. In Section 6.3, we evaluate how DENSE-RAG improves QA performance
on uncertain questions across different LLM backbones as well as comparing with other baselines.
Section 6.4 presents ablation studies to examine the design choices of adaptive semantic chunking
and iterative context refinement. We also include additional robustness demonstration, sensitivity
analyses and case studies in Appendix K and Appendix M.

6.1 EXPERIMENT SETUP

Datasets. We test our methods on open-book QA datasets, which require free-form answers:
TriviaQA Joshi et al. (2017), Natutal Question Kwiatkowski et al. (2019), AmbigNQ Min et al. (2020)
and 2WikiQA Ho et al. (2020). The first three are single-hop QA datasets, while 2WikiQA is a
multi-hop QA dataset. We use Exact Match (EM) as the metric to evaluate QA performance. The
detailed information is in Appendix G.

Implementation Details. We conduct experiments on Qwen-2.5 1.5B, Qwen-3 8B, Llama-3 8B,
Llama-3.1 8B, and Llama-3.1 70B, using the documents provided by each dataset as the retrieval
corpus. A vanilla RAG pipeline is built with recursive chunking (chunk size = 512) as the default
strategy. For dense retrieval, we adopt UAE-Large-V1 as the encoder for both questions and
documents, and use FAISS for indexing. Unless otherwise specified, the top-5 retrieved chunks are
used as context in all experiments. We also conduct experiments with different number of chunks in
Appendix K. Details of each component and the QA prompt are provided in Appendix B.4 and H.

6.2 DENSE AS A MEASURE OF CONTEXT UNDERSTANDING

We first demonstrate that DENSE is an effective way to quantify LLM’s understanding of retrieved
context. Followed prior work Kuhn et al. (2023) settings, when the LLM understands the semantically
equivalent contexts, the responses tend to be more consistent, and are more likely to be correct.
We compute DENSE on a Llama-3.1 8B vanilla RAG, and present the average exact match within
different DENSE intervals in Figure 3. The results show that average exact match decreases as DENSE
increases, confirming that higher semantic uncertainty corresponds to lower QA accuracy and that
DENSE provides an effective unsupervised measure of LLMs’ contextual understanding.

To enable a comparison between DENSE and other uncertainty estimation methods for natural
language tasks, we perform evaluations under sampling with temperatures 0.25 and 0.5, and compare
DENSE against five uncertainty baselines using AUROC and AURAC (Table 1). DENSE is specifi-
cally proposed to work in greedy decoding mode to isolate the influence of inherent LLM randomness,
ensuring that the measured uncertainty primarily reflects variations in contextual understanding. Even
under this design constraint, our method still consistently outperforms other baselines in sampling
settings. This demonstrates that DENSE is better aligned with the retrieval-grounded nature of RAG,
effectively capturing uncertainty rooted in how the LLM interprets retrieved evidence rather than in
generation randomness.

We additionally conduct experiments at higher temperatures. As temperature increases, RAG accuracy
deteriorates sharply and the LLM gradually ceases to follow the retrieved context. As a result,
the semantic variation in its responses becomes dominated by internal sampling noise rather than
differences in contextual comprehension. The experiment results at high temperatures and the detailed
discussion are provided in the Appendix I.1.

To verify that performance drops occur across various LLM backbones, we conduct RAG experiments
on Qwen-2.5 1.5B, Llama-3.1 8B and Llama-3.1 70B without DENSE, comparing their performances
on certain and uncertain questions in Figure 4. The consistent performance drop confirms that DENSE
provides a reliable measurement. The comparison between RAG-DENSEeval 8B and Llama3.1 RAG
8B in Figure 4 shows that rephrasing in DENSE has negligible impact on QA performance, which
verifies that our rephrasing process does not cause semantic drift in the chunks. Additional results,
including experiments on summarization datasets, are presented in Appendix I.

6.2.1 ROBUSTNESS OF DENSE

We evaluate the robustness of DENSE by testing multiple thresholds for separating certain/uncertain
questions, as shown in Figure 5. Across all thresholds, the performance gap between the two groups
remains significant, confirming that DENSE measurement is stable and effective. For our main
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Table 1: AUROC and AURAC under greedy decoding and low-temperature sampling. DENSE
achieves consistently higher performance than baselines designed for language generation task,
indicating that DENSE is more effective in RAG settings.

Uncertainty Measurements TriviaQA Natural Question AmbigNQ 2WikiQA
AUROC↑ AUARC↑ AUROC↑ AUARC↑ AUROC↑ AUARC↑ AUROC↑ AUARC ↑

greedy decoding
DENSEllm(ours) 75.49 92.69 67.26 75.83 68.20 78.06 65.02 66.27
DENSEdeberta(ours) 66.94 91.02 59.42 73.69 58.01 74.89 53.49 61.42

temperature=0.25
Discrete Semantic Entropy Farquhar et al. (2024) 64.07 88.72 61.33 72.29 60.40 75.94 57.28 60.80
Ueigv Lin et al. (2024) 66.64 89.05 64.16 73.08 62.90 76.01 57.37 60.43
Udeg Lin et al. (2024) 66.56 89.03 64.05 73.69 62.74 76.79 57.25 60.82
KLE heatt=0.1 Nikitin et al. (2024) 66.40 89.00 63.93 73.89 62.53 75.84 56.99 60.36
KLE deberta maternκ=3.0,ν=3.0 Nikitin et al. (2024) 63.97 89.11 61.98 72.51 62.33 77.56 56.78 61.05
DENSEllm(ours) 75.63 92.52 67.96 75.10 69.94 79.54 65.74 66.38

temperature=0.50
Discrete Semantic Entropy Farquhar et al. (2024) 71.15 90.56 65.59 74.46 66.61 78.79 61.50 63.57
Ueigv 74.32 91.90 69.35 77.08 68.79 77.47 61.97 63.93
Udeg 74.24 91.53 69.28 76.82 68.64 77.89 61.84 63.44
KLE heatt=0.1 Nikitin et al. (2024) 73.87 91.48 69.18 76.79 68.04 77.78 61.41 63.72
KLE deberta maternκ=3.0,ν=3.0 Nikitin et al. (2024) 68.84 90.72 64.57 75.09 63.25 77.95 60.17 63.54
DENSEllm(ours) 77.53 93.06 69.23 76.71 72.02 81.28 67.28 68.08
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Figure 3: Average EM across different DENSE
intervals. On four Open-book QA tasks, average
EM decreases as DENSE increases.
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Figure 4: Exace match on certain (blue: DENSE
≤ 0.2) and uncertain (ivory: DENSE > 0.2) ques-
tions across LLM backbones of different scales.

experiments, we adopt 0.2 as the default threshold, supported by the observation from Figure 3 that
across all datasets, the average exact match decreases monotonically as DENSE increases when
DENSE ≤ 0.2. In different applications, the choice of threshold can be flexible. In domains
requiring higher certainty, such as healthcare or law, a lower threshold enforces more certain outputs
but classifies more questions as uncertain, triggering chunking and refinement more frequently.
Higher thresholds reduce computation at the cost of tolerating greater semantic variability.

