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Abstract
Large AI models unlock powerful applications
but are costly and complex to train, primarily due
to the challenge of configuring distributed train-
ing across GPU clusters. This involves selecting
the right combination of techniques based on the
model, data, hardware, and performance objec-
tives. In practice, teams often rely on trial and
error, leading to high compute costs, cloud spend,
and wasted time, without guarantees of success or
optimality. We present TORCHSIM, a simulator
that eliminates this burden by accurately predict-
ing whether a configuration will succeed (i.e., stay
within memory limits) and how long it will take
to run, without requiring actual execution or ac-
cess to the target hardware. Users simply input
candidate configurations and choose the best suc-
cessful one, such as the fastest, avoiding costly
and uncertain tuning. TORCHSIM combines an-
alytical and learned models to estimate operator-
level runtimes and employs a GPU execution sim-
ulator to capture the intricacies of multi-stream
parallelism and hardware behavior. Evaluated on
both language and vision models across A100 and
H100 GPUs, up to 128-GPU scale, with multi-
dimensional parallelism and interconnects like
InfiniBand and RoCE, TORCHSIM achieves over
90% accuracy in runtime prediction and 99% in
memory estimation. It is open-sourced as an ex-
tension to PyTorch, with results demonstrated on
TORCHTITAN.

1. Motivation and Introduction
Large AI models power a wide range of applications, but
their training has become increasingly expensive and com-
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plex. Achieving state-of-the-art performance at this scale
demands extreme computational investment. For example,
Llama 3.1 used 405 billion parameters and 15 trillion to-
kens, consuming 30.84 million GPU hours across 16,000
H100s (Dubey et al., 2024), while Google’s PaLM used 540
billion parameters and 0.8 trillion tokens, requiring 9.4 mil-
lion TPU hours on 6,144 TPUv4 chips (Chowdhery et al.,
2023). These efforts highlight not only the capabilities of
modern models but also the prohibitive resource demands,
making training cost a major bottleneck for scalable AI. Dis-
tributed training is essential for scaling, but no universally
optimal strategy exists. For instance, Llama 3.1 employed
4D parallelism, 8-way Tensor, 16-way Context, 16-way
Pipeline, and 8-way Fully Sharded Data Parallelism, while
PaLM used 3D parallelism, 12-way Tensor, 256-way Fully
Sharded Data, and 2-way Data Parallelism, each carefully
tailored to model architecture and hardware constraints.

Scaling LLMs requires carefully combining parallelism
strategies and system-level optimizations. This includes
Data Parallelism (Li et al., 2020; Rajbhandari et al., 2020;
Zhang et al., 2022a; Zhao et al., 2023), Tensor Paral-
lelism(Narayanan et al., 2021; Wang et al., 2022; Kor-
thikanti et al., 2023), Context Parallelism (Liu et al., 2023;
Liu & Abbeel, 2024; NVIDIA, 2023; Fang & Zhao, 2024),
and Pipeline Parallelism (Huang et al., 2019b; Narayanan
et al., 2019; 2021; Tang et al., 2024b), often combined with
techniques like activation recomputation (Chen et al., 2016;
Korthikanti et al., 2023; He & Yu, 2023; Purandare et al.,
2023), mixed precision (Micikevicius et al., 2018; 2022),
and deep learning compilers (Bradbury et al., 2018; Yu et al.,
2023; Li et al., 2024; Ansel et al., 2024b) to maximize ef-
ficiency. Moreover, identifying an effective training recipe
is highly context-specific, requiring expert intuition and
repeated experimentation across a large space of configura-
tions involving parallelism dimensions, sharding strategies,
memory trade-offs, and precision modes (Eisenman et al.,
2022; Wang et al., 2023; Gupta et al., 2024; Maurya et al.,
2024; Wan et al., 2024).

Even when frameworks support advanced optimizations,
suboptimal configurations can be extremely costly. For
instance, LLaMA 3.1 and PaLM consumed 30.84 million
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GPU hours and 9.4 million TPU hours, respectively. If
trained with configurations just 10–25% slower than opti-
mal (Tazi et al., 2025), they would have required up to 7.71
million additional GPU hours or 2.35 million extra TPU
hours, resulting in significant financial and environmental
costs.

Crafting an optimal training recipe requires expensive, trial-
and-error exploration of a large and sensitive configuration
space, making automated and simulation-driven approaches
essential for scalable training.

A performance benchmarking study by Huggingface (Tazi
et al., 2025) illustrates the high cost and complexity of empir-
ical training configuration exploration for LLaMA models
(1.34B to 80B parameters). Fixing the global batch size
and sequence length, the study varied key parameters such
as node count, degrees of data, tensor, and pipeline paral-
lelism, micro-batch size, gradient accumulation steps, and
ZeRO sharding strategies across 3,306 configurations using
up to 512 H100 GPUs. Only 1,728 runs completed suc-
cessfully, while 1,578 failed due to out-of-memory errors,
offering little diagnostic value. Results showed training
performance and memory efficiency are highly sensitive
to configuration choices, with trade-offs between memory
usage, recomputation, and synchronization overhead. The
total cost of this limited benchmarking effort was approxi-
mately $469K, highlighting the substantial financial burden
of manual exploration. Despite controlling many variables,
the study explored only a narrow slice of the configuration
space, underscoring the need for automated, simulation-
driven methods to guide training configuration selection at
scale. (Full details in §B)

The ability to estimate memory and runtime costs before
execution would transform large-scale AI training by en-
abling practitioners to preemptively discard failing setups
and select the fastest viable options, eliminating costly trial-
and-error. However, achieving accurate end-to-end cost esti-
mation is highly complex due to the interplay of parallelism
strategies, hardware heterogeneity, tensor liveness, and dy-
namic runtime behaviors like asynchronous execution and
communication-computation overlap. These factors make
purely analytical modeling infeasible and brittle, especially
as training frameworks evolve. Instead, robust estimation
requires a simulation-based approach that faithfully captures
the full complexity of modern distributed training systems.

We introduce TORCHSIM, a predictive tool that estimates
runtime and memory consumption for distributed deep learn-
ing training workloads without requiring actual GPU exe-
cution. TORCHSIM combines hardware-aware compute
models with topology-sensitive communication models to
predict operator-level execution times, using a detailed sim-
ulator that replicates multi-stream GPU execution, includ-
ing compute–communication overlap, synchronization over-

head, and exposed communication phases for accurate end-
to-end runtime estimation. For memory prediction, TORCH-
SIM tracks tensor usage at operator-level granularity, emu-
lates memory consumed by collective operations, and mim-
ics PyTorch’s memory management, capturing effects from
sharding, activation recomputation, and communication
buffering. This unified modeling approach enables users to
evaluate training configurations and cluster topologies be-
fore execution, supporting principled decision-making and
eliminating the need for costly empirical benchmarking.

To support scalable and cost-effective training, TORCHSIM
makes the following key contributions:

1. We design TORCHSIM as a model-agnostic, non-
intrusive simulation framework that integrates with PyTorch
pipelines. It supports pluggable compute and communica-
tion models across diverse hardware and distributed setups
(§ 2).
2. We develop accurate compute and communication es-
timators using learned models and statistical techniques.
TORCHSIM models operator-level execution, synchroniza-
tion, and compute–communication overlap, supporting
workflows like FSDP, TP, and CP (§ F, § E, § G).
3. We implement an operator-level memory estimator that
tracks tensor allocations and deallocations, categorizes mem-
ory usage (parameters, gradients, activations, optimizer
states), and reports per-device memory statistics for op-
timization and debugging (§ D).
4. We open-source TORCHSIM as a PyTorch extension and
evaluate it using TorchTitan (Liang et al., 2024), along with
benchmarking scripts, compute models (A100/H100), and
collective communication datasets (InfiniBand and RoCE).
5. We evaluate TORCHSIM on diverse models (Gemma-2B,
CLIP, T5, ViT, LLaMA variants), GPU types (A100, H100),
cluster sizes (up to 128 GPUs), and parallelism strategies.
TORCHSIM achieves 99% memory estimation accuracy and
≥ 90% runtime prediction accuracy (§ 3).

