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Abstract
Pre-trained multilingual language models such001
as BERT and XLM-RoBERTa are reasonably002
successful in zero-shot cross-lingual transfer003
because of the similarities in geometry of con-004
textual embedding spaces for the donor and005
recipient languages. However, there has been006
little research on the relationship between the007
embeddings of individual tokens and the final008
predictions in downstream tasks. In this pa-009
per, we investigate the impact of (1) lexical010
similarity between the tokens, (2) differences011
in tokenization, and (3) similarity of embed-012
ding spaces. We test this on zero-shot cross-013
lingual transfer with Named Entity Recogni-014
tion (NER) as the downstream task.015

1 Introduction016

Pre-trained Language Models (PLMs) such as017

BERT (Devlin et al., 2018) are widely used in all018

kinds of NLP tasks nowadays. By representing ev-019

ery subword in a language BERT creates the so-020

called contextual embedding space which can be021

visualized and further studied from the point of022

view of its geometric properties (Cai et al., 2021).023

The multilingualism of modern PLMs, such as024

multilingual BERT or XLM-RoBERTa (Conneau025

et al., 2019), allows to perform zero-shot cross-026

lingual transfer (CLT), and recent research shows027

that when English is used as a donor language,028

the performance of the model on the recipient lan-029

guage data would not drop lower than 25%, and030

often it is merely 2-3% (Hu et al., 2020). This031

leads to a question on how the quality of mul-032

tilingual embedding space affects the quality of033

CLT. A natural hypothesis would be that a) closely034

related languages, such as Catalan and Spanish,035

would have more similar embedding spaces and036

therefore a higher quality of CLT (bidirectionally)037

b) high-resourced languages, such as English or038

Russian, would have a fine-grained embedding039

space which again would allow higher quality of040

CLT.041

In our experiments we found out that multilin- 042

gual language models like XLM-RoBERTa have 043

a bias in contextual word representations (CWRs) 044

of ambiguous named entities (NEs) between low- 045

resourced and high-resourced languages even af- 046

ter fine-tuning for the NER task. It causes CWRs 047

of the languages that have more pre-training data 048

to be placed nearer to each other than to other 049

languages, even when the recipient languages are 050

more closely related to to the donor. Also, CWRs 051

of these NEs differ more by the language they 052

came from than by the NE type they have. It is 053

counter-intuitive with the distributional hypothe- 054

sis and lowers the representativeness of the NE 055

embeddings after fine-tuning. Also, we showed 056

that isotropy of multilingual embedding space is 057

affected differently by fine-tuning on different lan- 058

guage groups. It means that the CWRs of Russian 059

NEs are transformed in a similar way to Belaru- 060

sian ones. In addition, we noticed a strong corre- 061

lation between similarity of NE spelling between 062

languages and the quality of zero-shot CLT be- 063

tween them. The more similar NEs are in terms 064

of spelling, the better the CLT quality. 065

2 Related Work 066

Neural language models represent words and to- 067

kens as embedding vectors with a large number 068

of dimensions (768 dimensions in BERT), which 069

leads to many unexpected properties, such as a 070

large number of nearest neighbors (Radovanović 071

et al., 2010). PLMs further increase these prob- 072

lems by combining embeddings with parameters 073

of the layers of attention transformers, thus lead- 074

ing to research in BERTology (Rogers et al., 075

2020), a study of how PLMs make their predic- 076

tions. A case closely related to ours is a study by 077

Cai et al. (2021), which explores the geometry of 078

embedding spaces. While the parameters of the 079

model are difficult to scrotinise, the contextual em- 080

beddings research can help in better understanding 081
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of the embedding topology across languages, so082

