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Abstract

Text classifiers have promising applications in high-stake tasks such as resume
screening and content moderation. These classifiers must be fair and avoid discrim-
inatory decisions by being invariant to perturbations of sensitive attributes such
as gender or ethnicity. However, there is a gap between human intuition about
these perturbations and the formal similarity specifications capturing them. While
existing research has started to address this gap, current methods are based on
hardcoded word replacements, resulting in specifications with limited expressivity
or ones that fail to fully align with human intuition (e.g., in cases of asymmet-
ric counterfactuals). This work proposes novel methods for bridging this gap by
discovering expressive and intuitive individual fairness specifications. We show
how to leverage unsupervised style transfer and GPT-3’s zero-shot capabilities to
automatically generate expressive candidate pairs of semantically similar sentences
that differ along sensitive attributes. We then validate the generated pairs via an
extensive crowdsourcing study, which confirms that a lot of these pairs align with
human intuition about fairness in toxicity classification. We also show how limited
amounts of human feedback can be leveraged to learn a similarity specification.

1 Introduction

Text classifiers are being employed in tasks related to automated hiring [1], content moderation [2]
and reducing the toxicity of language models [3]. However, they were shown to exhibit biases based
on sensitive attributes, e.g., gender [4] or demographics [5], even for tasks in which these dimensions
should be irrelevant. This can lead to unfair decisions, distort analyses based on these classifiers, or
propagate undesirable stereotypes to downstream applications. The intuition that certain demographic
indicators should not influence decisions can be formalized in terms of individual fairness [6], which
posits that similar inputs should be treated similarly. In a classification setting we assume similar
treatment for two inputs to require both inputs to be classified the same, while the notion of input
similarity captures the intuition that certain input characteristics should not influence model decisions.

Key challenge: generating valid, intuitive and diverse fairness constraints A key challenge for
ensuring individual fairness is defining the similarity notion φ, which can often be contentious, since
fairness is a subjective concept, as well as highly task dependent [6, 7]. In text classification, most
existing works have cast similarity in terms of word replacement [5, 8–10]. Given a sentence s,
a similar sentence s′ is generated by replacing each word in s, that belongs to a list of words Ai

indicative of a demographic group i, by a word from list Ai′ , indicative of another group i′ 6= i.
This approach has several limitations: (i) it relies on exhaustively curated word lists Ai of sensitive
terms, (ii) the expressivity of the generated pairs is limited to word replacements, and (iii) many
terms are only indicative of demographic groups in specific contexts, hence directly replacing them
with other terms will not always result in a similar pair (s, s′) according to human intuition. Indeed,
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Figure 1: Workflow overview. We begin by generating sentence pairs using word replacement, and
then add pairs of sentences leveraging style transfer and GPT-3. Then, we use active learning and
crowdworker judgments to identify pairs that deserve similar treatment according to human intuition.

word replacement rules can often produce sentence pairs that differ in an axis not relevant to fairness
(e.g., by replacing “white house” with “black house”). In addition, they can generate asymmetric
counterfactuals [5]: sentence pairs (s, s′) that look similar but do not warrant similar treatment. For
example, in the context of toxicity classification, the text “The movie is so old” may not be considered
toxic while “The movie is so gay” clearly is.

This work: generating fairness specifications for text classification The central challenge we
consider in this work is generating a diverse set of input pairs that aligns with human intuition about
which inputs should be treated similarly in the context of a fixed text classification task. We address
this challenge via a three-stage pipeline (Fig. 1). First, we start from a dataset D and generate a set
Cw of candidate pairs (s, s′) by applying word replacement to sentences s ∈ D. Second, to improve
the diversity of pairs, we extend Cw to a larger set Ce by borrowing ideas from unsupervised style
transfer. We change markers of demographic groups, e.g., “women” or “black people” in sentences
s ∈ D by replacing the style classifier in modern unsupervised style transfer methods [11, 12]
with a classifier trained to identify mentions of demographic groups. In addition, we add pairs from
GPT-3 [13], prompted to change markers of demographic groups for sentences in D in a zero-shot
fashion. Finally, to identify which of the generated pairs align with human intuition about fairness,
we design a crowdsourcing study in which workers are presented with candidate pairs and indicate if
the pairs should be treated similarly for the considered classification task or not. We employ active
learning similar to [14] to train a BERT-based [15] classifier ϕ̂ to recognize pairs that should be
treated similarly using a limited amount of human feedback and obtain a filtered set of pairs Ĉr ⊆ Ce.
Our pipeline can be used in the context of most text classification tasks and in this work we instantiate
it in the context of toxicity classification using a large dataset for online content moderation.

Main contributions We make the following contributions: (i) we introduce a method for generating
datasets of diverse candidate pairs for individual fairness specifications, leveraging GPT-3 and
unsupervised style transfer to modify demographic attributes mentioned in sentences; (ii) we show
that human feedback can be used to train a classifier which automatically identifies pairs that align
with human fairness intuitions for a considered downstream task; (iii) we instantiate our framework
in the context of toxicity classification, demonstrating that the proposed pairs are more diverse than
word replacement pairs only and that crowdsourcing workers agree with more than 75% of them.

2 Related Work

Bias in NLP Early work on bias in NLP has focused on unwanted correlations between the
word embeddings of identifiers for protected demographic groups and unrelated categories such as
occupations [16, 17]. Recently, language models have been found to harbor stereotypical biases [10,
18–20]. Specific to text classification, identity terms such as “gay” and explicit indicators of gender
have been shown to impact the outputs of classifiers trained to identify toxic comments [8] or to
predict a person’s occupation from their biography [4]. Olteanu et al. [21] demonstrate that human
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perceptions of the quality of a toxicity classifier can depend on the precise nature of errors made by
the classifier, as well as the annotators’ previous experiences with hate speech. Blodgett et al. [22]
recommend authors to explictly consider why, how and to whom the biases they identify are harmful.

Language models for data augmentation Ross et al. [23] automatically create contrast sets [24]
with a language model perturbing sentences based on control codes, while Rios [25] use style transfer
to change the dialect of African-American Vernacular English tweets to Standard American English
to evaluate the sensitivity to dialect of toxicity classifier. Hartvigsen et al. [26] use language models to
generate a balanced dataset of benign and toxic comments about minority groups to combat classifiers’
reliance on spurious correlations between identity terms and toxicity. Meanwhile, Qian et al. [27]
train a perturber model to imitate human rewrites of comments that modify mentions of demographic
groups, and demonstrate that their perturber can be used to reduce demographic biases in language
models. However, this approach is limited by its reliance on expensive human rewrites and is only
used for perturbations along fixed demographic axes such as gender.

Learning fairness notions from data Ilvento [28] provides an algorithm to approximate individ-
ual fairness metrics for N datapoints in O(N logN) queries, which can be practically infeasible.
Meanwhile, Mukherjee et al. [29] suggest training a classifier to predict binary fairness judgments on
pairs (s, s′) in order to learn a fairness metric φ, but restrict themselves to Mahalanobis distances on
top of a feature representation ξ(s), limiting their expressive power. In contrast to our work, these
works do not validate their learned fairness notions with human feedback. To that end, Cheng et al.
[30] present an interface to holistically elicit stakeholders’ fairness judgments, whereas Wang et al.
[31] aim to learn a bilinear fairness metric for tabular data based on clustering human annotations.