2. TORCHSIM Design and Workflow
Thus far, we have established the need for a fast, GPU
execution-free, and high-fidelity tool for runtime and mem-
ory estimation to effectively explore the performance land-
scape of distributed training configurations (§1). In this
section, we first present the high-level design of TORCH-
SIM and introduce its core design principles, which together
define the scope and structure of our solution (§2.1). We
then provide an end-to-end walkthrough of TORCHSIM’s
workflow in §2.2.

2.1. TORCHSIM High-level Design and Principles

To deliver accurate and generalizable estimates, TORCHSIM
must effectively capture this complexity while remaining
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Figure 1. TORCHSIM: High-level System Design

user-friendly and broadly applicable. We now present the
high-level system design of TORCHSIM (Figure 1) and in-
troduce the core principles that guide its architecture and
implementation.

TORCHSIM comprises three core components: TORCHSIM
Capture, TORCHSIM Simulator, and TORCHSIM Models.
TORCHSIM Capture acts as an extensible wrapper around
the PyTorch Runtime (Paszke et al., 2019), interpreting the
training run as a sequence of operator dispatches. It in-
tercepts these dispatches to collect metadata on operators,
memory usage, and synchronization events. TORCHSIM
Models provide runtime predictions at the operator level,
which are integrated into the captured metadata. This en-
riched metadata is then passed to the TORCHSIM Simulator,
which emulates GPU stream execution semantics to pro-
duce accurate end-to-end estimates of runtime and memory
usage.

To ensure generality, accuracy, and usability, TORCHSIM is
built around the following design principles: (D1) Model-
Agnostic, (D2) Algorithm and Implementation Coverage,
(D3) Non-Intrusive, (D4) Accurate End-to-End Estimation,
(D5) GPU Execution-Free and Fast, (D6) Insightful, (D7)
Modular and Extensible.

2.2. TORCHSIM Workflow

We now present a detailed walkthrough of TORCHSIM’s
end-to-end workflow, illustrated in Figure 2. The infras-
tructure underlying TORCHSIM Capture is explained in §C.
Corresponding algorithms and models are detailed in subse-
quent sections: the runtime simulator in §G, compute time
modeling in §E, communication time modeling in §F, and
memory estimation in §D.

1. Input. The input to TORCHSIM is a train step function
that receives the model, optimizer, and a sample mini-batch.
It executes the forward and backward passes, followed by
the optimizer step and gradient zeroing.
2. MPMD/SPMD Estimation. For SPMD estimation,
TORCHSIM runs a single process under FakeTensor-
Mode (Contributors, 2025) with a FakeProcessGroup (Con-
tributors, 2024). For MPMD estimation, it launches N

processes (one per pipeline stage), each using FakeProcess-
Group. Memory is estimated per stage independently, while
runtime estimation requires coordination among processes,
managed by the runtime simulator.
3. Metadata Capture. TORCHSIM Capture enables GPU-
free simulation by executing the training script while pre-
serving operator behavior. It leverages PyTorch’s FakeTen-
sorMode to represent tensors using only metadata and uses
FakeProcessGroup to emulate collectives over virtual de-
vice meshes. All operator dispatches are intercepted via
TorchDispatchMode (He et al., 2022), allowing TORCHSIM
to capture inputs, outputs, and metadata such as stream,
resource, and synchronization information. Synchroniza-
tion primitives, including stream waits, event records, and
barriers, are captured through dynamic function overrides,
ensuring faithful simulation across strategies like FSDP, TP,
CP, and PP.
4. Memory Simulator. TORCHSIM estimates memory by
tracking tensor liveness and allocation metadata captured
at operator dispatch time. For each tensor, it records size,
device, and dtype, and maintains a live memory snapshot to
model allocation and deallocation events. It produces both
per-module and global peak memory statistics throughout
execution (§ D).
5. Operator Runtime Estimation. For each intercepted
operator, TORCHSIM classifies it as compute or communi-
cation. It then extracts relevant features for estimation: com-
pute ops use metadata such as input/output shapes, dtype,
and backend-specific attributes; collective ops include data
size, collective type, and process group. These features are
fed into learned or analytical models for latency estimation
(§ E, § F).
6. Runtime Simulator. The runtime simulator consumes
metadata for each operator, including CUDA stream, re-
source type (compute/comm), dispatch order, and synchro-
nization dependencies. It enqueues each op into its corre-
sponding stream queue and simulates multi-stream GPU
execution with accurate compute–communication overlap
and synchronization effects (§ G).
7. Output. TORCHSIM produces a module-wise break-
down of compute time, communication time, exposed com-
munication time (non-overlapping), and total simulated run-
time. It also provides peak memory usage and memory
snapshots at various stages of execution.

3. Experimental Results
We now present the results of our distributed training evalua-
tion, demonstrating the effectiveness of TORCHSIM at scale.
Specifically, we assess runtime and memory prediction ac-
curacy using the LLaMA 3.1 70B model across 128 GPUs
under two settings: 1D Fully Sharded Data Parallel (FSDP)
and 2D FSDP with Tensor Parallelism (FSDP+TP). Each
machine contains 4 GPUs connected via NVLink, and 16 or
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Figure 2. TORCHSIM design internals for capturing tensor, operator, and synchronization primitive metadata to enable precise memory
and runtime estimation.
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32 such machines are interconnected through InfiniBand.

3.1. Runtime Simulation

Table 17 presents the results for 1D FSDP, while Table 18
shows results for 2D FSDP+TP. In both configurations,
TORCHSIM achieves high prediction accuracy (90–91%)
with minimal simulation overhead.

Table 1. Runtime prediction accuracy of TORCHSIM for 1D FSDP
during LLaMA 3 70B training on 128 GPUs. TORCHSIM achieves
over 90% mean accuracy with minimal prediction overhead.

BATCH
SIZE

SEQ LEN AC EST.
(MS)

ACTUAL
(MS)

ACC.
(EST./ACTUAL)

PRED.
OVERHEAD (S)

2 64 SELECTIVE 4953.20 5503.55 0.90 17.78
2 256 SELECTIVE 4934.07 5423.15 0.91 17.81
2 1024 FULL 5042.39 5480.86 0.92 18.24
1 4096 FULL 5477.02 6018.70 0.91 18.01
1 8192 FULL 9597.48 10663.87 0.90 18.10

Table 2. Runtime prediction accuracy of TORCHSIM for 2D FSDP
during LLaMA 3 70B training on 128 GPUs. TORCHSIM achieves
91% mean accuracy with minimal prediction overhead.

BATCH SIZE SEQ LEN AC EST.
(MS)

ACTUAL
(MS)

ACC.
(EST./ACTUAL)

PRED.
OVERHEAD (S)

8 1024 FULL 4955.56 5445.67 0.91 31.53
4 4096 FULL 5383.30 5851.41 0.92 30.37
4 8192 FULL 10075.91 11195.45 0.90 30.59

3.2. Memory Simulation

Tables 20 and 21 present memory estimation results for 1D
FSDP and 2D FSDP+TP, respectively. Memory Simulator
consistently achieves ≥99% accuracy even under complex
memory patterns introduced by FSDP and TP. All estima-
tions complete in under 30 seconds.

Table 3. Memory Simulator achieves ≥99% accuracy for 1D FSDP
training of LLaMA 70B on 64 GPUs, with estimations completed
in under 30 seconds.

BATCH SIZE SEQ LEN AC EST. (GIB) ACTUAL (GIB) ACC TIME (S)

2 64 SELECTIVE 30.10 30.20 0.995 31.91
2 256 SELECTIVE 30.65 30.97 0.989 31.86
2 1024 FULL 30.50 30.70 0.995 30.36
1 4096 FULL 32.15 32.28 0.996 31.55
1 8192 FULL 40.13 40.18 0.998 31.10

Table 4. Memory Simulator achieves ≥99% accuracy for 2D
FSDP+TP training of LLaMA 70B on 128 GPUs, with estimations
completed in under 30 seconds.

BATCH SIZE SEQ LEN AC EST. (GIB) ACTUAL (GIB) ACC TIME (S)

2 64 SELECTIVE 12.78 12.87 0.992 29.57
2 256 SELECTIVE 12.78 12.87 0.992 29.63
2 1024 FULL 12.79 12.88 0.992 28.42
1 4096 FULL 12.76 12.88 0.990 28.28
1 8192 FULL 13.00 13.12 0.991 28.45

A detailed evaluation of our compute and communication
models, along with extensive results for single-GPU mem-
ory and runtime estimation across diverse models and hard-
ware, is provided in §H.

