

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DENSE-RAG: MEASURING AND IMPROVING CONTEXT UNDERSTANDING FOR CONSISTENT RETRIEVAL-AUGMENTED GENERATION

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT

013 Retrieval-Augmented Generation (RAG) has significantly advanced LLM perfor-
014 mance in knowledge-intensive tasks. However, when LLMs misinterpret retrieved
015 content, they often revert to pre-trained parametric knowledge or generate halluci-
016 nated responses, undermining RAG effectiveness. In this work we try to explore
017 this problem by proposing DEgree-based uNcertainty with Semantically Equivalent
018 contexts (DENSE), a training-free and model-agnostic method to evaluate LLM
019 understanding of retrieved documents. DENSE constructs semantically equiva-
020 lent context and introduces a degree-based entropy to quantify response semantic
021 uncertainty. Building on DENSE, we further introduce DENSE-RAG, which in-
022 cludes two training-free DENSE-guided modules: adaptive semantic chunking
023 and iterative context refinement. Experiments on open-book QA datasets show
024 that higher DENSE uncertainty correlates with lower QA performance, validating
025 DENSE as a reliable indicator of LLM understanding measurement. DENSE-RAG
026 also achieves performance competitive with state-of-the-art baselines approaches
027 without introducing additional model or fine-tuning.

028 1 INTRODUCTION

030 Large Language Models (LLMs) have demonstrated remarkable success in NLP tasks. However, the
031 reliance on parametric knowledge alone leads to knowledge cut-off issues and hallucination, making
032 Retrieval-Augmented Generation (RAG) a crucial paradigm for knowledge-intensive tasks. In a
033 RAG system, an information retrieval system fetches relevant documents from an external corpus,
034 and LLMs generate the answer based on the retrieved documents. Recent research has advanced
035 RAG by improving retrievers Shi et al. (2023); Lin et al. (2023b;a); Xu et al. (2024); Zhang et al.
036 (2025) or through end-to-end fine-tuning of LLMs Yu et al. (2024); Izacard et al. (2023); Asai
037 et al. (2023); Wang et al. (2024a); Huang et al. (2023). However, an essential research problem
038 remains underexplored: how to measure LLM’s understanding of the retrieved context? When
039 LLMs fail to comprehend the input context, LLMs are observed to misinterpret contexts and make up
040 unfaithful responses to the retrieved context Barnett et al. (2024); Song et al. (2024); Saad-Falcon et al.
041 (2024). Consequently, the ability to assess an LLM’s understanding of retrieved content represents a
042 promising direction for evaluating and improving the reliability of RAG systems.

043 In this paper, we attempt to explore this problem through a semantic perspective. Consider two
044 simple sentences, “*Bob is a physics teacher*/*Bob teaches physics*”, which express the same meaning
045 with different syntactic expressions. When asked “*What is Bob’s occupation?*”, a human reader
046 would give the same answer regardless of which sentence is provided as context. This illustrates two
047 key principles : (1) **the same semantics can be conveyed through different textual expressions**;
048 and (2) **if an LLM truly understands the context, semantically equivalent inputs should yield**
049 **semantically equivalent responses.**

050 Based on these insights, we propose DEgree-based uNcertainty with Semantically Equivalent contexts
051 (DENSE), for measuring LLM’s understanding of contexts by evaluating the semantic consistency
052 between multiple responses. DENSE is an **unsupervised, training-free** method that could be
053 applied to any LLMs. According to the principles, we construct semantically equivalent contexts and
quantify the semantic uncertainty reflected in LLM responses across these contexts. DENSE captures

semantic variation directly from response-level outputs and further enables fine-grained attribution of uncertainty to specific retrieved chunks. Experiments on open-book QA datasets show that LLMs perform significantly worse on questions with high DENSE uncertainty, demonstrating that DENSE provides a reliable indicator of contextual understanding.

On the basis of effective understanding measurement, we further leverage DENSE to enhance RAG performance. Specifically, we design two unsupervised modules: **Adaptive Semantic Chunking**, which leverages DENSE to trigger semantic chunking only under high uncertainty to improve intra-chunk semantic coherence, and **Iterative Context Refinement**, which incrementally supplements and reorganizes chunks guided by DENSE to enhance inter-chunk semantic completeness. Extensive experiments across diverse datasets and LLM backbones show that DENSE-RAG achieves competitive performance compared to state-of-the-art baselines, while offering a model-agnostic framework for both diagnosing and improving RAG systems.

Our contributions can be summarized as follows:

- We introduce **DENSE**, an unsupervised, training-free method to assess LLMs’ understanding of retrieved contexts by measuring response uncertainty. Unlike prior work that primarily quantifies LLM inherent uncertainty, DENSE connects the presence of uncertainty to specific chunk, enabling targeted improvement to enhance RAG performance.
- We propose **DENSE-RAG**, which leverages DENSE to enhance RAG performance through two modules: Adaptive Semantic Chunking, which improves intra-chunk coherence under high uncertainty, and Iterative Context Refinement, which enhances inter-chunk completeness by reorganizing contexts in a DENSE-guided manner.
- We conduct extensive experiments on four open-book QA datasets with five LLMs of different scales, demonstrating that DENSE effectively evaluates LLM’s understanding of contexts and is predictive of RAG performance. The proposed DENSE-RAG improves QA performance on challenging questions with high uncertainty, achieving competitive performance against state-of-the-art baselines, while maintaining flexibility and generality as a model-agnostic framework.

2 RELATED WORK

In Retrieval-augmented generation, a retriever Karpukhin et al. (2020); Douze et al. (2024) is employed to obtain relevant document chunks from an external corpus, then LLM takes the retrieved context to generate replies Gao et al. (2023). Enhancing LLMs’ understanding of retrieved documents to improve the overall alignment of the system remains a significant challenge. Some works improve retrievers to align the needs of LLMs Shi et al. (2023); Lin et al. (2023b;a) or add-on moderate-size models Xu et al. (2024); Zhang et al. (2025). Despite providing stronger retrievers, one potential approach is to finetune LLM in an end-to-end manner Yu et al. (2024); Izacard et al. (2023); Asai et al. (2023); Wang et al. (2024a); Huang et al. (2023); Yoran et al. (2023).

Enhancing the reliability of the generation by measuring the uncertainty in LLM responses has emerged as a promising direction Kuhn et al. (2023); Farquhar et al. (2024); Hou et al. (2024); Jiang et al. (2024). Semantic uncertainty was proposed to estimate uncertainty in language generation tasks in an unsupervised manner Kuhn et al. (2023). By quantifying the semantic differences among the responses, researchers can effectively measure the impact of hallucinations in LLMs Farquhar et al. (2024). Hou et al. (2024) proposed a method to decompose uncertainty by generating clarifications and ensembling. While many works discuss the uncertainty in LLMs in unsupervised scope Lin et al. (2024); Jiang et al. (2024), some works also try to identify uncertainty and improve the performance of LLMs in a supervised manner Kweon et al. (2025); Liu et al. (2024a); Arteaga et al. (2025). Several works have investigated how LLM uncertainty manifests in RAG settings. Dai et al. (2025) quantify the utility of retrieval by capturing LLM’s internal belief in RAG scenarios. Hasegawa et al. (2024) measured certainty in retrieval and generation separately through Rouge-L or the BERT score. Perez-Beltrachini & Lapata (2025) trained a passage utility model to predict the utility of each passage in the context of LLMs. However, these studies often focus on how to measure uncertainty within the system, while how to effectively link uncertainty to the retrieved documents and leverage it to improve the performance of RAG systems remains largely underexplored.

Figure 1: Overview of DENSE. DENSE leverage context rephrasing and degree-based semantic uncertainty to (1) ensure that all semantic variation in the output arises from the LLM’s interpretation of the rephrased chunks, and (2) identify the specific chunks responsible for such variation.

3 PRELIMINARIES

To lay the groundwork for analyzing LLMs’ understanding of retrieved content, we first introduce the RAG task formulation, semantic-related formulations and properties. Given a question q , a retriever fetches top- k documents from a knowledge base to construct context $C = [c_1, c_2, \dots, c_k]$ that are most relevant to q . LLM f_θ is used to produce the response r :

$$r = f_\theta(q, C), \quad (1)$$

where r could be a short phrase or sentence. Kuhn et al. (2023) discuss the meanings and forms of natural language, “*Although models’ input is words, but for almost all applications we care about meanings*”. This observation underlines the central role of semantics in NLP tasks, we summarize the relationship between semantic meaning and retrieved context in RAG as two formulations.

Formulation 1: *For natural language context C and question q , there is a semantic space \mathcal{S} and a mapping function π , that maps q, C to its underlying semantic $\pi(q, C)$ in semantic space \mathcal{S} .*

Formulation 2: *If there exists $C' \neq C$ such that $\pi(q, C') = \pi(q, C)$, then C' and C are semantically equivalent under question q in the semantic space \mathcal{S} .*

According to these formulations, two different textual contexts C and C' can yield the same semantics for a given question q . If a human reader or an LLM fully understands C , it should also produce a semantically equivalent response when given C' . This property is commonly referred as semantic consistency in prior work Rabinovich et al. (2023). Accordingly, we extend this notion of semantic consistency in the RAG setting and propose the following property:

Property 1: *If an LLM f_θ can understand C while answering question q . With $\pi(q, C) = \pi(q, C')$, the LLM’s responses under C and C' should be semantically equivalent:*

$$\pi(q, C) = \pi(q, C') \rightarrow \pi(f_\theta(q, C)) = \pi(f_\theta(q, C')) \quad (2)$$

This property highlights that if an LLM produces diverse semantic under semantically equivalent contexts, the discrepancy signals a misalignment in its interpretation of input semantics.

4 EVALUATING LLM’S UNDERSTANDING OF RETRIEVED CONTEXT

Building on the aforementioned property, we can examine whether the LLM has adequately understood the retrieved context by measuring its semantic variance under C and C' . As we shown in

162 Figure 1, prior work on semantic uncertainty in language generation focuses on sampling-based
 163 decoding to probe LLM’s inherent randomness (Kuhn et al., 2023; Lin et al., 2024) rather than
 164 uncertainty arising from the retrieved context. Moreover, these methods produce query-level uncer-
 165 tainty scores and cannot indicate which retrieved chunks drive semantic variance. Therefore, we
 166 introduce DENSE (DEgree-based uNcertainty with Semantically Equivalent contexts), to evaluate
 167 LLM’s understanding of contexts. DENSE consists of two main steps: we first construct semantically
 168 equivalent contexts through rephrasing and obtain responses via greedy decoding **to isolate the**
 169 **influence of LLM sampling**; then degree-based uncertainty measure **is proposed** to capture semantic
 170 variations across responses, which enables us to localize the chunks that contribute to the uncertainty.

171 4.1 SEMANTICALLY EQUIVALENT CONTEXT REPHRASING

173 We **first** construct semantically equivalent and textually diverse contexts C' . Specifically, we use
 174 an LLM to rephrase each retrieved chunk in isolation so that any semantic variation in the model’s
 175 responses can be attributed to a single chunk without cross-chunk interference. For a retrieved context
 176 $C_0 = [c_1, \dots, c_k]$, we obtain a rephrased c'_i for each chunk c_i :

$$177 \quad c' = f_\theta(p_r(c)), \text{ where } \pi(c') = \pi(c), \text{ and } c' \neq c \quad (3)$$

178 p_r is the rephrasing prompt (see Appendix B.1). This yields a set of rephrased chunks $\{c'_1, \dots, c'_k\}$.
 179 We then construct k single-edit contexts by replacing exactly one chunk at a time:

$$181 \quad C_i[j] = \begin{cases} c'_i, & \text{if } j = i \\ c_j, & \text{otherwise} \end{cases} \quad \text{for } j = 1, \dots, k \quad (4)$$

183 In this manner, we obtain $k+1$ contexts in total: the original C_0 and k semantically equivalent
 184 variants C_1, \dots, C_k . To ensure that rephrasing preserves the original semantics, we check the
 185 semantic shift between rephrased chunks and their original counterparts. The detailed results are
 186 shown in Appendix D. Over 95% of the rephrased chunks are identified as semantically entailment
 187 to the originals. This demonstrates that the LLM is fully capable of performing faithful rephrasing,
 188 and it introduces only negligible semantic variation within the DENSE framework. To ensure that
 189 rephrasing preserves the original semantics, we also empirically compare QA results with and without
 190 rephrasing in Section 6.2, demonstrating the robustness of LLM rephrasing.

