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Abstract001

Retrieval-augmented question answering (QA)002
integrates external information, and thereby in-003
creases the QA accuracy of reader models that004
lack domain knowledge. However, documents005
retrieved for closed domains require high ex-006
pertise, so the reader model may have difficulty007
fully comprehending the text. Moreover, the re-008
trieved documents contain thousands of tokens,009
some unrelated to the question. As a result,010
the documents include some inaccurate infor-011
mation, which may lead the reader model to012
mistrust the passages and could result in hallu-013
cinations. To solve these problems, we propose014
K-COMP (Knowledge-injected COMPressor)015
which provides the knowledge required to an-016
swer the question correctly. The compressor017
automatically generates the prior knowledge018
needed to answer before compressing the re-019
trieved passages, and then compresses passages020
autoregressively, injecting the knowledge into021
the compression process. This process ensures022
alignment between the question intent and the023
compressed context. By augmenting this prior024
knowledge and concise context, the reader mod-025
els are guided toward relevant answers and trust026
the context.027

1 Introduction028

Retrieval-augmented question answering (QA) is029

a task where passages related to a question are ap-030

pended into the prompt, such that a reader model031

can reference them and infer correct answer (Ah-032

mad et al., 2019; Guo et al., 2021). Towards this,033

many studies like Jiang et al. (2023b); Yu et al.034

(2023a); Lin et al. (2024); Shi et al. (2024b) uti-035

lize retrieval augmentation techniques to signifi-036

cantly reduce the occurrence of hallucinations and037

enhance overall answer reliability without necessi-038

tating additional parameter updates for the reader039

model. This approach significantly increases QA040

accuracy in both open and closed domains (Wang041

et al., 2024b; Louis et al., 2024; Frisoni et al., 2024).042

What are the symptoms of 
Down syndrome ?

### Passage 
1. Down syndrome causes physical, 
cognitive and behavioral symptoms. 
Not all people with Down syndrome… 

2. There is no cure for Down 
syndrome. Education and proper care 
have been shown to provide 
good quality of life. Some children … 

3. Trisomy 21, the presence of a 
supernumerary chromosome 21, 
results in a collection of clinical 
features commonly known as Down 
syndrome … 

… 

K. Turner syndrome is a genetic 
disorder in females where part or all of 
a sex chromosome is missing.

### Prior Knowledge 
Down syndrome is a genetic 
disorder caused by … 
Symptom is something felt or 
experienced … 

### Passage 
Down syndrome symptoms 
include intellectual disability, 
distinctive facial features (like a 
flat face and small ears), and 
developmental delays. Common 
physical characteristics also 
involve a small head, short neck, 
and loose joints.

K-COMP

Irrelevant, Costly, 
Unfocused, Distracting

Lack of domain knowledge

Reader

Retriever

Retrieval Augmented Prompt

Compressed Prompt

Figure 1: K-COMP helps the reader model infer accurate
responses by using domain knowledge and compressed
context aligned with the question.

043

However, several limitations impede use of 044

retrieval-augmented approaches in closed domains 045

with large language models (LLMs). First, the 046

documents retrieved for closed domains require 047

domain expertise, so the reader may not trust the 048

whole text. When faced with unfamiliar input, the 049

model exhibits an availability bias towards com- 050

monly known knowledge, making it more willing 051

to believe in information they can easily recall (Jin 052

et al., 2024). Also, retrieved passages contain thou- 053

sands of tokens and are sometimes unrelated to the 054

question, so they include inaccurate information, 055

which can cause the language model to distrust the 056

passages and perceive them as irrelevant noise, and 057

generate answers that do not consider them. These 058

problems lead to hallucinations (Ji et al., 2023a), 059

which cause the model to generate inaccurate an- 060

swers or infer plausible but false responses. Lastly, 061

LLMs are sensitive to the order of retrieved doc- 062

uments and the prompting method. Specifically, 063

LLMs can have difficulty finding the necessary in- 064

formation within lengthy input prompts, especially 065

when key information or correct answer clues are 066

located in the middle of the prompt (Liu et al., 067

2024; Xu et al., 2024b). 068

To tackle these issues, we propose K-COMP 069
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(Knowledge-injected COMPressor). We aim to use070