4. Related Work
Existing runtime estimation techniques are largely limited
to simplified single-GPU or kernel-level settings (Geoffrey
et al., 2021; Lee et al., 2025b; Zhang et al., 2022b; Li et al.,
2022), and fail to capture the complexity of distributed train-
ing. Communication models often neglect critical system
factors, including multi-tier network topologies, collective
communication algorithms, and the impact of straggler de-
lays (Lee et al., 2025a; Won et al., 2023; Mohammad et al.,
2017). Moreover, accurate end-to-end performance pre-
diction requires modeling the computation–communication
overlap introduced by advanced distributed training strate-
gies such as FSDP, TP, PP, and CP. To the best of our
knowledge, no existing work faithfully simulates these al-
gorithms, leaving accurate runtime estimation an unsolved
problem. Similarly, memory estimation tools are primar-
ily profiling-based and operate post hoc (Shi & DeVito,
2023; PyT, 2025b), offering no predictive insights into the
memory impact of training configurations or the ability to
prevent Out-of-Memory (OOM) errors proactively. Analyti-
cal techniques for estimating peak memory usage (Gao et al.,
2020; Narayanan et al., 2021) are difficult to maintain and
often inaccurate due to the opaque and evolving internals of
modern training frameworks. Other single-GPU tools (Yu
et al., 2020; Su et al., 2024) require actual execution and
do not generalize to distributed contexts; they also lack de-
tailed memory attribution and breakdown. To the best of
our knowledge, no existing method provides accurate, pre-
dictive memory estimation for full-scale distributed training.
Extended related work is presented in §I.

5. Conclusion
In conclusion, we present TORCHSIM, a principled and prac-
tical framework for estimating memory and runtime in large-
scale distributed training without GPU execution. TORCH-
SIM combines a modular design, operator-level memory
tracking, and a high-fidelity simulator that models execu-
tion, synchronization, and compute–communication overlap.
It achieves high accuracy by integrating learned models for
compute and statistical models for communication. We
show that TORCHSIM consistently delivers 99% memory
estimation accuracy and over 90% runtime accuracy across
diverse models, GPU types, cluster sizes, and networks.
TORCHSIM is open-sourced with TORCHTITAN integration,
along with pre-trained cost models and benchmark datasets,
offering a production-ready tool for performance modeling
in modern AI training systems.
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(a) Parameters, gradients, optimizer
states and activations retained in mem-
ory during single GPU training.

(b) FSDP shards the parameters, gradients and op-
timizer states across multiple GPUs. It recon-
structs the parameters dynamically and averages and
redistributes the gradients dynamically using the
all gather and reduce scatter collective operations
respectively.

(c) The operators (blue) and communication collectives (orange) dispatched by
the CPU across multiple GPU streams for the example in 3b. Although the CPU
issues operations sequentially, streams can overlap in execution, e.g., as shown
by Cin p2 and AG p2 in the forward pass, until forced to synchronize, e.g. by
all gather (AG) and reduce scatter (RS), as denoted by the red and green
vertical lines.

Figure 3. Complex semantics of distributed training on GPUs

A. Background: Nuances of Distributed Training Systems
For TORCHSIM to accurately predict runtime and memory consumption for a single training configuration, a detailed
understanding of distributed training methodologies, memory management mechanisms, and GPU execution semantics at
every step of execution is essential. This section explores these fundamental concepts, highlighting the complexities that
TORCHSIM effectively addresses.

A.1. Single-GPU Model Training

At its core, a deep learning model is a composition of differentiable functions, called operators, designed to model data
distributions for prediction or generation tasks. A single training iteration consists of three phases: a forward pass that
generates the outputs for all operators, a backward pass that generates the gradients, and a optimizer step that modifies the
parameters based on the gradients.

Figure 3a illustrates a complete training iteration on a single GPU using a Multilayer Perceptron (MLP) model. In the
forward pass, given an input x, it is first multiplied by the parameters of the first layer (p1), passed through a GeLU activation,
and then multiplied by the second layer’s parameters (p2) to produce the output z. The loss is computed by comparing this
output with the target. During the backward pass, gradients are computed via backpropagation starting from ∂L

∂z , applying
the chain rule to derive gradients for each parameter (g1 for p1, g2 for p2). Parameters and intermediate activations (v
and y) must be retained throughout this process, although temporary activation gradients (∂L∂z , ∂L

∂y and ∂L
∂v ) can be freed

immediately after use to reduce memory usage. The backward pass is typically followed by an optimizer step, which updates
parameters using the computed gradients and a specified learning rate, while maintaining per-parameter optimizer states
(e.g., momentum). Parameter gradients are usually released after this step.

A.2. Distributed Model Training

As models and datasets scale, distributed training techniques such as Distributed/Fully Sharded Data Parallel (DDP/FSDP) (Li
et al., 2020; Rajbhandari et al., 2020; Zhao et al., 2023), Tensor Parallel (TP) (Shoeybi et al., 2019; Narayanan et al., 2021;
Wang et al., 2022; PyTorch Team, 2024a), Context Parallel (CP) (Liu et al., 2023; NVIDIA, 2023; PyTorch Team, 2025),
and Pipeline Parallel (PP) (Huang et al., 2019a; Narayanan et al., 2019; 2021; Lamy-Poirier, 2023; Qi et al., 2024; Tang
et al., 2024a; PyTorch Team, 2024b; DeepSeek-AI, 2025) are employed to efficiently distribute workloads across multiple
GPUs. These methods partition the model’s data, parameters, gradients, optimizer states, and activations, reducing the
memory required on any single GPU and parallelizing computation.

Using FSDP as a case study, we adapt the MLP example from Figure 3a to a distributed training setup shown in Figure 3b.
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Let p1 ∈ RF×H and p2 ∈ RH×F be the parameters of the two layers, and x ∈ RB×F the input, where F is the feature
dimension, H the hidden dimension, and B the batch size. The parameters p1 and p2 are sharded along the feature dimension
and distributed across N GPUs, while the input x is split along the batch dimension. This reduces the memory footprint of
parameters, gradients, and optimizer states on each GPU by a factor of N .

During the forward pass, parameters are unsharded using an all gather operation before computation and then resharded
immediately after to minimize memory usage. The backward pass follows a similar pattern: gradients are computed using
unsharded parameters and then redistributed across GPUs using a reduce scatter operation, effectively sharding the gradients.
This strategy ensures that full parameters and gradients are only materialized when required, enabling memory-efficient
distributed training.

A.3. Distributed GPU Training Execution Semantics in PyTorch

To accurately estimate memory usage and execution time, it is crucial to closely match the execution and memory behavior
of the underlying training system. Figure 3c illustrates the execution flow of a model training iteration in PyTorch (Paszke
et al., 2019) using a GPU accelerator.

PyTorch Fundamentals. PyTorch provides modules, which serve as containers for commonly used deep learning compo-
nents such as linear, attention, convolution layers, etc. Tensors are the fundamental containers for data such as parameters,
gradients, or activations. Each module consists of a well-defined set of operators provided by PyTorch, such as matrix
multiplication, dot product attention, etc., that operate on the tensors. Executing an operator involves launching one or more
GPU kernel functions, which are highly optimized parallel implementations of the operator. Thus, performing a forward and
backward pass on a module translates to executing a sequence of tensor operations on the GPU.

Goal. Efficient distributed training depends on minimizing memory usage and overlapping communication with computation.
This is accomplished by retaining only essential data in memory and performing communication asynchronously with
independent compute operations. The stream execution model, central to all modern GPUs, enables this high-performance
parallel execution.

Execution. A GPU consists of multiple resources, including compute cores, communication engines, and DMA engines.
Each stream represents a queue of operations that execute sequentially within the stream but may run concurrently with
operations from other streams if they utilize independent resources or do not fully occupy a shared resource. While
developers can create multiple streams, operations across different streams may execute in parallel or out of order.

Synchronization. To coordinate execution across streams, synchronization primitives such as stream/event waits and
barriers are used. If an operation in a high-priority stream depends on data from another stream, explicit synchronization
(e.g., via events) is required to enforce the correct execution order. This ensures that while streams enable parallel execution,
actual overlap occurs only when operations are assigned to different hardware resources.