this may lead to improving the quality of zero-shot083

CLT.084

Rajaee and Pilehvar (2021) studied the impact085

of fine-tuning on the isotropy of the contextual086

embedding space by considering the semantic text087

similarity (STS) as a downstream task. Authors088

showed that despite fine-tuning the embedding089

space stays highly anisotropic. Also, the local090

structure of CWRs undergoes a massive change091

during fine-tuning. In our work we are interested092

in the way fine-tuning on different languages im-093

pacts isotropy of monolingual embeddings in mul-094

tilingual embedding space.095

Their subsequent work (Rajaee and Pilehvar,096

2022) analysed geometry of multilingual embed-097

ding space in terms of isotropy. Multilingual098

BERT (mBERT) has other distribution of dimen-099

sions than the English BERT but still is highly100

anisotropic. Also, in both models there is a fre-101

quency bias, which causes CWRs to form clusters102

according to the number of times they meet in a103

corpus. We investigated this bias between high-104

resourced and low-resourced languages for NEs105

before and after fine-tuning for the NER task.106

However, not only the amount of pre-training107

data has a positive impact to the downstream task108

performance as shown by Rust et al. (2021). The109

languages adequately represented in the dictionary110

of a multilingual model have less performance gap111

with their monolingual counterparts. Below we112

report our experiments which show more specifi-113

cally how differences in tokenization affect closely114

related languages in terms of their embedding115

space geometry even after fine-tuning.116

Maronikolakis et al. (2021) investigated the im-117

portance of tokenization for multilingual models.118

Authors proposed a compatibility measure that119

correlates with downstream performance. In our120

work we extended this work and showed the im-121

pact of different tokenizations across languages on122

the topology of CWRs in parallel contexts.123

3 Methodology124

In this study we observe different geometrical125

properties and the impact of languages on multi-126

lingual embedding space after fine-tuning for NER127

as our downstream task.128

3.1 Data and models 129

For our research we have expanded a synthetic 130

NER dataset for 11 languages based on Slavic- 131

NER (Lobov et al., 2022). The main idea behind 132

its creation was to use machine-translated contexts 133

taken from the English annotated WikiNER (Pan 134

et al., 2017) and entities parsed from Wikipedia it- 135

self. The algorithm is to combine the correspond- 136

ing entities and contexts; the contexts are chosen 137

so that each sentence contains only one NE and 138

the case of the NE would be the one desired (e.g., 139

Nominative; the sentences which were translated 140

with a different case in a language would be dis- 141

carded as well as their counterparts in other lan- 142

guages). The original NE would be replaced with 143

a placeholder, which can be filled with any other 144

NE from the Wikipedia list. Thus, we can obtain a 145

very large corpus of the size of the number of the 146

contexts multiplied by the number of the entities. 147

In comparison with the original version we 148

added languages, cleaned the contexts and added 149

Accusatuve/Dative case contexts for LOCations. 150

The languages present in the dataset are: Belaru- 151

sian, Bulgarian, Catalan, Czech, English, Polish, 152

Russian, Slovenian, Spanish, Turkish, Ukrainian. 153

Each context and each NE is strictly parallel 154

(as machine translation and Wikipedia language 155

links for parallel articles allow). The PER con- 156

texts take gender of the name into account: we 157

distinguish male and female personal names. The 158

PER and the ORG entities are only in Nominative 159

case, while there is a certain amount of LOC en- 160

tities (and corresponding contexts) in Accusative 161

(Russian, Belarusian contexts of a type ‘I am go- 162

ing to London’), Dative (the same type for Turk- 163

ish) and Locative cases. The quality of machine 164

translation for every language was manually as- 165

sessed and the overall consistency of the synthetic 166

data was selectively checked as well. 167

The size of the dataset is described in the Ta- 168

ble 1. 169

Table 1: The sizes of SyntheticNER

Type Quantity of Possible Sentences
PER 20,646,346
LOC 3,047,088
ORG 362,876

For all our experiments we used the XLM- 170

RoBERTa model pretrained on 2.5TB of filtered 171

CommonCrawl data. 172
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The languages which interest us the most are173