191 By **greedy decoding**, we disentangle LLM’s inherent randomness ensuring that when the input is
 192 identical, the LLM always produces the same output. This guarantees that any semantic variation
 193 observed in our experiments arises solely from the LLM’s understanding of rephrased contexts.
 194 Supporting experiments and detailed discussion are provided in Appendix C. Under this setup,
 195 generating with semantically equivalent contexts yields a reply set $R = \{r_0, r_1, \dots, r_{k+1}\}$.

196 4.2 DEGREE-BASED SEMANTIC UNCERTAINTY

198 Given reply set R under semantically equivalent contexts, the next step is to assess the semantic
 199 variation in the LLM responses. To this end, we propose Degree-based Semantic Entropy, an effective
 200 method to quantify semantic uncertainty across these responses.

201 Semantic entropy was introduced by Kuhn et al. (2023), which measures uncertainty by clustering
 202 responses into semantic groups. However, since each generation in our setting is conditioned on a
 203 rephrased context, we need to further identify semantic variations introduced at the chunk level. In
 204 this case, semantic entropy becomes inadequate for capturing such **reply**-grained uncertainty.

206 We therefore propose degree-based semantic entropy to compute entropy **directly in response level**.
 207 Instead of clustering, we treat each response as a graph node, and construct a semantic adjacency
 208 matrix W using the entailment scores between multiple responses Jiang et al. (2024); Lin et al.
 209 (2024):

$$210 \quad w_{ij} = ((NLI(r_i, r_j) + NLI(r_j, r_i))/2)_{i,j \in [0, \dots, k]}, \quad (5)$$

211 where a natural language inference model(NLI) is used to classify whether r_i and r_j are *entailment*(1)
 212 or *neutral*(0), w_{ij} represents the link between two responses. In DENSE, an LLM is employed to
 213 make the classification and the prompt is in Appendix B.2. After constructing W , we compute the
 214 degree-based semantic uncertainty as follows:

$$215 \quad DSE(q, C) = -(k+1)^{-1} \sum_{i=1}^{k+1} \log \frac{D_i}{k+1}, \quad (6)$$

Figure 2: Overview of DENSE-RAG framework. Adaptive semantic chunking improves intra-chunk coherence, and iterative context refinement enhances inter-chunk completeness.

where $D_i = \sum_{j=0}^k w_{ij}$, is the degree of response r_i . The degree of a response represents how many other responses are semantically aligned with it in the graph, corresponding to the number of adjacent nodes in the semantic graph. $\frac{D_i}{k+1}$ represents the average link strength of response r_i with respect to all other responses. Degree-based semantic entropy is a non-clustered variant of semantic entropy, we discuss the relationship of DSE and semantic entropy in Appendix E and provide the pseudocode of the DENSE in Appendix F.1.

We empirically verify that DENSE effectively reflects LLMs' understanding of retrieved contexts, where higher DENSE scores consistently correlate with worse QA performance. The experimental setup, results, and corresponding discussions are presented in Section 6.

5 IMPROVING CONTEXT QUALITY WITH DENSE GUIDANCE

In the previous section, we proposed DENSE as an indicator of the LLM's ability to understand retrieved contexts. Building on this foundation, we move beyond measurement and leverage DENSE to improve context quality. Since higher uncertainty indicates worse performance, we categorize questions into **certain** ($DENSE \leq 0.2$) and **uncertain** ($DENSE > 0.2$). We propose two **model-agnostic, training-free** modules that enhance intra-chunk semantic consistency and inter-chunk completeness, thereby improving LLM performance on uncertain questions.

5.1 ADAPTIVE SEMANTIC CHUNKING

Chunking strategies in RAG face a fundamental trade-off: fixed-size chunking is efficient but often splits contextually related sentences, disrupting semantic coherence Gao et al. (2023); Finardi et al. (2024); semantic chunking, which groups sentences by embedding similarity, can better preserve semantic but its computational cost frequently outweighs its performance gains Qu et al. (2024).

To address this trade-off, we design a DENSE-driven adaptation mechanism that selectively applies semantic chunking only when high uncertainty is detected under fixed-size chunking. The intuition is that uncertain questions are more likely to suffer from semantic inconsistencies in the retrieved chunks, and thus benefit more from semantic chunking. As illustrated in Figure 2, given a question q , we first run fixed-size chunking on the given documents d , use the top- k chunks for DENSE evaluation, and classify q as certain or uncertain. If q is a certain question, we directly output the response. Otherwise, we split the original documents into sentences $d = \{s_1, s_2, s_3, \dots\}$, encode each sentence s_i into a vector e_i , and iteratively merge s_{i+1} into chunk c_j if

$$\frac{e_i \cdot e_{i+1}}{\|e_i\| \|e_{i+1}\|} \geq \tau \text{ and } |c_j \cup s_{i+1}| \leq T_{max}, \quad (7)$$

270 where τ is the similarity threshold and T_{max} is the maximum token length for a chunk. If the
 271 condition is not satisfied, s_{i+1} starts a new chunk c_{j+1} . **By adaptive semantic chunking, we change**
 272 **the chunking strategies while LLM have a uncertain understanding on fixed-size chunking. And**
 273 **during the adaptive semantic chunking, we only change the chunking strategy rather than introducing**
 274 **additional documents.** The pseudocode of adaptive chunking is provided in Appendix F.2. We
 275 evaluate the effectiveness of Adaptive Chunking in Section 6. Our adaptive mechanism preserves the
 276 strong performance of fixed-size chunking on certain cases while selectively leveraging semantic
 277 chunking to enhance QA performance on uncertain ones.

278 279 5.2 ITERATIVE CONTEXT REFINEMENT

280 Semantic inconsistency can occur both within and across chunks. For complex questions, it is often
 281 the case that an individual retrieved chunk is insufficient to answer the query, highlighting the need
 282 for better inter-chunk coherence. To address this, we propose a DENSE based iterative context
 283 refinement module. The module evaluates retrieved chunks using DENSE and categorizes them into
 284 three types—certain, necessary, and unnecessary, based on their semantic contribution when serving
 285 as context. Then the module refine context by retaining certain chunks, removing unnecessary ones,
 286 and supplementing the context with new chunks guided by the necessary ones.

287 **Localize the source of uncertainty.** Since DENSE computes semantic adjacency W , and each
 288 modified context C_i differs from the original C_0 in exactly one rephrased chunk c_i , we can evaluate
 289 the impact of each c_i and classify it as *certain* or *uncertain*:

$$290 \quad l_i^{ce} = \mathbb{1}_{\{w_{i,0}=1\}}, \quad (8)$$

291 where $\mathbb{1}$ denotes the indicator which equals 1 if $w_{i,0} = 1$ and 0 otherwise. If $l_i^{ce} = 1$, chunk c_i
 292 is classified as a *certain chunk*, indicating that even after rephrasing, the corresponding response
 293 r_i remains semantically consistent with the original response r_0 . This suggests that the LLM’s
 294 understanding of c_i is robust and unaffected by rephrasing. Conversely, an *uncertain chunk* indicates
 295 that the LLM fails to correctly capture the intended semantics when that chunk is rephrased.

296 After distinguishing between certain and uncertain chunks, we further analysis the uncertain ones.
 297 Semantic uncertainty in LLM responses under a rephrased chunk can stem from two different
 298 scenarios: (i) the chunk is topically relevant but lacks the answer, leading to uncertainty due to
 299 incomplete information, or (ii) the chunk is weakly relevant(maybe total irrelevant) and contains
 300 noise, which misleads the model and introduces spurious uncertainty. To differentiate these two
 301 scenarios, we perform an ablation generation by masking each uncertain chunk:

$$302 \quad ar_i = f_\theta(q, [c_1, \dots, c_{i-1}, c_{i+1}, \dots, c_k]), \quad (9)$$

303 where ar_i denotes the response when chunk c_i is absent. Then we employ the entailment in Equation 5
 304 to evaluate whether chunk c_i is necessary:

$$305 \quad l_i^{ne} = \mathbb{1}_{\{[NLI(r_0, ar_i) + NLI(ar_i, r_0)]/2=0\}}, \quad (10)$$

306 where r_0 is the response under original context. If removing an *uncertain chunk* changes the model’s
 307 answer, it implies that the chunk carries critical information, and we classify it as a *necessary chunk*.
 308 Conversely, if its removal does not affect the answer, the chunk is *unnecessary*, as it is either irrelevant
 309 or redundant. Through this process, DENSE together with ablation allows us to classify each chunk c_i
 310 into three types: *certain* ($l_i^{ce} = 1$), *necessary* ($l_i^{ce} = 0, l_i^{ne} = 1$), and *unnecessary* ($l_i^{ce} = 0, l_i^{ne} = 0$).

312 **Iterative refinement.** After categorizing all chunks, we refine the context with two steps: (i) pruning,
 313 which removes *unnecessary chunks*, and (ii) refilling, which adds new chunks most similar to the
 314 *necessary chunks* based on cosine similarity of embeddings. The refinement proceeds iteratively
 315 and after each update, we recompute DENSE and stop once either (a) DENSE falls below 0.2,
 316 indicating LLM understands context with certainty, or (b) the LLM evaluates the context as sufficient
 317 in self-evaluation. If neither condition is met after all candidate chunks are explored, we fall back to
 318 the subset of chunks yielding the lowest DENSE score. The self-evaluation prompt is described in
 319 Appendix B.3 and the complete pseudocode is provided in Appendix F.3.