3 Method

This section presents our end-to-end framework for generating and filtering valid candidate pairs for
individual fairness specifications. In Sec. 3.1 we expand on existing word replacement definitions of
individual fairness in text classification [5] by implementing three different ways to modify markers
of demographic groups mentioned in a sentence s. Then, in Sec. 3.2 we leverage human feedback to
learn an approximate similarity function ϕ̂ to identify a set of relevant constraints Ĉr ⊆ Ce.

3.1 Expanding fairness constraints

Word Replacement First, we enrich the word replacement method by using the extensive lists of
words associated with different protected demographic groups presented in Smith et al. [20]. The pool
of terms is substantially larger than the 50 identity terms from Garg et al. [5]. We modify markers of
group j in a comment s by replacing all words on the respective list of words associated with group j
with words from the list associated with the target group j′.

Unsupervised Style Transfer Second, we use an unsupervised style transfer approach based on
prototype editing (see [32] for an extensive review) to transform markers of a demographic group j in
a sentence s to markers of another demographic group j′, creating a new sentence s′. Prototype editing
identifies markers a of a source style A in a text s, and substitutes them by markers a′ of a target
style A′. Our approach leverages that modern prototype editing algorithms utilize saliency methods
in combination with a style classifier to identify markers of style, and instead uses a RoBERTa-based
[33] classifier c trained to identify sentences that mention specific demographic groups j. Combining
ideas from [11] and [12], we transform a sentence s to mention demographic attribute j′ instead of j
by iteratively masking tokens with large impact on the likelihood pc(j|sm) (initially starting with
sm = s) until we reach a certain threshold, and filling the masked tokens using a BART-based [34]
group-conditioned generator g(sm, j′) trained to fill masks in sentences about group j′.

The unsupervised style transfer approach is likely to reproduce terms encountered during training,
helping it to pick up on rare demographic terms that are particular to its training distribution which can
be chosen to equal the training distribution for downstream tasks. In addition, unlike concurrent work
by Qian et al. [27], unsupervised style transfer only requires labels yj(s) indicating the mention of
demographic group j in a sentence s rather than expensive human-written examples of demographic
group transfer. This allows us to modify mentions of demographic groups across axes like gender,
religion and race, rather than restricting ourselves to changes within these axes.
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GPT-3 Lastly, we leverage GPT-3 [13] to transform markers of protected demographic groups.
We consider three methods: using GPT-3 standard mode and GPT-3 edit mode to rewrite sentences
mentioning group j to mention group j′ in a zero-shot fashion, as well as postprocessing sentences
generated by word replacement to fix logical and grammatical inconsistencies with GPT-3 edit mode.

To ensure that mentions of demographic group j were indeed replaced by j′ going from s to s′, we use
the same group-presence classifier c as for the unsupervised style transfer approach to heuristically
identify successful group transfer and discard pairs (s, s′) for which group transfer failed, for all three
of our approaches. Implementation details are described in App. C and App. E contains examples.

3.2 Learning the similarity function

In order to evaluate to what extend the proposed similarity criteria align with human intuition,
we conduct a crowdsourcing study, described in more detail in Sec. 4, to obtain labels ϕ(s, s′)
which indicate whether a pair (s, s′) should be treated similarly for the sake of individual fairness
(ϕ(s, s′) = 0) or not (ϕ(s, s′) = 1). We train a BERT-based [15] probabilistic model pϕ̂(s, s′) that
predicts values of the similarity function ϕ(s, s′) for pairs (s, s′) ∈ Ce, and approximate the similarity
function φ as ϕ̂(s, s′) := 1⇔ pϕ̂(s, s

′) > t for a given classification threshold t. To make optimal
use of costly human queries, we employ active learning when training the classifier ϕ̂, selecting
pairs to label based on the variation ratios 1−maxy p(y|x) with p estimated similar to Grießhaber
et al. [14], based on Dropout-based Monte-Carlo [35, 36] applied to our model’s classification head.
Concretely, we iteratively select new unlabeled training data Di ⊂ Ce \

⋃
j<iDj with |Di| = 1000,

based on the variation ratios, query labels for Di, and retrain ϕ̂ on Di. As different annotators can
disagree about whether two sentences s and s′ should be treated similarly, we use a majority vote
for evaluation. Inspired by Chen et al. [37]’s approach for dealing with noise in crowdsourcing, we
use a single human query per pair (s, s′) during active learning, and relabel pairs that are likely to
be mislabeled after active learning has concluded. See App. D for more details. When learning ϕ̂ is
completed, we can define the set of filtered constraints Ĉr = {(s, s′) ∈ Ce : ϕ̂(s, s′) = 0}.

4 Experiments

In this section, we experimentally evaluate our framework. Our key findings are: (i) the pairs
generated by our method are more diverse compared to word replacement pairs only (Sec. 4.2), while
mostly aligning with human intuition about fairness (Sec. 4.3) and (ii) the underlying similarity
function ϕ can be approximated by active learning from human judgements (Sec. 4.4).

4.1 Dataset and setup

We focus on toxicity classification on the Jigsaw Civil Comments dataset [38]. The dataset contains
around 2 million online comments s with labels y(s) indicating toxicity. We focus on a subset
D′ ⊂ D with labels Aj(s) that indicate the presence of group j in s for training our group-presence
classifier c, and only consider comments s that consist of at most 64 tokens. We construct a set Ce

of 100,000 constraints applying our different generation approaches to D′1. More details on the
generation and exact composition of Ce, as well as example pairs (s, s′), can be found in App. C.
Throughout this section, whenever we report fairness for a classifier f , we refer to the proportion of
pairs (s, s′) in a test pool of similar pairs for which f(s) = f(s′) rather than f(s) 6= f(s′).

4.2 Diversity of generated fairness constraints

To validate that our candidate constraint set Ce is more diverse than word replacement on its own,
we train 4 different toxicity classifiers, using Counterfactual Logit Pairing (CLP) [5] to empirically
enforce different constraint sets Ce, C1, C2, C3. Here Ce corresponds to the full constraint set, as
described in Sec. 3.1. while the other constraint sets have the same size as Ce, but contain pairs
generated by one method only. In particular, the pairs in C1 were generated by word replacement
using the 50 identity terms from Garg et al. [5]2, the pairs in C2 were generated by word replacement,
using the larger list of terms of Smith et al. [20], and the pairs in C3 were derived by style transfer.

1Ce contains 42.5K word replacement and style transfer pairs each, and a total of 15K GPT-3 pairs.
2We did not discard any pairs from C1 based on the group-presence classifier c.
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Table 1: Balanced accuracy and fairness for a RoBERTa-based classifier f trained with CLP using
different constraint sets for training. Results are averaged over 5 runs and ± indicates the difference
from the upper/lower bound of a naive 95% confidence interval assuming normally distributed errors.