an autoregressive LLM as a compressor with the071

domain knowledge needed to answer the question,072

and increase the alignment of the retrieved pas-073

sages with the question intent. Additionally, when074

the compressor is trained domain-related terms and075

knowledge, it becomes able to recognize the en-076

tities that occur in the question, and provide de-077

scriptions for them. This process is significant for078

closed domains that require substantial prior knowl-079

edge. For retrieval augmentation, we use a large080

amount of text from domain-specific sources in-081

cluding Wikipedia. We exploit the advantages of082

domain relevance by efficiently reusing it when083

annotating prior knowledge, not just for retrieval.084

Furthermore, we use a causal masking objective085

(Aghajanyan et al., 2022) during the training phase086

to inject domain knowledge into the compressor.087

More specifically, we focus on medical domain.088

Our proposed process for generating knowledge-089

infused summaries learns the correlation between090

medical entities and the summary, allowing the091

summary to accurately incorporate the intent of the092

question. We evaluate the relevance of the sum-093

mary and demonstrate that our approach increases094

answer accuracy by using prompts that include095

prior knowledge.096

In summary, our contributions are as follows:097

• We propose a novel approach to generate098

knowledge-injected summaries adapted for099

the medical domain. We incorporate causal100

masking to inject knowledge into the com-101

pressor without modifying its structure. This102

approach aligns the summary with the ques-103

tion.104

• Even without domain knowledge in the reader105

model, K-COMP generates prior knowledge to106

answer the question, thereby enabling LLMs107

with diverse backgrounds to handle medical108

domain questions more accurately.109

• We efficiently annotate entity-knowledge pairs110

by using title-text pairs from a retrieval cor-111

pus, and thereby avoid the need for addi-112

tional data. Furthermore, after K-COMP is113

fine-tuned, it autonomously generates entity-114

knowledge pairs without referencing the com-115

plex corpus.116

2 Related Work 117

Text Infilling. Models such as BERT (Devlin 118

et al., 2019), SpanBERT (Joshi et al., 2020), T5 119

(Raffel et al., 2020), and BART (Lewis et al., 2020), 120

are pre-trained using masked language modeling 121

within a bidirectional encoder architecture. They 122

have shown strong performance in infilling short 123

and contiguous masked token spans. However, 124

the bidirectional attention mechanism typically re- 125

stricts the fillable span length to dimensions signif- 126

icantly shorter than a sentence. 127

In contrast, decoder-only models such as GLM 128

(Du et al., 2022), CM3 (Aghajanyan et al., 2022), 129

and InCoder (Fried et al., 2023) operate by left-to- 130

right generation. They can accommodate variable 131

infill span lengths. Causal masking (Aghajanyan 132

et al., 2022) or fill-in-the-middle (Bavarian et al., 133

2022) methods predict masked spans from the pos- 134

terior context. These methods have their genera- 135

tive capabilities, which increase the length of infill 136

spans. They can also exploit the advantages of con- 137

sidering contextual relationships that surround the 138

masked span. Not only is the proposed K-COMP 139

able to fill the span by considering bidirectional 140

context, but also is able to align the generated sum- 141

mary with the question by regressively encoding 142

the infilled span. 143

Retrieval-Augmented Generation (RAG). Ef- 144

forts to mitigate hallucination by augmenting snip- 145

pets with relevant information retrieved from exter- 146

nal knowledge repositories have proven effective in 147

enhancing the performance of natural language pro- 148

cessing tasks (Izacard and Grave, 2021; Yu et al., 149

2023c; Luo et al., 2023; Shi et al., 2024a; Anan- 150

tha and Vodianik, 2024; Xu et al., 2024c). RAG 151

uses reader LLMs that have been trained for gen- 152

eral purposes, then provides the LLMs with ex- 153

ternal information for closed domain tasks. This 154

method enables the LLM to adapt to various do- 155

mains without requiring architectural changes or 156

fine-tuning (Khandelwal et al., 2020; Jiang et al., 157

2023b). However, the reader model can still give 158

inaccurate answers if it becomes overly dependent 159

on retrieved documents that contain noise. To solve 160

this problem, a document-validation step is essen- 161

tial (Nan et al., 2021; Yu et al., 2023a). The overall 162

quality and reliability of the generated content are 163

increased by considering the suitability of docu- 164

ments (Asai et al., 2024a) or adding a step to verify 165

further the factual accuracy and relevance of the 166

documents (Yu et al., 2023b). 167
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Prompt Compression. Several studies have168

