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ABSTRACT

Adversarial patches cause targeted misclassification by steering a model’s evi-
dence toward a small, visible region while human perception remains largely un-
affected. We propose PatchSAGE, a post hoc, model-agnostic detector that at-
taches lightweight probes to a frozen classifier and fuses three complementary
signals: (i) input-gradient statistics of the predicted class, (ii) layer-wise sensitiv-
ity to small activation noise, and (iii) human–model saliency alignment, quantified
by comparing Grad-CAM with human saliency maps. Features from these probes
are fed to a small secondary classifier (detector) that predicts whether an input is
patched. To our knowledge, PatchSAGE is the first adversarial-patch detector to
explicitly incorporate human attention modeling via saliency alignment, aligning
what the model relies on with where humans look, without modifying or retrain-
ing the base model. Across CAT2000, FIGRIM, and SALICON, using ResNet-50
and EfficientNet-B0 backbones, PatchSAGE achieves F1 scores up to 99.6% and
remains in the 90–99% range across settings, outperforming probing baselines,
SentiNet, and X-Detect in our setting. Ablations show monotonic gains from
adding gradients and alignment to sensitivity, indicating complementary cues and
highlighting alignment’s discriminative power. PatchSAGE is simple to deploy
(post hoc; no retraining) and provides interpretable rationales via its saliency and
sensitivity components, suggesting a practical path to robust, explainable detec-
tion of adversarial patches.

1 INTRODUCTION

Adversarial patch attacks involve embedding a localized, often conspicuous perturbation (e.g., a
sticker) into an image to mislead a deep neural network’s prediction while leaving human percep-
tion largely unchanged Brown et al. (2017). Defending against such localized attacks is challenging
because the adversary’s modification is not a small, dispersed noise (as in classic ℓp attacks) but a
concentrated region that can drastically alter model features. Crucially, these attacks exploit discrep-
ancies between model and human vision; the model’s decision can hinge on the adversarial patch,
whereas humans ignore it and classify the image based on the true object.

A straightforward approach is to detect adversarial inputs rather than attempting to correct them.
However, adversarial example detection has proven notoriously difficult. Prior studies have shown
that many proposed detectors can be defeated by adaptive attacks that specifically target their de-
tection cues Carlini & Wagner (2017). In fact, characteristics once thought intrinsic to adversarial
examples (e.g., abnormal activation statistics or input deviations) can often be masked by a suffi-
ciently sophisticated adversary Tramer et al. (2020). This arms race underscores the need for detec-
tion methods that capture fundamental differences in model behavior when an adversarial patch is
present, yet are general enough to handle novel attacks.

Our key insight is that adversarial patches induce inconsistent model behavior that can be revealed
through a fusion of interpretability, saliency alignment, and sensitivity analysis. We hypothesize that
by probing the model’s internal responses – measuring how input gradients and intermediate fea-
ture sensitivities change – and by comparing model attention with human attention, we can capture
revealing signs of patch attacks.
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In this paper, we introduce a probe-based adversarial patch detector that systematically combines
these complementary signals. Small probe modules attached to the base classifier extract a rich
set of features from a given input: (1) Gradient statistics such as the mean and maximum absolute
gradient of the predicted class score with respect to the input pixels, which tend to be anomalously
large or localized under patch attacks; (2) Activation sensitivity metrics that quantify how sensitive
the final prediction is to perturbations in each layer or region (e.g., how much the output changes
if we inject noise or mask activations at a given layer), capturing the model’s brittleness when a
patch dominates the features; and (3) saliency-based interpretability divergence between the model’s
visual explanation and human vision, measured by comparing the model’s Grad-CAM heatmap
with a ground-truth human saliency map for the image. Intuitively, a clean image should have a
reasonable overlap between model and human salient regions, whereas an image with an adversarial
patch will show the model fixating on the patch (high model saliency there) which humans would
not, yielding a large divergence.