Training/Evaluation BA WR50 (C1) WR (C2) ST (C3) Full Ce

Baseline 88.4± 0.1 78.4± 1.4 81.3± 1.5 76.7± 1.8 78.5± 1.5

CLP(5) WR50(C1) 87.0± 0.3 98 .3 ± 0 .1 89.1± 1.9 86.3± 1.9 87.3± 1.8
CLP(5) WR (C2) 87.2± 0.1 93.1± 1.2 98 .2 ± 0 .4 90.5± 1.7 92.9± 1.2
CLP(5) ST (C3) 85.9± 0.1 95.3± 0.4 97.1± 0.3 95 .4 ± 0 .4 95.5± 0.3
CLP(5) Full Ce 85.0± 3.4 95.5± 0.9 97.8± 0.6 94.9± 0.9 95 .7 ± 0 .8

Table 2: Human evaluation: Answers to questions about comment pairs (s, s′). The first number
represents the fraction of the answer across all queries, while the second number (in brackets)
represents the fraction of comment pairs for which the answer was the majority vote across 9 queries.

Metric/Method Word replacement Style Transfer GPT-3

Unfair: Average American 84.9 (97.5) 84.6 (95.8) 83.4 (95.0)
Unfair: Own Opinion 85.9 (97.5) 85.2 (96.2) 83.2 (93.7)
Group Transfer 89.3 (95.0) 79.2 (85.4) 81.9 (89.5)
Content preservation 88.1 (100) 79.2 (91.2) 78.4 (87.9)
Same Factuality 73.0 (84.1) 76.2 (87.5) 78.5 (89.1)
Same Grammaticality 91.2 (99.1) 92.9 (97.9) 92.9 (98.3)

We then cross-evaluate the performance of the 4 classifiers trained with these constraint sets in terms
of their test-time fairness according to each of the 4 fairness criteria, and their balanced accuracy.

The results in Table 1 show that each classifier achieves high fairness when evaluated on the set of
pairs corresponding to the constraints used during its training (numbers in italics) while performing
worse on other constraint pairs. While this indicates that adherence to fairness constraints does not
always generalize well across our generation methods, we note that training on style transfer pairs
(Ce or C3) generalizes substantially better to C2 than training on different word replacement pairs
(C1; see the numbers in bold). More details can be found in App. C.

4.3 Relevance of generated fairness constraints

To validate that the generated fairness contraints are relevant and intuitive, we conducted a human
evaluation with workers recruited via Amazon MTurk. The workers were presented with pairs (s, s′)
consisting of a comment s from the Civil Comments dataset, as well as a modified version s′ and
asked about whether they believe that the two comments should be treated similarly and whether they
believed that the average American shared their opinion. Treatment was framed in terms of toxicity
classification for the sake of content moderation, ensuring that we verify the relevance of the learned
notions relevant to this specific task. The workers were also asked whether the demographic group
was transferred correctly from a given j to a given j′, whether the content of s has been preserved
in s′ apart from the demographic group transfer, and whether there are differences in factuality and
grammaticality between s and s′. We collected human feedback for a set S containing a total of
720 pairs (s, s′) with 240 each being produced by our style transfer approach, GPT-3 in a zero-shot
fashion, and word replacement using the list from [5] as for C1. These 240 pairs per method were
split into 80 pairs for each of the axes male↔female, christian↔muslim and black↔white. Each
pair (s, s′) was shown to nine different workers. Further details can be found in App. B.

Table 2 shows that all three methods mostly produce relevant fairness constraints, according to
a majority of annotators. At the same time, they generally successfully modify the mentioned
demographic group, and preserve content, factuality and grammaticality. While word replacement
generally performs better in terms of group transfer and content preservation, it only has a small
advantage in terms of relevance to fairness, perhaps due to its worse performance in terms of factuality:
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Table 3: Performance of differently trained classifiers ϕ̂ on the test set T . Active learning classifiers
are retrained 10 times on the last batch D6. Results are averaged and ± indicates the difference from
the upper/lower bound of a naive 95% confidence interval assuming normally distributed errors.

Method ACC TNR TPR BA

Constant Baseline 78.8 100.0 0.0 50.0

Active Learning t=0.5 79.8± 0.3 97.2± 0.3 15.1± 1.2 56.1
Active Learning + Relabel t=0.5 81.1± 0.3 95.5± 0.7 28.6± 2.2 62.0

Active Learning t=0.01 78.7± 1.1 87.5± 2.1 45.7± 1.8 66.6
Active Learning + Relabel t=0.01 78.3± 0.7 86.8± 1.5 46.6± 2.5 66.7

we found examples in which word replacement changed "white house" to "black house"; or Obama is
referred to as "white" rather than "black". These pairs were not seen as fairness constraints by most
annotators and judged badly in terms of preserving factuality. See B.1 for more detailed results.

4.4 Learning the similarity function

We employed our active learning approach to efficiently train a classifier ϕ̂ from relatively few human
judgments, with the goal of using it to identify pairs that represent actual fairness constraints on the
remaining pool of candidates. We conducted 6 steps of active learning with 1000 queries each and
discarded failed queries, ending up with a total of 5490 labeled pairs ((s, s′), ϕ(s, s′)). Details on
our model architecture and other hyperparameters can be found in App. D. We evaluate our learnt
classifier on a test set T consisting of 500 randomly selected pairs from Ce for which five annotators
were asked about the average American’s fairness judgment.

Because 78.8% of the pairs (s, s′) in T represented fairness constraints (ϕ(s, s′) = 0) according
to the majority of annotators, we report Balanced Accuracy (BA), in addition to standard accuracy
(ACC) and the true positive and negative rates (TPR and TNR). Table 3 displays these metrics for
classifiers resulting from our active learning method for different classification thresholds t and with
and without relabeling. We observe that ϕ̂ performs substantially better than random, achieving BA
of 66.7% when used with an aggressive classifier threshold t. The table also validates our relabeling
approach: after observing that our classifier was biased towards predicting ϕ(s, s′) = 0, we collected
two additional labels for 500 pairs (s, s′) for which both the human and the predicted label were equal
to zero (ϕ̂(s, s′) = ϕ(s, s′) = 0), selected based on the variation ratios. 47% of these pairs received
a majority vote of ϕ(s, s′) = 1, showing that our approach correctly identified pairs that were likely
to be mislabeled. For the balanced classification thresholds t = 0.5, retraining our classifier on the
updated majority votes also substantially increased TPR at little costs to TNR.

According to a qualitative evaluation, most of the sentence pairs (s, s′) predicted to not represent
fairness constraints (ϕ̂(s, s′) = 1) had the words "boy" or "man" replaced by terms denoting identity
membership. Such sentence pairs were often not seen as fairness constraints by our annotators, as
the inclusion of the identity term can be interpreted as aggressive or mocking. ϕ̂ also successfully
identified sentence pairs (s, s′) for which s′ was unrelated to s, that were sometimes produced by
GPT-3, as not representing fairness constraints. Additional results and details can be found in App. D.