320 321 6 EXPERIMENTS

322 In this section, we conduct experiments to demonstrate the effectiveness of DENSE-RAG and analyze
 323 the contributions of each component. First we validate DENSE as an indicator of contextual under-

324 standing in Section 6.2. In Section 6.3, we evaluate how DENSE-RAG improves QA performance
 325 on uncertain questions across different LLM backbones as well as comparing with other baselines.
 326 Section 6.4 presents ablation studies to examine the design choices of adaptive semantic chunking
 327 and iterative context refinement. We also include additional robustness demonstration, sensitivity
 328 analyses and case studies in Appendix K and Appendix M.
 329

330 6.1 EXPERIMENT SETUP

331 **Datasets.** We test our methods on open-book QA datasets, which require free-form answers:
 332 TriviaQA Joshi et al. (2017), Natural Question Kwiatkowski et al. (2019), AmbigNQ Min et al. (2020)
 333 and 2WikiQA Ho et al. (2020). The first three are single-hop QA datasets, while 2WikiQA is a
 334 multi-hop QA dataset. We use Exact Match (EM) as the metric to evaluate QA performance. The
 335 detailed information is in Appendix G.
 336

337 **Implementation Details.** We conduct experiments on Qwen-2.5 1.5B, Qwen-3 8B, Llama-3 8B,
 338 Llama-3.1 8B, and Llama-3.1 70B, using the documents provided by each dataset as the retrieval
 339 corpus. A vanilla RAG pipeline is built with recursive chunking (chunk size = 512) as the default
 340 strategy. For dense retrieval, we adopt UAE-Large-V1 as the encoder for both questions and
 341 documents, and use FAISS for indexing. Unless otherwise specified, the top-5 retrieved chunks are
 342 used as context in all experiments. We also conduct experiments with different number of chunks in
 343 Appendix K. Details of each component and the QA prompt are provided in Appendix B.4 and H.
 344

345 6.2 DENSE AS A MEASURE OF CONTEXT UNDERSTANDING

346 We first demonstrate that DENSE is an effective way to quantify LLM’s understanding of retrieved
 347 context. Followed prior work Kuhn et al. (2023) settings, when the LLM understands the semantically
 348 equivalent contexts, the responses tend to be *more consistent*, and are more likely to be *correct*.
 349 We compute DENSE on a Llama-3.1 8B vanilla RAG, and present the average exact match within
 350 different DENSE intervals in Figure 3. The results show that average exact match decreases as DENSE
 351 increases, confirming that higher semantic uncertainty corresponds to lower QA accuracy and that
 352 **DENSE provides an effective unsupervised measure of LLMs’ contextual understanding.**
 353

354 To enable a comparison between DENSE and other uncertainty estimation methods for natural
 355 language tasks, we perform evaluations under sampling with temperatures 0.25 and 0.5, and compare
 356 DENSE against five uncertainty baselines using AUROC and AURAC (Table 1). DENSE is specifi-
 357 cally proposed to work in greedy decoding mode to isolate the influence of inherent LLM randomness,
 358 ensuring that the measured uncertainty primarily reflects variations in contextual understanding. Even
 359 under this design constraint, our method still consistently outperforms other baselines in sampling
 360 settings. This demonstrates that DENSE is better aligned with the retrieval-grounded nature of RAG,
 361 effectively capturing uncertainty rooted in how the LLM interprets retrieved evidence rather than in
 362 generation randomness.
 363

364 We additionally conduct experiments at higher temperatures. As temperature increases, RAG accuracy
 365 deteriorates sharply and the LLM gradually ceases to follow the retrieved context. As a result,
 366 the semantic variation in its responses becomes dominated by internal sampling noise rather than
 367 differences in contextual comprehension. The experiment results at high temperatures and the detailed
 368 discussion are provided in the Appendix I.1.
 369

370 To verify that performance drops occur across various LLM backbones, we conduct RAG experiments
 371 on Qwen-2.5 1.5B, Llama-3.1 8B and Llama-3.1 70B without DENSE, comparing their performances
 372 on certain and uncertain questions in Figure 4. The consistent performance drop confirms that DENSE
 373 provides a reliable measurement. The comparison between RAG-DENSE_{eval} 8B and Llama3.1 RAG
 374 8B in Figure 4 shows that rephrasing in DENSE has negligible impact on QA performance, which
 375 verifies that our rephrasing process does not cause semantic drift in the chunks. Additional results,
 376 including experiments on summarization datasets, are presented in Appendix I.
 377

378 6.2.1 ROBUSTNESS OF DENSE

379 We evaluate the robustness of DENSE by testing multiple thresholds for separating certain/uncertain
 380 questions, as shown in Figure 5. Across all thresholds, the performance gap between the two groups
 381 remains significant, confirming that DENSE measurement is stable and effective. For our main
 382

Table 1: AUROC and AURAC under greedy decoding and low-temperature sampling. DENSE achieves consistently higher performance than baselines designed for language generation task, indicating that DENSE is more effective in RAG settings.

Uncertainty Measurements	TriviaQA		Natural Question		AmbigNQ		2WikiQA	
	AUROC↑	AUARC↑	AUROC↑	AUARC↑	AUROC↑	AUARC↑	AUROC↑	AUARC↑
greedy decoding								
DENSE _{dim} (ours)	75.49	92.69	67.26	75.83	68.20	78.06	65.02	66.27
DENSE _{deberta} (ours)	66.94	91.02	59.42	73.69	58.01	74.89	53.49	61.42
temperature=0.25								
Discrete Semantic Entropy Farquhar et al. (2024)	64.07	88.72	61.33	72.29	60.40	75.94	57.28	60.80
U_{eig1} Lin et al. (2024)	66.64	89.05	64.16	73.08	62.90	76.01	57.37	60.43
U_{deg} Lin et al. (2024)	66.56	89.03	64.05	73.69	62.74	76.79	57.25	60.82
KLE heat _{t=0.1} Nikitin et al. (2024)	66.40	89.00	63.93	73.89	62.53	75.84	56.99	60.36
KLE deberta matern _{κ=3.0, ν=3.0} Nikitin et al. (2024)	63.97	89.11	61.98	72.51	62.33	77.56	56.78	61.05
DENSE _{dim} (ours)	75.63	92.52	67.96	75.10	69.94	79.54	65.74	66.38
temperature=0.50								
Discrete Semantic Entropy Farquhar et al. (2024)	71.15	90.56	65.59	74.46	66.61	78.79	61.50	63.57
U_{eig1}	74.32	91.90	69.35	77.08	68.79	77.47	61.97	63.93
U_{deg}	74.24	91.53	69.28	76.82	68.64	77.89	61.84	63.44
KLE heat _{t=0.1} Nikitin et al. (2024)	73.87	91.48	69.18	76.79	68.04	77.78	61.41	63.72
KLE deberta matern _{κ=3.0, ν=3.0} Nikitin et al. (2024)	68.84	90.72	64.57	75.09	63.25	77.95	60.17	63.54
DENSE _{dim} (ours)	77.53	93.06	69.23	76.71	72.02	81.28	67.28	68.08

Figure 3: Average EM across different DENSE intervals. On four Open-book QA tasks, average EM decreases as DENSE increases.

Figure 4: Exace match on certain (blue: $\text{DENSE} \leq 0.2$) and uncertain (ivory: $\text{DENSE} > 0.2$) questions across LLM backbones of different scales.

experiments, we adopt 0.2 as the default threshold, supported by the observation from Figure 3 that across all datasets, the average exact match decreases monotonically as *DENSE* increases when $DENSE \leq 0.2$. In different applications, the choice of threshold can be flexible. In domains requiring higher certainty, such as healthcare or law, a lower threshold enforces more certain outputs but classifies more questions as uncertain, triggering chunking and refinement more frequently. Higher thresholds reduce computation at the cost of tolerating greater semantic variability.

To assess whether DENSE depends on a particular NLI backbone, we replace the LLM-based entailment judge with a supervised model, DeBERTa-large-MNLI. We evaluate the DeBERTa-based DENSE using the same AUROC and AUARC metrics. As shown in Table 1, DENSE maintains consistently strong performance across datasets under both NLI backbones, indicating that the method is not tied to LLM-specific behaviors and generalizes well when using a small supervised NLI model. This robustness suggests that DENSE captures intrinsic semantic uncertainty rather than artifacts of any particular entailment model.

6.3 DENSE-RAG QA PERFORMANCE

DENSE-RAG is effective on uncertain questions. To evaluate the effectiveness of DENSE-RAG, we progressively incorporate adaptive semantic chunking and iterative context refinement into RAG pipeline. The results on uncertain questions are summarized in Table 2. We observe consistent gains as each module is added, with the full DENSE-RAG achieving improvements across uncertain question. For Qwen-2.5 1.5B, the limited parameter size makes it inherently difficult to handle multi-hop reasoning, which is also evident when compared with other LLMs. In contrast, Llama-3.1 70B is already very strong, so the gain on AmbigNQ is marginal.

Figure 5: Average exact match on certain vs. uncertain questions under different DENSE thresholds, showing a consistent performance gap between the two groups.

Table 2: Experimental result on **uncertain questions** on 4 datasets. Each component shows improvement across LLMs of different scales. Chunking and Refinement denotes the proposed adaptive semantic chunking and iterative context refinement modules.

Backbone	DENSE Component		TriviaQA	Natural Question	AmbigNQ	2WikiQA
	Chunking	Refinement				
Qwen-2.5 1.5B	✓		33.28	24.79	21.82	21.39
	✓	✓	35.27	27.00	24.09	21.19
Qwen-3 8B	✓		36.36	27.08	24.55	21.33
	✓	✓	46.51	35.35	33.18	42.03
Llama-3 8B	✓		49.42	37.73	36.36	42.68
	✓	✓	49.83	38.25	37.73	44.35
Llama-3.1 8B	✓	-	42.60	35.60	32.27	40.57
	✓	✓	51.33	38.93	40.00	41.73
Llama-3.1 70B	✓		53.91	40.54	41.36	45.78
	✓	✓	42.26	35.78	32.27	40.30
	✓		52.41	41.31	40.45	42.34
	✓	✓	56.32	42.16	43.63	46.55
	✓		73.12	44.80	59.55	57.37
	✓	✓	74.63	45.49	61.36	59.85
	✓		74.87	46.93	60.00	61.20

DENSE-RAG achieves competitive performance against SOTA RAG. We compare DENSE-RAG with state-of-the-art baselines in Table 3. At the 8B scale, DENSE-RAG achieves performance comparable to finetuned systems such as RankRAG Yu et al. (2024). Although RAG-DDR outperforms DENSE on TriviaQA, it is an end-to-end trained framework, whereas DENSE-RAG requires no additional training and can be flexibly integrated into diverse RAG applications. Results on all five backbones and more baseline comparisons are provided in Appendix J.

DENSE-RAG evaluates an LLM’s understanding of retrieved context and improves QA performance without any training or access to model internals, while keeping the overall computational cost within $O(k^2)$ LLM calls, where k is the number of retrieved chunks. The detailed complexity of each module is further discussed in Appendix L.

6.4 ABLATION STUDY

To better understand the contributions of individual designs in DENSE-RAG, we conduct a set of ablation studies and comparative experiments. We focus on two main aspects: (i) the impact of different chunking strategies on performance under certain and uncertain questions, and (ii) the effectiveness of the iterative context refinement and its key components under varying configurations.

6.4.1 ANALYSIS OF CHUNKING STRATEGIES FROM UNCERTAINTY PERSPECTIVE

Chunk size introduces a natural trade-off: larger chunks preserve more information, while smaller ones reduce noise Zhang et al. (2025). Although semantic chunking has been proposed to improve coherence, prior work reports inconsistent gains compared to fixed-size chunking Qu et al. (2024). To examine this issue from an uncertainty perspective, we compare: (1) fixed-size recursive chunking with 256/32 and 128/16 settings, and (2) universal semantic chunking. Experiment results on certain and uncertain questions are shown in Table 4, which leads to the following interesting findings:

Uncertain questions benefit from smaller chunks. Reducing chunk size improves performance on uncertain questions but reduces accuracy on certain ones (Table 4). For certain questions, larger chunks maintain robustness by providing sufficient context despite added noise. In contrast, for uncertain questions, smaller chunks help filter irrelevant information, yielding marginal gains.

486 Table 3: Comparison of DENSE-RAG with baselines. Ret. FT and Gen. FT indicate whether the
 487 retriever and generator of the method were fine-tuned, respectively.

Method	Generator Model	Ret. FT	Gen. FT	TriviaQA	Natural Question	AmbigNQ	2WikiQA
RePlug-LSR (few-shot)Shi et al. (2023)	Codex 175B	✓	✗	77.3	45.5	-	-
ChatQA-1.5liu et al. (2024b)	Llama3 8B	✓	✓	81.0	42.4	-	26.8
UncertaintyRAGLi et al. (2024b)	Llama2 13B	✓	✗	82.5	-	-	38.3
ERM4Shi et al. (2024)	GPT-3.5-turbo	✓	✗	-	52.7	53.5	46.8
Astute-RAGWang et al. (2024b)	Claude 3.5 Sonnet	✗	✗	84.5	53.6	-	-
RankRAGYu et al. (2024)	Llama3 70B	✗	✓	85.6	54.2	-	38.2
RAG-DDRLi et al. (2024a)	Llama3 8B	✓	✓	89.6	52.1	-	-
DENSE-RAG	Llama3 8B	✗	✗	84.8	57.5	68.1	58.7
	Llama3.1 70B	✗	✗	90.3	58.2	76.8	69.3

495 496 Table 4: Experiment result on certain/uncertain
 497 questions with various chunk strategy.