To assess whether DENSE depends on a particular NLI backbone, we replace the LLM-based
entailment judge with a supervised model, DeBERTa-large-MNLI. We evaluate the DeBERTa-based
DENSE using the same AUROC and AUARC metrics. As shown in Table 1, DENSE maintains
consistently strong performance across datasets under both NLI backbones, indicating that the method
is not tied to LLM-specific behaviors and generalizes well when using a small supervised NLI model.
This robustness suggests that DENSE captures intrinsic semantic uncertainty rather than artifacts of
any particular entailment model.

6.3 DENSE-RAG QA PERFORMANCE

DENSE-RAG is effective on uncertain questions. To evaluate the effectiveness of DENSE-RAG,
we progressively incorporate adaptive semantic chunking and iterative context refinement into RAG
pipeline. The results on uncertain questions are summarized in Table 2. We observe consistent
gains as each module is added, with the full DENSE-RAG achieving improvements across uncertain
question. For Qwen-2.5 1.5B, the limited parameter size makes it inherently difficult to handle
multi-hop reasoning, which is also evident when compared with other LLMs. In contrast, Llama-3.1
70B is already very strong, so the gain on AmbigNQ is marginal.
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Figure 5: Average exact match on certain vs. uncertain questions under different DENSE thresholds,
showing a consistent performance gap between the two groups.

Table 2: Experimental result on uncertain questions on 4 datasets. Each component shows improve-
ment across LLMs of different scales. Chunking and Refinement denotes the proposed adaptive
semantic chunking and iterative context refinement modules.

Backbone DENSE Component TriviaQA Natural Question AmbigNQ 2WikiQAChunking Refinement

Qwen-2.5 1.5B
33.28 24.79 21.82 21.39

✓ 35.27 27.00 24.09 21.19
✓ ✓ 36.36 27.08 24.55 21.33

Qwen-3 8B
46.51 35.35 33.18 42.03

✓ 49.42 37.73 36.36 42.68
✓ ✓ 49.83 38.25 37.73 44.35

Llama-3 8B
42.60 35.60 32.27 40.57

✓ - 51.33 38.93 40.00 41.73
✓ ✓ 53.91 40.54 41.36 45.78

Llama-3.1 8B
42.26 35.78 32.27 40.30

✓ 52.41 41.31 40.45 42.34
✓ ✓ 56.32 42.16 43.63 46.55

Llama-3.1 70B
73.12 44.80 59.55 57.37

✓ 74.63 45.49 61.36 59.85
✓ ✓ 74.87 46.93 60.00 61.20

DENSE-RAG achieves competitive performance against SOTA RAG. We compare DENSE-RAG
with state-of-the-art baselines in Table 3. At the 8B scale, DENSE-RAG achieves performance com-
parable to finetuned systems such as RankRAG Yu et al. (2024). Although RAG-DDR outperforms
DENSE on TriviaQA, it is an end-to-end trained framework, whereas DENSE-RAG requires no
additional training and can be flexibly integrated into diverse RAG applications. Results on all five
backbones and more baseline comparisons are provided in Appendix J.

DENSE-RAG evaluates an LLM’s understanding of retrieved context and improves QA performance
without any training or access to model internals, while keeping the overall computational cost within
O(k2) LLM calls, where k is the number of retrieved chunks. The detailed complexity of each
module is further discussed in Appendix L.

6.4 ABLATION STUDY

To better understand the contributions of individual designs in DENSE-RAG, we conduct a set of
ablation studies and comparative experiments. We focus on two main aspects: (i) the impact of
different chunking strategies on performance under certain and uncertain questions, and (ii) the
effectiveness of the iterative context refinement and its key components under varying configurations.

6.4.1 ANALYSIS OF CHUNKING STRATEGIES FROM UNCERTAINTY PERSPECTIVE

Chunk size introduces a natural trade-off: larger chunks preserve more information, while smaller
ones reduce noise Zhang et al. (2025). Although semantic chunking has been proposed to improve
coherence, prior work reports inconsistent gains compared to fixed-size chunking Qu et al. (2024).
To examine this issue from an uncertainty perspective, we compare: (1) fixed-size recursive chunking
with 256/32 and 128/16 settings, and (2) universal semantic chunking. Experiment results on certain
and uncertain questions are shown in Table 4, which leads to the following interesting findings:

Uncertain questions benefit from smaller chunks. Reducing chunk size improves performance
on uncertain questions but reduces accuracy on certain ones (Table 4). For certain questions, larger
chunks maintain robustness by providing sufficient context despite added noise. In contrast, for
uncertain questions, smaller chunks help filter irrelevant information, yielding marginal gains.
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Table 3: Comparison of DENSE-RAG with baselines. Ret. FT and Gen. FT indicate whether the
retriever and generator of the method were fine-tuned, respectively.

Method Generator Model Ret. FT Gen. FT TriviaQA Natural Question AmbigNQ 2WikiQA
RePlug-LSR (few-shot)Shi et al. (2023) Codex 175B ✓ ✗ 77.3 45.5 - -
ChatQA-1.5Liu et al. (2024b) Llama3 8B ✓ ✓ 81.0 42.4 - 26.8
UncertaintyRAGLi et al. (2024b) Llama2 13B ✓ ✗ 82.5 - - 38.3
ERM4Shi et al. (2024) GPT-3.5-turbo ✓ ✗ - 52.7 53.5 46.8
Astute-RAGWang et al. (2024b) Claude 3.5 Sonnet ✗ ✗ 84.5 53.6 - -
RankRAGYu et al. (2024) Llama3 70B ✗ ✓ 85.6 54.2 - 38.2
RAG-DDRLi et al. (2024a) Llama3 8B ✓ ✓ 89.6 52.1 - -

DENSE-RAG Llama3 8B ✗ ✗ 84.8 57.5 68.1 58.7
Llama3.1 70B ✗ ✗ 90.3 58.2 76.8 69.3

Table 4: Experiment result on certain/uncertain
questions with various chunk strategy.

Chunking TriviaQA Natural Question AmbigNQ 2WikiQA
512/64 90.4/43.0 63.7/36.0 75.1/33.2 66.9/40.6
256/32 88.3/47.7 57.6/33.6 68.3/33.2 61.1/41.7
128/16 87.7/48.9 53.6/33.2 53.6/31.7 58.8/41.4
Full semantic 87.6/53.0 59.3/41.3 68.2/39.5 65.9/41.5
Adaptive (ours) 90.3/52.4 63.4/41.3 75.0/40.5 66.9/42.3

Table 5: Experiment result of iterative context re-
finement on uncertain questions.