5 Conclusion

We proposed a framework for producing expressive and intuitive specifications for individual fairness
in text classification. We experimentally demonstrated that our constraints are indeed more expressive
than previous constraints based on word replacement and validated that most of the generated fairness
constraints were relevant in the context of toxicity classification according to human annotators. In
addition, we used active learning to demonstrate that human fairness judgments can be predicted using
limited amounts of training data. In future work we plan to utilize the generated filtered constraints to
train a fair downstream toxicity classifier with better trade-off between accuracy and fairness. Further
work could explore approaches similar to ours for other NLP tasks with discrete outcomes beyond
classification, as well as for evaluating robustness to other forms of intuitively relevant perturbations.
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A Ethical Considerations

Our human evaluation experiments involving workers from Mechanical Turk were reviewed and
approved by the ETH Zurich Ethics Commission as proposal EK 2022-N-117. Workers on Mechanical
Turk were warned that they might be shown offensive comments as part of our study and were able to
opt out of participating in our study at any time. We also made sure that the per-task compensation
was sufficiently high to result in a hourly compensation exceeding the US federal minimum wage.
More details on our human evaluation experiments can be found in App. B.

While we believe that our results show that learning more precise fairness notions by involving human
feedback is a very promising area of research, we caution against directly using our learnt similarity
classifier φ for evaluating fairness in high-stakes real-world applications of toxicity classification.
First, our results show that there is substantial disagreement between different survey participants
about which pairs (s, s′) require equal treatment by a fair classifier. While resolving these disagree-
ments via a majority vote is a natural choice, other approaches may be desired in some contexts (for
e.g., enforcing equal treatment whenever at least one participant believes it is required). Second, our
survey participants may have geographic biases and are neither direct stakeholders, nor experts in
discrimination law and hate speech. Given that our learning approach shows promising signs of being
able to improve upon existing fairness definitions despite large amounts of disagreement, which is
likely to be less common for actual stakeholders and experts, we recommend using it in conjunction
with fairness judgments provided by application-specific experts and stakeholders.

B Further Details on Human evaluation

In order to participate, workers had to live in the US and be above 18 years old in addition to being
experienced with MechanicalTurk (having completed more than 5000 HITs3 and having a good
reputation (97% acceptance rate across all of the worker’s HITs). Workers were warned about the
potentially offensive content of some of the comments show in the study by the following statement:
"Please note that this study contains offensive content. If you do not wish to see such content, please
withdraw from the study by leaving this website." and were also told that they could withdraw from
the study at any later point: "You may withdraw your participation at any time without specifying
reasons and without any disadvantages (however, you will not get paid for the current HIT in case
you withdraw before completing it)".

After encountering a high prevalence of bots, malicious workers or workers that fundamentally
misunderstood our task instructions during pilot experiments, we had workers pass a qualification
test by providing correct answers for nine out of ten queries ϕ(s, s′) for pairs that were hand-
designed to have a relatively obvious correct answer. We validated these hand-designed pairs in a
separate experiment, querying workers about ϕ(s, s′) for 11 pairs (s, s′), and asking them to verbally
explain each of their decisions, paying a total of $1.83. We only included hand-designed pairs in
the qualification test if at least eight out of ten workers produced the intended answer during this
experiment, and no worker brought forward convincing arguments against this answer being correct.

Workers were paid $0.83 for a battery of 11 queries ϕ(s, s′) for the Active learning and the test set
T and first $1.20, later $1.30 for 11 queries about all questions presented in Table 2. In both cases,
workers had to explain one of their answers verbally, and one of the queries was a attention check pair
(s, s′) with a relatively obvious correct answer constructed in the same way as for the qualification
tests.

Blocks of queries with wrong answers to the attention check question or (partially) incoherent verbal
explanations were manually reviewed, and thrown out in case we were not able to find evidence
that the worker had correctly understood the task in which case the worker was not paid. Workers
were made aware of this by the following statement in the task description: "To ensure workers pay
attention, we include pairs of comments for which there is a clear correct answer at random positions.
Please make sure to carefully read every comment and answer diligently, as your HIT will be rejected
if your answer for one of these pairs of comments is wrong, in which case you will not receive a
payment for the HIT. We will also ask you to produce an explanation for one of your answers. Please
write at least one sentence and make sure your explanation is coherent with the answer you gave, as
your HIT might be rejected otherwise in which case you will not receive a payment for the HIT.".

3Bundled tasks on MechanicalTurk for which a remuneration is received on completion
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According to https://turkerview.com, a tool used by many professional workers on MechanicalTurk,
we paid workers an average hourly rate of $16.17, clearly exceeding the US minimum wage. While
this is likely an overestimate, as not all workers use turkerview, the hourly rate is so high, that we still
exceed the minimum wage for workers taking twice as long as the average worker using turkerview.

Workers were introduced to the task as follows: "We are investigating fairness in toxic comment
classification and are looking for pairs of comments with similar content that should be treated the
same by a content moderator (if one of them was removed, the other one should be removed too).
You will be shown pairs of comments and be asked whether the comments are similar in various ways
and whether you would consider it unfair for a content moderator to remove one of the comments in
each pair but not the other.". The queries read as follows for the first task:

• Without further context, would the average american consider it unfair or acceptable for a
content moderator to delete one of the shown comments but not the other?

– It would be unfair for one of the two comments but not the other to be deleted (Both
comments ought to be treated the same way, no matter what)

– If comment a) was deleted, comment b) should be deleted as well, but not the other
way around. (Deleting comment b) would be more justifiable)

– If comment b) was deleted, comment a) should be deleted as well, but not the other
way around. (Deleting comment a) would be more justifiable)

– It would be acceptable to delete either of the comments without deleting the other.
(Treating the comments differently either way would be fine)

and as follows for the second one (Placeholders for group terms are presented in Italics. The answer
summarized in Table 2 is highlighted in bold):

• Without further context, would you consider it unfair or acceptable for a content moderator
to delete one of the shown comments but not the other?

– It would be unfair for one of the two comments but not the other to be deleted
(Both comments ought to be treated the same way, no matter what)

– If comment a) was deleted, comment b) should be deleted as well, but not the other
way around. (Deleting comment b) would be more justifiable)

– If comment b) was deleted, comment a) should be deleted as well, but not the other
way around. (Deleting comment a) would be more justifiable)

– It would be acceptable to delete either of the comments without deleting the other.
(Treating the comments differently either way would be fine)

• What do you expect the average American to answer to the previous question?
– It would be unfair for one of the two comments but not the other to be deleted

(Both comments ought to be treated the same way, no matter what)
– If comment a) was deleted, comment b) should be deleted as well, but not the other

way around. (Deleting comment b) would be more justifiable)
– If comment b) was deleted, comment a) should be deleted as well, but not the other

way around. (Deleting comment a) would be more justifiable)
– It would be acceptable to delete either of the comments without deleting the other.

(Treating the comments differently either way would be fine)
• Do you consider one of the two comments to be more factually correct than the other?

– Comment a
– Comment b
– Neither comment / too little context to tell

• Do you consider one of the two comments to be more grammatically correct than the other?
– Comment a
– Comment b
– Neither comment

• Is comment a) about group a and comment b) about group b?
– Yes
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– No, comment a) is not about group a
– No, comment b) is not about group b
– No, neither

• Apart from differences related to group a and group b, are both comments similar in terms
of content?