demonstrated that prompt augmentations effec-169

tively enhance the performance of LLMs across170

various tasks (Liu et al., 2023a; Ram et al., 2023;171

Ryu et al., 2023; Wang et al., 2024c; Long et al.,172

2023; Yagnik et al., 2024). Yet, the relevance and173

reliability of the augmented passages are signifi-174

cant challenges in prompt augmentations. To ad-175

dress this, recent studies have attempted to directly176

extract contents from ambiguous and lengthy pas-177

sages. Kim et al. (2024) eliminates irrelevant infor-178

mation while maximizing the extraction of accu-179

rate information, whereas Yang et al. (2023) lever-180

ages the black-box LLMs by applying a reward-181

based method during compressor training to gen-182

erate summaries. RECOMP (Xu et al., 2024a) se-183

lects and augments the summary with the highest184

end-task performance by using prompts in which185

non-essential summaries are set to empty strings if186

necessary. LLMLingua (Jiang et al., 2023a) dynam-187

ically assigns different compression rates to various188

components within the prompt, and thereby main-189

tains the original meaning while achieving maxi-190

mum compression. In contrast, K-COMP focuses191

on the keywords needed to answer the question, em-192

phasizing the alignment between the compressed193

context and the question.194

3 Causal Knowledge Injection195

Causal models that have been trained using autore-196

gressive language modeling depend exclusively on197

the context to the left of the generated tokens to pre-198

dict subsequent tokens (Brown et al., 2020). This199

attribute confers an advantage in causally gener-200

ating entire documents, such as text generation.201

However, these models show limited proficiency in202

tasks that require understanding of post-positional203

relationships for span infilling. Conversely, masked204

language models excel at predicting masked spans205

by referencing attention scores from tokens lo-206

cated both anteriorly and posteriorly. Nonetheless,207

Their training objective is limited to decoding only208

short segments of the passages (Devlin et al., 2019;209

Joshi et al., 2020).210

We adopt a causal masking (Aghajanyan et al.,211

2022) to combine the advantages of both objectives.212

We focus on the masked medical entities within the213

question (prior context) and aim to predict them214

by considering the retrieved snippets (subsequent215

context). Afterward, by auto-regressively com-216

pressing the retrieved snippets, we can leverage217

both advantages. 218

4 Methods 219

In this section, we report our proposed approach 220

for knowledge-injected compression and retrieval 221

augmentation. To retrieve passages similar to a 222

question, we construct a retrieval pipeline com- 223

posed of a large corpus (§4.1). Next, we explain 224

the data processing steps for training, with details 225

about identification of entities within the question 226

and matching descriptions from the retrieval corpus 227

with the knowledge (§4.2). Finally, we detail the 228

training scheme for K-COMP with the proposed ob- 229

jective and explain the inference phase for retrieval 230

augmentation (§4.3). Figure 1 shows an overview 231

of the prompts that K-comp consists of. 232

4.1 Retrieval Framework 233

Corpora. Closed domain tasks have not been as 234

thoroughly explored as open domain tasks, which 235

have achieved notable performance enhancements 236

using Wikipedia as a retrieval corpus (Karpukhin 237

et al., 2020). In contrast to open domains, the 238

challenge in closed domains is that unified corpora 239

have not been established. Research endeavors, 240

such as Xiong et al. (2024); Wang et al. (2024b), are 241

currently underway to address this gap. To ensure 242

coverage of both general and domain knowledge, 243

we adopt the MedCorp corpus (Xiong et al., 2024) 244

as our retrieval corpus. It combines Wikipedia, 245

PubMed1, StatPearls2, and textbooks (Jin et al., 246

2021). 247

Retriever. We employ a lexical-based sparse re- 248

triever to emphasize the entities present in the ques- 249

tion. Simultaneously, to mitigate bottlenecks and 250

efficiently execute similarity searches on our large- 251

scale corpus comprising four distinct text corpora, 252

we use an embedding-based k-NN search (John- 253

son et al., 2019). To build an integrated retrieval 254

system, we employ BM25 (Robertson et al., 2009) 255

and Contriever (Izacard et al., 2022). Specifically, 256

we encode a large-scale corpus C in a data-parallel 257

manner by using dense retrieval, then store each 258

embedding offline in advance. Given a question 259

q, Contriever retrieves multiple relevant passages 260

P ⊆ C based on vector similarity, then re-ranks 261

them lexically by using BM25 to select only the 262

top-k passages P = {pi|pi ∈ P}, |P| = k. This 263

approach semantically selects a bundle of passages 264

1https://pubmed.ncbi.nlm.nih.gov/
2https://www.statpearls.com/
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MedQuAD MASH-QA BioASQ
Train Validation Test Train Validation Test Train Validation Test

Original 13,127 1,640 1,640 27,728 3,587 3,493 3,209 803 707
After filtering 9,077 1,098 1,562 20,546 2,665 3,264 2,288 566 651
% Filtered 30.9 33 4.8 25.9 25.7 6.6 28.7 29.5 7.9

Table 1: Dataset sizes before and after filtering in the entity recognition step. For test data, filtering is applied
exclusively to questions lacking any entities. For other datasets, filtering is additionally conducted for the absence
of corresponding descriptions for the recognized entities.

from an extensive range of text chunks and refines265

the final retrieved passages to be word-centric and266

relevant to the question.267

4.2 Data processing268

Entity Recognition. We rely on off-the-shelf269

tools to perform named-entity recognition3, which270

identifies biomedical entities E = {ei} in each271

question for causal masking. C consists of title and272

text pairs, with the first sentence of each text as-273

sumed to be a short description of the title (Xu et al.,274

2023). We then match these pairs of titles and short275

descriptions with corresponding entities and their276

corresponding knowledge di. Given our assump-277

tion that each question contains at least one medical278

entity, all entities discerned within the question can279

be aligned with corresponding titles and short de-280

scriptions available in the retrieval corpus. If a281

question does not have an entity, its data are ex-282

cluded. Any instances that does not have a corre-283

sponding titles in the retrieval corpus is also filtered284

for the training dataset (Table 1).285

In the test data, even if corresponding titles for286

the entities are absent in the retrieval corpus, K-287

COMP unveils a novel contribution by automatically288

generating domain-specific entity descriptions dur-289

ing inference. Thus, K-COMP provides these de-290

scriptions without needing costly and unnecessary291

tasks, such as searching for medical terms or find-292

ing definitions within the corpus.293

Ground-Truth Summary. To synthesize gold294

summaries, GPT-3.54 compresses the passages by295

considering {P, E} input pairs, and the number296

of passages used for summary synthesis is set to297

5, i.e., |P| = 5. Notably, we explicitly prohibit298

the inclusion of the question in the summary syn-299

thesis process. This is because incorporating the300

question into the input prompt for generating the301

summary risks shifting the focus from crafting302

3We use ScispaCy (Neumann et al., 2019) package.
4We use gpt-3.5-turbo-0125 (https://openai.com/

index/chatgpt/).

keyword-focused summaries to formulating a sum- 303

mary that is aimed at answering the question. De- 304

tailed instructions for the summary synthesis are 305

provided in Table 6 of the Appendix A. 306

4.3 K-COMP 307

Training. q =
[
q1, q2, ..., qN

]
, where qN rep- 308

resents the N -th token in the q. We use the 309

special token <ent> to mask each medical entity 310

spans within q, qm =
[
q1, ..., <ent>, ..., qN−l

]
. 311

Also, a special <eom> token is appended at the 312

end of the description of the corresponding entity, 313

di =
[
d1i , ..., d

M
i , <eom>

]
. An example is provided 314

as follow: 315

qm = What are the <ent> of <ent>? 316

d1 = symptom: {description}<eom> 317

d2 = Down syndrome: {description}<eom> 318

We define the dataset for the compressor as 319

{P, E ,D, s, qm}, where D = {di} and s is a gold 320

summary. By encoding qm and P , we fill the 321

<ent> tokens and generate short descriptions for 322

the masked words: 323

Pθ(E ,D|P, qm) 324

=
∏
i

∏
α,β

Pθ(e
α
i , d

β
i |e

<α
i , d<β

i ,P, qm)