Refinement TriviaQA Natural Question AmbigNQ 2WikiQA
w/o refine 52.4 41.3 40.5 42.3
only removing chunks 54.5 40.6 39.5 43.3
w/o self-evaluation 52.7 41.5 38.2 42.1
refill on certain chunks 55.7 41.8 43.6 44.6
Context-refiner 56.3 42.2 43.6 46.6

Semantic chunking works on uncertain questions. Semantic chunking improves uncertain ques-
tions but degrades certain ones, consistent with prior findings Qu et al. (2024). For questions
already well-answered, semantic chunking restricts information diversity and limits performance.
Our adaptive method applies semantic merging only when DENSE indicates high uncertainty, thereby
improving uncertain question performance while preserving the advantages of fixed-size chunking on
certain ones. Beyond the empirical gains, this observation provides an uncertainty-based explanation
for the controversial effectiveness of semantic chunking reported in previous work.

6.4.2 ANALYSIS OF ITERATIVE CONTEXT REFINEMENT

We further analyze iterative context refinement through the following settings: (1) no refinement after
DENSE, (2) only removing unnecessary chunks, (3) disabling the self-evaluation condition, and (4)
refilling based on certain chunks instead of necessary chunks. Table 5 summarizes the results.

Notably, removing unnecessary chunks outperforms the baseline (w/o refine) on TriviaQA and
2WikiQA, with only a minor drop (1%) on Natural Questions and AmbigNQ. This confirms that
DENSE effectively identifies and filters irrelevant documents. Disabling self-evaluation leads to
consistent drops, showing its usefulness in preventing contexts from generating consistently incorrect
responses. Refilling based on certain chunks performs second-best, suggesting that adding information
similar to certain chunks can indeed improve QA performance, but the gains are limited compared to
refilling guided by necessary chunks.

7 CONCLUSIONS

In this work, we explore a fundamental problem in RAG: how to assess whether LLMs understand the
retrieved context. We introduced DENSE, a training-free and model-agnostic method that quantifies
semantic uncertainty through responses generated under semantically equivalent contexts. Our
analysis shows that higher DENSE values consistently correspond to worse performance, validating
its effectiveness as an unsupervised measure of contextual understanding. Building on this insight,
we designed two modules—Adaptive Semantic Chunking and Iterative Context Refinement—to
enhance both intra-chunk semantic coherence and inter-chunk semantic completeness for uncertain
questions. Extensive experiments across multiple datasets and backbones demonstrate that DENSE-
RAG delivers competitive or superior performance compared to state-of-the-art methods, while
requiring no additional training.

Future work could explore adaptive integration of smaller models for simpler tasks to reduce inference
costs. Beyond our method on improving context quality, another promising direction for future work is
to enhance LLMs’ ability to interpret retrieved texts, for example by incorporating uncertainty-aware
training objectives during pretraining or finetuning, which may further strengthen QA performance.
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APPENDIX

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this manuscript, we employed tools such as GPT and Grammarly for
language polishing and for assisting in literature search. We emphasize that no part of this work relies
on unverified or irresponsible LLM-generated content, and the authors take full responsibility for all
contents of the paper.

B PROMPT FORMATS

B.1 REPHRASING PROMPT

The format template of LLM inputs in building semantically equivalent contexts as follows:

User: Rewrite the following text at the syntactic level without
changing its meaning. Modify the sentence structure, but preserve
the original intent and semantic meaning. ONLY return the
rewritten content without any additional token. Text: {chunk}

LLM: ...

B.2 NLI PROMPT

The format template of LLM inputs in evaluating semantic entailment as follows:

User: We are evaluating answers to the question {question} Here
are two possible answers:

Possible Answer 1: {response1}

Possible Answer 2: {response2}

Does Possible Answer 1 semantically entail Possible Answer 2?
Respond with ONLY entailment, contradiction, or neutral.

LLM: ...

B.3 SELF-EVALUATION PROMPT

The format template of LLM inputs in performing self-evaluation on context as follows:

User: Context: {context}

Question: {question}

Does the context contain enough information to answer the
question? Only answer yes or no.

LLM: ...

B.4 QA PROMPT

The format template of LLM inputs in asking questions as follows:

User: Answer question {query} based on provided context, ONLY
output a short answer with minimum words. Context:{context}

LLM: ...

14
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Table 6: Semantic entailment check of rephrased chunks and original ones. 1000 queries are sampled
randomly per dataset, and 10 random chunks from its corresponding document are sampled for
semantic entailment check.

Entailment methods Semantic entailment ratio
TriviaQA Natural Question AmbigNQ 2WikiQA

LLM-as-a-judge 98.37% 95.95% 97.88% 93.24%
Deberta-as-a-judge 97.65% 98.28% 96.35% 98.40%

C DISENTANGLEMENT OF INHERENT LLM RANDOMNESS

In previous works, uncertainty related metrics are employed under high temperature settings Kuhn
et al. (2023); Lin et al. (2024). These works focus on quantifying the intrinsic stochasticity of LLMs
as well as their hallucination behavior during question answering. In contrast, we adopt greedy
decoding to disentangle the influence of LLM-intrinsic randomness on response variability. To prove
the disentanglement works, we run experiment using Llama3-8B on TriviaQA, NQ, AmbigNQ and
2WiKiQA under greedy decoding and fixed context. We then compute discrete semantic entropy using
the official implementation provided by Kuhn et al. (2023). In all datasets, the measured uncertainty is
exactly zero, confirming that our greedy decoding setup successfully eliminates randomness-induced
variability from the LLM itself. And the observed uncertainty in DENSE is originated from rephrased
contexts. Lin et al. (2024) explored the relationship between decoding temperature and uncertainty
estimation. For more details on this topic, we refer readers to their work.

D REPHRASED CONTEXTS SEMANTIC CHECKING

To validate that the LLM rephrasing in DENSE could preserve the semantic of the original chunks, we
perform semantic checking of rephrased chunks on four QA dataset that we used in main experiments.
We randomly sample 1000 questions in each QA dataset, and for each question we randomly sample
10 chunks in its corresponding retrieved documents. We employ both LLM and Deberta-large-mnli
model to decide whether rephrased chunks are semantically entailed with original chunks. The result
is shown in Table 6, which indicating that the rephrased chunks shows negligible semantic shift
compare to original chunks. This proves that the rephrasing operation have negligible influence on
QA performance.

E DISCUSSION OF SEMANTIC ENTROPY AND DENSE

Kuhn et al. (2023) define the semantic entropy to measure the uncertainty of LLM’s responses:

SE(q, C) ≈ −|H|−1

|H|∑
i=1

log p(h|C), (11)

where h is a semantic cluster belongs to H = {h1, h2...}, p(h|x) estimates a categorical distribution
over the cluster meanings. The cluster is computed by bi-directional entailment Eri,rj . A natural
language inference model (NLI) is used to classify whether ri and rj are entailment(1) or neutral(0):

Eri,rj = (NLI(ri, rj) +NLI(rj , ri))/2, (12)

a Deberta-large model is employed to make the classification. ri and rj are clustered together into
one semantic cluster h when Eri,rj = 1.