While prior adversarial patch detection methods such as SentiNet, Metzen’s auxiliary detectors,
and X-Detect leverage either saliency or internal representations independently, they often suffer
from limited interpretability or susceptibility to adaptive attacks. Our approach departs from these
by explicitly integrating human-aligned interpretability, i.e., saliency alignment, into the detection
pipeline. We fuse three complementary modalities: layer-wise sensitivity, gradient statistics, and
human-vs-Grad-CAM saliency divergence, to create a detection mechanism that not only distin-
guishes adversarially patched images with high accuracy but also offers transparency into why a
prediction was flagged. To our knowledge, this is the first method to systematically combine human
saliency alignment with gradient and activation-based cues, demonstrating that interpretability and
robustness are not in tension, but mutually reinforcing. This enables us to set a new state-of-the-art
in both detection performance and qualitative explainability.

2 RELATED WORK

Adversarial Example Detection: A variety of detectors have been proposed for adversarial examples,
though many focus on ℓp perturbations rather than patch attacks. Classical detection methods in-
clude augmenting the classifier with an additional outlier/adversary output class Grosse et al. (2017),
anomaly-modeling detectors (e.g., GAN-based) Wang et al. (2023), uncertainty-based Bayesian de-
tectors Li et al. (2024) and feature-statistics detectors ?, training a separate binary classifier on in-
puts (or on transformed inputs) to flag adversaries, and inserting small sub-networks into the victim
model to monitor its internal activations. For instance, Metzen et al. train a small CNN on features
from an intermediate layer of a vision model to detect adversarial perturbations Metzen et al. (2017).
Bhagoji et al. Bhagoji et al. (2017) reduce the input dimension via PCA and train a fully-connected
network on the compressed input as a detector, and Li and Li Li & Li (2017) model convolutional
filter statistics to distinguish adversarial from benign inputs.

Statistical and Distributional Anomalies: Some works detect adversarial examples by identifying
distributional shifts. Grosse et al. Grosse et al. (2017) use statistical tests (e.g., maximum mean
discrepancy) and outlier classes to flag inputs off the data manifold. Feinman et al. Feinman et al.
(2017) apply kernel density and Bayesian uncertainty estimates in the feature space to detect anoma-
lies. These model-agnostic methods are lightweight but can be bypassed by adaptive attacks. Still,
the core idea—that adversarial inputs differ statistically—motivates our use of gradient and activa-
tion statistics to capture measurable deviations in model behavior.

Interpretation-Based Defenses: Recent studies have explored the intricate connection between in-
terpretability and adversarial robustness. ? argue that deep networks do not learn robust, semanti-
cally meaningful representations, as adversarial examples can easily disrupt apparent interpretabil-
ity. They propose adversarial training with a consistency loss to align neuron responses more closely
with human-understandable concepts, allowing users to trace errors back to specific neurons and
gain insight into model decisions. Prior work has also examined the intricate relationship between
adversarial robustness and saliency map interpretability, highlighting how robust models tend to
produce more aligned and faithful saliency maps Mangla et al. (2020). Orthogonally, architectural
choices can also influence human–model alignment of explanations: for example, dilated convolu-
tions with learnable spacings have been shown to yield Grad-CAM maps that more closely match
human saliency (Chamas et al., 2024).
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Liu et al. (2021) use explanations to guide adversarial sample generation for robust retraining, high-
lighting that understanding model decisions reveals vulnerabilities. SentiNet Chou et al. (2020)
directly uses Grad-CAM to detect localized universal attacks by identifying salient regions, trans-
planting them onto benign images, and checking if they induce misclassifications—hallmarks of
adversarial patches. SentiNet requires no additional training or prior attack knowledge, using the
model’s own generalizable attention as a signal of attack. Inspired by this, our method instead quan-
tifies the misalignment between model and human attention, i.e., saliency alignment, as a numeric
feature, offering a continuous measure of anomaly in focus and addressing the interpretability gap
left by prior works.

Similarly, the paper Boopathy et al. (2020) demonstrates that enhancing interpretability, particularly
through guided backpropagation and integrated gradients, improves robustness against adversarial
attacks. Their results suggest a synergistic benefit where interpretability serves both as a defense
signal and a training regularizer.