Chunking	TriviaQA	Natural Question	AmbigNQ	2WikiQA
512/64	90.4 /43.0	63.7 /36.0	75.1 /33.2	66.9 /40.6
256/32	88.3/47.7	57.6/33.6	68.3/33.2	61.1/41.7
128/16	87.7/48.9	53.6/33.2	53.6/31.7	58.8/41.4
Full semantic	87.6/ 53.0	59.3/41.3	68.2/39.5	65.9/41.5
Adaptive (ours)	90.3/52.4	63.4/41.3	75.0 / 40.5	66.9 / 42.3

498 499 Table 5: Experiment result of iterative context re-
 500 finement on uncertain questions.

Refinement	TriviaQA	Natural Question	AmbigNQ	2WikiQA
w/o refine	52.4	41.3	40.5	42.3
only removing chunks	54.5	40.6	39.5	43.3
w/o self-evaluation	52.7	41.5	38.2	42.1
refill on certain chunks	55.7	41.8	43.6	44.6
Context-refiner	56.3	42.2	43.6	46.6

501 502 **Semantic chunking works on uncertain questions.** Semantic chunking improves uncertain questions but degrades certain ones, consistent with prior findings Qu et al. (2024). For questions 503 already well-answered, semantic chunking restricts information diversity and limits performance. Our adaptive method applies semantic merging only when DENSE indicates high uncertainty, thereby 504 improving uncertain question performance while preserving the advantages of fixed-size chunking on 505 certain ones. Beyond the empirical gains, this observation provides an uncertainty-based explanation 506 for the controversial effectiveness of semantic chunking reported in previous work.

511 512 6.4.2 ANALYSIS OF ITERATIVE CONTEXT REFINEMENT

513 514 We further analyze iterative context refinement through the following settings: (1) no refinement after 515 DENSE, (2) only removing unnecessary chunks, (3) disabling the self-evaluation condition, and (4) 516 refilling based on certain chunks instead of necessary chunks. Table 5 summarizes the results.

517 518 Notably, removing unnecessary chunks outperforms the baseline (w/o refine) on TriviaQA and 519 2WikiQA, with only a minor drop (1%) on Natural Questions and AmbigNQ. This confirms that 520 DENSE effectively identifies and filters irrelevant documents. Disabling self-evaluation leads to 521 consistent drops, showing its usefulness in preventing contexts from generating consistently incorrect 522 responses. Refilling based on certain chunks performs second-best, suggesting that adding information 523 similar to certain chunks can indeed improve QA performance, but the gains are limited compared to 524 refilling guided by necessary chunks.

525 7 CONCLUSIONS

526 527 In this work, we explore a fundamental problem in RAG: how to assess whether LLMs understand the 528 retrieved context. We introduced DENSE, a training-free and model-agnostic method that quantifies 529 semantic uncertainty through responses generated under semantically equivalent contexts. Our 530 analysis shows that higher DENSE values consistently correspond to worse performance, validating 531 its effectiveness as an unsupervised measure of contextual understanding. Building on this insight, 532 we designed two modules—Adaptive Semantic Chunking and Iterative Context Refinement—to 533 enhance both intra-chunk semantic coherence and inter-chunk semantic completeness for uncertain 534 questions. Extensive experiments across multiple datasets and backbones demonstrate that DENSE- 535 RAG delivers competitive or superior performance compared to state-of-the-art methods, while 536 requiring no additional training.

537 538 Future work could explore adaptive integration of smaller models for simpler tasks to reduce inference 539 costs. Beyond our method on improving context quality, another promising direction for future work is to enhance LLMs’ ability to interpret retrieved texts, for example by incorporating uncertainty-aware 540 training objectives during pretraining or finetuning, which may further strengthen QA performance.

540
Ethics statement. Our work focuses on contributions to Retrieval-Augmented Generation (RAG) and
 541 does not involve human subjects, private data, or personally identifiable information. All experiments
 542 are conducted on publicly available open-book QA datasets, following their respective licenses and
 543 intended use.

544
Reproducibility statement. We have made extensive efforts to ensure the reproducibility of our
 545 work. The full implementation of our methods, along with detailed instructions for running the
 546 experiments, is provided in the anonymous link as well as uploaded Supplementary Materials.
 547

548 **REFERENCES**
 549

550 Gabriel Y Arteaga, Thomas B Schön, and Nicolas Pielawski. Hallucination detection in llms: Fast
 551 and memory-efficient finetuned models. In *Northern Lights Deep Learning Conference*, pp. 1–15.
 552 PMLR, 2025.

553 Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-rag: Learning to
 554 retrieve, generate, and critique through self-reflection. In *The Twelfth International Conference on*
 555 *Learning Representations*, 2023.

556 Scott Barnett, Stefanus Kurniawan, Srikanth Thudumu, Zach Brannelly, and Mohamed Abdelrazek.
 557 Seven failure points when engineering a retrieval augmented generation system. In *Proceedings of*
 558 *the IEEE/ACM 3rd International Conference on AI Engineering-Software Engineering for AI*, pp.
 559 194–199, 2024.

560 Lu Dai, Yijie Xu, Jinhui Ye, Hao Liu, and Hui Xiong. Seper: Measure retrieval utility through the
 561 lens of semantic perplexity reduction. *arXiv preprint arXiv:2503.01478*, 2025.

562 Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvassy, Pierre-Emmanuel
 563 Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library. *arXiv preprint*
 564 *arXiv:2401.08281*, 2024.

565 Sebastian Farquhar, Jannik Kossen, Lorenz Kuhn, and Yarin Gal. Detecting hallucinations in large
 566 language models using semantic entropy. *Nature*, 630(8017):625–630, 2024.

567 Paulo Finardi, Leonardo Avila, Rodrigo Castaldoni, Pedro Gengo, Celio Larcher, Marcos Piau, Pablo
 568 Costa, and Vinicius Caridá. The chronicles of rag: The retriever, the chunk and the generator.
 569 *arXiv preprint arXiv:2401.07883*, 2024.

570 Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yixin Dai, Jiawei Sun,
 571 Haofen Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A
 572 survey. *arXiv preprint arXiv:2312.10997*, 2:1, 2023.

573 Kento Hasegawa, Seira Hidano, and Kazuhide Fukushima. Rag certainty: Quantifying the certainty
 574 of context-based responses by llms. In *2024 International Conference on Machine Learning and*
 575 *Applications (ICMLA)*, pp. 912–917. IEEE, 2024.

576 Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-hop
 577 qa dataset for comprehensive evaluation of reasoning steps. In *Proceedings of the 28th International*
 578 *Conference on Computational Linguistics*, pp. 6609–6625, 2020.

579 Bairu Hou, Yujian Liu, Kaizhi Qian, Jacob Andreas, Shiyu Chang, and Yang Zhang. Decomposing
 580 uncertainty for large language models through input clarification ensembling. In *Proceedings of*
 581 *the 41st International Conference on Machine Learning*, pp. 19023–19042, 2024.

582 Jie Huang, Wei Ping, Peng Xu, Mohammad Shoeybi, Kevin Chen-Chuan Chang, and Bryan Catanzaro.
 583 Raven: In-context learning with retrieval-augmented encoder-decoder language models. *arXiv*
 584 *preprint arXiv:2308.07922*, 2023.

585 Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas Hosseini, Fabio Petroni, Timo Schick, Jane
 586 Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and Edouard Grave. Atlas: Few-shot learning
 587 with retrieval augmented language models. *Journal of Machine Learning Research*, 24(251):1–43,
 588 2023.

594 Soyeong Jeong, Jinheon Baek, Sukmin Cho, Sung Ju Hwang, and Jong-Cheol Park. Adaptive-rag:
 595 Learning to adapt retrieval-augmented large language models through question complexity. In
 596 *2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pp. 7036–7050. Association for Computational Linguistics, 2024.
 597

598 Mingjian Jiang, Yangjun Ruan, Prasanna Sattigeri, Salim Roukos, and Tatsunori Hashimoto. Graph-
 599 based uncertainty metrics for long-form language model generations. In A. Globerson, L. Mackey,
 600 D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural Information
 601 Processing Systems*, volume 37, pp. 32980–33006. Curran Associates, Inc., 2024.
 602

603 Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
 604 supervised challenge dataset for reading comprehension. In *Proceedings of the 55th Annual
 605 Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 1601–
 606 1611, 2017.

607 Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick SH Lewis, Ledell Wu, Sergey Edunov, Danqi
 608 Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In *EMNLP
 609 (1)*, pp. 6769–6781, 2020.
 610

611 Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances for
 612 uncertainty estimation in natural language generation. *arXiv preprint arXiv:2302.09664*, 2023.

613 Wonbin Kweon, Sanghwan Jang, SeongKu Kang, and Hwanjo Yu. Uncertainty quantification and
 614 decomposition for llm-based recommendation. In *Proceedings of the ACM on Web Conference
 615 2025*, pp. 4889–4901, 2025.

616 Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
 617 Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
 618 benchmark for question answering research. *Transactions of the Association for Computational
 619 Linguistics*, 7:453–466, 2019.

620 Xinze Li, Sen Mei, Zhenghao Liu, Yukun Yan, Shuo Wang, Shi Yu, Zheni Zeng, Hao Chen, Ge Yu,
 621 Zhiyuan Liu, et al. Rag-ddr: Optimizing retrieval-augmented generation using differentiable data
 622 rewards. *arXiv preprint arXiv:2410.13509*, 2024a.
 623

624 Zixuan Li, Jing Xiong, Fanghua Ye, Chuanyang Zheng, Xun Wu, Jianqiao Lu, Zhongwei Wan,
 625 Xiaodan Liang, Chengming Li, Zhenan Sun, et al. Uncertaintyrag: Span-level uncertainty enhanced
 626 long-context modeling for retrieval-augmented generation. *arXiv preprint arXiv:2410.02719*,
 627 2024b.

628 Sheng-Chieh Lin, Akari Asai, Minghan Li, Barlas Oguz, Jimmy Lin, Yashar Mehdad, Wen-tau
 629 Yih, and Xilun Chen. How to train your dragon: Diverse augmentation towards generalizable
 630 dense retrieval. In *Findings of the Association for Computational Linguistics: EMNLP 2023*, pp.
 631 6385–6400, 2023a.

632 Xi Victoria Lin, Xilun Chen, Mingda Chen, Weijia Shi, Maria Lomeli, Richard James, Pedro
 633 Rodriguez, Jacob Kahn, Gergely Szilvassy, Mike Lewis, et al. Ra-dit: Retrieval-augmented dual
 634 instruction tuning. In *The Twelfth International Conference on Learning Representations*, 2023b.

635 Zhen Lin, Shubhendu Trivedi, and Jimeng Sun. Generating with confidence: Uncertainty quantifi-
 636 cation for black-box large language models. *Transactions on Machine Learning Research*, 2024.
 637 ISSN 2835-8856.

638 Linyu Liu, Yu Pan, Xiaocheng Li, and Guanting Chen. Uncertainty estimation and quantification for
 639 llms: A simple supervised approach. *arXiv preprint arXiv:2404.15993*, 2024a.

640 Zihan Liu, Wei Ping, Rajarshi Roy, Peng Xu, Chankyu Lee, Mohammad Shoeybi, and Bryan
 641 Catanzaro. Chatqa: Surpassing gpt-4 on conversational qa and rag. *Advances in Neural Information
 642 Processing Systems*, 37:15416–15459, 2024b.

643 Sewon Min, Julian Michael, Hannaneh Hajishirzi, and Luke Zettlemoyer. Ambigqa: Answering
 644 ambiguous open-domain questions. *arXiv preprint arXiv:2004.10645*, 2020.