We discuss the relationship of semantic entropy and the degree-based semantic entropy in DENSE
from three perspectives:

Monotonicity: Both formulations decrease monotonically as semantic consistency among responses
increases. In semantic entropy, diverse semantic lead to more clusters, and p(H|x) decrease, the
entropy increase. In our method, diverse semantic lead to smaller D, the entropy also increase.

Range Analysis: We now show that the two formulations share the same value range by analyzing
two extreme cases. In the ideal case, where all responses are semantically equivalent, and there will
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be only one cluster in equation 11:

SE(x) ≈ −1−1 log 1 = 0 (13)

And in our method, the D of all response will be k + 1:

DSE(x) ≈ −(k + 1)−1
k+1∑
i=0

log 1 = 0 (14)

In the ideal case, two equations are equivalent. In the worst case, where all response shows distinct
semantic, there are k + 1 clusters in equation 11 and each p(Ci|x) = 1

k+1 :

SE(x) ≈ −(k + 1)−1
k+1∑
i=1

log
1

k + 1
= −(k + 1)−1(k + 1)log(k + 1)−1 = log(k + 1) (15)

In our method, the D = 1 for all response, since every response only semantically equal to itself:

DSE(x) ≈ −(k + 1)−1
k+1∑
i=1

log
1

k + 1
= log(k + 1) (16)

Hence, two methods have a value range of [0, log(k+ 1)], and have the same value of both ideal case
and the worst case.

Information-Theoretic Interpretation. From an information-theoretic perspective, semantic uncer-
tainty is derived from Shannon entropy over the distribution {p(hi|x)}, where hi denotes a semantic
cluster of responses. Intuitively, p(hi|x) represents the probability that a randomly sampled response
falls into cluster hi.

Our method avoids the explicit clustering step by directly considering the semantic graph, where
each node is a response and edge weights represent pairwise semantic entailment. The degree Di

measures how semantically connected a response is to all others — in other words, it approximates
how many responses are semantically similar to ri.

F ALGORITHMS

F.1 DENSE

We present the DENSE algorithm in Algorithm 1.

Algorithm 1: DENSE
Input: Chunk set {c1, c2, c3, . . . , ck}, question q, LLM fθ, rephrase prompt pr, QA prompt pq ,

NLI agent
Output: degree-based semantic entropy DSE, reply set R, semantic matrix W

1 R← ∅
2 W ← [0]k+1×k+1

3 foreach ci ∈ {c1, c2, . . . , ck} do
4 c′i ← fθ(pr(ci))
5 for i← 1 to k do
6 Ci ← [c1, . . . , c

′
i, . . . , ck]

7 ri ← fθ(pq(q, Ci))
8 R← R ∪ {ri}
9 foreach ri ∈ R do

10 foreach rj ∈ R do
11 wij ← (NLI(ri, rj) +NLI(rj , ri))/2
12 W [i, j]← wij

13 DSE ← −(k + 1)−1
∑k+1

i=1 log Di

k+1 , where Di =
∑k

j=0 wij

14 return DSE, R, W
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Algorithm 2: Adaptive Semantic Chunking
Input: Document set D = {d1, d2, . . . , dn}, Similarity threshold τ , Maximum chunk length

Tmax

Output: Semantic chunk set C
1 Initialize an empty list: C ← ∅
2 foreach d ∈ D do
3 S ← tokenize(d) // split documents into sentences
4 {e1, e2, e3, ...} ← [Encode(s) | s ∈ S] // encode sentences into

embeddings
5 c← [s1] // initialize current chunk
6 Tcurrent ← |s1|
7 for i← 1 to |S| − 1 do
8 sim← cosine_similarity(ei, ei+1)
9 Tnext ← |si+1|

10 if sim > τ and Tcurrent + Tnext ≤ Tmax then
11 c← c ∪ {si+1}
12 Tcurrent ← Tcurrent + Tnext

13 else
14 C ← C ∪ {c}
15 c← [si+1] // initialize a new chunk
16 Tcurrent ← Tnext

17 if c is not empty then
18 C ← C ∪ {c}
19 return C

F.2 ADAPTIVE SEMANTIC CHUNKING

We present the adaptive semantic chunking Algorithm 2.

F.3 ITERATIVE CONTEXT REFINEMENT

We present the Iterative Context Refinement algorithm in Algorithm 3.

G DATASETS

We describe the open-book QA dataset here. Since all proposed methods requires no training, we
only use the dev sets for evaluation. The statistics of each dataset is shown in Table 7:

• TriviaQA Joshi et al. (2017) is a challenging QA dataset that provinding evidence documents.
There are two types of questions: Wikipedia and Web. We follow KILT benchmark, only consider
Wikipedia cases Petroni et al. (2020) with evidence documents. We use the wikipedia-dev set in
experiments.

• Natural Question Kwiatkowski et al. (2019) is a common-used QA dataset, which is extracted
from Wikipedia. The questions are constructed from Google search engine and the provided
documents are corresponding Wikipedia pages. We follow KILT benchmark Petroni et al. (2020)
and only consider questions for which at least one human annotator has marked a short answer in
the documents. We only use the dev set in experiments.

• AmbigNQ Min et al. (2020) is a QA dataset proposed in AmbigQA, which is constructed using
prompt questions from NQ-OPEN and English Wikipedia as the evidence corpus. In our task, we
consider the singleAnswer questions in dev subset in AmbigNQ.

• 2WikiQA Ho et al. (2020) is a multi-hop QA dataset, which is designed to test the relationship
between two entities. In 2WikiQA, multiple evidence articles are provided for one question. We
use the dev set in our experiments.
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Algorithm 3: Iterative Context Refinement
Input: Question q, Chunk Set, k, LLM fθ, self evaluation prompt pe,
Output: Answerbest

1 Initialization:
2 C ← initial top-k chunks for q
3 DSEmin ←∞, Flagcurrent ← 0
4 while V isited Set ̸= Chunk Set do
5 V isited Set← V isisted Set ∪ C
6 DSE,R,W ← DENSE(q, C)
7 Flageval ← fθ(pe(q, C))
8 if DSE < DSEmin then
9 if Flagcurrent = 0 ∨ Flageval = 1 then

10 Answerbest ← R
11 DSEmin ← DSE
12 Flagcurrent = Flageval
13 if DSEmin < 0.2 & Flagcurrent = 1 then
14 Return: Answerbest;
15 V isited Set← ∅, Certain Set← ∅, Uncertain Set← ∅, Necessary Set← ∅,