Memory. Memory allocation in GPUs follows stream semantics, meaning memory allocated within a stream is returned
to the same stream after use. In PyTorch, memory ownership remains unchanged throughout execution unless explicitly
cleared or managed by a custom memory allocator. The CPU sequentially dispatches operators for execution on the GPU,
assigning them to different streams as determined by the scheduling algorithm. Memory allocation and deallocation are
handled by the memory manager on the CPU side. Since each stream owns the memory allocated within it, the CPU can
logically free memory assigned to an operator before execution using reference counting. Because operations within a
stream execute sequentially, reassigning freed memory to a subsequent operation after its last use ensures correctness.

Example. Figure 3c illustrates the CPU dispatch order and the corresponding multi-stream GPU execution for PyTorch’s
per-parameter FSDP algorithm, applied to the previous MLP example. The communication collectives (all gather and
reduce scatter) are strategically enqueued in separate streams to maximize overlap with independent compute operations
whenever possible.

Collective communication operations require copy-in and copy-out operations for efficiency. Copy-in operations must
complete before launching all gather, making them a blocking step. To minimize delays, these operations are enqueued in a
high-priority stream. Once all gather finishes, copy-out operations can begin, ensuring that data is available for subsequent
computation. Similarly, reduce scatter operations can only start once gradient copy-in operations complete. To enforce
these dependencies, synchronization events are inserted to maintain correct execution order across streams.

Memory management in this workflow is tightly coupled with execution order. When memory is allocated for an operation,
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Figure 4. Huggingface performance benchmarking of 1,728 out of 3,306 training runs reveals significant variance in throughput and peak
memory consumption, highlighting the impact of training configurations.

Table 5. Cost and experiment counts per model size (in k$) for 3,306 experiments, resulting in a total estimated cost of $469.17K.

Model (B) Cost (k$) Experiments per node config

1 2 4 8 16 32 64

1.34 107.34 65 120 127 149 158 111 78
3.57 119.78 63 117 126 148 176 118 94
8.86 119.95 61 116 122 145 176 122 93
80.0 122.10 57 87 125 150 185 122 95

such as the all gather for p1 during the forward pass, it is logically released as soon as the CPU processes the corresponding
copy-out operation, even if the actual operation is still running. This approach allows the memory to be safely reused by
the subsequent all gather for p2, as it is issued on the same stream and is guaranteed to execute only after the copy-out
operation for p1 has completed.

To estimate end-to-end runtime and memory consumption, TORCHSIM closely emulates the execution semantics of the
GPU stream model. Other distributed training techniques such as TP, CP, and PP are outlined in § ??.

A.4. Distributed Model Training Paradigms

Distributed training strategies such as FSDP, TP, and CP follow the Single Program, Multiple Data (SPMD) paradigm,
where each device runs the same program but operates on a distinct portion of the data or model. For instance, FSDP shards
parameters and processes different microbatches across devices; CP partitions sequences; and TP distributes identically
shaped model shards, such as attention heads or matrix blocks. Since all devices execute identical code in parallel, estimating
memory and runtime for a single SPMD process is sufficient to infer system-wide behavior.

In contrast, PP adheres to the Multiple Program, Multiple Data (MPMD) paradigm. The model is split into sequential
stages, each assigned to a different device or device group, processing distinct subsets of the model and data. When
combining parallelism strategies, PP is typically applied first, with each stage internally executing its own SPMD workflow
using FSDP, TP, or CP. In this setup, memory and runtime can be estimated by analyzing one SPMD process per pipeline
stage. However, accurate runtime prediction requires modeling inter-stage interactions such as communication delays and
scheduling dependencies between SPMD processes.
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Figure 5. Actual and Fake Tensor Representation.

B. HuggingFace Case Study: Exhaustive benchmarking for training configuration selection is
prohibitively expensive.

To illustrate the cost and complexity of empirical exploration, we highlight a performance benchmarking study conducted
by Huggingface (Tazi et al., 2025), which evaluated training configurations for LLaMA models of various sizes (1.34B,
3.57B, 8.86B, and 80B parameters). The study maintained a fixed global batch size of 256 and sequence length of 4096, and
systematically varied key parameters such as the number of nodes (ranging from 1 to 64), degrees of data parallelism (1 to
256), tensor parallelism (1 to 32), pipeline parallelism (1 to 128), gradient accumulation steps (1 to 256), micro-batch size
(1 to 256), and ZeRO sharding strategies (stage 0 and 1). A total of 3,306 configurations were benchmarked on a cluster
with up to 512 NVIDIA H100 GPUs (8 GPUs per node), with 1,728 runs completing successfully and 1,578 failing due to
crashes or out-of-memory (OOM) errors.

The results reveal three major insights. First, training performance and memory efficiency are highly sensitive to configuration
choices. As shown in Figure 4, throughput and peak memory usage vary significantly across configurations. Trade-offs
are inherent; for example, activation checkpointing reduces memory usage at the cost of recomputation, while tensor or
fully shared data parallelism improves memory distribution but increases synchronization overhead. Inefficient overlap of
computation and communication can further degrade performance, making configuration selection highly non-trivial.

Second, failure modes such as OOM errors are frequent and offer little diagnostic value. Out of 3,306 runs, 1,578 failed due
to memory exhaustion, resulting in substantial waste of resources and no actionable insights for tuning future configurations.

Third, the financial cost of empirical benchmarking is substantial. The study incurred an estimated total cost of $469.17K,
assuming a cost of $98.5 per node-hour1 and a runtime of five minutes per experiment. Table 5 provides a detailed breakdown
by model size and node count.

Despite fixing multiple parameters, including batch size, sequence length, precision mode, and activation checkpointing
strategy, the study required thousands of runs to explore only a narrow slice of the full configuration space. Expanding
this search to include additional models and optimization techniques would drastically increase both cost and complexity,
reinforcing the need for automated and simulation-based approaches to training configuration selection.

C. TORCHSIM Capture
We now describe how the internal mechanisms of TORCHSIM Capture materialize the outlined design principles to enable
the generation of comprehensive runtime and memory statistics.

(1) Functionality: Simulating Operator Execution [D5]. To enable GPU-free execution, the training script must run
seamlessly while mimicking execution on the target hardware. This allows TORCHSIM to generate accurate predictions
using only inexpensive, commodity hardware.

Enabler: FakeTensorMode. In PyTorch, each tensor comprises two core components: metadata and storage (Paszke et al.,
2019). Metadata includes attributes such as shape, dtype, device, stride, layout, requires grad, and pin memory, while the

1Cost estimate based on AWS EC2 p5.48xlarge (8×H100) on-demand pricing (CloudPrice.net, 2025). The total expenditure was
estimated using the formula: Cost = Number of Experiments × Nodes × 98.5×

(
5
60

)
, assuming five minutes per experiment.
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Storage object contains the raw data and allows for efficient memory sharing among tensors, as illustrated in Figure 5.

For simulation, only metadata is required, as it determines storage requirements and serves as input to subsequent operations.
TORCHSIM tracks a tensor’s size, device, dtype, and requires grad flag. PyTorch’s FakeTensors support this abstraction by
representing tensors without actual data, placing them on an abstract meta device while recording their intended execution
device via the fake device attribute (Contributors, 2025).

However, FakeTensors alone do not enable full training execution without GPUs. Operators must still execute correctly on
them, including proper metadata propagation. FakeTensorMode (Contributors, 2025) enables this by managing fake tensor
creation, applying operations, and propagating metadata. TORCHSIM runs under FakeTensorMode, which enables both
GPU-free execution and accurate memory estimation.

(2) Functionality: Simulating Communication Collectives [D2, D5]. In distributed training, TORCHSIM must simulate a
dummy collection of devices that mirrors the actual training configuration and its communication groups. This setup allows
collective operations issued during an iteration to execute as if real communication had taken place.

Enabler: FakeProcessGroup. PyTorch uses the DeviceMesh and ProcessGroup abstractions to manage communication
collectives such as all gather and reduce scatter. A DeviceMesh is a multi-dimensional representation of devices, where
each dimension corresponds to a specific parallelism strategy. Each DeviceMesh is associated with a ProcessGroup, and
each dimension forms a Sub-Mesh with its own Sub-ProcessGroup.