 325

where θ represents the parameters of K-COMP. 326

This approach facilitates the incorporation of 327

descriptions into the prompt for the reader model 328

and ensures that the generated entities and their de- 329

scriptions are regressively encoded. Consequently, 330

a summary is generated causally, focusing on the 331

entities present in the question and their related 332

content, thereby composing a summary centered 333

on these domain entities. 334

Pθ(s|E ,D,P, qm) 335

=
∏
γ

Pθ(s
γ |s<γ , E ,D,P, qm) 336
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General-purpose LLMs Medical-purpose LLMs
Llama-2-13B Llama-2-70B Mixtral-8x7B GPT-3.5-turbo4 MedAlpaca-13B Meditron-70B

BertScore UniEval BertScore UniEval BertScore UniEval BertScore UniEval BertScore UniEval BertScore UniEval

MedQuAD
Without compressor
Top-1 passage 66.62 61.39 78.57 54.51 62.11 44.88 85.14 58.48 73.86 36.06 77.03 53.27
Top-5 passages 72.91 65.85 78.46 56.31 63.35 46.17 84.39 65.14 14.91 8.17 73.65 51.09

With compressor
RECOMP 69.82 65.03 79.11 55.91 58.94 45.15 85.78 58.85 77.95 34.99 74.98 53.42
LLMLingua 61.22 51.42 61.11 45.24 61.43 45.92 85.46 57.5 77.91 42.78 74.45 53.44
FT 71.83 68.13 82.29 61.23 71.7 58.58 85.91 63.02 79.79 41.1 76.34 56.01
K-COMP 74.08 69.21 85.21 64.15 78.6 60.97 86.12 65.65 83.8 45.58 78.27 58.18

MASH-QA
Without compressor
Top-1 passage 59.68 44.49 81.58 58.37 73 50.81 84.4 59.16 77.42 44.92 81.68 55.54
Top-5 passages 63.81 46.77 79.53 58.23 73.79 52.93 84.87 64.11 29.34 17.1 79.85 56.97

With compressor
RECOMP 58.21 44.13 81.92 59.17 73.89 51.31 85.21 61.29 78.52 36.89 81.17 55.68
LLMLingua 53.31 40.54 68.7 51.54 77.17 58.76 84.83 58.96 80.77 48 81.07 58.1
FT 62.25 48.4 83.17 62.57 79.52 59.93 84.91 63.39 80.23 44.38 82.12 59.1
K-COMP 71.48 55.89 84.07 68.97 82.71 63.48 85.2 64.99 82.93 51.12 84.07 61.07

BioASQ
Without compressor
Top-1 passage 68.27 57.38 84.89 61.9 83.72 59.85 88.08 53.62 75.15 38.28 85.74 58
Top-5 passages 71.34 60.61 83.9 64.51 83.84 64.3 88.56 62.61 19.2 11.15 83.6 60.63

With compressor
RECOMP 63.92 47.23 85.33 63.45 82.81 60.72 88.82 57.71 79.11 33.03 85.6 58.24
LLMLingua 65.08 50.09 79.46 58.71 81.87 60.37 88.36 55.33 82.03 42.66 82.62 59.14
FT 67.32 58.6 86.89 62.43 86.79 61.88 88.46 58.01 81.56 38.13 85.47 59.03
K-COMP 72.43 66.16 87.28 65.05 86.93 64.61 88.73 59.44 84.62 44.96 86.56 61.4

Table 2: Main results. We report automatic evaluation for retrieval-augmented QA with and without compressors.