Belarusian, English, Russian and Turkish. The174

reasons for that are as follows. The English and175

Russian languages are the best represented in the176

LM we use; Belarusian is closely related to Rus-177

sian: it has the same word order (SVO) and it also178

uses Cyrillic alphabet, which is important for to-179

kenisation, while Turkish, on the other side, is the180

most different from Belarusian: Turkish has the181

SOV word order and a high index of agglutina-182

tion. In some of our experiments we also use the183

other languages in our dataset, e.g. Polish, as it184

is another Slavonic language, but it uses the Latin185

alphabet, while its NE spellings often differ from186

English.187

In order to get the final dataset for NER task, we188

consider a subset of Cartesian product between the189

set of contexts and the set of entities. Formally, let190

C be a set of all context sentences with NE slots191

and E a set of all NEs available. Then, resulting192

dataset is193

D ⊂ {c(e), c ∈ C, e ∈ E},194

where c(e) is a sentence which is produced by195

placing a NE e in a slot of a context sentence c.196

As NEs and contexts exist independently, we split197

both sets into train and test parts with 80% and198

20% proportion respectively. Let’s denote the train199

part of dataset as Dtrain and the test part as Dtest.200

Then,201

Dtrain = {c(e), c ∈ Ctrain, e ∈ Etrain} ⊂D,202

Dtest = {c(e), c ∈ Ctest, e ∈ Etest} ⊂D,203

where Ctrain,Ctest ⊂ C, Etrain,Etest ⊂ E and204

Ctrain ⊔Ctest = C, Etrain ⊔Etest = E, ∣Ctrain∣ =205

0.8 ⋅ ∣C ∣, ∣Etrain∣ = 0.8 ⋅ ∣E∣.206

3.2 Tokenization207

PLMs use sub-word tokenizers which split a char-208

acter sequence of the entire text into pieces called209

tokens and maps those tokens to natural numbers210

that represent the ordinal of tokens in a dictio-211

nary. One of the ways of splitting character se-212

quences into tokens is byte-pair-encoding (BPE)213

(Sennrich et al., 2016; Gage, 1994). As BPE214

can split any word in a sequence into several to-215

kens, in our experiments we consider embeddings216

of whole words defined as e(w) = 1
k ∑

k
l=1 e(tl),217

where w is a word, t1, t2, . . . , tk its tokens and218

e(t1), e(t2), . . . , e(tk) their contextual embed-219

dings.220

One of the problems of multilingual PLMs 221

is underrepresentation of some languages in the 222

pre-training dataset, which causes inadequate to- 223

kenization of some words (Maronikolakis et al., 224

2021). Also, there is an ambiguity problem as 225

some NEs can be used either in PER contexts or 226

in LOC contexts. This complicates the solution 227

of NER task during CLT and may lead to inade- 228

quate distances between CWRs of such words in 229

low-resourced and high-resourced languages. 230

An example of an ambiguous NE with consid- 231

erable differences in tokenization across the four 232

languages is Washington, which can be either PER 233

or LOC, and it is rendered into Belarusian as Ва- 234

шынгтон, Russian as Вашингтон, and Turkish 235

as Vaşington. The tokenizer of pre-trained XLM- 236

RoBERTa model uses a single token for English 237

and Russian. However, for lesser-resourced lan- 238

guages it is split into tokens as: 239

be Ваш ын г тон 240

tr Va ş ington 241

We fine-tuned the XLM-RoBERTa model on 242

the train part of the English NER corpus, gener- 243

ated 100 PER and 100 LOC samples for "Wash- 244

ington" in all of the languages using contexts from 245

the test part, and collected CWRs of this NE from 246

the output layer. In order to represent complex- 247

ity and non-linearity of the multilingual embed- 248

ding space we used t-SNE with perplexity=70 to 249

display token embeddings in two dimensions (Fig- 250

ure 1). 251

We found that despite the similarity of Russian- 252

Belarusian and English-Turkish CWRs in terms 253

of cosine similarity of fine-tuned model for the 254

NER task (Table 2), Russian and English as 255

high-resourced languages are closer to each other 256

than to low-resourced Belarusian and Turkish lan- 257

guages for this particular NE. 258

Also, we compared the quality of fine-tuning on 259

different languages for the NER task. We fine- 260

tuned XLM-RoBERTa model on the train parts 261

of languages and tested it on the test parts of all 262

other languages. While testing we measured the 263

amount of wrong answers as the number of sen- 264

tences where the model was wrong. Also, we 265

measured the similarity between NEs of train lan- 266

guages and test languages by the transliterated 267

normalized Levenshtein distance (TNLD). It’s de- 268

fined as a normalized Levenshtein distance be- 269

tween entities which are transliterated to the En- 270

glish language. Formally, let e1 and e2 be the 271
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Figure 1: Output layer normalized embeddings of the
"Washington" word transformed by t-SNE after fine-
tuning on the English NER task

be en ru tr

be 1.0000 0.8457 0.9159 0.8329
en 0.8457 1.0000 0.8840 0.9372
ru 0.9159 0.8840 1.0000 0.8306
tr 0.8329 0.9372 0.8306 1.0000

Table 2: Average cosine similarities between paral-
lel named entities from the output layer of fine-tuned
model on the English NER task

entities from languages l1 and l2 respectfully and272

t(ei), i = 1,2 be their transliterations. Then TNLD273

is defined as274

TNLD(e1, e2) =
LD(t(e1), t(e2)