Collectives are issued to specific Sub/DeviceMesh objects and executed by the corresponding Sub/ProcessGroup. FSDP, TP,
and CP follow the Single Program, Multiple Data (SPMD) model, where each device runs the same program on different
data or model shards. FSDP shards parameters and processes separate microbatches; CP splits sequences; TP partitions
model blocks (e.g., attention heads). Since all devices execute identical code, analyzing one SPMD process suffices for
memory and runtime estimation. In contrast, PP uses the Multiple Program, Multiple Data (MPMD) paradigm, dividing the
model into sequential stages across devices. Each stage runs a different code on different data. PP is typically combined
with SPMD strategies (FSDP, TP, CP) within each stage. Here, memory/runtime can be estimated per SPMD stage, but
accurate timing requires modeling inter-stage communication and scheduling dependencies.

To emulate distributed execution without actual communication, TORCHSIM replaces ProcessGroup with FakeProcess-
Group (Contributors, 2024). This fake process group simulates a virtual collection of devices, ensuring that collectives
invoked under FakeTensorMode return FakeTensors and dummy synchronization objects with correct metadata.

(3) Functionality: Intercepting Operator Dispatch [D1, D2, D3]. To ensure that TORCHSIM remains model-agnostic,
independent of specific optimization techniques and implementations, and non-intrusive, it operates at the granularity of
individual operators. It interprets a training run as a sequence of operator dispatches, where each operator processes input
tensors and produces output tensors. Since tensors are dynamically created, explicitly by users, through operations, or
implicitly by the autograd engine, TORCHSIM must intercept every tensor operation and capture relevant metadata to
estimate runtime and track memory usage.

Enabler: TorchDispatchMode. At runtime, PyTorch’s Dispatcher routes each operation to the appropriate kernel based
on the tensor’s device, dtype, and the operator type. TorchDispatchMode is a context manager that enables interception
by overriding the torch. dispatch method, providing access to the operator, its arguments, and results (He et al., 2022).
TORCHSIM extends TorchDispatchMode to systematically capture all tensor operations for accurate execution analysis.

For memory estimation, TORCHSIM extracts metadata from the resultant tensors, recording attributes such as size, device,
and dtype for every operation encountered in the dispatcher.

For runtime estimation, once an operation is intercepted, it is classified as either a compute operation (e.g., matmul,
layernorm) or a communication collective (e.g., all gather, reduce scatter). TORCHSIM then extracts relevant features: for
compute operations, this includes dtype, input/output shapes, and backend-specific details; for communication collectives, it
includes data size, collective type, and process group.

The extracted metadata is used to populate the simulation data structures defined in Tables 6 and 7. TORCHSIM records the
CUDA stream, resource type, estimated runtime, and CPU dispatch order for each dispatched operation. It distinguishes
between compute and collective operations, using the associated process group to infer resource usage for the latter. Each
operation is enqueued into the queue corresponding to the current CUDA stream.

For non-functional collectives that return a Work object, the operation metadata (op info) is registered to the work’s
unique seq id in the work registry, enabling later correlation with work.wait(). For functional collectives,
which return one or more Tensors, the underlying storage of each tensor is mapped to the originating operation in the
wait tensor registry, allowing subsequent wait tensor() calls to synchronize with the correct producer.
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Resource State SyncAction
INTRA COMM WAITING STREAM WAIT
INTER COMM RUNNING EVENT WAIT
COMP READY SYNC WAIT
HOST TO MEM COMPLETE STREAM RELEASE
MEM TO HOST EVENT RELEASE

WORK WAIT
WORK RELEASE

Table 6. Enumeration classes representing the Resources, Queue states and Synchronization actions for primitives.

(4) Functionality: Capturing Synchronization Primitives [D2, D4]. The final requirement for TORCHSIM is to capture
synchronization metadata essential for simulating GPU stream execution. This is critical for supporting comprehensive
algorithm and implementation coverage across all distributed training techniques. As summarized in Table 8, we identify
eight synchronization primitives that are sufficient to emulate these techniques.

Enabler: Dynamic Function Overriding. Because synchronization primitives do not operate on tensors, they are not
intercepted by TorchDispatchMode. To capture them, TORCHSIM uses dynamic function overriding to hook into their
execution and extract relevant metadata. During simulated execution of the training script, TORCHSIM incrementally records
this metadata as each synchronization primitive is encountered.

Table 8 outlines the synchronization primitives intercepted and modeled by TORCHSIM, along with the logic used to capture
their semantics. The left column presents the high-level primitive (e.g., stream waits, event records, global syncs), while the
right column describes how TORCHSIM records the synchronization metadata into its internal data structures. This includes
queuing wait and release records linked to stream or event identifiers, initializing global synchronization dependencies, and
mapping work- or tensor-based waits to their corresponding producer operations.

D. TORCHSIM Memory Simulator
Accurate memory estimation involves addressing several critical challenges. How can tensor liveness (creation and deletion)
be tracked without interfering with garbage collection? Given that multiple tensors can share underlying storage, how do we
prevent over- or under-estimation of memory usage? Beyond identifying peak memory consumption, how can we accurately
attribute memory usage to specific sources, determining which module created a tensor and whether the allocation occurred
during the forward or backward pass? Additionally, how can memory usage be effectively categorized (e.g., activations,
gradients, activation gradients, optimizer states) and quantified per module? Furthermore, how can the impacts of weight,
activation, optimizer sharding, prefetching, or distributed training be precisely measured? In this section, we demonstrate
how TORCHSIM addresses these challenges.

We show how Memory Simulator tracks tensor liveness in § D.1 and then explain how it achieves memory attribution and
categorization in § D.2. We then deep-dive into the design and implementation of Memory Simulator by introducing the
fundamental data structures Memory Simulator uses to maintain statistics in § D.3, followed by elaboration of Memory
Simulator’s execution flow in §D.4.

D.1. Tracking Tensor Liveness using TorchDispatchMode and WeakRefs

While FakeTensors allow computation and size estimation without actual data, it does not provide liveness information
essential for accurately determining real-time memory usage. Tensors are dynamically created throughout the workflow,
explicitly by users (e.g., model initialization), by operations (e.g., matrix multiplication), or implicitly by PyTorch’s Autograd
engine (e.g., gradients).

Prior to execution, TORCHSIM extracts metadata for model parameters, optimizer states, and input tensors. During execution,
TorchDispatchMode robustly intercepts each operation dispatched under its context, retrieving metadata of resulting tensors
to track dynamic tensor creations.

Instead of tracking tensor references directly, we monitor references to their underlying storage objects (UntypedStorage),
as tensors sharing data also share storage objects. To avoid interfering with garbage collection, we utilize WeakRef (weak
references) (Yang, 2022; Pyt, 2025), allowing storage objects to be collected once no longer in use. WeakRef also provides
callback capabilities, triggering upon object finalization, enabling precise tracking of memory release and tensor liveness.
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SyncInfo
sync action The action type (from SyncAction).
release event id
release seq id
sync id

Identifiers for event-based, op-based, or global synchronizations.

OpInfo
seq id Unique ID assigned to the op in CPU dispatch order.
stream id CUDA stream ID the op is dispatched to.
resource Set of resources (e.g., compute, communication) used by the op (from Resource).
run time
rem time

Estimated and remaining runtime during simulation.

Queue
stream id
priority

CUDA stream ID and priority corresponding to the queue.

state Current execution state of a queue (from State).
ops List of OpInfo objects dispatched to this stream.
sync infos Maps op seq id to a set of SyncInfo records to be applied post-execution.
wait sync infos Tracks currently blocking conditions. A queue can only transition from WAITING to READY

when this dict is empty.
[-1] sync seed Global sync ops pre-injected at key -1 to ensure early synchronizations are honored.

Simulator
streamid to queue Maps each CUDA stream to its Queue.
seq id Global counter assigning unique ID to each dispatched op.
work registry Maps the seq id of a Work object to the OpInfo that produced it.
wait tensor
registry

Maps a tensor’s underlying storage to the list of OpInfo objects that produced it.

global sync infos Global set of sync ops that apply to all queues and are applied when the queue is first captured.
sync count To differentiate individual synchronize() calls.
event wait ids
event record ids

Track which event IDs have been waited on or recorded, respectively.

T sim Running total of simulated time.
resource occupancy Tracks which queues are currently occupying which resources.
completed ops Set of operation IDs that have completed execution.
recorded events Set of event IDs that have been recorded.

