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Abstract

The video face restoration aims to restore high-quality face video from low-quality face
video, but most existing methods typically focus on specific and single degradation scene
such as denoising or deblurring. However, the universal video face restoration should
restore face video in various degradation scenes. In this paper, we use language prompt
which describes the face information including gender, appearance and expression to guide
video face restoration. To enhance the applicability, we remove the language prompt by
ControlNet and incorporate the human-level knowledge from vision-language models into
general networks to improve the video face restoration performance and enable the universal
video face restoration. In addition, we construct a degradation dataset, which contains
multiple degradations in the same scene and captions which describe the face information.
Our extensive experiments show that our approach achieves highly competitive performance
in universal video face restoration.

Keywords: vision-language model; video face restoration; video processing; language
prompt.

1. Introduction

Video face restoration is an important research in the field of computer vision Jourabloo
et al. (2017); Kumar et al. (2020). It aims to restore low-quality face video in degraded
scenes such as noise or blur so as to obtain high-quality face video with well vision effect
and high definition Li et al. (a); Roth et al. (2016); Tzimiropoulos (2015). Unlike non-
blind video face restoration with known degradation information, there is no any prior
knowledge about the degradation type or parameters for blind video face restoration Wang
et al. (2021). Therefore, the difficulty of blind video face restoration should be much
higher Yang et al. (2020). Compared with traditional video face restoration methods,
deep learning methods Zhou et al. (2022a); Li et al. (2018); Chen et al. (2018); Menon
et al. (2020) can capture advanced features and semantic information better, thus achieving
more accurate and effective face restoration performance. Currently, most methods only
focus on specific and single degradation task such as denoising Anwar et al. (2017) or
deblurring Shen et al. (2020), while the universal video face restoration should restore face
video in various degradation scenes. Face information including gender, appearance and
expression in degradation videos can be described in text. Learning from language prompt
to improve restoration performance is an important research direction.
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Figure 1: Qualitative evaluation of our method. The video face restored through our
method has better data fidelity, greater continuity, better perceptual quality,
higher quality facial details.

In this paper, we propose a novel approach to guide face restoration using language
prompt that include gender, appearance, and expression information. To enhance its ap-
plicability, we introduce ControlNet to remove the dependency on language prompt and
integrate human-level knowledge from vision-language models into general networks, im-
proving video face restoration performance and enabling universal video face restoration.
Moreover, we construct a degradation dataset that includes corresponding face caption and
multiple degradations in the same scene. It demonstrates highly competitive performance
in the field of universal video face restoration, as illustrated in Figure 1.

2. Background and Related Work

Face Restoration. Traditional methods for face restoration rely on the integration of prior
knowledge and degraded models Chakrabarti et al. (2007); Gunturk et al. (2003); Tang and
Wang (2003). The advent of deep learning techniques has brought significant advancements
in face restoration through the incorporation of convolutional neural networks Huang et al.
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(2017); Tuzel et al. (2016); Yu and Porikli (2016); Zhang et al. (2018a). Recent research
has focused on leveraging depth priors in face image restoration, including geometric and
reference priors Bulat and Tzimiropoulos (2018); Chen et al. (2021a, 2018); Dogan et al.
(2019); Li et al. (2018). Furthermore, the utilization of pre-trained GANs Karras et al.
(2019) as generation priors Asim et al. (2018); He et al.; Wang et al. (2021); Yang et al. (2020,
2021) has further enhanced the quality of restoration. This approach involves mapping low-
quality faces into a compact, low-dimensional space defined by the pre-trained generator,
effectively treating face restoration as a conditional image generation problem. Additionally,
another research approach, exemplified by VQFR Gu et al., CodeFormer Zhou et al. (2022c),
RestoreFormer Wang et al., and their variants Wang et al. (2023), utilizes pre-trained vector
quantization (VQ) codebooks Esser et al. (2021) as learned dictionaries for facial regions,
demonstrating cutting-edge achievements in blind facial restoration.