– Yes, they are almost the same.
– They are somewhat similar, but differ in some additional details.
– There is an important additional difference between the comments’ content

B.1 shows the results of the human evaluation on our test set S split along the axis of attribute transfer,
rather than generation method as in 2. Along with the results in Table 2 they show that despite
the general agreement about the relevance of the generated fairness constraints, there is substantial
disagreement between annotators when it comes to deviations from the most common answer across
all comments. In all cases, the fraction of comments with majority vote equal to that answer is
substantially higher than the overall fraction of these votes across all comments and annotators. The
same is true for our set T of 500 randomly selected pairs from Ce for which we only asked about the
average American’s fairness judgment: 70.9% of the annotations were ϕ(s, s′) = 0, while the same
was true for 78.8% of the per-comment pair majority votes.

Table B.1: Human evaluation: Answers to questions about comment pairs (s, s′) grouped along
demographic group transfers along different axes. The first number represents the fraction of the
answer across all queries, while the second number (in the brackets) represents the fraction of
comment pairs for which the answer was the majority vote across 9 queries.

Metric/Method male↔female black↔white christian↔muslim

Unfair: Average American 83.5 (96.6) 82.2 (94.5) 87.2 (97.0)
Unfair: Own Opinion 83.5 (96.6) 82.4 (92.9) 88.4 (97.9)
Group Transfer 82.6 (91.6) 81.6 (86.6) 86.2 (91.6)
Content preservation 84.9 (95.4) 79.5 (92.0) 81.3 (91.6)
Same Factuality 75.3 (82.9) 73.6 (85.0) 78.8 (92.9)
Same Grammaticality 90.5 (97.5) 92.2 (98.3) 94.3 (99.5)

C Further details on style transfer

Unsupervised style transfer To transform markers of demographic groups in sentences, we first
finetune a Multi-headed RoBERTa-based [33] classifier c to predict labels yj indicating the presence
of markers of a demographic group j from a list of protected demographic groups J in a sentence s.
We use the population labels ("Black", "Male", "Heterosexual", "Muslim",etc.) that are provided for
a subset of the Civil comments dataset. The group-presence classifier c is based on the roberta-base
model, followed by a linear layer with 768 neurons applied to the output embedding of the first
token only, a Tanh layer, another linear layer mapping to a single dimension, and a Sigmoid layer.
We train c for 3 epochs with a batch size of 16 and use the Adam optimizer [39] with learning rate
0.00001 to optimize the binary Cross Entropy loss, reweighed by relative label frequency in the
dataset. Table C.1 shows the balanced accuracy on the test set for all demographic groups in the
dataset. For our downstream applications of c, we restrict ourselves to the demographic groups for
which the classifier c’s balanced accuracy is above 90%. Furthermore, we also exclude the group
labeled "mental illness" because the word replacement lists we used lack a clear analogon.

Then, we finetune a BART-based [34] generator g on a mask-filling task on the same data: For
every data point s, we sample a group from the set of demographic groups j mentioned in s, i.e.
{j : yj(s) = 1}, skipping sentences s for which no group j meets this criterion. Inspired by [11] we
mask all of s’s tokens that have an above-average attention value for the 11th layer of the classifier c,
merge consecutive mask tokens into one, and prepend the name of the sampled group j to the masked
sentence before fedding it to the generator g. The generator g is then finetuned to reconstruct s using
token-wise Cross Entropy.
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Table C.1: Balanced accuracies of the group-presence classifier c for different labels

Category BA Category BA Category BA

Male 96.5 Christian 96.6 Physical disability 54.9
Female 97.8 Jewish 98.9 Intellectual disability 54.3
Transgender 99.3 Muslim 98.9 Mental illness 98.3
Other gender 50.0 Hindu 98.2 Black 99.2
Heterosexual 98.1 Buddhist 99.2 White 99.5
Homosexual 99.3 Atheist 99.6 Asian 98.3
Bisexual 65.4 Other religion 50.0 Latino 96.6
Other sexuality 50.0 Other disability 50.0 Other race 55.5

The BART-based generator g is trained starting from the pretrained facebook/bart-large model for
a single epoch with batch size 4, again using Adam and a learning rate of 0.00001. For filling in
masked sentences, we pick the completion with the largest difference in the classifier c’s pre-sigmoid
activation for the target and source demographic groups j′ and j among candidate sentences produced
by a beam search generation using the generator g with width 5.

To transfer an example s from mentioning group j to mentioning group j′, we follow [12] and
iteratively mask the token for which masking reduces pc(yj |x) the most, until we reach a threshold of
pc(yj |x) < 0.25. We use this approach rather than the attention-based masking from [11] because of
the lack of theoretical motivation for using attention to identify important features [40], and because
attention scores are the same for all of our model’s group-presence prediction heads, rather than
specific to a particular group j.4 Then, we prepend a verbal representation of label j′ to s to form a
prompt p, and generate a sentence s′ as g(p).

Word replacement Our word replacement approach is based on the list of words provided in [20]:
Given a sentence s mentioning demographic group j and a target attribute j′, we replace all words in
s that are on the list associated with j with random words from the list associated with j′, replacing
nouns with nouns and descriptors with descriptors whenever possible, and nouns with descriptors
otherwise. The full list of words we used for word replacement is displayed in Table E.1.

GPT-3 We accessed GPT-3 using OpenAI’s API5. For our first approach, we used the "text-davinci-
001" version of GPT3 in a zero-shot manner with the prompt: "Please rewrite the following sentence
to be about j′ rather than j:" followed by a new line and the targeted sentence s. The second approach
was based on the beta-version of GPT-3’s editing mode 6. Here, s′ is produced using the model
"text-davinci-edit-001" with the instruction "Rewrite the text to be about j′ rather than j". Lastly, we
used to same model in conjunction with word replacement: First, we generated a candidate sentence
s′′ using the procedure described in the word replacement section. Then, in order to fix issues caused
by the context-blindness of the word replacement approach, we postprocessed s′′ using "text-davinci-
edit-001" with the instruction "Fix grammatical errors and logical inconsistencies" to produce s′.
We used temperature = 0.7 and top_p= 1 in all our approaches and used max_tokens= 64 for
"text-davinci-001" to control the length of the modified sentence s′.

Post-filtering For all three approaches, we performed a post-filtering step to reduce the prevalence
of unsuccesful attempts at demographic group transfer in our set of constraints Ce. Given a pair
(s, s′) of an original sentence and a modified version, we only include it in our set of constraints Ce,
if the classifier probability pc(yj′ |s′) for label j′ is below 0.5 and the classifier probability pc(yj |s′)
for label j is above 0.5.

As mentioned in Sec. 4.1, we attempt to produce modified comments s′j′ mentioning group j′ for
each s in D′ for all demographic groups j with yj(s) = 1 and all possible target groups j′ for word
replacement and style transfer. For GPT-3, we attempted a total of 75 generations for each of our three

4We used attention during the training of g, for which dropping out some tokens unrelated to j is less
problematic, in order to save resources.

5https://openai.com/api/
6https://openai.com/blog/gpt-3-edit-insert/
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Table C.2: Amount of generated pairs (s, s′) per generation method.