Table 7. Classes describing the Synchronization, Operator, Queue, and Simulator Metadata.
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Primitive Semantics Capturing Primitives in TORCHSIM
Stream Synchronization

s1.wait stream(s2)
Blocks future ops on s1 until all work in
s2 completes.

If s2.last op seq id ̸= −1:
seqID = s2.last op seq id
Add STREAM WAIT(seqID) to s1’s queue.
Add STREAM RELEASE(seqID) to s2’s queue.

s.wait event(e)
Delays ops on s until event e is recorded.

Get eventID, add to eventWaitIDs.
Add EVENT WAIT(eventID) to s’s queue.

s.synchronize()
Blocks CPU until all ops in stream s com-
plete.

If last op seq id ̸= −1:
seqID = s2.last op seq id
Add STREAM WAIT(seqID) to all queues.
Add STREAM RELEASE(seqID) to s’s queue.
Add global sync STREAM WAIT(seqID).

Event Synchronization
e.wait(s)
Delays stream s until event e is recorded.

Get eventID, add to eventWaitIDs.
Add EVENT WAIT(eventID) to s’s queue.

e.synchronize()
Blocks CPU until all work tied to event e
is complete.

Get eventID from e, add to eventWaitIDs.
Add EVENT WAIT(eventID) to all queues.
Add global sync EVENT WAIT(eventID).

e.record(s)
Marks event e at the current point in
stream s.

Get eventID, add to eventRecordIDs.
Enqueue zero-runtime event record op.
Add EVENT RELEASE(eventID) to s’s queue.

Global and Work Synchronization
synchronize()
Blocks CPU until all operations across
streams complete.

Increment global sync count.
Add SYNC WAIT(sync count) to all queues.
Add global sync SYNC WAIT(sync count).

work.wait()
Blocks until async work completes.
wait tensor(t)
Delays ops on t until its producer com-
pletes.

For work.wait():
Extract workSeqID, retrieve opInfos

from workRegistry.
For wait tensor(t):

Extract storage from t, retrieve opInfos
from waitTensorRegistry.

For each opInfo:
seqID = opInfo.seq id
Add WORK WAIT(seqID) to all queues.
Add WORK RELEASE(seqID) to originating
queue at position seqID.
Add global sync WORK WAIT(seqID).

Table 8. Synchronization primitives with PyTorch semantics and detailed actions captured by TORCHSIM.
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D.2. Memory attribution and categorization using Module, Tensor, and Optimizer Hooks

While TORCHSIM is now able to accurately track memory size, which is enough for estimating the peak memory consump-
tion, we haven’t attributed the sources of memory consumption. For instance, if a tensor was created, which module created
it? To enable memory attribution, we need a couple of features (1) Which modules are active during the execution of an
operation? (2) Are we in the backward or forward phase of execution? This essentially boils down to tracking module
execution. To track module execution and liveness, we install global module hooks on any module that is executed under
TORCHSIM’s context. A hook is a callback function attached to a specific point in a program’s execution flow, allowing
custom code to be executed (Desmaison, 2021a;b; PyT, 2025a). In particular, we register pre fw hook to track the
beginning and post fw hook to track the end of the module’s forward pass. While PyTorch does provide backward hooks,
they are tricky to use since they don’t work well for in-place operations and introduce additional view operations not present
in the original execution flow. To circumnavigate this, in the module’s pre fw hook , we install a multi grad hook
on all of the input tensors of the module that require a gradient, this acts as a post bw hook for the module. Similarly,
in the module’s post fw hook we install another multi grad hook on the output tensors of the module, that acts as a
pre bw hook . Finally, to capture the execution of Optimizer, we install opt step pre hook and opt step post hook ,
which capture the phase where the module’s parameters are updated using gradients and optimizer states, by setting the flag
in optimizer.

Subsequent to memory attribution, the final frontier for TORCHSIM is memory categorization, which answers questions
like, how much activation memory did a module create in the forward pass? Part of memory categorization, especially
categorizing tensors as parameters, can be done by enumerating over the parameters of the module in the pre fw hook .
During this phase, we also install post accumulate grad hook on the parameters to track their gradients, after they are
accumulated in the grad attribute of the parameter. All the other tensors generated during the forward pass and retained
for the backward pass are categorized as activations, while tensors generated during the backward pass are categorized
as temporary memory. To track if we are in backward pass, we query PyTorch Autograd’s engine for a non-negative
task graph id. There is one catch, though, during activation checkpointing, the activation tensors are generated in backward.
So, how do we mark them as activations? The good news is that the module’s pre fw hook and post fw hook are called
while recomputing the activation tensors in the backward; we make use of this to correctly categorize those tensors as
activations in the backward pass.

D.3. Memory Simulator data structures and variables

Memory Simulator uses the following data structures to keep track to memory statistics, module states, tensor and module
liveness information, tensor categories, and program states. These are depicted in Figure 6.

1. ModuleTracker: It is responsible for installing the global pre fw hook and post fw hook to track the module
execution. It maintains a set of active modules for tracking the currently active modules and a flag in backward to track
if we are in the backward phase of execution.

2. RefType: Enumeration of tensor memory categories, that are, parameter, buffer, activation, gradient, temporary, input,
optimize state, or other (user-defined type).

3. Snapshot: Snapshot captures the state of memory (occupancy and categorical breakdown) per device. It is a two-level
dictionary with device as the first-level key and a dictionary as the value. The second-level dictionary is keyed by RefType
with its value being the amount of memory consumed by each category, essentially the memory breakdown.

4. ModuleState: We capture eight module states at different points during the lifetime of its execution, namely, before
and after forward, before and after backward, before and after activation checkpointing, and peak memory state during
forward and backward.

5. ModuleStats: It is a two level dictionary that stores the Snapshots for all the modules at each ModuleState.

6. StorageInfo: This is the primary accounting data structure for storing the metadata of the intercepted tensor’s Untyped-
Storage. It preserves the RefType, size, device, and the WeakRef to the original UntypedStorage object.

7. Variables:

(a) in AC: A flag that determines if we are in the activation checkpointing region.
(b) in optimizer: A flag that determines if we are in the optimizer step region.
(c) current snapshot: Captures and maintains the state of memory at any given point in time.
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Figure 6. Memory Simulator’s data structures and functions for estimating, tracking, attributing and categorizing memory usage

Figure 7. Extending RefTypes and ModuleStates for distributed training
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(d) peak snapshot: Captures the peak memory state across the training execution.
(e) WeakStorageDict: A weak-key dictionary to store references to all the UntypedStorage objects alive at any given
point in time.

8. register modules and optimizer: Registers the module’s parameter and buffer storages and installs
post accumulate grad hook on them. And globally registers opt step pre hook and opt step post hook
for tracking optimizer states.

To extend Memory Simulator’s functionality to distributed training workflows, we need to capture additional ModuleStates,
RefTypes. For instance, PyTorch’s FSDP (Zhao et al., 2023) implementation internally uses pre fw hook and pre bw hook
for unsharding the parameters using all gather for forward pass computation and gradient computation in the backward pass,
respectively. And uses the post fw hook and post bw hook to reshard the parameters after the forward computation and
gradient computation in the backward pass. Additionally, the gradients are aggregated and sharded in the post bw hook as
well by using reduce scatter operation. Similarly, to capture the state before and after the unsharding and sharding of the
parameters and gradients, Memory Simulator extends the RefTypes and ModuleStates (shown in Figure 7) to enable more
fine-grained statistics and enrich the estimation and debugging insights.

D.4. Detailed Memory Simulator execution

We first describe the functionality of Memory Simulator’s core functions as shown in Figures 8a and 8b:

• Module Hooks: In addition to tracking the module execution and liveness as explained in § D.2, the module hooks serve
to capture and initialize Snapshots for each ModuleState. Specifically, for pre fw hook and post fw hook , depending
on whether they are called during forward pass or activation checkpointing in the backward pass, Snapshots are stored for
appropriate ModuleStates.

• track tensor: For a given tensor t and ref type, it first extracts its storage st. If st is already being tracked and if its size
(due to resize operation) or categorization (due to hook trigger) has changed, then its statistics are updated. If it is a new
storage to be tracked then a WeakRef is created and a delete callback is registered. A new StorageInfo object is created and
its statistics are populated and tracked in WeakStorageDict.