Text-to-Image generation. Text-to-image generation involves the generation of re-
alistic images from text descriptions Duran et al. (2019), and it has garnered significant
interest due to its potential applications in areas such as content creation, design, and
human-computer interaction. Early work in this field focused on developing methods to
translate text descriptions into corresponding visual representations using generative mod-
els. Text-to-image models such as the stable diffusion model Rombach et al. (2022) have
garnered significant attention. Building upon this work, ControlNet Zhang and Agrawala
enhances the diffusion network by incorporating controls to adapt to specific task condi-
tions. InstructPix2Pix Brooks et al. (2022) proposed a method for editing images from
human instructions: given aninput image and a written instruction that tells the model
what to do, the model follows these instructions to edit the image. However, due to the
requirement for high-precision reconstruction capability in image restoration, it cannot be
directly applied to restoration tasks.

Vision-Language Models. Vision-Language Models (VLMs) have emerged as a pow-
erful paradigm for integrating visual and textual information, enabling a wide range of appli-
cations such as image captioning, visual question answering, and cross-modal retrieval Rad-
ford et al. (2021); Chen et al. (2021b); Li et al. (b). These models aim to bridge the
semantic gap between vision and language modalities, allowing for a more comprehensive
understanding of multimedia content. In recent years, the advent of large-scale pre-trained
language models, such as BERT Devlin et al. (2019) and GPT Brown et al. (2020), has
spurred remarkable advancements in VLMs. These models demonstrated the capacity to
learn rich semantic representations from text corpora Zhou et al. (2022b), leading to their
adaptation for multimodal tasks through fusion with visual encodings derived from CNNs.
The resulting VLMs have exhibited strong performance in tasks like image-text retrieval,
where they can effectively match images with relevant textual descriptions. Moreover, ef-
forts have been made to develop transformer-based architectures tailored specifically for
vision-language tasks. For instance, ViLBERT Lu et al. (2019) and LXMERT Tan and
Bansal (2019) are notable examples of VLMs designed to jointly reason about visual and
textual inputs. These models employ cross-modal attention mechanisms to capture intricate
interactions between visual and textual elements, enabling them to excel in tasks requiring
holistic comprehension of multimodal content.



Xu Song Lu

3. Method

Figure 2: Overview of our method.

As illustrated in Figure 2, we input the low-quality (LQ) video along with corresponding
descriptions and integrate the prompt into a general image restoration network by using
cross-attention mechanism. To enhance applicability, we utilize ControlNet to remove lan-
guage descriptions. Then we introduce the Video-Refinement module to further process the
coarse video, which is based on Swin-Unet and can make full use of sequence information
when reconstructing face.

3.1. Contrastive Controller

The image controller serves as a modified version of the CLIP image encoder, featuring
additional zero-initialized connections to introduce controls to the encoder Luo et al.. The
controller enables manipulation of the outputs of all encoder blocks, thereby influencing the
prediction process of the image encoder. The backbone of both the encoder and the con-
troller is ViT Dosovitskiy et al. (2020). It provides a strong foundation for capturing spatial
relationships and global context within the image embeddings. To achieve discriminative
and well-separated degradation-embedding spaces, we employ a contrastive objective Tian
et al. (2020). This contrastive objective can learn the embedding matching process, en-
hance the distinction between different degradation types and facilitate more effective image
restoration. By leveraging this contrastive objective, it can better align the degradation-
aware representations with the underlying semantics of the images, ultimately improving
the quality of image restoration.

3.2. Image Restoration

In order to integrate the prompt into a general image restoration network, we introduce
a cross-attention Rombach et al. (2022) mechanism to learn semantic guidance and use
IR-SDE Luo et al. (2023) as the base framework for image restoration. Its key construc-
tion includes a mean reversal stochastic differential equations, which converts high-quality
images into degraded images as the mean of fixed Gaussian noise. Then, by simulating the
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corresponding reverse time SDE, we can restore the origin image from low-quality images.
Forward SDE for image degradation is defined as:

dx = θt(µ− x)dt+ σtdw (1)

where µ is the state mean, and θt, σt are time-dependent positive parameters that character-
ize the speed of the mean reversion and the stochastic volatility, respectively. Reverse-Time
SDE for image restoration is defined as:

dx = [θt(µ− x)− σ2
t▽x log pt(x)]dt+ σtdω̂ (2)

At test time, the only unknown part is the score ▽x log pt(x) of the marginal distribution
at time t. But during training, the ground truth, high-quality image x(0) is available and
thus we can train a neural network to estimate the conditional score ▽x log pt(x | x(0)).