Unnecessary Set← ∅
16 for i← 1 to k do
17 if Wi0 = 1 & W0i = 1 then
18 Certain Set← Certain Set ∪ {ci};
19 else
20 Uncertain Set← Uncertain Set ∪ {ci};
21 for ci ∈ Uncertain Set do
22 ACi ← [c0, ..., ci−1, ci+1, ...]
23 ari ← fθ(q, ACi)
24 if E(r0, ari) = 1 then
25 Unnecessary Set← Unnecessary Set ∪ {ci}
26 else
27 Necessary Set← Necessary Set ∪ {ci}
28 for ci in Unnecessary Set do
29 C ← C \ {ci};
30 for ci in Necessary Set do
31 max_sim← −∞
32 best_chunk ← ∅
33 for cj in Chunk Set \ V isited Set do
34 sim← cosine_similarity(ci, cj);
35 if sim > max_sim then
36 max_sim← sim_score;
37 best_chunk ← cj ;
38 C ← C ∪ {best_chunk}, V isited Set← V isited Set ∪ best_chunk
39 Return: Answerbest

Table 7: Dataset Statistics. The certain and uncertain questions are devided by DENSE in Llama-3.1
8B.

Datasets No. all valid questions No. certain questions No. uncertain questions
TriviaQA 7928 6726 1202
NQ 4289 3115 1174
AmbigNQ 1000 780 220
2WikiQA 12576 7663 4913

H IMPLEMENTATION DETAILS

We implement a naive RAG framework Gao et al. (2023) on Qwen-2.5 1.5B, Qwen-3 8B, Llama-3
8B, Llama-3.1 8B and Llama-3.1 70B as backbones. We use the documents provided within dataset

18
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Table 8: AUROC and AURAC under high-temperature sampling. LLM is no longer faithfully
grounded in the retrieved evidence in high-temperature sampling, uncertainty scores in this regime
lose their interpretability for retrieval-based QA.

Uncertainty Measurements TriviaQA Natural Question AmbigNQ 2WikiQA
AUROC AUARC AUROC AUARC AUROC AUARC AUROC AUARC

temperature=1.0
Discrete Semantic Entropy Farquhar et al. (2024) 78.82 93.23 72.29 79.15 72.19 82.67 67.18 67.61
Ueigv Lin et al. (2024) 81.75 93.87 75.12 81.49 75.50 82.90 68.01 68.12
Udeg Lin et al. (2024) 81.69 93.78 75.00 81.35 74.98 83.25 67.78 67.86
KLE heatt=0.1 Nikitin et al. (2024) 81.30 93.72 74.84 81.65 74.31 82.50 67.29 67.67
KLE deberta maternκ=3.0,ν=3.0 Nikitin et al. (2024) 71.62 91.78 67.73 77.86 66.18 79.47 62.86 66.28
DENSEllm(ours) 80.20 93.92 70.92 77.00 74.73 81.68 70.05 70.25

temperature=3.0
Discrete Semantic Entropy Farquhar et al. (2024) 84.11 90.60 77.36 69.78 80.23 79.15 73.15 56.86
Ueigv Lin et al. (2024) 80.42 89.55 67.35 64.45 75.73 76.91 70.06 55.50
Udeg Lin et al. (2024) 84.00 90.87 72.45 67.63 79.81 79.12 72.51 57.21
KLE heatt=0.1 Nikitin et al. (2024) 85.74 91.44 75.31 69.40 81.72 80.08 73.89 58.03
KLE deberta maternκ=3.0,ν=3.0 Nikitin et al. (2024) 59.95 76.50 58.22 58.16 58.34 66.54 56.16 45.01
DENSEllm(ours) 78.58 87.33 72.33 65.14 75.39 71.07 70.33 53.93

temperature=5.0
Discrete Semantic Entropy Farquhar et al. (2024) 68.08 49.21 61.22 20.51 62.74 24.73 71.31 21.45
Ueigv Lin et al. (2024) 65.06 47.14 56.51 18.19 60.62 23.32 71.93 22.05
Udeg Lin et al. (2024) 66.53 48.20 58.07 18.89 62.03 24.20 72.30 22.30
KLE heatt=0.1 Nikitin et al. (2024) 67.88 48.96 59.31 19.48 63.28 24.84 72.33 22.24
KLE deberta maternκ=3.0,ν=3.0 Nikitin et al. (2024) 51.15 34.49 48.02 14.74 49.13 18.44 51.92 12.33
DENSEllm(ours) 66.94 46.45 62.25 20.99 68.96 27.69 71.10 22.53

temperature=7.0
Discrete Semantic Entropy Farquhar et al. (2024) 64.67 36.77 59.68 13.86 63.77 18.77 68.32 16.89
Ueigv Lin et al. (2024) 64.31 36.27 57.58 12.91 62.35 18.29 71.12 18.38
Udeg Lin et al. (2024) 64.90 36.66 58.30 13.30 63.92 18.66 70.94 18.31
KLE heatt=0.1 Nikitin et al. (2024) 65.51 36.81 58.73 13.51 64.16 18.78 70.23 17.97
KLE deberta maternκ=3.0,ν=3.0 Nikitin et al. (2024) 52.33 27.63 49.98 10.88 49.47 12.23 52.94 10.83
DENSEllm(ours) 66.43 38.83 61.91 15.22 66.13 18.04 74.03 20.76

as the retrieval corpus and employ recursive chunking in Langchain1. The chunk size is set to 512
and chunk overlap is set to 64. For document retrieval, we use UAE-Large-V1 as the encoder for both
questions and document chunks, which is one of the best zero-shot embedding models in MTEB (eng,
v2) leaderboard2. Then we employ FAISS3 to build dense index. To ensure a fair comparison with
other baselines and demonstrate that the improvements of our method stem from better document
understanding rather than an increased number of documents, we limit the retrieval to the top 5
documents—consistent with the minimum retrieval setting used in most RAG studies. We discuss the
impact of different values of top-k on the model’s performance in Appendix K. In generation stage,
we use a simple prompt which is described in Appendix B.4.

In adaptive semantic chunking, we set the merge threshold τ = 0.6 and use the same encoder in
embeddin chunks as the sentence encoder. The maximum chunk length Tmax = 512, consistent with
recursive chunking. The NLI agent and the LLM for semantically equivalent context construction are
the LLM used in generation stage. For the 1.5B and 8B DENSE-RAG, a single NVIDIA 3090 GPU
is enough for embedding and inference. For the 70B DENSE-RAG, we use 2 NVIDIA A100 80GB
GPUs for embedding and inference.

I MORE DENSE EVALUATION EXPERIMENTAL RESULTS

Here we show the performance of RAG on certain and uncertain questions when using different LLM
in open-book QA in Table 9. Regardless of model size, all LLMs exhibit a significant performance
drop on uncertain questions. While the drop is mitigated for larger models such as the llama3.1-70B,
it still remains around 20%. This demonstrates that DENSE generalizes well across language models
of different scales.