• update peak stats: Each time the current snapshot is updated, either due to new tensor creation, deletion, or change in
its size, the peak statistics of Memory Simulator need to be updated. If the total memory accounted by current snapshot
exceeds the peak snapshot, then it is updated to current.

The central execution flow of Memory Simulator is depicted in Figure 8c. First, PyTorch’s execution engine calls the
registered module hooks at the start and end of each operation. Just before the operation is dispatched, we intercept it by
overriding the torch. dispatch method of TorchDispatchMode. We execute the operation by dispatching the operator
with its arguments and obtaining the result. Then, we first check if we are in the optimizer, forward, backward or activation
checkpointing region by querying the in optimizer, in backward and in AC flags respectively and set the correct ref type and
module state. For each tensor produced in the result, we call the track tensor function with the set ref type. Finally, we call
the update peak stats function with the set module state.

E. TORCHSIM Compute Time Estimation Models
In this section, we present a comprehensive modeling framework that predicts the runtime of PyTorch neural network
operators.2

Modeling Methodology. Our predictors model a wide range of operator configurations and runtime behaviors across
NVIDIA A100s and H100s and require minimal fine-tuning, limited domain expertise, and no hardware profiling. For
example, for scaled dot-product attention (sdpa), we vary batch sizes, sequence and target lengths, query, key, and value
dimensions; if there is a causal mask; and backends (cudnn, efficient, and flash).

Neural Network Operator Categories. Pytorch consists of nearly 2000 neural network operators. Instead of modeling each
operator independently, we observe that we can classify them into three categories based on their performance characteristics.

2Operator runtime refers to the runtime of the kernel dispatched to compute the operator.
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(a) Module and tensor hooks to capture memory snapshots at precise points
during execution.

(b) Functions to robustly track Tensor storages and maintain accurate
global and per-module peak statistics.

(c) The core per-operation dispatch logic

Figure 8. Memory Simulator Workflow
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(a) For elementwise operators such as ReLU, their runtimes are piece-
wise linear in the combined input and output sizes on a log-log scale.
We observe the elbow point denotes the transition from using only L2
cache to needing GPU memory.

(b) For compute-bound operators such as sdpa, the runtime varies on
different orders of magnitudes even for configurations with the same
estimated GFLOPs (Ansel et al., 2024a).

(c) For reduction operators such as softmax, their runtimes are affected by striding, including which dimension we take the softmax over, and parallelism, such
as the batch size, in addition to memory bandwidth.

Figure 9. The Runtimes for Different Operator Categories

23



TorchSim: High Fidelity Runtime and Memory Estimation for Distributed Training

Within each class, operators have similar runtime properties, so they can be modeled in the same way. We describe each
category and its respective model in detail, along with examples.

Category One: Elementwise Operators. Elementwise operators perform a single computation for each element in the
input, e.g., adding two arrays or multiplying two arrays; the performance of elementwise operators is dominated by data
movement. As shown in Figure 9a, when plotting their runtimes on a log-log scale against the combined input and output
sizes, our intuition suggests that the performance can be modeled in three segments. In the first segment, the data size is
below the L2 cache capacity of the GPU, so the runtime remains nearly constant. In the second segment, data movement
starts saturating memory bandwidth as the data transitions from L2 cache to main memory. In the third segment, the log-log
slope approaches one, implying that the runtime scales linearly in the original domain. We formalize this intuition as

T (x) =


exp(a1 + b1 log(x)), if x < K1,

exp(a2 + b2 log(x)), if K1 ≤ x < K2,

exp(a3 + log(x)), if x ≥ K2,

with continuity constraints that enforce smooth transitions:

a2 = a1 + b1 logK1 − b2 logK1 and a3 = a2 + b2 logK2 − logK2.

For example, operators in this group include ReLU, cosine, and sine.

Category Two: Reduction Operators. Unlike elementwise operators, reduction operators perform several passes over
the data, so they operate in parallel across multiple GPU cores; examples include sum, mean, min, max, and softmax. As
shown in Figure 7b, their runtime is affected by parallelism and stride, such as the dimension used. These factors introduce
deviations that we model using lightweight learned predictors (a decision tree), with one model for each operator and
hardware combination.

Category Three: Compute-Bound Operators. Unlike memory-bound operators, whose runtime is mainly affected by
memory bandwidth and data size, compute-bound operators’ runtimes are more hardware sensitive. In our experiments,
we consider matrix multiplication (mm), batch matrix multiplication (bmm), scaled dot-product attention (sdpa), and 2D
convolution (conv2d). For example, sdpa computes attention using matrix multiplications and softmax; although we expect
multiplying two long and skinny matrices to take longer than multiplying two square matrices with the same arithmetic
intensity due to cache-friendly tiling, as shown in Figure 9b, it is unclear how exactly this affects runtime. Therefore, for
each operator and hardware combination, we train a random forest using only operator-level features because they are
nonparametric, capture nonlinear interactions, and adapt well to different inductive biases, in that not only do the factors
driving the runtime of small configurations differ from those for larger ones, noting that we cover runtimes from 10−2 to
106 milliseconds, but also different hardware architectures can affect kernel behavior.

F. TORCHSIM Communication Time Estimation Models
In this section, we present the TORCHSIM models for predicting communication time. Our models capture the heterogeneous
link bandwidths of multi-node network topologies with both inter-node and intra-node interconnects, as well as straggler
delay.

Modeling Inter-Node and Intra-Node Bandwidth. While existing cost models, including those used by NCCL and
GenModel, use a single bandwidth measurement for modeling communication time, we empirically show that bandwidth
varies as a function of data size. An example is shown in Figure 10b. Furthermore, inter-node connectivity typically uses
Ethernet or Infiniband, while intra-node communication is enabled by NVLink, PCIe, and other higher-speed interconnects.
Thus, we fit separate log-sigmoidal curves for inter-node and intra-node segments of collective communication as shown in
Figure 10b, enabling our learned model to handle heterogeneous topologies with different link bandwidths across the cluster.

The ground truth data for fitting the bandwidth function is collected by performing AllGather collectives across a range of
data sizes between the GPUs and nodes in the cluster. We then fit a sigmoid curve (as shown in Figure 10b) to the intra-node
and inter-node measurements separately:

σ{C,T}(D) =
L

1 + exp(−k · (log(D + 1)−D0))
+ b (1)
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(a) The discrepancy between the AllReduce analytical model and the benchmarking data, as well as that between
the GenModel prediction and the ground truth, demonstrates the necessity for a topology-aware learned model to
capture nonlinearities in the communication time at small data sizes and straggler delay.

(b) Bandwidth measurements from cluster X with inter-node and intra-node AllGather measurements illustrate the log-sigmoidal form with respect to data size and the
order-of-magnitude difference between inter- and intra-node bandwidths.

Figure 10. Insights from benchmarking inter-GPU communication
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Table 9. List of Symbols for Communication Modeling

Symbol Description

N Number of processors
S Data size per processor
P Total number of processes
BT (S) Inter-node bandwidth as a function of data size
BC(S) Intra-node bandwidth as a function of data size
ℓT Inter-node latency
ℓC Intra-node latency
ℓ Total latency

Table 10. Analytical Cost Models for Collective Communication Algorithms

Collective Analytical Model

AllReduce
2S

BT (DS)
+

2S

BC(DS)
+(⌊log2(N)⌋+ 1) · ℓT + (P/N − 1) · ℓC

AllGather
(P −N − 1) · S
(P −N) BC(S)

+
(N − 1) · S
N BT (S)

+N · ℓT + (P/N − 1) · ℓC

ReduceScatter
(P −N − 1) · S
(P −N) BC(S)

+
(N − 1) · S
N BT (S)

+N · ℓT + (P/N − 1) · ℓC

where D is the data size. The bandwidth functions σ{C,T} are thus sigmoidal with data size on the log scale, where σC

denotes intra-node curve and σT denotes inter-node curve.

Since we use B(DS) in the denominator of the time equation in the AllReduce model in the next section, in order to avoid
undesirable discontinuities for positive DS , we constrain the parameters in the following way:

b ∈ (−∞,−1] L, k,D0 ∈ (−∞,∞). (2)

Modeling Communication Time. Given the bandwidth model, we can now create a topology-aware and algorithm-aware
analytical cost model for communication collectives. We provide models for three commonly-used collectives in distributed
training: AllReduce, AllGather, and ReduceScatter.