On the other hand, several works such as Heo et al. (2019) caution that interpretability tools can
themselves be manipulated. These attacks on interpretation reveal that even saliency methods can
be co-opted by adversaries to present misleading explanations, suggesting a limit to how much trust
interpretability alone can guarantee.

Our work shares the motivation of leveraging model explanations, but instead of relying on post
hoc visualizations or interpretability-enhanced training, we define measurable proxies—such as
saliency-human alignment and activation shifts—as compact, input-level features for adversarial
detection.

Probe Networks and Layer Behavior: Another defense strategy is to monitor internal activations for
anomalies. Metzen et al. Metzen et al. (2017) proposed training a subnetwork on features from
a specific layer, which Rounds et al. Rounds et al. (2020) extend in probing by attaching probe
CNNs to every layer. Each probe compresses activations into a fixed-size output, and all are con-
catenated and classified as “adversarial” or “benign.” This approach, trained across attacks, captures
generalizable activation patterns and achieves higher detection rates than single-layer methods. Our
method also follows a probing philosophy but uses analytical probes—such as gradients, sensitivity,
and saliency misalignment—rather than trainable CNNs. This yields compact, interpretable fea-
tures without modifying or retraining the model, making our approach post hoc and model-agnostic.
While Rounds et al.’s approach may better capture subtle distribution shifts, our probes target high-
level, intuitive discrepancies with minimal overhead.

Gradient-based Works: Adversarial patches similar to adversarial perturbations are identified as
features Ilyas et al. (2019) that produce extremely high gradient magnitudes localized to the
patch—unlike benign images with smoother, broader gradient distributions. Prior work such as
Gradient Similarity detectors Dhaliwal & Shintre (2018) and SentiNet Chou et al. (2020) confirm
that leveraging gradient summary statistics effectively distinguishes patched inputs.

Adversarial Patch Defenses: For adversarial patch attacks, certified defenses like Minority Reports
McCoyd et al. (2020) adopt a proactive masking strategy. By occluding different regions of an
image and analyzing prediction consistency, the method identifies clusters of correct predictions
(true label) that emerge when the patch is masked—signaling an attack. This ensemble approach
provides formal guarantees for patches below a certain size, offering strong robustness with low
false positives and modest clean accuracy loss. While our method does not offer certification, it
similarly avoids assuming patch location, instead detecting indirect signals of tampering through
gradient, activation, and saliency-based probes.

X-Detect Hofman et al. (2024) targets physical patch attacks in object detection by combining two
patch-resilient base detectors: one uses segmentation and a prototype-based classifier, the other
perturbs input images to disrupt patch effects. Disagreement between these detectors and the original
model flags a potential attack. With reported near-zero false positives and interpretable outputs,
X-Detect emphasizes real-world deployment and explainability. Unlike our lightweight, classifier-
focused approach that aligns model and human saliency, X-Detect requires multiple models and is
tailored to object detection. Still, both methods reflect a growing emphasis on detection systems that
not only identify attacks but also explain their reasoning.
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3 METHODS

Our detection framework augments a given pretrained classifier with probes that extract diagnos-
tic features from the model’s response to an input. These features are then input to a separate
lightweight classifier (the detector) that predicts whether the image is clean or contains an adversar-
ial patch. The overall pipeline is illustrated as follows (in a conceptual sense):

Base Classifier (Frozen Model f ): This is the original vision model which we suspect could be
attacked. We do not modify f ’s weights. Given an input image x, the model produces a predicted
class ŷ = f(x) along with intermediate feature maps at each layer.