I.1 EXPERIMENTS IN HIGH-TEMPERATURE SAMPLING

In addition to the low-temperature and greedy decoding evaluations reported in the main paper, we
further examine the behavior of DENSE and other uncertainty estimating baselines under higher
sampling temperatures. The result are shown in Table 8. Also we plot the QA performance changes
as temperature increasing in Figure 6. As temperature increases, the generation process becomes
increasingly dominated by stochastic variations within the LLM rather than by differences in how

1https://python.langchain.com/docs/concepts/text_splitters/
2https://huggingface.co/spaces/mteb/leaderboard
3https://ai.meta.com/tools/faiss/
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a. TriviaQA b. NaturalQuestion

c. AmbigNQ d. 2WikiQA

Figure 6: RAG QA performance in different sampling temperature. Once the temperature exceeds 1,
the exact match accuracy drops sharply, indicating that the model becomes increasingly unfaithful to
the retrieved context.

Table 9: RAG performance on certain and uncertain questions. The EM% drop on uncertain
questions to certain one is reported after the EM on ucnertain question. The split of certain questions
and uncertain questions is according to DENSEeval.

Task TriviaQA Natural Question AmbigNQ 2WikiQA
certain uncertain certain uncertain certain uncertain certain uncertain

Llama3.1 8B DENSEeval 90.4 43.0(47.4↓) 63.7 36.0(26.7↓) 75.1 33.2(41.9↓) 66.9 40.6(26.3↓)
Llama3.1 8B DENSEdeberta 90.3 43.7 (46.6↓) 63.8 36.0(27.8↓) 75.1 34.1(41.0↓) 67.0 41.2(25.8↓)
Qwen2.5 1.5B 75.0 33.3(41.7↓) 47.7 24.8(22.9↓) 55.5 21.8(33.7↓) 38.5 21.4(17.1↓)
Llama3.1 8B 90.3 42.3(48.0↓) 63.3 35.8(27.5↓) 75.6 32.8(42.8↓) 66.9 40.3(26.6↓)
Llama3.1 70B 93.2 73.1(20.1↓) 62.5 44.8(17.7↓) 81.8 59.6(22.2↓) 72.3 57.4(14.9↓)

the retrieved context is interpreted. As a result, the semantic deviations in LLM outputs no longer
reliably reflect context-related uncertainty but instead arise primarily from temperature-induced
randomness. Consistent with this shift, all methods—DENSE included—degrades substantially
at high temperatures. Because LLM is no longer faithfully grounded in the retrieved evidence,
uncertainty scores in this regime lose their interpretability for retrieval-based QA. We therefore
include these results only for completeness; they should not be taken as indicators of method quality
in retrieval-grounded settings.

I.2 EXPERIMENTS ON SUMMARIZATION TASKS

We focuses on the open-book QA task, but as a typical free-form language generation task, we
also explore its effectiveness on summarization tasks. We add a simple verification experiment on
CNN/DailyMail 3.0.0 test set. We build a RAG pipeline for summarization and compute the DENSE
score, the RougeL and DENSE score relationship is shown in Table 10. As shown in the figure,
higher uncertainty is correlated with lower RougeL score, showing DENSE’s potential in measuring
LLM’s understanding in summarization tasks. This verification experiment on CNN/DailyMail is
preliminary, as we directly applied the method originally designed for open-book QA. Summarization
presents different challenges compared to open-book QA, such as how to formulate effective queries.
One important direction is to improve summarization performance according to the proposed DENSE
method.

Table 10: Experiment result on CNN/DailyMail summarization.

DENSE range ( ,0.1) [0.1, 0.2) [0.2, 0.3) [0.3, 0.4) [0.4, 0.5) [0.5, 0.6) [0.6, 0.7) [0.7, 0.8) [0.8, 0.9) [0.9, 1.0) [1.0, )
Ave RougeL/10−3 90.47 86.97 86.84 82.40 86.29 81.48 78.56 76.54 80.36 81.48 76.43

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 11: Results of our methods and baselines on 4 datasets. The best results are in bold, and the
second best are underlined. Results unavailable in public reports are marked as “-”.

Method Generator Model Ret. FT Gen. FT TriviaQA Natural Question AmbigNQ 2WikiQA
Adaptive-RAGJeong et al. (2024) FLAN-T5-XL 3B ✓ ✗ 52.2 37.8 - 40.6
Astute-RAG Wang et al. (2024b) Claude 3.5 Sonnet ✗ ✗ 84.5 53.6 - -
RePlug-LSR (few-shot)Shi et al. (2023) Codex 175B ✓ ✗ 77.3 45.5 - -
LongRAGZhao et al. (2024) GLM4 32B ✗ ✓ - - - 57.2
ERM4Shi et al. (2024) GPT-3.5-turbo ✓ ✗ - 52.7 53.5 46.8
UncertaintyRAGLi et al. (2024b) Vicuna 7B ✓ ✗ 85.0 - - 29.9
UncertaintyRAGLi et al. (2024b) Llama2 13B ✓ ✗ 82.5 - - 38.3
RAG-DDRLi et al. (2024a) Llama3 8B ✓ ✓ 89.6 52.1 - -
ChatQA-1.5Liu et al. (2024b) Llama3 8B ✓ ✓ 81.0 42.4 - 26.8
ChatQA-1.5Liu et al. (2024b) Llama3 70B ✓ ✓ 85.6 47.0 - 34.9
RankRAGYu et al. (2024) Llama3 8B ✗ ✓ 82.9 50.6 - 31.4
RankRAGYu et al. (2024) Llama3 70B ✗ ✓ 86.5 54.2 - 38.2
Collab-RAGXu et al. (2025) Qwen2.5 3B ✗ ✓ - - - 67.0
Collab-RAGXu et al. (2025) Llama3.1 8B ✗ ✓ - - - 67.2

DENSE-RAG

Qwen2.5 1.5B ✗ ✗ 69.8 42.4 50.3 31.5
Qwen3 8B ✗ ✗ 82.4 53.5 65.2 54.2
Llama3 8B ✗ ✗ 84.8 57.5 68.1 58.7

Llama3.1 8B ✗ ✗ 85.1 57.8 67.9 59.1
Llama3.1 70B ✗ ✗ 90.3 58.2 76.8 69.3

J COMPARE WITH MORE BASELINES

We show extended comparison in Table 11. We consider following sota RAG methods: Astute
RAG Wang et al. (2024b), RePlug Shi et al. (2023), Adaptive-RAG Jeong et al. (2024), shi et al. Shi
et al. (2024), LongRAG Zhao et al. (2024), RAG-DDR Li et al. (2024a), ChatQA-1.5 Liu et al.
(2024b), RankRAG Yu et al. (2024) and UncertaintyRAG Li et al. (2024b). Among these baselines,
some baselines like Yu et al. (2024) employ finetuned LLMs to further optimize the retrieved context;
in the table, we mark them simply as Gen. FT. Only approaches that introduce additional trained
components such as retrievers, encoders, or policy models, are regarded as using trained retrievers. For
Collab-RAG Xu et al. (2025), it utilize GPT4o as an LLM reader during the retrieval and generation.
It is worth noting that some baselines employ different retrieval settings, such as retrieving a larger
number of documents or searching over Wikipedia rather than the dataset-provided corpus; their
results are thus reported for reference only. For fair comparison, our method uniformly uses the top-5
retrieved chunks (the minimum number adopted in most prior work) as context and performs retrieval
strictly over the dataset-provided knowledge base.