max(∣t(e1)∣, ∣t(e2)∣)
,275

whereLD is the Levenshtein distance. This metric276

allows to measure similarity between tokens even277

with different alphabets.278

3.3 Embeddings279

This set of experiments is dedicated to better un-280

derstanding of the topology of NE embeddings in281

the multilingual embedding space of the XLM-282

RoBERTa model before and after fine-tuning on283

the NER task. Here we considered Belarusian, En-284

glish, Russian, and Turkish languages with their285

training and testing parts of the SyntheticNER286

dataset. Before fine-tuning we projected contex-287

tual embeddings of entities from the test parts to288

the plane using t-SNE. After that we fine-tuned the289

model on the English train part for one epoch and290

did the same procedure with the resulting contex-291

tual embedding space (Figure 2). In this experi-292

ment we took 8,534 train sentences (6,082 PER,293

1,580 LOC and 872 ORG) and 1,613 test sen- 294

tences (1,000 PER, 395 LOC and 218 ORG). 295

In the initialization and output layers of the pre- 296

trained model there are clear clusters divided by 297

languages (Russian with Belarussian and English 298

with Turkish), while after fine-tuning these clus- 299

ters are less noticeable in the last layer. This ex- 300

plains the partial success of CLT. Also, in addition 301

to language separation the embeddings from the 302

output layer of the pre-trained model form some 303

entity type clusters, especially persons and organi- 304

zations. Obviously, in the fine-tuned model clus- 305

ters based on the relation to a certain entity group 306

prevail against the relation to the language this en- 307

tity comes from, and this entity-language link is 308

not entirely lost. 309

One of the features of the SyntheticNER dataset 310

is a large number of sports organizations, which 311

are named after their cities or districts. In this ex- 312

periment we concluded that the embeddings from 313

the output layer of a fine-tuned model for clubs 314

named by their cities are placed in the LOC cluster 315

by t-SNE ("Empoli", "Perugia", "Troyes"). More- 316

over, clubs with such names are near to the border 317

between LOC and ORG clusters ("Swansea City", 318

"Chicago Bulls"). It means that even after fine- 319

tuning the multilingual models often fail to prop- 320

erly distinguish contexts during zero-shot transfer 321

and rely mostly on the morphological properties 322

of NEs. 323

4 Experiments 324

In the process of our research we conducted a set 325

of experiments which can show the significance 326

of NE similarity in zero-shot transfer for the NER 327

task and different behaviour of the multilingual 328

embedding space while training on the different 329

language groups. 330

4.1 Fine-tuning impact of language groups 331

In this section we observe the impact of differ- 332

ent languages to the isotropy change of the mul- 333

tilingual embedding space during fine-tuning. As 334

the cosine similarity is a common measure of the 335

isotropy, we observe a difference of average co- 336

sine similarities inside language samples between 337

training steps. Formally, while training our model 338

on a language ltrain we define average language 339

cosine similarity on the step t for language ltest, 340

which can be equal to ltrain, as sim(ltest, t) = 341

Eϕ,ψ cos(ϕ, ψ), where ϕ, ψ are random word em- 342
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Figure 2: Embeddings of NE types in the initial and output layers before and after fine-tuning with t-SNE trans-
formation
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beddings for language ltest. After that we measure343

the difference sim(ltest, t + h) − sim(ltest, t) for344

fixed value h = 50 during training (Figure 3).345

Also, we consider correlations between these346

differences (Figure 4). According to plots, training347