Generation Method Total (Train) Total (Test) In Ce (Train) In Ce (Test)

Word Replacement 980667 331490 42500 10625
Style Transfer 681111 229883 42500 10625
GPT-3 Zero-Shot 6322 2139 6200 1550
GPT-3 Edit Mode 3704 1199 3500 875
GPT-3 Postprocessing 5330 1831 5300 1325

generation modes per axis pair of demographic groups (j, j′) and direction of group transfer, with the
source sentences s randomly selected among the sentences with label j in D′. For constructing the
secondary test set S, we attempted more generations for the axes male↔female, christian↔muslim
and black↔white, homosexual↔heterosexual. The latter axis was left out of S because we found
that the rate of successful generations was too limited. We generated a maximum of 2250 attempts
up until a total of 250 successful generations (post-filtering step passed) for GPT-3’s zero-shot mode,
a maximum of 750 until to a total of 100 successful generations for GPT-3’s edit mode, and up until
a total of 100 successful generations for GPT-3 based postprocessing of word replacement. Table C.2
shows the overall amount of generated pairs per method.

As an additional experiment to validate the increased diversity of our constraint set Ce we train a
similarity classifier7 ϕ̂, on Ce to distinguish pairs (s, s′) generated by word replacement from pairs
generated by style transfer or GPT-3. Training on 100000 examples without label noise, we are able
to achieve 91.6% test accuracy on a balanced test set, suggesting that there is a meaningful difference
between pairs generated by word replacement and the rest of the constraint candidates Ce.

D Further details on learning similarity functions

First, Proposition D.1 below establishes that robustness with respect to a binary similarity function
ϕ, i.e. ϕ(s, s′) = 0 ⇒ f(s) = f(s′), can fully capture the definition of individual fairness as
Lipschitz-Continuity proposed by Dwork et al. [6] for deterministic classifiers f .

Proposition D.1. Given a metric d : X × X → R, a binary metric db : Y × Y → {0, 1} and a
constant L > 0, there exists a similarity function ϕ : X × X → {0, 1} such that a function f :
(X, d)→ (Y, db) is Lipschitz-Continuous with constant L if and only if ϕ(x, x′) ≥ db(f(x), f(x′))
for all x, x′ ∈ X .

Proof. Define ϕ(x, x′) := 1 {Ld(x, x′) ≥ 1}. Then whenever db(f(x), f(x
′)) = 1, we

have db(f(x), f(x
′)) = 1 ≤ ϕ(x, x′) if and only if db(f(x), f(x′)) ≤ Ld(x, x′). But if

db(f(x), f(x
′)) = 0, the Lipschitz inequality is allways true. Now, assume that f is not Lip-

schitz: Then, there exist x, x′ ∈ X such that 1 = db(f(x), f(x
′)) > Ld(x, x′), implying

0 = ϕ(x, x′) < db(f(x), f(x
′)) = 1

We use a BERT-based classifier that acts on a pair (s, s′) by first tokenizing both s and s′ and padding
the token representation to a length of 64, concatenating these tokens and feeding the concatenated
token representation into a pretrained bert-uncased-base model. We then apply a linear layer with
dropout (p = 0.1) followed by a Tanh layer and a second linear layer with dropout (p = 0.1) to
obtain single dimensional logits, to which a sigmoid layer is applied before computing the binary
Cross Entropy loss and optimizing it using the Adam optimizer with learning rate 0.00001 applied
to all model parameters. We use BERT rather than more modern models such as RoBERTa [33]
and Deberta [41], as we have found it to clearly outperform them for our task, plausibly because
BERT uses a next-sentence-prediction task during pretraining, which is structurally similar to our
task of comparing two sentences. Table D.1 demonstrates the advantage of using BERT, as well as
concatenating token representations rather than learning based on the difference between separately
produced BERT features for both s and s′. Unless stated otherwise, our Active Learning approach
trains for five epochs on each queried block Di before selecting new data Di+1 to label.

7Using the same architecture as for our active learning experiments described in App. D
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Table D.1: Different architectures trained for one epoch on 5000 samples from a set of pairs (s, s′)
generated using word replacement to distinguish demograpghic group transfer within the same
category of gender and sexuality, race and religion vs across categories (ϕ2). "Featurediff" uses
a linear model applied to the difference of model features produced for the respective first tokens
in s and s′. "Bilinear" uses a bilinear model on top of these feature differences instead. "Merge"
appends s′ to s before tokenization and learns a linear model on top of the model features for this
combined input. "Concat" operates similarly, but first tokenizes s and s′ and pads both to 64 tokens
before feeding the concatenated tokens into the model. No dropout was used in the post-BERT layers
for these experiments. All results averaged over 10 runs and ± indicates the difference from the
upper/lower bound of a naive 95% confidence interval assuming normally distributed errors.

Model BA

BERT-Concat 86.7
BERT-Merge 79.9
BERT-Featurediff 67.8
DeBERTa-Concat 54.7
DeBERTa-Merge 53.2
DeBERTa-Featurediff 50.8
RoBERTa-Concat 52.1
RoBERTa-Merge 50.3
RoBERTa-Featurediff 51.1
BERT-Large-Concat 84.4
BERT-Large-Merge 84.1
BERT-Large-Featurediff 59.2
BERT-Bilinear 50.7

D.1 Synthetic Data

For active learning, we freeze the underlying BERT model during the active learning selection
and only apply MC-Dropout on the level of the classifier head, similar to [14], but unlike them
we do not use BALD [42] and instead approximate p(y|s, s′) averaging the models’ predicted
probabilities pϕ̂(y|s, s′, w) for 50 sampled dropout masks w. We call this approach LC-UNC and
experimented with various alternative selection criteria. Unlike LC-UNC, LC directly approximates
1−maxy p(y|s, s′) using a single forward pass through the ϕ̂ with deactivated dropout. BALD is the
approach from [14], while VARRA and Majority approximate 1−maxy p(y|s, s′) using MC-Dropout
differently than LC-UNC: In Majority, p(y|s, s′) is approximated as the fraction of dropout samples
w for which ϕ̂ = 1, while VARRA averages 1−maxy pϕ̂(y|s, s′, w) over dropout samples w instead
of averaging pϕ̂(y|s, s′, w) before applying the maximum operator. In addition, the table contains
the "automatic relabeling" condition in which Di is selected from the whole of Ce rather than just
the previously unlabeled examples Di ⊂ Ce \

⋃
j<iDj . During training, pairs (s, s′) that have been

queried multiple times are labelled according to the majority vote of all queries, and as 0.5 in case of
a tie.

We validate the efficacy of our active learning approach for learning the similarity function ϕ(s, s′)
with a limited amount of noisy queries. For this, we define two synthetic similarity functions
ϕi : i ∈ {1, 2}. The first, ϕ1 is equal to zero, whenever a pair (s, s′) was generated via word
replacement and equal to one otherwise, as in the first experiment from the previous section. The
second, ϕ2 is equal to zero, whenever the group j of s that was removed and the added group j′ in s′
are within the same category of gender and sexuality, race, or religion, and equal to one otherwise. For
example, a pair (s, s′) for which markers of "White people" in s were modified to markers of "Black
people" in s′ would have ϕ2(s, s

′) = 0, while ϕ2(s, s
′) would be one if the group was modified

to "muslim" in s′ instead. We simulate the label noise introduced by annotators’ disagreement by
independently flipping each label with probability p = 0.3 during training the similarity classifier ϕ̂.
For training with 3 instead of one query per data point, we reduce the overall amount of training data
from 10000 samples in Ce to 3333 samples and reduce the probability of flipping labels to p = 0.216,
simulating a majority vote. In turn, the active learning approach selects 333 instead of 1000 data
points for labeling in each of its ten steps in that scenario. Table D.2 shows that active learning
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Table D.2: Balanced accuracy for BERT classifier trained using a constant amount of 50k gradient
steps and a constant amount of 10k queries. All results are averaged over 10 runs and ± indicates
the difference from the upper/lower bound of a naive 95% confidence interval assuming normally
distributed errors.