3.3. Video Refinement

We use Swin-Unet as backbone that can make full use of sequence information when re-
constructing face. Different from Cao et al. (2023), this network can work on videos. The
model can enhance T frames at once exploiting spatio-temporal information. In addition,
we use 3D convolution to divide the input into patches and perform pixel shuffling on the
patch extension layer. The skip connection between degraded input and restored output
enables the network to learn the residuals of each frame Galteri et al. (2020). It reduces
the overall training time and improves its stability. The training loss is the weighted sum
of pixel loss and perceptual loss defined in the VGG-19 Simonyan and Zisserman (2015)
feature space. The network is trained by using 256 x 256 blocks randomly cropped from
input frames. The number of frames T is fixed at 5 during training and testing.

4. Dataset Construction

Face images should exhibit various types of degradation, but existing methods only consider
one type of degradation. These methods perform well on specific type of degradation
problems but may fail on other types, which indicate the weak generalization ability of
the models. Blind video face restoration aims to recover high-quality face images from low-
quality ones without prior knowledge of the degradation type or parameters. Unlike focusing
on a single degradation type, for blind video face restoration tasks, the degradation type
is very complex, such as random combinations of noise, blur, low resolution, and JPEG
compression artifacts et al. In addition, the blind video face restoration lacks accurate
textual descriptions or clear image prompt to guide the restoration process, which hinders
the model from accurately understanding the desired restoration target and increases the
difficulty of the restoration process. Therefore, in this paper, we construct a video face
dataset with multiple degradation types in the same scene and face captions based on
CelebV-HQ Zhu et al. (2022).

4.1. Generating Degradation Video

CelebV-HQ contains 35, 666 videos, including 15, 653 identities Zhu et al. (2022). We ran-
domly select several videos from these high-quality videos to construct video face dataset
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Figure 3: Examples of degradation combination.

Table 1: The models for each single degradation type.

Degradation Types Degradation models

blur y ⊛ kσ

colorjitter (y)COLOR−JITTERb,c,s,h

downsample (y) ↓r
jpeg (y)JPEGq

noise y + nδ

with multiple degradation types. Inspired by Wang et al. (2021), for each video, we first
randomly select several types of degradation from blur, downsample, noise, jpeg, and col-
orjitter. Then we adopt the following degradation model to synthesize data:{

[(y ⊛ kσ) ↓r + nδ]JPEGq

}
COLOR−JITTERb,c,s,h

(3)

The high quality image y is first convolved with Gaussian blur kernel kσ followed by a
downsampling operation with a scale factor r. After that, additive white Gaussian noise
nδ is added to the image. Then it is compressed by JPEG with quality factor q. Finally, it
randomly jitter the brightness b, contrast c, saturation s, and hue h, in torch Tensor formats.
For each video, we randomly sample σ, r, δ, q, b, c, s and h from {1 : 100}, {1.5 : 1.9},
{1000 : 3000}, {50 : 60}, {−20 : 20}, {0.5 : 1.5}, {0.5 : 1.5}, {−0.5 : 1.5}, respectively. If
a certain degradation type is not selected, its corresponding parameter is zero. Table 1
summarises the models for each single degradation type. Our dataset contains 31 different
degradation combinations and includes a training set of 10000 video data, a validation set of
500 video data and a testing set of 500 video data. Figure 3 shows examples of degradation
combination. In addition, the degradation combination type is recorded in the caption.