Feature Extraction Probes: We extract three categories of features from x with respect to f :

Gradient-Based Statistics: We compute the gradient of the model’s output score for the predicted
class ŷ with respect to the input image pixels, ∇xfŷ(x). For efficiency, one can use the final linear
layer’s gradient backpropagated to the input. From this gradient map, we derive summary statistics.
In our implementation, we take the mean, maximum, minimum, and standard deviation of the gra-
dients’ vector. Intuitively, a normal image typically yields moderate gradient magnitudes distributed
across the object, whereas an adversarial patch can create extremely large gradients concentrated in
the patched region Dhaliwal & Shintre (2018). For example, if a sticker is driving the classification,
changing pixels on that sticker will drastically affect the output, whereas clean images might have
lower, more spread-out gradients. These scalar features capture the intensity of the model’s reliance
on specific pixels. We also record the spatial location of the maximum gradient as a percentage of
image area (to indicate whether the strongest gradient is concentrated in a small area), although this
also relates to the saliency divergence feature described later.

Activation Sensitivity: We probe the model’s layer-wise robustness by introducing small perturba-
tions at various layers and measuring the impact on the output using a held-out subset of the dataset.
Specifically, for each major convolutional block or layer Li of the network, we perform a controlled
perturbation and see how much the predicted class confidence changes. A simple method is to add a
small Gaussian noise ϵ to the activation map at Li and run the perturbed input forward to get a new
prediction ŷi′. We then compute the drop in the original class’s logits.

Adversarial patches tend to make the network’s decision-making fragile in certain layers. While
patch attacks are structured and localized rather than stochastic, perturbation sensitivity remains a
valid proxy for fragility. In adversarial learning literature, adversarial noise propagation research
demonstrates that injecting noise into hidden layers reveals which layers disproportionately amplify
adversarial signal Liu et al. (2021). Likewise, Parametric Noise Injection (PNI) methods show that
Gaussian noise at intermediate layers can expose and regularize the internal features most vulnerable
to adversarial perturbations, including structured ones like patches He et al. (2019).

For instance, if a patch strongly activates some filters, disrupting those filters slightly might cause
a large output change, indicating an anomalously high sensitivity. We record the sensitivity values
for a selection of layers (each ResNet block). These values serve as features that characterize the
stability profile of the network for the given input. We expect clean images to have a more uniform
or lower sensitivity, while patched images might show a spike at the layers where the patch’s features
dominate.

Grad-CAM–Human Saliency Divergence: This feature captures the misalignment between model
focus and human intuitive focus. We first generate a Grad-CAM Selvaraju et al. (2017) heatmap
for the predicted class ŷ, which highlights regions in the image that most strongly influence the
model’s prediction. Grad-CAM works by using the gradients of ŷ with respect to intermediate
feature maps to weight those feature maps, producing an upsampled heatmap that localizes important
image regions for the decision. Separately, for the same image x, we obtain a human saliency map.
In our case, since we use images from datasets with eye-tracking ground truth (CAT2000 Borji &
Itti (2015), FIGRIM Bylinskii et al. (2015), SALICON Jiang et al. (2015)), we have a density map
of where human viewers tend to look in the scene (for a general task of free viewing). If ground-
truth human saliency is not available, one could use a state-of-the-art computational saliency model
to predict a human-like attention map for the image. We then compare the Grad-CAM map G(x)
with the human saliency map H(x). There are several ways to measure the divergence: we can
compute the Pearson correlation between G and H (low correlation means the model is looking at
different places than a human expects), or compute a Kullback–Leibler (KL) divergence Kullback
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(1951) if we treat them as probability distributions over image pixels. We choose Intersection over
Union (IoU) Nowozin (2014) after thresholding both maps; IoU ranges from 0 (no overlap) to 1
(perfect overlap). For a clean image without a patch, we anticipate that the model, if it’s functioning
normally, will focus on the actual object or salient region that a human might also find relevant (not
always true, but often models do pick up on prominent objects). Thus G and H should have a decent
overlap, yielding a relatively high correlation. In contrast, an adversarial patch is usually an artificial
pattern not meaningful to humans; it might even be intentionally placed in a location that a person
wouldn’t normally focus on (to avoid detection). The model, however, locks onto it to make its
decision. This yields a low correlation (or high divergence) between G(x) and H(x). For example,
in an image of a dog with a sticker on the corner, the Grad-CAM for a fooled model might highlight
the sticker area strongly, whereas human saliency is centered on the dog’s face – the divergence
feature will be large. We use 1 minus the chosen alignment score (e.g., 1 − CC or 1 − IoU) as a
divergence feature, and optionally the fraction of Grad-CAM mass that falls on low-human-saliency
regions as a secondary measure.