We train the compressor using the standard next337

token objective J(θ):338

Pθ(E ,D, s|P, qm)339

= Pθ(E ,D|P, qm)× Pθ(s|E ,D,P, qm)340

341
∴ J(θ) = max

θ
E(logPθ(E ,D, s | P, qm))342

Inference. At inference time, documents are re-343

trieved in advance to construct the compressor in-344

put batch {q,P}. Unlike the training phase, which345

relied on the NER library3 to pre-identify mask-346

ing spans, K-COMP can generate knowledge based347

on the encoded passages even in the absence of348

masked spans in the question. This enables the349

sequential autoregressive generation of the entities350

and descriptions from the question until the <eom>351

token is produced. Considering the overall context,352

including entities and descriptions, a summary that353

aligns more closely with the question is then gener-354

ated. This process ultimately constructs the input355

prompt for the reader model, ensuring a reliable356

response to the question. The prompt for the reader357

model can be found in Table 7 of the Appendix A.358

5 Experiments359

In this section, we evaluate K-COMP trained360

by causal knowledge injection and the retrieval-361

augmented QA task. We report the datasets and362

settings used in the experiments (§5.1) and discuss363

the main results (§5.2) and analyze the results from 364

various perspectives (§5.3). 365

5.1 Settings 366

Datasets. To reduce potential biases from fine- 367

tuned medical LLMs (Han et al., 2023; Chen et al., 368

2023), we conduct experiments using the medical 369

QA datasets MedQuAD (Ben Abacha and Demner- 370

Fushman, 2019), MASH-QA (Zhu et al., 2020), 371

and BioASQ (Krithara et al., 2023), which were not 372

directly used for training both models. MedQuAD 373

encompasses a wide range of question types re- 374

lated to biomedicine, such as diseases, drugs, and 375

medical tests. MASH-QA is a dataset from the 376

consumer health domain where answers need to be 377

extracted from multiple, non-consecutive parts of a 378

long document. BioASQ is a biomedical dataset de- 379

rived from PubMed, designed to support a range of 380

tasks, including question-answering, information 381

retrieval, and summarization. Although MASH- 382

QA and BioASQ provide gold passages containing 383

answers, our experiments do not utilize these gold 384

passages. Instead, we rely on passages retrieved by 385

our retrieval framework. 386

Evaluation Metrics. Since all datasets consist 387

of long-form answers, we use the trained model 388

to evaluate answers. We quantify the relevance of 389

answers by using BertScore (Zhang* et al., 2020), 390

which evaluates the similarity between two sen- 391
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Llama-2-13B Llama-2-70B MedAlpaca-13B Meditron-70B
BertScore UniEval BertScore UniEval BertScore UniEval BertScore UniEval

MedQuAD
K-COMP 74.08 69.21 85.21 64.15 83.8 45.58 84.07 61.07
−Prior 72.22 69.28 82.77 61.14 80.94 40.82 76.43 56.67
FT 71.83 68.13 82.29 61.23 79.79 41.1 76.34 56.01

MASH-QA
K-COMP 71.48 55.89 84.07 68.97 82.93 51.12 84.07 61.07
−Prior 61.63 48.11 83.32 62.72 80.84 43.97 82.19 61.07
FT 62.25 48.4 83.17 62.57 80.23 44.38 82.12 59.1

BioASQ
K-COMP 72.43 66.16 87.28 65.05 84.62 44.96 86.56 61.4
−Prior 67.12 58.83 87.23 62.37 81.78 39.04 86.41 59.75
FT 67.32 58.6 86.89 62.43 81.56 38.13 85.47 59.03

Table 3: Ablation studies. −Prior denotes the scenario where K-comp does not provide prior knowledge to the
reader LLMs.

tences by exploiting the contextual embeddings of392

the encoder. We also use UniEval (Zhong et al.,393

2022), which is a multi-dimensional evaluation394

metric that has high correlation and similarity with395

human judgment. We explicitly assess the factual396

consistency between generated and gold answers.397

Implementation Details. We fine-tuned Gemma-398

2B (Team et al., 2024) with our knowledge injec-399

tion objective as the compressor. K-COMP was400

trained for 3 epochs with a batch size of 8, using the401

AdamW (Loshchilov and Hutter, 2019) optimizer402

with β1 = 0.9, β2 = 0.999, and ϵ = 1 × 10−8.403

We set the peak learning rate to 1 × 10−4 with404

3% warm-up ratio and linear decay. For compres-405

sors and reader models, we employ top-p sampling406

(Holtzman et al., 2020) with p=1.0 and a temper-407

ature of 0.01. Both training and inference were408

run on 1-2 NVIDIA A100 GPUs with 80GB mem-409

ory. We use vLLM (Kwon et al., 2023) to acceler-410

ate inference. To evaluate K-COMP, we use vari-411

ous models with differing parameters and purposes412

(Touvron et al., 2023; Han et al., 2023; Chen et al.,413

2023; Jiang et al., 2024) within the constraints of414

the available hardware.415

5.2 Results416

Baselines. We compare K-COMP with standard417

RAG approach with top-1 and top-5 retrieved pas-418

sages without applying prompt compression. We419

also compare with previous state-of-the-art prompt420

compression methods, including RECOMP (Xu421

et al., 2024a) and LLMLingua (Jiang et al., 2023a).422

Specifically, for implementing RECOMP, we use423

an abstractive compressor fine-tuned on the Natu-424

ral Questions dataset (Kwiatkowski et al., 2019), 425

and for LLMLingua, we use Llama-2-7B (Touvron 426

et al., 2023) for compression. Furthermore, we 427

evaluate against a model fine-tuned (FT) using only 428

the standard language modeling objective for sum- 429

marization, without causal knowledge injection, to 430

verify the importance of automatically generating 431

prior knowledge. 432

Overall Performance. Table 2 shows the main 433

results of K-COMP compared to the baselines 434

across various reader LLMs. For MedAlpaca, 435

which has the smallest context window size of 2048 436

among the reader models, answer accuracy declines 437

significantly with Top-5 passages input due to the 438

limited window size. Overall, compressing the con- 439

text and providing it to the reader model is effective. 440

Chunking snippets for retrieval is inherently imper- 441

fect, making the Top-1 and Top-5 passages subop- 442

timal. Consequently, a reprocessing stage, such 443

as compression, is required to improve the qual- 444

ity of chunked text and enable the reader model 445

to reference it appropriately. Among baselines, al- 446

though RECOMP is trained in an open domain, 447

it performs relatively better than other baselines 448

when applied to the medical domain. However, 449

for the BioASQ dataset constructed from PubMed, 450

directly providing the retrieved passages to the 451

reader model without compression proves excep- 452

tionally effective. As a result, some baselines per- 453

form better without the compression process than 454

models fine-tuned (FT) on each dataset with com- 455

pressed context. Nonetheless, K-COMP directly 456

provides focused and concise compressed context 457

and supplies domain knowledge, and is therefore 458
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Figure 2: Percentage of Recall@K according to the
variation of K for the retrieved passages and our com-
pressed contexts, where top-5 denotes the five passages
with the highest similarity scores among the 15 passages
retrieved by the retriever.