4.2. Generating Face Caption

CelebV-HQ was manually labeled with 83 facial attributes, covering appearance, action,
and emotion attributes for each video Zhu et al. (2022). Inspired by Yu et al. (2023), as
shown in Table 2, we first classify these attributes into five kinds of category. For each video,
annotated attribute information is fed into our designed template for auto-text generation.
To make our template as natural as possible, we randomly select several common grammar
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Table 2: The attributes of face video.
IsAttributes blurry, young, chubby, bald

HasAttributes

pale skin, rosy cheeks, oval face, receding hairline, bangs,
black hair, blonde hair, gray hair, brown hair, straight hair,
wavy hair, long hair, arched eyebrows, bushy eyebrows,
bags under eyes, narrow eyes, big nose, pointy nose,
high cheekbones, big lips, double chin, no beard, sideburns,
5 o clock shadow, goatee, mustache, heavy makeup

WearAttributes
eyeglasses, sunglasses, wearing earrings, wearing hat,
wearing lipstick, wearing necklace, wearing necktie,
wearing mask

ActionAttributes

blows, chews, closes eyes, coughs, cries, drinks, eats, frowns,
gazes, glares, wags head, kisses, laughs, listens to music,
looks around, makes a face, nods, plays instrument, reads,
shakes head, shouts, sighs, sings, sleeps, smiles, smokes,
sneers, sneezes, sniffs, talks, turns, weeps, whispers, winks,
yawns

EmotionAttributes neutral, happy, sadness, anger, fear, surprise, contempt, disgust

Table 3: The synonym dictionary.
male He, This man, The man, The person, This person

female She, This woman, The woman, The person, This person

IsVerb is, looks, appears to be

HaveVerb has, is with

WearVerb wears, is wearing

EmotionVerb has a face of, has an expression of

structures for each attribute. In addition, in order to increase diversity of generation,
texts are generated based on templates with synonym replacement. We created a synonym
dictionary corresponding to face attributes, as shown in Table 3. For each video, when
generating text, template randomly select corresponding word from the synonym dictionary.
The examples of caption are shown in Table 4.

5. Experience

5.1. Experimental Setup

Dataset. All training and testing datasets are taken from the degradation dataset described
in Section 4. We evaluate our method on the degradation dataset which contains 31 different
degradation combinations. We used 50000 frames from 10000 videos for training, 2500
frames from 500 videos for evaluation, and 2500 frames from 500 videos for testing.

Evaluation Metrics. We use the Learned Perceptual Image Patch Similarity (LPIPS)
Zhang et al. (2018b) and Frechet Video Distance (FVD) Unterthiner et al. (2018) as our
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Table 4: The examples of caption.
The woman appears to be young, with pale skin, blonde hair, wavy hair, arched
eyebrows, pointy nose and no beard. She is wearing earrings and lipstick. This
person looks around, smiles and talks. The woman has an expression of happy
throughout the video. : blur noise jpeg

The person has brown hair, arched eyebrows, pointy nose and no beard. She
wears lipstick. This person wags head and talks. All the while the woman
has a face of anger. : blur downsample noise colorjitter

The young person has pale skin, brown hair, wavy hair, arched eyebrows,
pointy nose and no beard. The woman looks around and smiles. All the
while this person has an expressionof neutral. : downsample noise colorjitter

Figure 4: Comparison of five methods under a single degradation type.

metrics for perceptual evaluation and adopt two pixel-wise metrics: PSNR and SSIM Wang
et al. (2004) to evaluate data fidelity of our method.

Details. During training, we resize all face images to 512×512. When training the
Controller, we set initiallearningrate = 2e − 5, weightdecay = 0.05. When training the
image restoration model, we configured SDE’s σmax = 50, T = 100, eps = 0.005, and
employed a cosine scheduling strategy. For training the video refinement model, we set
pixellossweight = 200 and perceptuallossweight = 1.
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Figure 5: Comparison of five methods under 31 degradation combinations.