648 Alexander Nikitin, Jannik Kossen, Yarin Gal, and Pekka Marttinen. Kernel language entropy:
 649 Fine-grained uncertainty quantification for llms from semantic similarities. *Advances in Neural*
 650 *Information Processing Systems*, 37:8901–8929, 2024.

651

652 Laura Perez-Beltrachini and Mirella Lapata. Uncertainty quantification in retrieval augmented
 653 question answering. *arXiv preprint arXiv:2502.18108*, 2025.

654

655 Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick Lewis, Majid Yazdani, Nicola De Cao, James
 656 Thorne, Yacine Jernite, Vladimir Karpukhin, Jean Maillard, et al. Kilt: a benchmark for knowledge
 657 intensive language tasks. *arXiv preprint arXiv:2009.02252*, 2020.

658

659 Renyi Qu, Ruixuan Tu, and Forrest Bao. Is semantic chunking worth the computational cost? *arXiv*
 660 *preprint arXiv:2410.13070*, 2024.

661

662 Ella Rabinovich, Samuel Ackerman, Orna Raz, Eitan Farchi, and Ateret Anaby-Tavor. Predicting
 663 question-answering performance of large language models through semantic consistency. In
 664 *Conference on Empirical Methods in Natural Language Processing*, 2023.

665

666 Jon Saad-Falcon, Omar Khattab, Christopher Potts, and Matei Zaharia. Ares: An automated evaluation
 667 framework for retrieval-augmented generation systems. In *Proceedings of the 2024 Conference of*
 668 *the North American Chapter of the Association for Computational Linguistics: Human Language*
 669 *Technologies (Volume I: Long Papers)*, pp. 338–354, 2024.

670

671 Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon Seo, Rich James, Mike Lewis, Luke Zettlemoyer,
 672 and Wen-tau Yih. Replug: Retrieval-augmented black-box language models. *arXiv preprint*
 673 *arXiv:2301.12652*, 2023.

674

675 Y Shi, X Zi, Z Shi, H Zhang, Q Wu, and M Xu. Enhancing retrieval and managing retrieval: A
 676 four-module synergy for improved quality and efficiency in rag systems. *ECAI 2024*, 2024.

677

678 Junlong Song, Xingguang Wang, Juno Zhu, Yuanhao Wu, Xuxin Cheng, Randy Zhong, and Cheng
 679 Niu. Rag-hat: A hallucination-aware tuning pipeline for llm in retrieval-augmented generation.
 680 In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track*, pp. 1548–1558, 2024.

681

682 Boxin Wang, Wei Ping, Lawrence McAfee, Peng Xu, Bo Li, Mohammad Shoeybi, and Bryan
 683 Catanzaro. Instructretro: instruction tuning post retrieval-augmented pretraining. In *Proceedings*
 684 *of the 41st International Conference on Machine Learning*, pp. 51255–51272, 2024a.

685

686 Fei Wang, Xingchen Wan, Ruoxi Sun, Jiefeng Chen, and Sercan Ö Arik. Astute rag: Overcoming
 687 imperfect retrieval augmentation and knowledge conflicts for large language models. *arXiv preprint*
 688 *arXiv:2410.07176*, 2024b.

689

690 Fangyuan Xu, Weijia Shi, and Eunsol Choi. Recomp: Improving retrieval-augmented lms with
 691 context compression and selective augmentation. In *The Twelfth International Conference on*
 692 *Learning Representations*, 2024.

693

694 Ran Xu, Wenqi Shi, Yuchen Zhuang, Yue Yu, Joyce C Ho, Haoyu Wang, and Carl Yang. Collab-
 695 rag: Boosting retrieval-augmented generation for complex question answering via white-box and
 696 black-box llm collaboration. *arXiv preprint arXiv:2504.04915*, 2025.

697

698 Ori Yoran, Tomer Wolfson, Ori Ram, and Jonathan Berant. Making retrieval-augmented language
 699 models robust to irrelevant context. *arXiv preprint arXiv:2310.01558*, 2023.

700

701 Yue Yu, Wei Ping, Zihan Liu, Boxin Wang, Jiaxuan You, Chao Zhang, Mohammad Shoeybi, and
 702 Bryan Catanzaro. Rankrag: Unifying context ranking with retrieval-augmented generation in llms.
 703 *Advances in Neural Information Processing Systems*, 37:121156–121184, 2024.

704

705 Jintao Zhang, Guoliang Li, and Jinyang Su. Sage: A framework of precise retrieval for rag. *arXiv*
 706 *preprint arXiv:2503.01713*, 2025.

707

708 Qingfei Zhao, Ruobing Wang, Yukuo Cen, Daren Zha, Shicheng Tan, Yuxiao Dong, and Jie Tang.
 709 Longrag: A dual-perspective retrieval-augmented generation paradigm for long-context question
 710 answering. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language*
 711 *Processing*, pp. 22600–22632, 2024.

702 APPENDIX
703704
705 A THE USE OF LARGE LANGUAGE MODELS (LLMs)
706707 During the preparation of this manuscript, we employed tools such as GPT and Grammarly for
708 language polishing and for assisting in literature search. We emphasize that no part of this work relies
709 on unverified or irresponsible LLM-generated content, and the authors take full responsibility for all
710 contents of the paper.711
712 B PROMPT FORMATS
713714
715 B.1 REPHRASING PROMPT
716717 The format template of LLM inputs in building semantically equivalent contexts as follows:
718719 User: Rewrite the following text at the syntactic level without
720 changing its meaning. Modify the sentence structure, but preserve
721 the original intent and semantic meaning. ONLY return the
722 rewritten content without any additional token. Text: {chunk}723 LLM: ...
724725
726 B.2 NLI PROMPT
727728 The format template of LLM inputs in evaluating semantic entailment as follows:
729730 User: We are evaluating answers to the question {question} Here
731 are two possible answers:732 Possible Answer 1: {response1}
733 Possible Answer 2: {response2}734 Does Possible Answer 1 semantically entail Possible Answer 2?
735 Respond with ONLY entailment, contradiction, or neutral.736 LLM: ...
737738
739 B.3 SELF-EVALUATION PROMPT
740741 The format template of LLM inputs in performing self-evaluation on context as follows:
742743 User: Context: {context}
744 Question: {question}745 Does the context contain enough information to answer the
746 question? Only answer yes or no.747 LLM: ...
748749
750 B.4 QA PROMPT
751752 The format template of LLM inputs in asking questions as follows:
753754 User: Answer question {query} based on provided context, ONLY
755 output a short answer with minimum words. Context:{context}

756 LLM: ...

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
Table 6: Semantic entailment check of rephrased chunks and original ones. 1000 queries are sampled randomly per dataset, and 10 random chunks from its corresponding document are sampled for semantic entailment check.

Entailment methods	Semantic entailment ratio			
	TriviaQA	Natural Question	AmbigNQ	2WikiQA
<i>LLM-as-a-judge</i>	98.37%	95.95%	97.88%	93.24%
<i>Deberta-as-a-judge</i>	97.65%	98.28%	96.35%	98.40%

C DISENTANGLEMENT OF INHERENT LLM RANDOMNESS

In previous works, uncertainty related metrics are employed under high temperature settings Kuhn et al. (2023); Lin et al. (2024). These works focus on quantifying the intrinsic stochasticity of LLMs as well as their hallucination behavior during question answering. In contrast, we adopt greedy decoding to disentangle the influence of LLM-intrinsic randomness on response variability. To prove the disentanglement works, we run experiment using Llama3-8B on TriviaQA, NQ, AmbigNQ and 2WiKiQA under greedy decoding and fixed context. We then compute discrete semantic entropy using the official implementation provided by Kuhn et al. (2023). In all datasets, the measured uncertainty is exactly zero, confirming that our greedy decoding setup successfully eliminates randomness-induced variability from the LLM itself. And the observed uncertainty in DENSE is originated from rephrased contexts. Lin et al. (2024) explored the relationship between decoding temperature and uncertainty estimation. For more details on this topic, we refer readers to their work.

D REPHRASED CONTEXTS SEMANTIC CHECKING

To validate that the LLM rephrasing in DENSE could preserve the semantic of the original chunks, we perform semantic checking of rephrased chunks on four QA dataset that we used in main experiments. We randomly sample 1000 questions in each QA dataset, and for each question we randomly sample 10 chunks in its corresponding retrieved documents. We employ both LLM and Deberta-large-mnli model to decide whether rephrased chunks are semantically entailed with original chunks. The result is shown in Table 6, which indicating that the rephrased chunks shows negligible semantic shift compare to original chunks. This proves that the rephrasing operation have negligible influence on QA performance.

E DISCUSSION OF SEMANTIC ENTROPY AND DENSE

Kuhn et al. (2023) define the semantic entropy to measure the uncertainty of LLM’s responses:

$$SE(q, C) \approx -|H|^{-1} \sum_{i=1}^{|H|} \log p(h|C), \quad (11)$$

where h is a semantic cluster belongs to $H = \{h_1, h_2, \dots\}$, $p(h|x)$ estimates a categorical distribution over the cluster meanings. The cluster is computed by bi-directional entailment E_{r_i, r_j} . A natural language inference model (NLI) is used to classify whether r_i and r_j are *entailment*(1) or *neutral*(0):

$$E_{r_i, r_j} = (NLI(r_i, r_j) + NLI(r_j, r_i))/2, \quad (12)$$

a Deberta-large model is employed to make the classification. r_i and r_j are clustered together into one semantic cluster h when $E_{r_i, r_j} = 1$.

We discuss the relationship of semantic entropy and the degree-based semantic entropy in DENSE from three perspectives:

Monotonicity: Both formulations decrease monotonically as semantic consistency among responses increases. In semantic entropy, diverse semantic lead to more clusters, and $p(H|x)$ decrease, the entropy increase. In our method, diverse semantic lead to smaller D , the entropy also increase.

Range Analysis: We now show that the two formulations share the same value range by analyzing two extreme cases. In the ideal case, where all responses are semantically equivalent, and there will

810 be only one cluster in equation 11:
 811

$$812 \quad SE(x) \approx -1^{-1} \log 1 = 0 \quad (13)$$

813 And in our method, the D of all response will be $k + 1$:
 814

$$815 \quad DSE(x) \approx -(k+1)^{-1} \sum_{i=0}^{k+1} \log 1 = 0 \quad (14)$$

818 In the ideal case, two equations are equivalent. In the worst case, where all response shows distinct
 819 semantic, there are $k + 1$ clusters in equation 11 and each $p(C_i|x) = \frac{1}{k+1}$:
 820

$$822 \quad SE(x) \approx -(k+1)^{-1} \sum_{i=1}^{k+1} \log \frac{1}{k+1} = -(k+1)^{-1}(k+1)\log(k+1)^{-1} = \log(k+1) \quad (15)$$

825 In our method, the $D = 1$ for all response, since every response only semantically equal to itself:
 826

$$827 \quad DSE(x) \approx -(k+1)^{-1} \sum_{i=1}^{k+1} \log \frac{1}{k+1} = \log(k+1) \quad (16)$$

830 Hence, two methods have a value range of $[0, \log(k+1)]$, and have the same value of both ideal case
 831 and the worst case.

832 *Information-Theoretic Interpretation.* From an information-theoretic perspective, semantic uncer-
 833 tainty is derived from Shannon entropy over the distribution $\{p(h_i|x)\}$, where h_i denotes a semantic
 834 cluster of responses. Intuitively, $p(h_i|x)$ represents the probability that a randomly sampled response
 835 falls into cluster h_i .