suitable for reader models with diverse parameters459

and backgrounds.460

Table 3 highlights the importance of automati-461

cally generating prior knowledge by comparing462

it with prompts that do not provide knowledge463

(−Prior). Even −Prior is comparable to the464

baseline fine-tuned for summarization tasks. How-465

ever, it is clear that providing prior knowledge to466

the reader model significantly improves the accu-467

racy of the final answers compared to FT. Addition-468

ally, for the BioASQ data, although the FT is rela-469

tively inferior across several metrics, the injection470

of prior knowledge offers a potential solution. This471

analysis is confined to the QA accuracy of reader472

LLMs as they are influenced by changes in the473

components that form the prompt. The following474

sections will discuss the relevance and alignment475

of the summary.476

5.3 Analyses477

Reranking Preference. In addition to QA task478

performance, it is essential to ensure that sum-479

maries are generated to be relevant to the ques-480

tion. Although human evaluation is valuable, it481

demands significant resources and domain exper-482

tise, which are not readily available in our case.483

Instead, we propose employing a state-of-the-art484

sentence embedding model5 (Li and Li, 2024) as485

a reranker to measure the relevance between the486

context and the question. For each question q, we487

execute the compressor to produce five contexts488

using a high-temperature setting (temperature=1)489

5Following the MTEB Leaderboard (Muennighoff et al.,
2023), we use WhereIsAI/UAE-Large-V1.

MedQuAD MASH-QA BioASQ0

10

20

30

40

50

60

GP
T-

4o
 W

in
 R

at
e(

%
)

Ours
FT
Tie

Figure 3: GPT-4o evaluation. Comparison between K-
COMP’s summaries and FT’s summaries.

based on {q,P} pairs, in a manner similar to the 490

inference. Next, we retrieve the top-15 passages 491

related to q. Thus, we gather a total of 20 passages 492

to be fed to the reranker. By applying Recall@K to 493

these 20 passages, we observe the K passages that 494

are most similar to q, and quantify the proportion 495

of K-COMP varied as K varied. 496

Figure 2 illustrates Recall@K across different 497

values of K. Specifically, we achieved Recall@1 498

scores of 70%, 70%, and 74% on MedQuAD, 499

MASH-QA, and BioASQ, whereas the top-5 re- 500

trieved passages achieved 20%, 20%, and 21%. 501

This comparison demonstrates that the reranker 502

strongly prefers our compressed contexts across all 503

three benchmarks. Additionally, for the BioASQ, 504

where the performance of the top-5 passages in 505

the QA task is relatively high, we estimate that 506

this result is influenced by the overlap between our 507

retrieval corpora and PubMed used to create the 508

dataset. 509

Qualitative Evaluation with GPT-4. We further 510

explore the additional alignment of the context. 511

Given that GPT-4 has been demonstrated to cor- 512

relate highly with human judgments (Liu et al., 513

2023b), we used GPT-4o6 to perform a compara- 514

tive evaluation of summaries generated by K-comp 515

and FT. As can be seen in Figure 3, GPT-4o pre- 516

ferred summaries generated by K-COMP. Specifi- 517

cally, FT’s summaries have an average preference 518

of 21.3%, whereas ours have a preference of 50.7%. 519

Additionally, the average lengths of the summaries 520

generated by the proposed methodology (532 char- 521

acters) are comparable with FT (571 characters). 522

This indicates that effect of GPT’s potential bias 523

towards longer responses (Wang et al., 2024a) on 524

6We use gpt-4o-2024-05-13 (https://openai.com/
index/hello-gpt-4o/).
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Question: How common are ear infections in adults ?

Augmented Passage Answer

FT ### Passage
Ear pain is a common presentation in acute care
settings, with infections of the ear being a fre-
quent occurrence. Acute otitis media is a com-
mon infection affecting children, often accom-
panied by cold symptoms ...

Ear infections are less common in adults than
in children, but they can still occur. Adults are
more likely to experience ear pain due to other
causes.

K-COMP ### Prior Knowledge
Infection:{description}
Adult: {description}

### Passage
Ear infections in adults, such as chronic otitis
media, are common and can be caused by
various bacteria and fungi ...

Ear infections in adults are common and can be
caused by various bacteria and fungi. The most
common causative bacteria include Staphylococ-
cus aureus, Pseudomonas aeruginosa, Proteus
mirabilis, and Prevotella melaninogenica. In
some cases, ear infections in adults may be mis-
diagnosed as other conditions, highlighting the
importance of proper diagnosis and treatment.