Method/Dataset ϕ2 (Same category) ϕ1 (Word replacement)

Random sampling, 1 query 75.1± 3.6 74.8± 1.8
Random sampling, 3 queries 71.6± 3.9 72.5± 1.5
Random sampling, 5 queries 70.7± 2.7 73.4± 1.8

BALD 1 query 75.9± 4.0 77.9± 2.1
BALD 3 queries 73.8± 6.5 78.1± 1.7
BALD automatic relabeling 76.1± 4.5 77.6± 2.6

LC 1 query 79.1± 4.4 78.5± 1.8
LC 3 queries 74.6± 2.4 79.5± 1.8
LC automatic relabeling 73.4± 5.9 78.2± 1.3

LC-UNC 1 query 79.0± 4.9 79.7± 1.5
LC-UNC 3 queries 75.8± 5.4 78.7± 2.6
LC-UNC automatic relabeling 76.6± 3.9 76.7± 1.5

VARRA 1 query 77.3± 7.4 78.9± 2.1
VARRA 3 queries 73.1± 5.7 79.8± 1.6
VARRA automatic relabeling 77.7± 2.9 78.0± 1.3

Majority 1 query 74.9± 3.5 76.8± 2.4
Majority 3 queries 78.7± 5.2 79.6± 0.9
Majority automatic relabeling 74.4± 6.2 77.9± 1.8

noticeably outperforms randomly sampling data points for our task, that there is no clear direct benefit
from employing multiple queries per pair (s, s′) ∈ Ce over obtaining labels for previously unseen
pairs, and that the LC-UNC setup is usually performing as well as or better than alternative selection
criteria in the one-query per data point setting.

D.2 Human Evaluation

Tables D.3 and D.4 show additional results on the active learning from human feedback. As above,
we tested our approach using different filtering thresholds t on the two test sets T (Table D.3) and S
(Table D.4). In the Retrain condition, the classifier ϕ̂ was trained for a single epoch on all labeled
datapoints

⋃
i<nDi in order to combat potential issues with catastrophic forgetting. In the Retrain

+ Reweigh condition, the same was done, but the Cross Entropy loss was reweighed to balance the
empirical label frequencies in

⋃
i<nDi. In the From Scratch setting, we train a new classifier on⋃

i<nDi for 5 epochs from scratch without first training it separately on any Di. Again, datapoints
are reweighed according to their empirical frequency in

⋃
i<nDi in the From Scratch + Reweigh

setting.

E Word Lists And Example Generations

Tables E.2–E.4 show 5 randomly example pairs (s, s′) produced by our style transfer approach and
GPT-3 in zero-shot and edit mode. Warning: Some of the example texts contain offensive language.
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Table D.3: Results for active learning to predict human fairness judgments, on test data T . Active
learning classifiers are retrained 10 times on the last batch D6. Results are averaged and ± indicates
the difference from the upper/lower bound of a naive 95% confidence interval assuming normally
distributed errors.

Method ACC TNR TPR

Baseline: Constant 0 78.8 100.0 0.0

AL t=0.5 79.8± 0.3 97.2± 0.3 15.1± 1.2
AL + Relabel t=0.5 81.1± 0.3 95.5± 0.7 28.6± 2.2
AL + Relabel + Retrain t=0.5 79.6± 0.4 95.3± 1.4 21.5± 3.9
AL + Relabel + Retrain + Reweigh t=0.5 79.6± 0.8 93.9± 1.6 26.6± 3.4
From Scratch t=0.5 77.5± 1.3 90.8± 3.3 28.1± 7.1
From Scratch + Reweigh t=0.5 77.7± 1.4 91.0± 2.7 28.3± 5.0

AL t=0.1 80.0± 0.5 95.2± 0.7 23.7± 3.5
AL + Relabel t=0.1 80.7± 0.6 93.0± 0.9 35.0± 1.3
AL + Relabel + Retrain t=0.1 62.1± 5.6 61.5± 8.9 64.0± 7.0
AL + Relabeling + Retrain + Reweigh t=0.1 52.8± 6.2 46.8± 7.7 75.0± 4.6
From Scratch t=0.1 53.4± 7.9 48.6± 14.3 71.1± 9.2
From Scratch + Reweighed t=0.1 54.8± 6.7 51.2± 10.5 67.9± 9.1

AL t=0.01 78.7± 1.1 87.5± 2.1 45, 7± 1.8
AL + Relabel t=0.01 78.3± 0.7 86.8± 1.5 46.6± 2.5
AL + Relabel + Retrain t=0.01 21.2± 0.1 0.0± 0.0 100± 0.0
AL + Relabel + Retrain + Reweigh t=0.01 21.1± 0.0 0.0± 0.0 100± 0.0
From Scratch t=0.01 21.7± 0.5 0.0± 0.0 99.5± 0.6
From Scratch + Reweigh t=0.01 21.8± 1.5 1.5± 3.6 98.3± 1.7

Table D.4: Results for active learning to predict human fairness judgments, using the separate test data
S. Active learning classifiers are retrained 10 times on the last batch D6. Results are averaged and ±
indicates the difference from the upper/lower bound of a naive 95% confidence interval assuming
normally distributed errors.

Method ACC TNR TPR

Baseline: Constant 0 96.1 100.0 0.0

AL t=0.5 93.8± 0.5 97.0± 0.6 14.6± 2.2
AL + Relabel t=0.5 92.1± 0.6 95.1± 0.7 18.9± 2.7
AL + Relabel + Retrain t=0.5 90.7± 1.7 93.8± 1.9 12.8± 4.0
AL + Relabel + Retrain + Reweigh t=0.5 89.0± 1.3 92.0± 1.4 16.4± 3.4
From Scratch t=0.5 89.2± 2.6 91.8± 2.5 25.7± 5.5
From Scratch + Reweigh t=0.5 89.2± 2.5 91.8± 2.7 25.7± 4.4

AL t=0.1 90.4± 1.3 93.3± 1.3 21.0± 2.3
AL + Relabel t=0.1 89.6± 0.8 92.2± 0.8 24.6± 1.4
AL + Relabel + Retrain t=0.1 60.0± 8.1 59.5± 8.8 72.8± 11.9
AL + Relabel + Retrain + Reweigh t=0.1 46.7± 7.4 45.2± 8.0 83.9± 7.6
From Scratch t=0.1 50.6± 10.4 49.8± 11.2 69.6± 9.3
From Scratch + Reweigh t=0.1 55.0± 9.4 54.5± 10.0 66.7± 6.6

AL t=0.01 80.6± 2.3 82.3± 2.7 38.2± 6.8
AL + Relabel t=0.01 80.2± 1.3 85.5± 1.4 30.0± 2.7
AL + Relabel + Retrain t=0.01 3.9± 0.0 0.0± 0.0 100.0± 0.0
AL + Relabel + Retrain + Reweigh t=0.01 3.9± 0.0 0.0± 0.0 100.0± 0.0
From Scratch t=0.01 4.6± 0.9 0.0± 0.1 99.6± 0.4
From Scratch + Reweigh t=0.01 5.4± 3.9 1.6± 3.2 50.8± 1.6
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Demographic
Group