5.2. Comparisons with SOTA methods

Comparison approaches. We compare our method with several state-of-the-art restora-
tion methods. VQFR Gu et al., CodeFormer Zhou et al. (2022c), and RestoreFormer++
Wang et al. (2023) are three SOTA face restoration methods that utilize pre-trained high-
quality facial dictionaries as priors. The official models released by these methods were used
in the experiments. We also compare a video restoration method: VRT Liang et al.. VRT
is a supervised video super-resolution and deblurring deep learning method. Due to the
fact that VRT cannot achieve general video restoration, we conduct experiments on video
super-resolution task using their officially released model.

Degradation-specific video face restoration. The constructed degradation dataset
described in Section 4 contains 31 different degradation combinations. We compare our
method with other methods in these 31 degraded combinations, respectively. Figure 4
shows the comparison of five methods under a single degradation type. In addition, as
shown in Figure 5, we use box plots to evaluate the performance of each method under 31
degradation combinations. The results show that our method achieves the better results in
both disturbance and perceptual performance.

Unified video face restoration. As shown in Table 5, we compare our method with
other methods in unified video face restoration on our constructed degradation dataset. The
results show that our method achieves the best results in both disturbance and perceptual
performance. Visual comparisons on single frame are presented in Figure 6. Comparing
with previous method, our method produces higher restoration quality while maintaining
data fidelity well.

5.3. Ablation studies

Our method consists of two components, including Image-Restoration guided by prompt
and Video-Refinement. In Video-Refinement component, there are two models. The model-
1 is trained by low-quality images and ground-truth images in the constructed dataset.
The model-2 is trained by the results of Image-Restoration and ground-truth images. The
followings are the effect of these components.

Effect of Image-Restoration. As shown in Table 6, the performance of the restored
face decreases on both distortion and perceptual when we remove the Image-Restoration
which is guided by prompt and only retain the Video-Refinement. It indicates that the
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Figure 6: Visual comparisons. Our method produces higher restoration quality while main-
taining data fidelity well.

Table 5: Quantitative comparison between our method with other state-of-the-art ap-
proaches on the unified face restoration task. The best results are marked in
boldface.

Method
Distortion Perceptual

PSNR↑ SSIM↑ LPIPS↓ FVD↓
VQFR 21.90 0.668 0.232 606.82

CodeFormer 24.22 0.731 0.209 464.56
RestoreFormer++ 23.23 0.694 0.231 479.39

VRT 27.05 0.769 0.248 463.77
Ours 32.96 0.916 0.058 152.06

Image-Restoration which is guided by prompt is crucial for maintaining fidelity and im-
proving perceptual performance.
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Table 6: Ablation studies. The best results are marked in boldface.
Methods Metrics

Image-Restoration
Video-Refinement Distortion Perceptual
model-1 model-2 PSNR↑ SSIM↑ LPIPS↓ FVD↓√

32.23 0.891 0.127 152.08√
29.69 0.891 0.101 269.66√ √
31.88 0.910 0.059 158.11√ √
32.96 0.916 0.058 152.06

Effect of Video-Refinement. As shown in Table 6, when we remove the Video-
Refinement with model-1 which is trained by low-quality images and ground-truth images
in the constructed dataset and only retain the Image-Restoration guided by prompt, the per-
formance of the restored face images decreases in SSIM, LPIPS. Moreover, when we remove
the Video-Refinement with model-2 which is trained by the results of Image-Restoration
and ground-truth images, the performance of the restored face images decreases on both dis-
tortion and perceptual, which suggests that the Video-Refinement contributes to improving
fidelity and achieving more perceptually appealing facial results. By comparing the effects
of these two Video-Refinement models, it indicates that the model-2 trained by the results
of Image-Restoration and ground-truth images is more effective.

6. Conclution

In this paper, we present a method for directing face restoration through language prompt.
To broaden its applicability, we present ControlNet which eliminates the dependency on
language prompt and integrates human-level knowledge from vision-language models into
general networks, which enhances the performance of video face restoration and enables
universal video face restoration. Furthermore, we construct a degradation dataset with
multiple degradations in the same scene and corresponding face captions. It shows compet-
itive performance in universal video face restoration.
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