836 Our method avoids the explicit clustering step by directly considering the semantic graph, where
 837 each node is a response and edge weights represent pairwise semantic entailment. The degree D_i
 838 measures how semantically connected a response is to all others — in other words, it approximates
 839 how many responses are semantically similar to r_i .
 840

841 F ALGORITHMS

843 F.1 DENSE

845 We present the DENSE algorithm in Algorithm 1.

847 Algorithm 1: DENSE

848 **Input:** Chunk set $\{c_1, c_2, c_3, \dots, c_k\}$, question q , LLM f_θ , rephrase prompt p_r , QA prompt p_q ,
 849 NLI agent

850 **Output:** degree-based semantic entropy DSE , reply set R , semantic matrix W

```

851 1  $R \leftarrow \emptyset$ 
852 2  $W \leftarrow [0]_{k+1 \times k+1}$ 
853 3 foreach  $c_i \in \{c_1, c_2, \dots, c_k\}$  do
854 4    $c'_i \leftarrow f_\theta(p_r(c_i))$ 
855 5   for  $i \leftarrow 1$  to  $k$  do
856 6      $C_i \leftarrow [c_1, \dots, c'_i, \dots, c_k]$ 
857 7      $r_i \leftarrow f_\theta(p_q(q, C_i))$ 
858 8      $R \leftarrow R \cup \{r_i\}$ 
859 9   foreach  $r_i \in R$  do
860 10    foreach  $r_j \in R$  do
861 11       $w_{ij} \leftarrow (NLI(r_i, r_j) + NLI(r_j, r_i))/2$ 
862 12       $W[i, j] \leftarrow w_{ij}$ 
863 13    $DSE \leftarrow -(k+1)^{-1} \sum_{i=1}^{k+1} \log \frac{D_i}{k+1}$ , where  $D_i = \sum_{j=0}^k w_{ij}$ 
864 14   return  $DSE, R, W$ 

```

Algorithm 2: Adaptive Semantic Chunking

Input: Document set $\mathcal{D} = \{d_1, d_2, \dots, d_n\}$, Similarity threshold τ , Maximum chunk length T_{max}

Output: Semantic chunk set \mathcal{C}

- 1 Initialize an empty list: $\mathcal{C} \leftarrow \emptyset$
- 2 **foreach** $d \in \mathcal{D}$ **do**
- 3 $S \leftarrow \text{tokenize}(d)$ // split documents into sentences
- 4 $\{e_1, e_2, e_3, \dots\} \leftarrow [\text{Encode}(s) \mid s \in S]$ // encode sentences into embeddings
- 5 $c \leftarrow [s_1]$ // initialize current chunk
- 6 $T_{current} \leftarrow |s_1|$
- 7 **for** $i \leftarrow 1$ **to** $|S| - 1$ **do**
- 8 $sim \leftarrow \text{cosine_similarity}(e_i, e_{i+1})$
- 9 $T_{next} \leftarrow |s_{i+1}|$
- 10 **if** $sim > \tau$ **and** $T_{current} + T_{next} \leq T_{max}$ **then**
- 11 $c \leftarrow c \cup \{s_{i+1}\}$
- 12 $T_{current} \leftarrow T_{current} + T_{next}$
- 13 **else**
- 14 $\mathcal{C} \leftarrow \mathcal{C} \cup \{c\}$
- 15 $c \leftarrow [s_{i+1}]$ // initialize a new chunk
- 16 $T_{current} \leftarrow T_{next}$
- 17 **if** c is not empty **then**
- 18 $\mathcal{C} \leftarrow \mathcal{C} \cup \{c\}$
- 19 **return** \mathcal{C}

F.2 ADAPTIVE SEMANTIC CHUNKING

We present the adaptive semantic chunking Algorithm 2.

F.3 ITERATIVE CONTEXT REFINEMENT

We present the Iterative Context Refinement algorithm in Algorithm 3.

G DATASETS

We describe the open-book QA dataset here. Since all proposed methods requires no training, we only use the *dev* sets for evaluation. The statistics of each dataset is shown in Table 7:

- **TriviaQA** Joshi et al. (2017) is a challenging QA dataset that providing evidence documents. There are two types of questions: Wikipedia and Web. We follow KILT benchmark, only consider Wikipedia cases Petroni et al. (2020) with evidence documents. We use the *wikipedia-dev* set in experiments.
- **Natural Question** Kwiatkowski et al. (2019) is a common-used QA dataset, which is extracted from Wikipedia. The questions are constructed from Google search engine and the provided documents are corresponding Wikipedia pages. We follow KILT benchmark Petroni et al. (2020) and only consider questions for which at least one human annotator has marked a short answer in the documents. We only use the *dev* set in experiments.
- **AmbigNQ** Min et al. (2020) is a QA dataset proposed in AmbigQA, which is constructed using prompt questions from NQ-OPEN and English Wikipedia as the evidence corpus. In our task, we consider the *singleAnswer* questions in *dev* subset in AmbigNQ.
- **2WikiQA** Ho et al. (2020) is a multi-hop QA dataset, which is designed to test the relationship between two entities. In 2WikiQA, multiple evidence articles are provided for one question. We use the *dev* set in our experiments.

Algorithm 3: Iterative Context Refinement

Input: Question q , Chunk Set, k , LLM f_θ , self evaluation prompt p_e ,

Output: $Answer_{best}$

1 Initialization:

2 $C \leftarrow$ initial top- k chunks for q

3 $DSE_{min} \leftarrow \infty$, $Flag_{current} \leftarrow 0$

4 while Visited Set \neq Chunk Set **do**

5 Visited Set \leftarrow Visisted Set $\cup C$

6 $DSE, R, W \leftarrow DENSE(q, C)$

7 $Flag_{eval} \leftarrow f_\theta(p_e(q, C))$

8 if $DSE < DSE_{min}$ **then**

9 if $Flag_{current} = 0 \vee Flag_{eval} = 1$ **then**

10 $Answer_{best} \leftarrow R$

11 $DSE_{min} \leftarrow DSE$

12 $Flag_{current} = Flag_{eval}$

13 if $DSE_{min} < 0.2 \wedge Flag_{current} = 1$ **then**

14 Return: $Answer_{best}$;

15 Visited Set $\leftarrow \emptyset$, Certain Set $\leftarrow \emptyset$, Uncertain Set $\leftarrow \emptyset$, Necessary Set $\leftarrow \emptyset$,

16 Unnecessary Set $\leftarrow \emptyset$

17 for $i \leftarrow 1$ **to** k **do**

18 if $W_{i0} = 1 \wedge W_{0i} = 1$ **then**

19 Certain Set \leftarrow Certain Set $\cup \{c_i\}$;

20 else

21 Uncertain Set \leftarrow Uncertain Set $\cup \{c_i\}$;

22 for $c_i \in$ Uncertain Set **do**

23 $AC_i \leftarrow [c_0, \dots, c_{i-1}, c_{i+1}, \dots]$

24 $ar_i \leftarrow f_\theta(q, AC_i)$

25 if $E(r_0, ar_i) = 1$ **then**

26 Unnecessary Set \leftarrow Unnecessary Set $\cup \{c_i\}$

27 else

28 Necessary Set \leftarrow Necessary Set $\cup \{c_i\}$

29 for c_i in Unnecessary Set **do**

30 $C \leftarrow C \setminus \{c_i\}$;

31 for c_i in Necessary Set **do**

32 $max_sim \leftarrow -\infty$

33 $best_chunk \leftarrow \emptyset$

34 for c_j in Chunk Set \setminus Visited Set **do**

35 $sim \leftarrow cosine_similarity(c_i, c_j)$;

36 if $sim > max_sim$ **then**

37 $max_sim \leftarrow sim_score$;

38 $best_chunk \leftarrow c_j$;

39 $C \leftarrow C \cup \{best_chunk\}$, Visited Set \leftarrow Visited Set $\cup best_chunk$

40 Return: $Answer_{best}$

Table 7: Dataset Statistics. The certain and uncertain questions are devided by DENSE in Llama-3.1 8B.

Datasets	No. all valid questions	No. certain questions	No. uncertain questions
TriviaQA	7928	6726	1202
NQ	4289	3115	1174
AmbigNQ	1000	780	220
2WikiQA	12576	7663	4913

H IMPLEMENTATION DETAILS

We implement a naive RAG framework Gao et al. (2023) on Qwen-2.5 1.5B, Qwen-3 8B, Llama-3 8B, Llama-3.1 8B and Llama-3.1 70B as backbones. We use the documents provided within dataset

972
 973
 974
 975
 976 Table 8: AUROC and AURAC under high-temperature sampling. LLM is no longer faithfully
 977 grounded in the retrieved evidence in high-temperature sampling, uncertainty scores in this regime
 978 lose their interpretability for retrieval-based QA.
 979
 980

Uncertainty Measurements	TriviaQA		Natural Question		AmbigNQ		2WikiQA	
	AUROC	AUARC	AUROC	AUARC	AUROC	AUARC	AUROC	AUARC
<i>temperature=1.0</i>								
Discrete Semantic Entropy Farquhar et al. (2024)	78.82	93.23	72.29	79.15	72.19	82.67	67.18	67.61
U_{eigv} Lin et al. (2024)	81.75	93.87	75.12	81.49	75.50	82.90	68.01	68.12
U_{deg} Lin et al. (2024)	81.69	93.78	75.00	81.35	74.98	83.25	67.78	67.86
KLE heat $_{t=0.1}$ Nikitin et al. (2024)	81.30	93.72	74.84	81.65	74.31	82.50	67.29	67.67
KLE deberta matern $_{\kappa=3.0, \nu=3.0}$ Nikitin et al. (2024)	71.62	91.78	67.73	77.86	66.18	79.47	62.86	66.28
DENSE $_{ilm}$ (ours)	80.20	93.92	70.92	77.00	74.73	81.68	70.05	70.25
<i>temperature=3.0</i>								
Discrete Semantic Entropy Farquhar et al. (2024)	84.11	90.60	77.36	69.78	80.23	79.15	73.15	56.86
U_{eigv} Lin et al. (2024)	80.42	89.55	67.35	64.45	75.73	76.91	70.06	55.50
U_{deg} Lin et al. (2024)	84.00	90.87	72.45	67.63	79.81	79.12	72.51	57.21
KLE heat $_{t=0.1}$ Nikitin et al. (2024)	85.74	91.44	75.31	69.40	81.72	80.08	73.89	58.03
KLE deberta matern $_{\kappa=3.0, \nu=3.0}$ Nikitin et al. (2024)	59.95	76.50	58.22	58.16	58.34	66.54	56.16	45.01
DENSE $_{ilm}$ (ours)	78.58	87.33	72.33	65.14	75.39	71.07	70.33	53.93
<i>temperature=5.0</i>								
Discrete Semantic Entropy Farquhar et al. (2024)	68.08	49.21	61.22	20.51	62.74	24.73	71.31	21.45
U_{eigv} Lin et al. (2024)	65.06	47.14	56.51	18.19	60.62	23.32	71.93	22.05
U_{deg} Lin et al. (2024)	66.53	48.20	58.07	18.89	62.03	24.20	72.30	22.30
KLE heat $_{t=0.1}$ Nikitin et al. (2024)	67.88	48.96	59.31	19.48	63.28	24.84	72.33	22.24
KLE deberta matern $_{\kappa=3.0, \nu=3.0}$ Nikitin et al. (2024)	51.15	34.49	48.02	14.74	49.13	18.44	51.92	12.33
DENSE $_{ilm}$ (ours)	66.94	46.45	62.25	20.99	68.96	27.69	71.10	22.53
<i>temperature=7.0</i>								
Discrete Semantic Entropy Farquhar et al. (2024)	64.67	36.77	59.68	13.86	63.77	18.77	68.32	16.89
U_{eigv} Lin et al. (2024)	64.31	36.27	57.58	12.91	62.35	18.29	71.12	18.38
U_{deg} Lin et al. (2024)	64.90	36.66	58.30	13.30	63.92	18.66	70.94	18.31
KLE heat $_{t=0.1}$ Nikitin et al. (2024)	65.51	36.81	58.73	13.51	64.16	18.78	70.23	17.97
KLE deberta matern $_{\kappa=3.0, \nu=3.0}$ Nikitin et al. (2024)	52.33	27.63	49.98	10.88	49.47	12.23	52.94	10.83
DENSE $_{ilm}$ (ours)	66.43	38.83	61.91	15.22	66.13	18.04	74.03	20.76

992
 993 as the retrieval corpus and employ recursive chunking in Langchain¹. The chunk size is set to 512
 994 and chunk overlap is set to 64. For document retrieval, we use UAE-Large-V1 as the encoder for both
 995 questions and document chunks, which is one of the best zero-shot embedding models in MTEB (eng,
 996 v2) leaderboard². Then we employ FAISS³ to build dense index. To ensure a fair comparison with
 997 other baselines and demonstrate that the improvements of our method stem from better document
 998 understanding rather than an increased number of documents, we limit the retrieval to the top 5
 999 documents—consistent with the minimum retrieval setting used in most RAG studies. We discuss the
 1000 impact of different values of top- k on the model’s performance in Appendix K. In generation stage,
 1001 we use a simple prompt which is described in Appendix B.4.