Table 4: Case study. We show the passages used to augment the reader prompt and the answers. Red texts highlight
the medical entities within the question.

the preferences is minor. Detailed prompts for the525

GPT-4o are provided Table 8 in the Appendix A.526

Inference Speed. In Table 5, we report the num-527

ber of tokens in the augmented documents and528

the inference time as metrics for evaluating effi-529

ciency. Specifically, we used Llama-2-70B as the530

reader model and measured the GPU runtime on the531

BioASQ test set. Both the compressor and reader532

model are executed on a single A100 GPU. Even533

when considering the time needed for the compres-534

sor inference, our method was able to triple the535

throughput compared to prepending the top-5 pas-536

sages, making it more efficient. Moreover, we note537

that inference speed is dependent on the implemen-538

tation and size of the reader model. For instance,539

models with more parameters will suffer increased540

latency by increasing the number of input tokens.541

This phenomenon amplifies the speed advantage of542

K-COMP.543

Case Study with K-COMP and FT. In Table 4,544

we evaluate how K-COMP generates a summary545

when aligned with the question and the prior knowl-546

edge required to answer it. Here, K-COMP is able547

to address the incidence of ear infections in adults,548

and provided comprehensive information on com-549

mon characteristics and the types of bacteria fre-550

quently responsible for them. In contrast, the con-551

text generated by FT offers information on ear pain552

and the incidence of ear infections in children, but553

fails to provide a focused context on the prevalence554

of ear infections in adults. FT merely summarizes555

the passages retrieved based on semantic and over-556

Settings Top-1 Top-5 K-COMP

Input tokens 321 1450 203
Inference time 1,486s 3,926s 1,043s
Compression time - - 248s
Total time 1,486s 3,926s 1,291s

Table 5: Inference speed of Llama-2-70B on BioASQ.

all lexical similarities, including keyword matches, 557

to the question without considering the queried in- 558

tent. Consequently, the reader model does not fully 559

trust the augmented passages; instead, it perceives 560

them as irrelevant noise and generates answers not 561

based on the passages. This result can lead to inac- 562

curacies and potential hallucinations. 563

6 Conclusion 564

In this paper, we have proposed a novel method 565

to improve retrieval augmented QA by compress- 566

ing retrieved documents into text summaries fo- 567

cused on questions. We design a comprehensive 568

scheme that begins with identifying medical enti- 569

ties and annotating data to automatically generate 570

prior knowledge, then extend training and inference 571

methods that enable the autoregressive generation 572

of summaries that incorporate domain knowledge 573

while considering the context causally. Our ex- 574

periments demonstrate that the prior knowledge 575

and summaries generated by K-COMP positively 576

impact the reader model’s ability to answer and 577

increase the performance of retrieval-augmented 578

generation in the medical domain. 579
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Limitations580

We rely on an off-the-shelf NER library to work581

in scenarios where medical entities exist in the582

question. However, our methodology is ambigu-583

ous for QA where the NER tool does not auto-584

matically detect keywords or entities absent in the585

questions. To mitigate these issues, expanding the586

retrieval corpus with additional text chunks can587

inject more knowledge into the compressor and588

learn domain-relevant entities, but this will drasti-589

cally increase the cost of annotating the data and590

require enormous resources for retrieval to perform591

nearest-neighbor searches. Therefore, we consider592

the problem of extending these retrieval datastores593

as an important task in retrieval augmentation, and594

this method can be extended in future work.595

Also, our study mainly focuses on English med-596

ical QA, which limits generalization to other lan-597

guages and domains. Additional approaches are re-598

quired to investigate potential language and domain599

adaptation tasks. Addressing these aspects will en-600

able the proposed methodology to be applied in601

other settings, which will provide a more extensive602

understanding and application of the approach in603

diverse linguistic and multi-domain environments.604

Ethical Statement605

We utilized public datasets such as MedQuAD (CC-606

BY-4.0 License), MASH-QA (Apache License),607

and BioASQ (CC-BY-2.5 License) in our research.608

When synthesizing ground-truth summaries, we en-609

sure that no personally identifiable information is610

used and that all data are anonymized. Our method-611

ology is still in its early stages and is not yet ready612

for direct practical use in medical domains, where613

reliability and accuracy are paramount. In partic-614

ular, hallucinations can have a critical impact on615

patient care and clinical decision-making. There-616

fore, our methodology is considered to mitigate hal-617

lucination by emphasizing the domain knowledge618

in healthcare QA research rather than substituting619

professional medical judgment and by highlighting620

the alignment of summaries with questions, thus621

posing no risk of harm.622
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A Appendix1065

Questions: What are the treatments for Complex Regional Pain Syndrome ?
(Question is not included in the prompt.)

Instruction
Please extract the content about the entity in fewer than four sentences.

### Passage
Complex regional pain syndrome: a review of evidence-supported treatment options.
Complex regional pain syndrome consists of pain and other symptoms that are unexpectedly severe or protracted after an injury.
In type II complex regional pain syndrome, major nerve injury, often with motor involvement, is the cause; in complex regional
pain syndrome I, the culprit is a more occult lesion, often a lesser injury that predominantly affects unmyelinated axons.
... (skip)
Other treatments with encouraging published results (eg, neural stimulators) are not used often enough. We hope to encourage
clinicians to rely more on evidence-supported treatments for complex regional pain syndrome.

Physical modalities for complex regional pain syndrome.
Hand therapy is the backbone of a treatment program for complex regional pain syndrome. Various treatment techniques and
physical modalities are described in the framework of a clear set of treatment goals. Hand therapy is often the only treatment
necessary for simple cases. Adjunct treatments, such as injections or other pharmacologic agents, may be needed when pain
control is problematic.

[Spinal cord stimulation for complex regional pain syndrome: report of 2 cases.]
Two adolescents with complex regional pain syndrome (CRPS) were treated safely and effectively by spinal cord stimulation
(SCS). They complained of intractable pain resistant to conservative therapies. Whereas continuous epidural anesthesia
temporarily reduced pain, SCS was more effective in alleviating chronic severe pain and improving the quality of life. With
careful selection of patients, SCS therapy might be recommended even in young cases.