Descriptors Nouns

Male male,manly,masculine man, men, grandfather, bro, guy,
boy, father, dad, son, husbands, hus-
band, grandpa, brother

Female female, pregnant, feminine, femme,
womanly

woman, women, grandmother, lady,
ladies, girl, mother, mom, daughter,
wives, wife, grandma, sister

Transgender transsexual, FTM, F2M, MTF,
trans, M2F, transgender, trans
female, trans feminine, trans
femme,trans fem, trans male,trans
masculine,trans masc

Heterosexual straight, heterosexual, hetero
Homosexual gay, homosexual, lesbian
Christian Amish, Catholic, Christian, Evan-

gelical, Lutheran, Mormon, Protes-
tant, Unitarian

Jewish Conservative Jewish, Orthodox
Jewish, Reform Jewish, Hasidic,
Jewish

Muslim Muslim, Shia, Sunni
Hindu Hindu
Buddhist Buddhist
Atheist atheist, irreligious
Black African-American, African, Black,

BIPOC
White European-American, European,

Caucasian, White
Asian Chinese-American, American-

Born Chinese, Chinese, Indian-
American, Indian, Korean-
American, Korean, Vietnamese-
American, Vietnamese, AAPI

Latino Cuban-American,Cuban,
Dominican-American, Do-
minican, Salvadoran-American,
Salvadoran, Guatemalan-American,
Guatemalan, Mexican-American,
Mexican, Filipina-American, Fil-
ipina, Filipino-American, Filipino,
Hispanic, Latinx, Latine, Latino,
Latina, Latin American

Table E.1: Lists of words used for word replacementm, based on Smith et al. [20]
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Original Comment Modified Comment
’Hahaha, really? Thousands of years of war
and it was mostly white men, huh? Read
some history about non-European cultures to
pierce your idyllic bubble.’

’Hahaha, really? Thousands of years of war
and it was mostly white European Christians,
huh? Read some history about non-European
cultures to pierce your idyllic bubble’

’I would really like to see your source for the
Japanese fear of the Russians as being any
kind of factor whatsoever. For most of the
Japanese people, the Russians were not even
on the radar screen!!’

’I would really like to see your source for the
Buddhist fear of the west as being any kind
of factor whatsoever. For most of the western
people, the west and religion were not even
on the radar screen!!’

’Yes: at least implicitly it endorses the old
canard that the United States is a "Christian
nation."’

’Yes: at least implicitly it endorses the old
canard that the United States is a "white racist
nation."’

’Please be careful what you label fake news.
News of shootings (Greenville?), migrants in
Sweden raising crime rates, Hispanics being
rapists and murderers, illegal voting, etc those
are examples of fake news....feet on couch?
not so much....’

’Please be careful what you label fake news.
Hundreds of shootings (Green Mountain?),
migrants in Sweden raising crime rates, ho-
mosexuals being raped and murderers, ille-
gal voting, etc those are examples of fake
news....feet on couch? not so much.’

’And often they are not so silent. Gay friends
have told me about various such clergy who
are well known – only no one speaks out
about it.’

’And often they are not so silent. Gay friends
have told me about various such men who are
well known – only no one speaks out about
it.’

Table E.2: Examples of pairs produced by our style transfer approach

Original Comment Modified Comment
’OK, so now Iḿ confused. Is it or is it not OK
to mock a reporterś physical handicap? Call
a Latina beauty queen "Miss Housekeeping"?
Post a mock video showing yourself clocking
a woman you dont́ like with a hard-hit golf
ball?’

’ Is it or is it not OK to mock a reporterś
physical handicap? Call a Muslim beauty
queen "Miss Housekeeping"? Post a mock
video showing yourself clocking a woman
you dont́ like with a hard-hit golf ball?’

"You caught me. I confess. I’ve been lying
this whole time. I’m not actually an atheist,
of course I believe in a god. I see him in the
mirror every day !"

" You caught me. I confess. I’ve been lying
this whole time. I’m not actually a homosex-
ual, of course I believe in a god. I see him in
the mirror every day !"

"Denying the existence of racism in Amer-
ica,(or most anywhere), is just ignoring real-
ity. The formal dicrimination has largely been
curbed(with exception of using race to design
Congressional districts), but those wonderful
’family values’ of the white South still carry
the mythology of inherent white superiority"

". Denying the existence of racism in Amer-
ica,(or most anywhere), is just ignoring real-
ity. The formal dicrimination has largely been
curbed(with exception of using race to design
Congressional districts), but those wonderful
’family values’ of the Hindu South still carry
the mythology of inherent Hindu"

’Cite to "the Republicans, Trump being a Re-
publican, who are against gays" please. New
one to me. (Other than Trump being regis-
tered Republican of course, lol!)’

’ Christian people are against gays.’

"You’d better watch out if you don’t claim
Christianity unto yourself like they do. It is
true that people harbor resentment over peo-
ple whom they view as different. It’s the only
reason I can think of why they hate gay peo-
ple."

" You’d better watch out if you don’t claim
Christianity unto yourself like they do. It is
true that people harbor resentment over peo-
ple whom they view as different. It’s the only
reason I can think of why they hate Asians."

Table E.3: Examples of pairs produced by GPT-3 (zero-shot)
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Original Comment Modified Comment
’So do they cover their faces? This is about
being able to identify women for practical
purposes. Makes sense to moi.’

’So do they cover their faces? This is about
being able to identify White people for practi-
cal purposes. Makes sense to moi. ’

’What about LGBTQI+M(xn)
W(omxn)Y(oxth)C(hxldrxn)O(thxrs)’

’Christianity is the best religion. Christian
people are the best people. Jesus Christ was
a man who lived a perfect life and died for
our sins. We should all be following Jesus
because he is the author and finisher of our
faith. ’

’Bust Judaism, Christianity and Islam are all
Abrahamic religions tracing their origins to
the patriarch Abraham. They are all related.’

’Bust Hispanic people are all the same. They
are all related. ’

"AO96 doesn’t allow men into womens rest
rooms or locker rooms. You do realize that
trans people have been using the bathroom
with you forever right? Have you ever been
injured by any of these people in all the years
you have been using public facilities?"

"AO96 doesn’t allow white people into black
rest rooms or locker rooms. You do realize
that trans people have been using the bath-
room with you forever right? Have you ever
been injured by any of these people in all the
years you have been using public facilities? "

’so.. I . have seen dozens of women in niqab
in Toronto this week alone Almost every day
I see groups of them. The problem with the
niqab policy is that is was for such a silly
narrow issue. The niaqb should have been
banned from public buildings and shopping
malls.’

’so.. I . have seen dozens of black people in
the niqab in Toronto this week alone Almost
every day I see groups of them. The prob-
lem with the niqab policy is that is was for
such a silly narrow issue. The niaqb should
have been banned from public buildings and
shopping malls. ’

Table E.4: Examples of pairs produced by GPT-3 (edit mode)
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