1002 In adaptive semantic chunking, we set the merge threshold $\tau = 0.6$ and use the same encoder in
 1003 embeddin chunks as the sentence encoder. The maximum chunk length $T_{max} = 512$, consistent with
 1004 recursive chunking. The NLI agent and the LLM for semantically equivalent context construction are
 1005 the LLM used in generation stage. For the 1.5B and 8B DENSE-RAG, a single NVIDIA 3090 GPU
 1006 is enough for embedding and inference. For the 70B DENSE-RAG, we use 2 NVIDIA A100 80GB
 1007 GPUs for embedding and inference.

I MORE DENSE EVALUATION EXPERIMENTAL RESULTS

1011 Here we show the performance of RAG on certain and uncertain questions when using different LLM
 1012 in open-book QA in Table 9. Regardless of model size, all LLMs exhibit a significant performance
 1013 drop on uncertain questions. While the drop is mitigated for larger models such as the llama3.1-70B,
 1014 it still remains around 20%. This demonstrates that DENSE generalizes well across language models
 1015 of different scales.

I.1 EXPERIMENTS IN HIGH-TEMPERATURE SAMPLING

1016 In addition to the low-temperature and greedy decoding evaluations reported in the main paper, we
 1017 further examine the behavior of DENSE and other uncertainty estimating baselines under higher
 1018 sampling temperatures. The result are shown in Table 8. Also we plot the QA performance changes
 1019 as temperature increasing in Figure 6. As temperature increases, the generation process becomes
 1020 increasingly dominated by stochastic variations within the LLM rather than by differences in how
 1021

¹https://python.langchain.com/docs/concepts/text_splitters/

²<https://huggingface.co/spaces/mteb/leaderboard>

³<https://ai.meta.com/tools/faiss/>

Figure 6: RAG QA performance in different sampling temperature. Once the temperature exceeds 1, the exact match accuracy drops sharply, indicating that the model becomes increasingly unfaithful to the retrieved context.

Table 9: RAG performance on **certain** and **uncertain** questions. The EM% drop on uncertain questions to certain one is reported after the EM on ucnertain question. The split of certain questions and uncertain questions is according to DENSE_{eval} .

Task	TriviaQA		Natural Question		AmbigNQ		2WikiQA	
	certain	uncertain	certain	uncertain	certain	uncertain	certain	uncertain
Llama3.1 8B DENSE_{eval}	90.4	43.0(47.4↓)	63.7	36.0(26.7↓)	75.1	33.2(41.9↓)	66.9	40.6(26.3↓)
Llama3.1 8B $\text{DENSE}_{deberta}$	90.3	43.7(46.6↓)	63.8	36.0(27.8↓)	75.1	34.1(41.0↓)	67.0	41.2(25.8↓)
Qwen 2.5 1.5B	75.0	33.3(41.7↓)	47.7	24.8(22.9↓)	55.5	21.8(33.7↓)	38.5	21.4(17.1↓)
Llama3.1 8B	90.3	42.3(48.0↓)	63.3	35.8(27.5↓)	75.6	32.8(42.8↓)	66.9	40.3(26.6↓)
Llama3.1 70B	93.2	73.1(20.1↓)	62.5	44.8(17.7↓)	81.8	59.6(22.2↓)	72.3	57.4(14.9↓)

the retrieved context is interpreted. As a result, the semantic deviations in LLM outputs no longer reliably reflect context-related uncertainty but instead arise primarily from temperature-induced randomness. Consistent with this shift, all methods—DENSE included—degrades substantially at high temperatures. Because LLM is no longer faithfully grounded in the retrieved evidence, uncertainty scores in this regime lose their interpretability for retrieval-based QA. We therefore include these results only for completeness; they should not be taken as indicators of method quality in retrieval-grounded settings.

I.2 EXPERIMENTS ON SUMMARIZATION TASKS

We focuses on the open-book QA task, but as a typical free-form language generation task, we also explore its effectiveness on summarization tasks. We add a simple verification experiment on CNN/DailyMail 3.0.0 test set. We build a RAG pipeline for summarization and compute the DENSE score, the RougeL and DENSE score relationship is shown in Table 10. As shown in the figure, higher uncertainty is correlated with lower RougeL score, showing DENSE’s potential in measuring LLM’s understanding in summarization tasks. This verification experiment on CNN/DailyMail is preliminary, as we directly applied the method originally designed for open-book QA. Summarization presents different challenges compared to open-book QA, such as how to formulate effective queries. One important direction is to improve summarization performance according to the proposed DENSE method.

Table 10: Experiment result on CNN/DailyMail summarization.

DENSE range	(,0.1)	[0.1, 0.2)	[0.2, 0.3)	[0.3, 0.4)	[0.4, 0.5)	[0.5, 0.6)	[0.6, 0.7)	[0.7, 0.8)	[0.8, 0.9)	[0.9, 1.0)	[1.0,)
Ave RougeL/ 10^{-3}	90.47	86.97	86.84	82.40	86.29	81.48	78.56	76.54	80.36	81.48	76.43

1080 Table 11: Results of our methods and baselines on 4 datasets. The best results are in **bold**, and the
 1081 second best are underlined. Results unavailable in public reports are marked as “-”.

Method	Generator Model	Ret. FT	Gen. FT	TriviaQA	Natural Question	AmbigNQ	2WikiQA
Adaptive-RAG Jeong et al. (2024)	FLAN-T5-XL 3B	✓	✗	52.2	37.8	-	40.6
Astute-RAG Wang et al. (2024b)	Claude 3.5 Sonnet	✗	✗	84.5	53.6	-	-
RePlug-LSR (few-shot) Shi et al. (2023)	Codex 175B	✓	✗	77.3	45.5	-	-
LongRAG Zhao et al. (2024)	GLM4 32B	✗	✓	-	-	-	57.2
ERM4 Shi et al. (2024)	GPT-3.5-turbo	✓	✗	-	52.7	53.5	46.8
UncertaintyRAG Li et al. (2024b)	Vicuna 7B	✓	✗	85.0	-	-	29.9
UncertaintyRAG Li et al. (2024b)	Llama2 13B	✓	✗	82.5	-	-	38.3
RAG-DDRLi et al. (2024a)	Llama3 8B	✓	✓	89.6	52.1	-	-
ChatQA-1.5 Liu et al. (2024b)	Llama3 8B	✓	✓	81.0	42.4	-	26.8
ChatQA-1.5 Liu et al. (2024b)	Llama3 70B	✓	✓	85.6	47.0	-	34.9
RankRAG Yu et al. (2024)	Llama3 8B	✗	✓	82.9	50.6	-	31.4
RankRAG Yu et al. (2024)	Llama3 70B	✗	✓	86.5	54.2	-	38.2
Collab-RAG Xu et al. (2025)	Qwen2.5 3B	✗	✓	-	-	-	67.0
Collab-RAG Xu et al. (2025)	Llama3.1 8B	✗	✓	-	-	-	67.2
	Qwen2.5 1.5B	✗	✗	69.8	42.4	50.3	31.5
	Qwen3 8B	✗	✗	82.4	53.5	65.2	54.2
DENSE-RAG	Llama3 8B	✗	✗	84.8	57.5	<u>68.1</u>	58.7
	Llama3.1 8B	✗	✗	85.1	<u>57.8</u>	67.9	59.1
	Llama3.1 70B	✗	✗	90.3	<u>58.2</u>	<u>76.8</u>	<u>69.3</u>

J COMPARE WITH MORE BASELINES

We show extended comparison in Table 11. We consider following sota RAG methods: Astute RAG Wang et al. (2024b), RePlug Shi et al. (2023), Adaptive-RAG Jeong et al. (2024), shi et al. Shi et al. (2024), LongRAG Zhao et al. (2024), RAG-DDR Li et al. (2024a), ChatQA-1.5 Liu et al. (2024b), RankRAG Yu et al. (2024) and UncertaintyRAG Li et al. (2024b). Among these baselines, some baselines like Yu et al. (2024) employ finetuned LLMs to further optimize the retrieved context; in the table, we mark them simply as Gen. FT. Only approaches that introduce additional trained components such as retrievers, encoders, or policy models, are regarded as using trained retrievers. For Collab-RAG Xu et al. (2025), it utilize GPT4o as an LLM reader during the retrieval and generation. It is worth noting that some baselines employ different retrieval settings, such as retrieving a larger number of documents or searching over Wikipedia rather than the dataset-provided corpus; their results are thus reported for reference only. For fair comparison, our method uniformly uses the top-5 retrieved chunks (the minimum number adopted in most prior work) as context and performs retrieval strictly over the dataset-provided knowledge base.

K ADDITIONAL SENSITIVITY ANALYSIS

Number of retrieved documents. To discuss the performance of DENSE with different numbers of retrieved chunks, we conduct experiments with different chunk numbers with and without DENSE. As shown in Figure 8, when more chunks are utilized, two methods have better performance on uncertain questions. And DENSE-RAG consistently outperforms RAG w/o DENSE across all datasets and various chunk quantity settings, highlighting the robustness of our approach.

Adaptive chunking threshold τ We run experiments with different adaptive chunking threshold and show the result in Figure 7. As the sentence merge threshold of adaptive chunking increases, performance on uncertain questions significantly declines. This indicates that while leveraging semantic similarity for chunking can enhance performance, overly strict merge conditions may instead lead to a drop in overall effectiveness.

L DISCUSSION OF COMPLEXITY

As an unsupervised method applicable to any black-box LLM [without introducing additional models](#), DENSE requires multiple model calls during measurement. The computational complexity remains bounded by $O(k^2)$, where each LLM inference step (e.g., response generation or entailment check) is treated as $O(1)$. The main steps include: (1) rephrasing k retrieved chunks ($O(k)$); (2) generating responses under rephrased contexts ($O(k)$); and (3) pairwise entailment comparisons ($O(k^2)$). Notably, the entailment component can be efficiently accelerated using lightweight NLI models such as

Figure 7: Performance comparison on uncertain questions when using different Adaptive chunking merging thresholds.

Figure 8: Performance comparison on uncertain questions when using different context size. Under different context sizes, DENSE-RAG demonstrates significant improvements.

DeBERTa Kuhn et al. (2023), instead of relying on repeated LLM calls. Compared with DSE Kuhn et al. (2023), the only additional cost introduced by DENSE is the rephrasing step.