Complex Regional Pain Syndrome – Treatment / Management – Pharmacotherapy
Multiple pharmacotherapeutic agents are used in the management of CRPS. The commonly used therapeutic options in this
category include anti-inflammatory medications, anticonvulsants, antidepressants, transdermal lidocaine, opioids, NMDA
antagonists, and bisphosphonates. Using a multimodal pharmacologic regimen that combines several different classes may lead
to superior outcomes.

[Complex regional pain syndrome-An interdisciplinary view from the surgical consultation.]
Chronic pain disorders are common and have a substantial impact on the patients’ daily life. The specific syndrome of complex
regional pain syndrome (CRPS, Sudeck’s disease) is comparatively rare and characterized by additional sensorimotor, vascular
and trophic dysfunctions.
... (skip)
Bisphosphonates, steroids and antiepileptic drugs are well-established as medicinal treatment but should always be used in
combination with functional therapy. Interventional treatment options are reserved for patients with complicated and enduring
symptoms and should be carried out in specialized centers. The course of the disease is highly individual and frequently requires
a long-term interdisciplinary treatment.

### Entity
treatment, Complex Regional Pain Syndrome

Table 6: Prompt for summary synthesis.
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### Passage
Psoriasis in the mouth is rare, with lesions appearing as white or grey-yellow plaques. Fissured tongue is a common finding
in those with oral psoriasis, occurring in 6.5-20% of people with psoriasis affecting the skin. Psoriasis in the mouth may be
asymptomatic or present as white or grey-yellow plaques in the mouth

### Prior Knowledge
psoriasis: Skin disease
mouth: First portion of the alimentary canal that receives food

### Questions
What does psoriasis on your lips look like?

### Passage
Psoriasis
Seborrheic-like psoriasis Seborrheic-like psoriasis is a common form of psoriasis with clinical aspects of psoriasis and seborrheic
dermatitis, and it may be difficult to distinguish from the latter. This form of psoriasis typically manifests as red plaques with
greasy scales in areas of higher sebum production such as the scalp, forehead, skin folds next to the nose, the skin surrounding
the mouth, skin on the chest above the sternum, and in skin folds.

Clinical presentation of psoriasis.
Psoriasis is a chronic, inflammatory disease affecting 1-3% of the world’s population. Joints can be affected in up to 30% of
patients. About one third of patients have either severe or moderate (involving more than 10% of body surface area) disease.
... (skip)
Nail psoriasis shows various features: nail pits; oil spots; subungual hyperkeratosis; onycholysis. Rare forms include psoriasis
circinata, lip psoriasis and oral psoriasis. Differential diagnosis includes many other dermatological conditions.

Psoriasis
Mouth Psoriasis in the mouth is very rare, in contrast to lichen planus, another common papulosquamous disorder that commonly
involves both the skin and mouth.
... (skip)
The microscopic appearance of oral mucosa affected by geographic tongue (migratory stomatitis) is very similar to the appearance
of psoriasis. However, modern studies have failed to demonstrate any link between the two conditions.

Oral changes in patients with psoriasis.
Psoriasis is one of the most frequent skin diseases. The cause of psoriasis is not fully expained as there are many factors
(infectious, traumatic, hormonal, and chemical) that may play a role in the manifestation of its symptoms.
... (skip)
The psoriasis arthritis changes can also affect temporomandibular joint and impair the function of stomatognathic system.
Because of these reports, cooperation of dermatologists and dentists in psoriasis care seems to be necessary.

Psoriasis – History and Physical
Erythrodermic psoriasis presents with widespread inflammation in the form of erythema and exfoliation of the skin covering
more than 90% of the body area. It is associated with severe itching, swelling, and pain.
... (skip)
Fissured tongue is the most common finding of oral psoriasis and has been reported to occur in 6.5% to 20% of people with
psoriasis affecting the skin.

### Questions
What does psoriasis on your lips look like?

Table 7: Prompt for reader LLMs. (Above: K-COMP, Below: Top-5 passages)
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Instruction
Select which summary (Summary 1 or Summary 2 or Tie) is more relevant and plausible as a rationale to answer a given question.
Choice: [Summary 1, Summary 2, Tie], do not offer any opinions other than the choice.

### Summary 1
X-chromosome inactivation (XCI) is a process that silences one of the two X chromosomes in female cells, leaving one X active
and one inactive. Some genes escape XCI, allowing them to remain active in some somatic cells. This escape is important for
genes like TLR7, which are essential for innate immunity and autoimmune diseases. Additionally, some genes can be expressed
from both active and inactive X chromosomes, indicating the presence of double dosage in females. This double dosage can lead
to differences in gene expression between males and females, with some genes being more active in females compared to males.

### Summary 2
Escape from X inactivation is a process that allows some genes on the X chromosome to escape silencing and be expressed in
somatic cells. This process is crucial for maintaining X chromosome inactivation in female cells, as some genes may escape
silencing and be expressed in somatic cells. Escape from X inactivation is a phenomenon that has been studied in various
organisms, including humans, and has implications for immune responses and autoimmune diseases.

### Question
In which cells does TLR7 escape X-chromosome inactivation?

Table 8: Prompt for GPT-4o evaluation. (Summary 1: K-COMP, Summary 2: FT)
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