3.1 DETECTION CLASSIFIER TRAINING:

We gather a dataset of such feature vectors by applying the above probes to a mix of benign images
and adversarial patch images. In our experiments, we leverage the CAT2000, FIGRIM, and SALI-
CON datasets’ images and saliency maps. We synthetically apply adversarial patches to a subset of
these images. We then compute ϕ(x) for each clean and patched image. Using this data, we train
a binary classifier D(ϕ(x)) that outputs attack present vs clean. We explored both a simple logis-
tic regression (for greater interpretability) and a small multi-layer perceptron as D. The classifier
training is standard supervised learning, minimizing binary cross-entropy. We take care to prevent
overfitting by using cross-validation, given the relatively low-dimensional feature space and the fact
that our positive samples might have some biases (since they are generated patches). The outcome is
a learned detector that can take a new image, extract the probe features, and predict if a patch attack
is likely.

3.2 DETECTION INFERENCE:

At test time, for any new input image, we run the same feature extraction process and then feed
the feature vector to D. The speed of this process depends on how many perturbations and for-
ward/backward passes are needed. In our implementation, we used one backward pass for the input
gradient, one forward pass for Grad-CAM computation. Thus, while not as fast as a single forward
pass defense, our method could be deployed in an offline filtering scenario or on powerful machines
for real-time analysis (especially if we reduce the number of probes or optimize the implementa-
tions).

Algorithm 1 Adversarial Patch Detection using Weighted Activations, Gradients, & Saliency Align-
ment
Require: pretrained classifier f , human saliency map generator h, set of test images X , patch

detection classifier g
1: for x ∈ X do
2: y ← argmax f(x)
3: Compute Grad-CAM saliency: smodel = Grad− CAM(f, x, y)
4: Load human saliency: shuman = h(x)
5: Compute alignment score: a = IoU(smodel, shuman)
6: For each layer ℓ:
7: Perturb activations slightly and compute confidence drop: ∆ℓ

8: Weighted activation feature: wℓ = ∆ℓ · E[|fℓ(x)|]
9: Compute input-gradient norm: g = ∥∇xf(x)y∥

10: Form feature vector: z = [w1, . . . , wL, g, a]

11: Predict detection label: d̂← g(z)

12: Output: clean if d̂ = 0, adversarial ifd̂ = 1
13: end for

5
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Table 1: Detection performance comparison across methods on CAT2000, FIGRIM and SALICON
datasets. Metrics are Precision, Recall, and F1 score. Bold values indicate best performance in
each row. Abbreviations: WA = Weighted Activations; WA+Grad = WA + Gradient Statistics;
WA+Grad+Align = WA + Grad + Saliency Alignment.

Dataset Model Metric Baselines Our Method

Probing SentiNet X-Detect WA WA+
Grad

WA+
Grad+
Align

CAT2000

ResNet-50
Precision 93.76 49.84 51.08 82.00 82.31 99.48
Recall 93.63 97.80 50.12 83.86 81.01 99.81
F1 93.62 66.40 51.00 83.10 84.01 99.64

EfficientNet-B0
Precision 88.18 51.14 74.98 81.98 91.01 91.40
Recall 87.62 97.05 51.20 81.64 90.60 88.17
F1 87.58 66.21 34.00 81.58 90.90 89.47

FIGRIM

ResNet-50
Precision 47.59 48.88 49.00 81.43 81.17 81.74
Recall 49.02 68.50 50.04 81.46 95.63 86.62
F1 38.98 57.05 36.66 80.31 89.79 82.30

EfficientNet-B0
Precision 23.00 50.42 52.34 75.56 74.90 95.09
Recall 22.37 47.24 49.99 83.93 92.37 94.86
F1 23.01 48.78 34.30 77.69 81.58 94.23