on Turkish and Polish improves isotropy mostly348

for their embedding spaces but it is not so for349

other language embedding spaces. Training on the350

Russian part of dataset leads to the almost simi-351

lar transformations for all languages in a sample352

as well as training on the Ukrainian part. It is353

also seen that six languages from this experiment354

are split into two groups according to the simi-355

larity of embedding space transformations during356

training. The Russian and Ukrainian languages357

have the greatest correlation coefficient while both358

of them have near zero or negative correlations359

with other languages. Another group is Polish,360

Turkish, Spanish and English languages. They361

also have high positive correlations which shows362

that their embeddings behave in a similar manner363

while fine-tuning.364

4.2 NER task: pairwise comparison365

The experiment with the "Washington" NE shows366

that there is a big impact of word tokenization367

to the NE embeddings topology. Even the same368

NEs from parallel sentences of closely related lan-369

guages can be placed in different locations follow-370

ing their spelling and tokenization. In this section371

we would like to explore if there is a dependency372

between the spelling of NEs in different languages373

and the quality of zero-shot transfer between them.374

Here we consider all available languages from375

the SyntheticNER corpus. For each language376

ltrain we fine-tuned the XLM-RoBERTa model on377

the train part and measured the number of errors378

on the test parts of each language ltest ≠ ltrain. We379

also measured the average TNLD between parallel380

NEs in the test parts of ltrain and ltest (Figure 5).381

This process allows to check the quality of zero-382

shot transfer from a single train language ltrain to383

the languages ltrain without revealing test contexts384

and NEs during fine-tuning.385

We observe a high impact of parallel NE386

spelling to the quality of solving the NER task.387

If the two languages have NEs with a similar388

spelling, then the zero-shot transfer from one lan-389

guage to another will have a better quality than the390

transfer between languages with big differences in391

NE spelling.392

Figure 3: Differences of average cosine similarities in-
side languages between h = 50 training steps.

5 Conclusions 393

In our work we have demonstrated 394

1. the extent multilingual PLMs such as XLM- 395

RoBERTa rely on the morphological infor- 396

mation about words rather than on the con- 397
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Figure 4: Correlations between average differences
of cosine similarities during training. Languages ap-
peared to form two clusters according to the similarity
of transformations embeddings.

Figure 5: Dependence between number of wrong sam-
ples on the test dataset from the average TLND of par-
allel NEs

text information during zero-shot transfer for398

the NER task.399

2. Multilingual model tokenization plays cru-400

cial role in the multilingual embedding space401

topology. Differences in tokenization and402

ambiguity of NEs cause the embeddings for403

closely related languages like Belarusian and404

Russian to be placed inside different mani-405

folds.406

3. The multilingual embedding space is affected407

in different ways while fine-tuning for the408

NER task according to the language group.409

Training affects closely-related languages in410

a similar way.411

4. There is a correlation between model perfor- 412

mance for the NER task and the named en- 413

tities similarity expressed as TNLD. It also 414

emphasizes the importance of tokenization 415

in model’s performance because similarity 416

of tokens causes similarity of tokenization 417

which positively affects quality in a down- 418

stream task like NER. 419
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