For semantic chunking, we embed sentences using a compact encoder rather than an LLM, so the overhead is negligible relative to the $O(k^2)$ entailment computations. In the refinement stage, the worst-case scenario occurs when all candidate chunks must be examined. This introduces up to $O(k)$ additional generations and $O(k^2)$ additional DENSE computations, resulting in an overall upper bound of $O(k^2)$ complexity. However, in our experiments, only about 20% of the questions exhibit sufficiently high DENSE scores to trigger refinement. Therefore, the practical computational cost remains close to $O(k^2)$ while being incurred only for a small subset of difficult queries.

In practice, on Llama-3 with A100 GPUs, computing DENSE adds about one second per query, while the full DENSE-RAG pipeline averages six seconds. This additional cost remains modest compared to standard RAG inference and represents a highly favorable trade-off, as it enables reliable, training-free uncertainty measurement and effective context enhancement in a fully model-agnostic and widely generalizable manner.

M CASE STUDIES

We display the case studies of DENSE-RAG on uncertain questions in TriviaQA, Natural Question, AmbigNQ and 2WikiQA. We display the retrieved chunks and LLM responses with/without DENSE in Table 12, Table 13, Table 14 and Table 15. The red text is distractors, and the green text contains evidence for the correct answer. From all the cases, we can observe that these uncertain questions are often accompanied by distracting texts, which can easily mislead the LLM. Take 2WikiQA as an example: LLM needs to first identify the author of Sunday Papers and then locate the awards won by that author. By using DENSE, we effectively identify the chunks that are relevant but do not contain the answer, allowing the chunk refiner to pinpoint the chunk that holds the correct information.

Table 12: Case study on uncertain questions in TriviaQA.

1188		
1189		
1190	Question Id: tc_1693	
1191		Q: Who beat Tim Henman in his first Wimbledon singles semifinal? A: Pete Sampras
1192	w/o DENSE	<p>Chunk 1: Timothy Henry "Tim" Henman (born 6 September 1974) is a retired English professional tennis player. Henman played a serve-and-volley style of tennis...</p> <p>Chunk 2: In the second round he succumbed to the eventual champion American Todd Martin, 6–4, 6–4. Henman received a wildcard for the Manchester Open, where he lost in the first round to American Alex O'Brien...</p> <p>Chunk 3: At the time of his retirement, Henman had already committed to playing a Charity Exhibition at London's Royal Albert Hall during the Seniors Tennis Event The Blackrock Masters in December 2007...</p> <p>Chunk 4: Then breaking his opponent's serve twice in a row to win the final set 7–5 and beat reigning French Open champion Yevgeny Kafelnikov in the first round at Wimbledon, going on to reach the quarter finals before losing to Todd Martin...</p> <p>Chunk 5: He reached the second round after defeating German Martin Sinner, and in Nottingham he reached the quarter-finals, his first quarter-final in the ATP tour. His success in these tournaments increased his ranking from 272nd to 219th.</p> <p>LLM response: Todd Martin</p>
1193		
1194		
1195		
1196		
1197		
1198	DENSE-RAG	<p>Chunk 1: Timothy Henry "Tim" Henman (born 6 September 1974) is a retired English professional tennis player. Henman played a serve-and-volley style of tennis...</p> <p>Chunk 2: In 2000 he reached the fourth round and in 1996, 1997, 2003 and 2004 he lost in the quarter-finals. The first two of those semi-final losses were to Pete Sampras, who went on to win the title on both occasions...</p> <p>Chunk 3: Then breaking his opponent's serve twice in a row to win the final set 7–5 and beat reigning French Open champion Yevgeny Kafelnikov in the first round at Wimbledon, going on to reach the quarter finals before losing to Todd Martin...</p> <p>Chunk 4: On the grass at Queen's Club Championship Henman reached the final, where he was defeated in straight sets by Australian Lleyton Hewitt...</p> <p>Chunk 5: However, Henman's winning streak did not last long, and in the second round he met Sampras, and was defeated 6–2, 6–3, 7–6...</p> <p>LLM response: Pete Sampras</p>
1199		
1200		
1201		
1202		
1203		
1204		
1205	Table 13: Case study on uncertain questions in Natural Question.	
1206		
1207	Question Id: -1580637763990313083	
1208		Q: When did muhammad ali win an olympic gold medal? A: 1960
1209	w/o DENSE	<p>Chunk 1: Ali said in his 1975 autobiography that shortly after his return from the Rome Olympics, he threw his gold medal into the Ohio River after he and a friend were refused service at a "whites - only" restaurant and fought with a white gang...</p> <p>Chunk 2: Ali received a replacement medal at a basketball intermission during the 1996 Olympics in Atlanta, where he lit the torch to start the gam professional boxing early career...</p> <p>Chunk 3: On September 13, 1999, Ali was named "Kentucky Athlete of the Century" by the Kentucky Athletic Hall of Fame in ceremonies at the Galt House East. On January 8, 2001, Muhammad Ali was presented with the Presidential Citizens Medal by President Bill Clinton.</p> <p>Chunk 4: In 1996, he had the honor of lighting the flame at the 1996 Summer Olympics in Atlanta, Georgia. Ali 's bout with Parkinson 's led to a gradual decline in his health...</p> <p>Chunk 5: W. Bush embraces Muhammad Ali after presenting him with the Presidential Medal of Freedom on November 9, 2005, during ceremonies at the White House. Muhammad Ali defeated every top heavyweight in his era, which has been called the golden age of heavyweight boxing...</p> <p>LLM response: Muhammad Ali did not win an Olympic gold medal.</p>
1210		
1211		
1212		
1213		
1214		
1215	DENSE-RAG	<p>Chunk 1: On September 13, 1999, Ali was named "Kentucky Athlete of the Century" by the Kentucky Athletic Hall of Fame in ceremonies at the Galt House East...</p> <p>Chunk 2: Legacy As Mrs. Lonnie Ali looks on, President George W. Bush embraces Muhammad Ali after presenting him with the Presidential Medal of Freedom on November 9, 2005, during ceremonies at the White House...</p> <p>Chunk 3: Muhammad Ali defeated every top heavyweight in his era, which has been called the golden age of heavyweight boxing. Ali was named "Fighter of the Year" by The Ring magazine more times than any other fighter, and was involved in more Ring "Fight of the Year" bouts than any other fighter.</p> <p>Chunk 4: At age 18, he won a gold medal in the light heavyweight division at the 1960 Summer Olympics in Rome and turned professional later that year. At age 22 in 1964, he won the WBA, WBC, and lineal heavyweight titles from Sonny Liston in a major upset.</p> <p>Chunk 5: In time, Muhammad Ali Boulevard – and Ali himself – came to be well accepted in his hometown. In 1993, the Associated Press reported that Ali was tied with Babe Ruth as the most recognized athlete, out of over 800 dead or living athletes, in America.</p> <p>LLM response: 1960</p>
1216		
1217		
1218		
1219		
1220		
1221		
1222		
1223		
1224	Table 14: Case study on uncertain questions in AmbigNQ.	
1225		
1226	Question Id: 3008542401703695479	
1227	Q: Who played robin on the original batman series? A: Burt Ward	
1228		<p>Chunk 1: Robin (Dick Grayson) was portrayed by Douglas Croft and Johnny Duncan, respectively, in the 1943 and 1949 fifteen chapter Batman serials. Burt Ward played him in the 1966–1968 Batman television series and the related 1966 film...</p> <p>Chunk 2: Batman is a 1960s American live action television series, based on the DC comic book character of the same name. It stars Adam West as Bruce Wayne / Batman and Burt Ward as Dick Grayson / Robin – two crime-fighting heroes who defend Gotham City from a variety of arch villains.</p> <p>Chunk 3: Lewis Wilson as Bruce Wayne / Batman, Douglas Croft as Richard "Dick" Grayson / Robin J. Carroll Naish as Dr. Tito Daka/Prince Daka * Shirley Patterson as Linda Page * William Austin as Alfred Pennyworth...</p> <p>Chunk 4: Burt Ward as Dick Grayson / Robin: Batman's sidekick, dubbed the "Boy Wonder": a high school student noted for his recurring interjections in the form of "Holy ___, Batman!"</p> <p>Chunk 5: Lewis Wilson as Batman and Douglas Croft as Robin: Both actors and their stunt doubles lacked the "style and grace" of either the comic characters they were portraying or their equivalents at Republic Pictures.</p> <p>LLM response: Douglas Croft</p>
1229	w/o DENSE	
1230		
1231		
1232		
1233		
1234	DENSE-RAG	<p>Chunk 1: His portrayal is based mainly on Burt Ward's Dick Grayson. Collected editions See also Homosexuality in the Batman franchise * List of exclamations by Robin...</p> <p>Chunk 2: Portrayals Robin (Dick Grayson) was portrayed by Douglas Croft and Johnny Duncan, respectively, in the 1943 and 1949 fifteen chapter Batman serials...</p> <p>Chunk 3: Batman is a 1960s American live action television series, based on the DC comic book character of the same name. It stars Adam West as Bruce Wayne / Batman and Burt Ward as Dick Grayson / Robin – two crime-fighting heroes who defend Gotham City from a variety of arch villains...</p> <p>Chunk 4: The entire first Batman serial was re-released theatrically in 1965 as An Evening with Batman and Robin, and proved very popular (some theatres showed the chapters as a Saturday matinee). Its success inspired the action-comedy lampoon series Batman (and its 1966 theatrical feature film spin-off) starring Adam West and Burt Ward.</p> <p>Chunk 5: * Burt Ward as Dick Grayson / Robin: Batman's sidekick, dubbed the "Boy Wonder": a high school student noted for his recurring interjections in the form of "Holy ___, Batman!"</p> <p>LLM response: Burt Ward</p>
1235		
1236		
1237		
1238		
1239		
1240		
1241		

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

Table 15: Case study on uncertain questions in 2WikiQA.

1262

1263

Question Id: 0f1ac1a00bdb11eba7f7acde48001122

Q: What is the award that the performer of song Sunday Papers earned? A: Grammy

1264

1265

w/o DENSE **Chunk 1:** *Sunday Papers* is a song written and performed by British new wave musician Joe Jackson. It was released on his debut album, "Look Sharp!". Written as a critique of the British press, "Sunday Papers" features mocking lyrics and reggae inspired music...

1266

1267

Chunk 2: Caspar Babypants is the stage name of children's music artist Chris Ballew, who is also widely known as the singer of The Presidents of the United States of America.

1268

1269

Chunk 3: Dáithí Sproule(born 23 May 1950) is a guitarist and singer of traditional Irish music.His niece is the singer Claire Sproule.

1270

Chunk 4: David Ian "Joe" Jackson (born 11 August 1954) is an English musician and singer-songwriter. Having spent years studying music and playing clubs, Jackson scored a hit with his first release, "Is She Really Going Out with Him?", in 1979.

1271

Chunk 5: "O Valencia!" is the fifth single by the indie rock bandThe Decemberists, and the first released from their fourth studio album, " The Crane Wife".The music was written by The Decemberists and the lyrics by Colin Meloy.

1272

LLM response: The award that the performer of song "Sunday Papers" earned is none.

1273

DENSE-RAG **Chunk 1:** Written as a critique of the British press, "Sunday Papers" features mocking lyrics and reggae inspired music. "Sunday Papers" was released as a single in the UK as the follow-up to his single...

1274

Chunk 2: *Sunday Papers* is a song written and performed by British new wave musician Joe Jackson. It was released on his debut album, "Look Sharp!"

1275

Chunk 3: Caspar Babypants is the stage name of children's music artist Chris Ballew, who is also widely known as the singer of The Presidents of the United States of America."

1276

Chunk 4: Dáithí Sproule (born 23 May 1950) is a guitarist and singer of traditional Irish music.His niece is the singer Claire Sproule.

1277

Chunk 5: He is associated with the 1980s Second British Invasion of the US.He has also composed classical music. He has recorded 19 studio albums and received 5 Grammy Award nominations.

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295