SALICON

ResNet-50
Precision 70.01 64.58 26.00 93.66 94.18 91.74
Recall 63.36 74.50 51.89 98.52 96.29 94.26
F1 59.00 69.18 35.06 96.01 95.15 92.83

EfficientNet-B0
Precision 95.00 91.50 63.02 93.82 92.91 93.92
Recall 96.72 37.87 54.90 97.26 94.60 95.53
F1 97.01 53.54 43.56 92.44 93.67 93.85

To generate adversarial patches, we adapt the Expectation over Transformation (EoT) framework to
craft robust, transferable, and universal triggers. Each patch is a square region occupying approx-
imately 2% of the image area, consistent with the scale of localized, realistic threats. Patches are
placed at random spatial locations within the image bounds, subject to boundary checks to prevent
clipping. The patch is optimized against the frozen image classifier using a cross-entropy loss to
maximize confidence in a randomly selected fixed target class. During inference, the finalized patch
is overlaid on held-out test images and the resulting patched images are passed through the detector
for evaluation.

4 EXPERIMENTS

4.1 QUANTITATIVE EVALUATION

We evaluated the proposed detector on CAT2000, FIGRIM, and SALICON, using human saliency
maps as ground truth for our Grad-CAM alignment measure. Adversarial patches were generated
against pretrained ImageNet classifiers (ResNet-50 and EfficientNet-B0) using an expectation-over-
transformations variant, and the detector was tasked with separating patched from clean images. We
report precision, recall, and F1.

With the full feature set (WA+Grad+Align), the detector attains 99.64% F1 on CAT2000/ResNet-
50, 89.47% F1 on CAT2000/EfficientNet-B0 (with best precision 91.40% though F1 is slightly
surpassed by WA+Grad at 90.90%), 82.30% F1 on FIGRIM/ResNet-50 (again WA+Grad leads
at 89.79%), and 94.23% F1 on FIGRIM/EfficientNet-B0 (best). On SALICON, WA yields the
strongest ResNet-50 F1 (96.01%), with WA+Grad at 95.15% and WA+Grad+Align at 92.83%; for
EfficientNet-B0, WA+Grad+Align leads at 93.85% (vs. 93.67% for WA+Grad and 92.44% for WA).
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These trends reflect dataset/backbone interactions: the alignment term often boosts precision and
stabilizes decisions, while in some settings a two-cue variant (WA+Grad) attains the highest F1.

On CAT2000/ResNet-50, baselines are markedly lower (Probing 93.62% F1; SentiNet 66.40%;
X-Detect 51.00%), whereas WA+Grad+Align reaches 99.64%. On FIGRIM/EfficientNet-B0, our
full model achieves 94.23% F1, dominating Probing (23.01%), SentiNet (48.78%), and X-Detect
(34.30%). For SALICON/EfficientNet-B0, the Probing baseline is very strong (97.01% F1), and
our method remains competitive (93.85%), while providing the added benefit of human-model align-
ment diagnostics.

The rows for WA and WA+Grad clarify contributions. On CAT2000/ResNet-50, F1 climbs from
83.10% (WA) → 84.01% (WA+Grad) → 99.64% (WA+Grad+Align). On CAT2000/EfficientNet-
B0, WA+Grad edges out the full model (90.90% vs. 89.47%), whereas on FIGRIM/EfficientNet-B0
and SALICON/EfficientNet-B0, adding alignment yields the best F1 (94.23% and 93.85%). Overall,
the cues are complementary: gradients and sensitivities expose brittle, patch-driven computation,
while alignment verifies that the model’s evidence remains human-consistent.

Why is SALICON challenging?: SALICON’s “human saliency” is derived from mouse tracking
rather than eye fixations, yielding coarser, noisier, and more center-biased maps with higher inter-
subject variance Tavakoli et al. (2017). Combined with COCO’s cluttered, multi-object scenes and
ImageNet-trained backbones that emphasize a single discriminative object, clean Grad-CAM often
only partially overlaps the “human” map. This compresses the clean–vs–patched alignment margin
and weakens alignment as a detector signal.