K ADDITIONAL SENSITIVITY ANALYSIS

Number of retrieved documents. To discuss the performance of DENSE with different numbers of
retrieved chunks, we conduct experiments with different chunk numbers with and without DENSE. As
shown in Figure 8, when more chunks are utilized, two methods have better performance on uncertain
questions. And DENSE-RAG consistently outperforms RAG w/o DENSE across all datasets and
various chunk quantity settings, highlighting the robustness of our approach.

Adaptive chunking threshold τ We run experiments with different adaptive chunking threshold
and show the result in Figure 7. As the sentence merge threshold of adaptive chunking increases,
performance on uncertain questions significantly declines. This indicates that while leveraging
semantic similarity for chunking can enhance performance, overly strict merge conditions may
instead lead to a drop in overall effectiveness.

L DISCUSSION OF COMPLEXITY

As an unsupervised method applicable to any black-box LLM without introducing additional models,
DENSE requires multiple model calls during measurement. The computational complexity remains
bounded by O(k2), where each LLM inference step (e.g., response generation or entailment check)
is treated as O(1). The main steps include: (1) rephrasing k retrieved chunks (O(k)); (2) generating
responses under rephrased contexts (O(k)); and (3) pairwise entailment comparisons (O(k2)). No-
tably, the entailment component can be efficiently accelerated using lightweight NLI models such as
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Figure 7: Performance comparison on uncertain questions when using different Adaptive chunking
merging thresholds.
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Figure 8: Performance comparison on uncertain questions when using different context size. Under
different context sizes, DENSE-RAG demonstrates significant improvements.

DeBERTa Kuhn et al. (2023), instead of relying on repeated LLM calls. Compared with DSE Kuhn
et al. (2023), the only additional cost introduced by DENSE is the rephrasing step.

For semantic chunking, we embed sentences using a compact encoder rather than an LLM, so the
overhead is negligible relative to the O(k2) entailment computations. In the refinement stage, the
worst-case scenario occurs when all candidate chunks must be examined. This introduces up to O(k)
additional generations and O(k2) additional DENSE computations, resulting in an overall upper
bound of O(k2) complexity. However, in our experiments, only about 20% of the questions exhibit
sufficiently high DENSE scores to trigger refinement. Therefore, the practical computational cost
remains close to O(k2) while being incurred only for a small subset of difficult queries.

In practice, on Llama-3 with A100 GPUs, computing DENSE adds about one second per query,
while the full DENSE-RAG pipeline averages six seconds. This additional cost remains modest
compared to standard RAG inference and represents a highly favorable trade-off, as it enables reliable,
training-free uncertainty measurement and effective context enhancement in a fully model-agnostic
and widely generalizable manner.

M CASE STUDIES

We display the case studies of DENSE-RAG on uncertain questions in TriviaQA, Natural Question,
AmbigNQ and 2WikiQA. We display the retrieved chunks and LLM responses with/without DENSE
in Table 12, Table 13, Table 14 and Table 15. The red text is distractors, and the green text contains
evidence for the correct answer. From all the cases, we can observe that these uncertain questions
are often accompanied by distracting texts, which can easily mislead the LLM. Take 2WikiQA as an
example: LLM needs to first identify the author of Sunday Papers and then locate the awards won by
that author. By using DENSE, we effectively identify the chunks that are relevant but do not contain
the answer, allowing the chunk refiner to pinpoint the chunk that holds the correct information.
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Table 12: Case study on uncertain questions in TriviaQA.

Question Id: tc_1693
Q: Who beat Tim Henman in his first Wimbledon singles semifinal? A: Pete Sampras

w/o DENSE

Chunk 1: Timothy Henry "Tim" Henman (born 6 September 1974) is a retired English professional tennis player. Henman played
a serve-and-volley style of tennis...
Chunk 2: In the second round he succumbed to the eventual champion American Todd Martin, 6–4, 6–4. Henman received a
wildcard for the Manchester Open, where he lost in the first round to American Alex O’Brien...
Chunk 3: At the time of his retirement, Henman had already committed to playing a Charity Exhibition at London’s Royal Albert
Hall during the Seniors Tennis Event The Blackrock Masters in December 2007...
Chunk 4: Then breaking his opponent’s serve twice in a row to win the final set 7–5 and beat reigning French Open champion
Yevgeny Kafelnikov in the first round at Wimbledon, going on to reach the quarter finals before losing to Todd Martin...
Chunk 5: He reached the second round after defeating German Martin Sinner, and in Nottingham he reached the quarter-finals,
his first quarter-final in the ATP tour. His success in these tournaments increased his ranking from 272nd to 219th.
LLM response: Todd Martin

DENSE-RAG

Chunk 1: Timothy Henry "Tim" Henman (born 6 September 1974) is a retired English professional tennis player. Henman played
a serve-and-volley style of tennis...
Chunk 2: In 2000 he reached the fourth round and in 1996, 1997, 2003 and 2004 he lost in the quarter-finals. The first two of
those semi-final losses were to Pete Sampras, who went on to win the title on both occasions...
Chunk 3: Then breaking his opponent’s serve twice in a row to win the final set 7–5 and beat reigning French Open champion
Yevgeny Kafelnikov in the first round at Wimbledon, going on to reach the quarter finals before losing to Todd Martin...
Chunk 4: On the grass at Queen’s Club Championship Henman reached the final, where he was defeated in straight sets by
Australian Lleyton Hewitt...
Chunk 5: However, Henman’s winning streak did not last long, and in the second round he met Sampras, and was defeated 6–2,
6–3, 7–6...
LLM response: Pete Sampras

Table 13: Case study on uncertain questions in Natural Question.