Why can WA+Grad outperform WA+Grad+Align?: When the saliency reference is noisy or mis-
matched (mouse proxies or a saliency model under domain shift), the alignment term introduces
variance and false penalties. Meanwhile, weighted activations and gradient statistics already capture
patch-induced brittleness. Given Grad-CAM’s coarse spatial resolution and layer sensitivity, the
alignment cue can be destabilizing; in such regimes, the two-cue detector is more reliable.

4.2 QUALITATIVE ANALYSIS

Figure 1 illustrates examples of our detections. For clarity, we present visualizations in a vertical
pairing format, where each benign image and its associated interpretability maps (Grad-CAM and
human saliency prediction maps, both binarized using a 75-percentile thresholding) are followed
by their adversarially patched counterpart. This row-wise arrangement facilitates a step-by-step
comparison of the model’s interpretive shift under attack. In a benign example, the Grad-CAM
highlights the true object and overlaps substantially with the human saliency. In contrast, in the
patched image, Grad-CAM concentrates on the adversarial patch that has minimal human saliency.
Our detector correctly flags the latter as attacked.

4.3 FEATURE ABLATION STUDY

We conducted ablation experiments to quantify the importance of each feature group. In Table 1
(and additional ablation figures), we see that each category of features contributes significantly to
the detector’s success: leaving out the gradient-based features or leaving out the saliency-divergence
feature causes a noticeable drop in performance. For instance, excluding the human-saliency align-
ment cue reduces F1 from 99.64% to 84.01% on CAT2000/ResNet-50 (WA+Grad) and from 99.09%
to 91.90% on CAT2000/EfficientNet-B0 (WA+Grad). It also lowers the true positive rate at low
false-positive levels. The layer-sensitivity features are somewhat correlated with the gradient mag-
nitude features (since both reflect the model’s response strength), but they still add complementary
signal. Interestingly, even without using the human saliency map, patched images still stood out,
indicating that the patch draws the model’s attention in ways that deviate from normal image char-
acteristics. Nevertheless, using the true human saliency gave a much sharper separation between
clean and patched images, validating our use of eye-tracking data in the detection process.

4.4 ROBUSTNESS TO ADAPTIVE ATTACKS

Robustness to saliency-aligned adaptive patches. We implemented a saliency-aligned adaptive ob-
jective that augments the targeted patch loss with an alignment term encouraging the model’s

7
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Figure 1: Comparison of binarized Grad-CAM and human saliency overlaid on original images vs.
patched images from CAT2000 dataset. Grad-CAM focuses on high-level features, while human
saliency captures attention-grounded global regions.

Grad-CAM to correlate with a human saliency predictor (DeepLabV3-ResNet50 retrained for FI-
GRIM). Concretely, the optimizer minimizes cross-entropy toward a fixed target class while reward-
ing higher Grad-CAM–to–human agreement on the patched image. We evaluated this on FIGRIM
with EfficientNet-B0 (21 classes; 508 train / 128 test images after our split). The resulting universal
adaptive patch achieved a targeted success rate of 0.50 on the test split—i.e., only half of patched
test images were forced into the target label—indicating a substantial reduction in attack reliability
under alignment pressure.

On the detection side, we trained the proposed detector on the same FIGRIM setting (weighted ac-
tivations + gradient statistics + saliency alignment features). Averaged over per-class detectors, we
obtained precision = 0.987, recall = 1.000, and F1 = 0.993 on held-out data, showing that the detector
remains highly effective even when the attacker explicitly optimizes to nudge the model’s explana-
tion toward human-like focus. Empirically, pressing the patch to appear more “human-aligned” did
not remove the tell-tale footprints our detector exploits: either the patch’s influence diffuses (weak-
ening the targeted effect, as reflected in the 0.50 success rate), or its gradients/activation sensitivities
remain atypical enough to be flagged.