Question Id: -1580637763990313083
Q: When did muhammad ali win an olympic gold medal? A: 1960

w/o DENSE

Chunk 1: Ali said in his 1975 autobiography that shortly after his return from the Rome Olympics, he threw his gold medal into
the Ohio River after he and a friend were refused service at a “whites - only” restaurant and fought with a white gang...
Chunk 2: Ali received a replacement medal at a basketball intermission during the 1996 Olympics in Atlanta, where he lit the
torch to start the gam professional boxing early career...
Chunk 3: On September 13, 1999, Ali was named “Kentucky Athlete of the Century” by the Kentucky Athletic Hall of Fame in
ceremonies at the Galt House East. On January 8, 2001, Muhammad Ali was presented with the Presidential Citizens Medal by
President Bill Clinton.
Chunk 4: In 1996, he had the honor of lighting the flame at the 1996 Summer Olympics in Atlanta, Georgia. Ali ’s bout with
Parkinson ’s led to a gradual decline in his health...
Chunk 5: W. Bush embraces Muhammad Ali after presenting him with the Presidential Medal of Freedom on November 9, 2005,
during ceremonies at the White House. Muhammad Ali defeated every top heavyweight in his era, which has been called the
golden age of heavyweight boxing...
LLM response: Muhammad Ali did not win an Olympic gold medal.

DENSE-RAG

Chunk 1: On September 13, 1999, Ali was named “Kentucky Athlete of the Century” by the Kentucky Athletic Hall of Fame in
ceremonies at the Galt House East...
Chunk 2: Legacy As Mrs. Lonnie Ali looks on, President George W. Bush embraces Muhammad Ali after presenting him with
the Presidential Medal of Freedom on November 9, 2005, during ceremonies at the White House...
Chunk 3: Muhammad Ali defeated every top heavyweight in his era, which has been called the golden age of heavyweight boxing.
Ali was named “Fighter of the Year” by The Ring magazine more times than any other fighter, and was involved in more Ring
“Fight of the Year” bouts than any other fighter.
Chunk 4: At age 18, he won a gold medal in the light heavyweight division at the 1960 Summer Olympics in Rome and turned
professional later that year. At age 22 in 1964, he won the WBA, WBC, and lineal heavyweight titles from Sonny Liston in a
major upset.
Chunk 5: In time, Muhammad Ali Boulevard – and Ali himself – came to be well accepted in his hometown. In 1993, the
Associated Press reported that Ali was tied with Babe Ruth as the most recognized athlete, out of over 800 dead or living athletes,
in America.
LLM response: 1960

Table 14: Case study on uncertain questions in AmbigNQ.

Question Id: 3008542401703695479
Q: Who played robin on the original batman series? A: Burt Ward

w/o DENSE

Chunk 1: Robin (Dick Grayson) was portrayed by Douglas Croft and Johnny Duncan, respectively, in the 1943 and 1949 fifteen
chapter Batman serials. Burt Ward played him in the 1966–1968 Batman television series and the related 1966 film...
Chunk 2: Batman is a 1960s American live action television series, based on the DC comic book character of the same name. It
stars Adam West as Bruce Wayne / Batman and Burt Ward as Dick Grayson / Robin – two crime-fighting heroes who defend
Gotham City from a variety of arch villains.
Chunk 3: Lewis Wilson as Bruce Wayne / Batman, Douglas Croft as Richard "Dick" Grayson / Robin J. Carrol Naish as Dr. Tito
Daka/Prince Daka * Shirley Patterson as Linda Page * William Austin as Alfred Pennyworth...
Chunk 4: Burt Ward as Dick Grayson / Robin: Batman’s sidekick, dubbed the "Boy Wonder": a high school student noted for his
recurring interjections in the form of “Holy _, Batman!”
Chunk 5: Lewis Wilson as Batman and Douglas Croft as Robin: Both actors and their stunt doubles lacked the “style and grace”
of either the comic characters they were portraying or their equivalents at Republic Pictures.
LLM response: Douglas Croft

DENSE-RAG

Chunk 1: His portrayal is based mainly on Burt Ward’s Dick Grayson. Collected editions See also Homosexuality in the Batman
franchise * List of exclamations by Robin...
Chunk 2: Portrayals Robin (Dick Grayson) was portrayed by Douglas Croft and Johnny Duncan, respectively, in the 1943 and
1949 fifteen chapter Batman serials...
Chunk 3: Batman is a 1960s American live action television series, based on the DC comic book character of the same name. It
stars Adam West as Bruce Wayne / Batman and Burt Ward as Dick Grayson / Robin – two crime-fighting heroes who defend
Gotham City from a variety of arch villains...
Chunk 4: The entire first Batman serial was re-released theatrically in 1965 as An Evening with Batman and Robin, and proved
very popular (some theatres showed the chapters as a Saturday matinee). Its success inspired the action-comedy lampoon series
Batman (and its 1966 theatrical feature film spin-off) starring Adam West and Burt Ward.
Chunk 5: * Burt Ward as Dick Grayson / Robin: Batman’s sidekick, dubbed the "Boy Wonder": a high school student noted for
his recurring interjections in the form of “Holy _, Batman!”
LLM response: Burt Ward
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Table 15: Case study on uncertain questions in 2WikiQA.

Question Id: 0f1ac1a00bdb11eba7f7acde48001122
Q: What is the award that the performer of song Sunday Papers earned? A: Grammy

w/o DENSE

Chunk 1: Sunday Papers" is a song written and performed by British new wave musician Joe Jackson. It was released on his debut
album, "Look Sharp!".Written as a critique of the British press, "Sunday Papers" features mocking lyrics and reggae inspired
music...
Chunk 2: Caspar Babypants is the stage name of children’s music artist Chris Ballew, who is also widely known as the singer of
The Presidents of the United States of America.
Chunk 3: Dáithí Sproule( born 23 May 1950) is a guitarist and singer of traditional Irish music.His niece is the singer Claire
Sproule.
Chunk 4: David Ian “Joe” Jackson (born 11 August 1954) is an English musician and singer-songwriter. Having spent years
studying music and playing clubs, Jackson scored a hit with his first release, "Is She Really Going Out with Him?", in 1979.
Chunk 5: “O Valencia!” is the fifth single by the indie rock bandThe Decemberists, and the first released from their fourth studio
album," The Crane Wife".The music was written by The Decemberists and the lyrics by Colin Meloy.
LLM response: The award that the performer of song "Sunday Papers" earned is none.

DENSE-RAG

Chunk 1: Written as a critique of the British press, “Sunday Papers” features mocking lyrics and reggae inspired music. “Sunday
Papers” was released as a single in the UK as the follow-up to his single...
Chunk 2: “Sunday Papers” is a song written and performed by British new wave musician Joe Jackson. It was released on his
debut album, “Look Sharp!”
Chunk 3: Caspar Babypants is the stage name of children’s music artist Chris Ballew, who is also widely known as the singer of
The Presidents of the United States of America.”
Chunk 4: Dáithí Sproule (born 23 May 1950) is a guitarist and singer of traditional Irish music.His niece is the singer Claire
Sproule.
Chunk 5: He is associated with the 1980s Second British Invasion of the US.He has also composed classical music. He has
recorded 19 studio albums and received 5 Grammy Award nominations.
LLM response: Joe Jackson earned a Grammy Award nomination.
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