Taken together, these results support our central claim: attempts to cloak a patch by aligning model
saliency with human attention introduce a trade-off that either degrades targeted efficacy or fails to
normalize internal signals picked up by our features. While a broader sweep of alignment weights
and architectures is possible, the FIGRIM–EfficientNet-B0 study already demonstrates strong de-
tector robustness against this class of adaptive strategies.
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4.5 TRANSFERABILITY AND GENERALIZATION

Our current detector is trained and evaluated on a specific base classifier (ResNet-50). In practice,
one might want a detector that generalizes across different model architectures. Since our features
are model-dependent (gradients, and activations), a detector trained on one architecture might not
directly apply to another. However, the concept of what indicates a patch attack should transfer. In
future work, one could retrain the detector on features from a new model, or even train a single detec-
tor on a mixture of models’ data to create a more model-agnostic tool. In our project, we performed
a preliminary exploration by training the detector on adversarial patches generated for one model
and testing it on another model’s patched images. We found that many feature anomalies persist
across models. For example, a patch that breaks ResNet-50 also tends to cause a large Grad-CAM
divergence and high gradient norms on other CNN-based models due to adversarial transferability
Tramèr et al. (2017), but the detection thresholds might need adjustment per architecture. This sug-
gests that while our detector can generalize conceptually, some calibration is required for different
models.

Our results demonstrate that the proposed method is competitive or superior across datasets and
backbones. Alignment consistently helps on FIGRIM and EfficientNet-B0, while on SALICON
(mouse-proxy saliency) WA or WA+Grad can edge out the full model. Overall, we reach up to
99.64% F1 on CAT2000 (ResNet-50), 94.23% F1 on FIGRIM (EfficientNet-B0), and 96.01% F1 on
SALICON (ResNet-50), while providing human–model alignment diagnostics that baselines lack.
This reinforces our core claim: model interpretability, when correctly harnessed, enhances, rather
than undermines, adversarial robustness. Our method also offers richer qualitative interpretability
than prior work, as seen in LIME analyses and Grad-CAM visualizations where detection decisions
are grounded in recognizable visual patterns, not black-box scores.

5 LIMITATIONS AND FUTURE SCOPE

One potential concern is the reliance on human saliency data. In practice, obtaining eye-tracking
maps for every image is not feasible. We address this by noting that alternative sources of “expected
attention” can be used (for instance, saliency prediction models or simple priors), and by referencing
related work in robust ML where incorporating human attention priors improved model reliability.
Finally, while our detector in its current form is tuned for visible patch attacks, the framework is
flexible. Features can be added or adjusted to target other attack types (for example, distributed
adversarial noise or camouflage attacks). In future work, once an attack is detected, one could also
explore downstream defenses. For instance, refusing to classify the image, alerting a human oper-
ator, or attempting to remove the patch before feeding the image to the classifier. We can further
employ interpretability techniques (such as LIME Ribeiro et al. (2016)) to explain the detections
and enhance user trust. Interpretability evaluation techniques like ROAR Hooker et al. (2019) and
works such as Wang et al. (2022) emphasize the utility of removing important regions and retrain-
ing to assess attribution quality. Our saliency-based ablations follow a similar rationale by testing
performance drops when key interpretability signals are withheld. This can be further explored to
improve the robustness rather than mere detection.

6 CONCLUSION

Adversarial patch attacks threaten visual classifiers by causing misclassification via a small, crafted
image region, often without altering human perception. We propose a probe-based detection frame-
work that fuses gradient statistics, layer-wise activation sensitivity, and explicit saliency alignment
between model and human attention. Lightweight probes attach to a pretrained, frozen classifier
to extract gradient moments (mean, max, min, std), each layer’s perturbation sensitivity, and diver-
gence between model focus (Grad-CAM) and human saliency. A downstream classifier is trained on
these features to label inputs as benign or patched. The approach is model-agnostic and leaves the
base classifier unchanged. On CAT2000, FIGRIM, and SALICON, our detector achieves state-of-
the-art detection with minimal false alarms. Overall, combining gradient, sensitivity, and saliency-
alignment cues yields a robust, explainable defense against localized patch attacks.
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7 REPRODUCIBILITY STATEMENT

We provide a anonymized code artifacts in the supplementary material to reproduce the results:
https://anonymous.4open.science/r/patch_sage-D444.
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