The key technical insight behind these closed-form cost models is that NCCL uses two different algorithms to execute
collectives: a chain or a double binary (or two-tree) tree. NCCL uses the double binary tree for inter-node segments of the
AllReduce operation and the chain for intra-node segments of AllReduce. The chain is used for all parts of the AllGather
and ReduceScatter algorithms.

The analytical cost models are derived by counting the number of reduction and assignment operations performed across
ranks on the same node and between nodes for each collective. The cost model expressions are shown in Table 10.

We now show a detailed derivation of the analytical cost models. For some operation over S elements with l links of
bandwidth B(D), the time of the operation is

t(S) =
S

l ·B(DS)
. (3)

where DS is the data size for an array of S elements.

AllReduce. An AllReduce operation over n ranks requires n− 1 additions and n assignments. Each of these addition/as-
signments steps requires a data transfer between two different ranks, except for the first assignment since the rank of the
first assignment already performed the last addition and thus already has the complete summation. Therefore, the total
communication time for an AllReduce operation is

tAllReduce(S) =
2(n− 1) · S
l ·B(DS)

(4)
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where B(DS) is the bandwidth function.

We can also decompose the AllReduce time into inter-node communication time (tT ) and intra-node communication time
(tC). Separating these two terms allows us to model each communication time using its own bandwidth function.

Suppose our topology consists of P GPUs evenly distributed across N nodes. Thus, the inter-node communication is
performed over N ranks with N − 1 links of bandwidth (since there are N − 1 edges in each binary tree), whereas the
intra-node communication is performed over P − (N − 1) ranks with N(P/N − 1) = P −N links of bandwidth (since
each intra-node chain has P/N − 1 links). Then, the communication times are

tT (S) =
2(N − 1) · S

(N − 1) ·BT (DS)
=

2S

BT (DS)
(5)

tC(S) =
2(P −N) · S

(P −N) ·BC(DS)
=

2S

BC(DS)
(6)

Thus, the sum of the inter-node communication time and the intra-node communication times are

tT (S) + tC(S) =
2S

BT (DS)
+

2S

BC(DS)
(7)

The total AllReduce time is thus the summation above, plus the communication latency ℓ.

tAllReduce(S) = tT (S) + tC(S) + ℓ (8)

where
ℓ = (⌊log2(N)⌋+ 1) · ℓT + (P/N − 1) · ℓC

ℓT is the inter-node latency and ℓC is the intra-node latency.

The logarithmic term of the startup latency follows from the height of the binary tree for inter-node communication, while
the linear term follows from the number of links in the chain for intra-node communication.

The models above account for both inter-node and intra-node communication. In the case of 2D parallelism, when there
is only inter-node communication, we simply only include the intra-node terms of the analytical model to predict the
communication time.

AllGather and ReduceScatter. The AllGather and ReduceScatter operation can be thought of as simply the assignment
and addition portions of the AllReduce model, respectively. However, all other NCCL operations other than AllReduce use
chains, rather than trees, to connect nodes. Thus, we have the following analytical models for these two collectives:

tReduceScatter(S) =
(P −N − 1) · S
(P −N) BC(S)

+
(N − 1) · S
N BR(S)

+ ℓ (9)

where
ℓ = N · inter-node latency + (P/N − 1) · intra-node latency.

and
tAllGather =

(P −N − 1) · S
(P −N) BC(S)

+
(N − 1) · S
N BR(S)

+ ℓ (10)

where
ℓ = N · inter-node latency + (P/N − 1) · intra-node latency.

As with AllReduce, the intra-node terms of the cost models above are omitted when considering 2D, inter-node only
parallelism.

Modeling Variability in Minimum Completion Time. While the analytical models account for inter-node and intra-node
communication, we consider them as explaining the minimum time required for a communication collective to complete.
However, it is important that a predictive model capture any straggler delay, not just a lower bound on the communication
time. Furthermore, there is still variability in the minimum completion time of the communication algorithm across ranks
that can be explained by the world size and data size, but is not yet captured by the analytical model.
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To address this, we turn to a statistical approach to modeling collective communication time and straggler delay. We first use
the following linear model to predict the minimum communication time across ranks for each collective.

t̂min ∼ β0 + β1 · t+ β2 · ℓ+ β3 · P
+ β3 ∗ S + β4 · (t · S)
+ β5 · (t · P ) + β6 · (ℓ · S)

(11)

where the symbols are as defined in table 9, the βi terms are coefficients fitted by ordinary least-squares regression, and t is
the collective time predicted by the analytical model. The terms in which the coefficient corresponds to the product of two
variables refers to an interaction term, which allows the linear relationships between the communication time, the analytical
model, and other variables in the model to be adjusted based on data size and world size.

For the small data sizes (O(10 KB)), the fitted linear model can sometimes yield negative predictions. In these cases, we
adopt an adaptive strategy where we fall back to the analytical model:

t̂min =

{
t̂min t̂min > 0

t otherwise
(12)

Modeling Straggler Delay. On top of this statistical model, we then use a second linear model to predict the straggler delay
ratio, defined as the ratio of the 75th percentile of communication time across ranks t75 to the minimum communication
time tmin.

̂t75/tmin ∼ P · log(S) (13)

After fitting these models on collective communication benchmarking data taken at a variety of data sizes and world sizes,
we can then derive a statistical estimate of the straggler-included communication time as t̂min · ̂t75/tmin.

Layering these analytical and statistical techniques enables our communication models to predict collective latency at high
precision across data sizes and world sizes, estimating communication time within an RMSE of 3 ms across collectives
and 1D/2D parallelism on two clusters, and achieving up to a 6.8× improvement over GenModel for predicting 2D
AllReduce.

Adaptability to heterogeneous clusters. The proposed communication models account for network topologies with
heterogeneous link bandwidths by separately considering inter-node and intra-node bandwidths and steps in the algorithms
used for collective communication. This formulation assumes a two-tier topology, with slower inter-node bandwidths
and faster intra-node bandwidths, and collective algorithms that operate over such topologies. However, this model is
easily extensible to topologies with three or more types of interconnects and collective algorithms that communicate
over such topologies by fitting additional nonlinear functions to their bandwidths to the respective benchmarking data,
adding corresponding terms to the analytical models, and re-fitting the statistical models. Thus, our approach provides an
easily-adaptable framework for modeling collective communication time.

Extensibility to unseen clusters. If an already-fitted communication model needs to be re-deployed to a different, unseen
cluster, one of two approaches can be taken for adapting the existing model for a new communication time estimation. If the
cluster provider is able to re-benchmark the bandwidth and collective communication times offline, then adaptability is
simply a matter of re-fitting the bandwidth and statistical collective models. If benchmarking data is entirely or partially
unavailable, we propose an online learning approach to adjusting the models with data while training a model with a
distributed parallelism strategy.

Suppose the weights of the regression model are initialized to β. During a training run on cluster with N nodes and P
GPUs, communication collective times y can be recorded. We can then compute new weights β′ as follows:

β̃′ = β̃ − η(β · x− y) (14)

for known parameters x = (N,P, S,DS) as defined above and learning rate η.

As the weights β are updated, the communication model adapt to the properties of the new cluster without a full offline
benchmark.
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G. TORCHSIM Runtime Simulator
We now explain how the Runtime Simulator estimates the end-to-end runtime by emulating the multi-stream GPU execution
on the captured simulation metadata. Table 7 outlines the Queue and Runtime Simulator class definitions. We describe the
algorithms for Queue management in § G.1, followed by the Simulation loop in § G.2.

G.1. Queue State Management and Resource Allocation

Algorithm 1 prepares each CUDA stream queue for simulation by setting up its initial state and synchronization conditions.
It iterates over all queues and checks for any synchronization events registered under the special key -1, which represents
pre-operation dependencies. Depending on the type of synchronization action, such as stream, event, work, or global
synchronize wait, it adds the corresponding condition to the queue’s wait set. Finally, it sets the state of the queue to
WAITING, indicating that it is blocked until its dependencies are resolved.

Algorithm 1 Initialize Queue States

Require: None.
Ensure: Every queue is initialized with proper waiting conditions.

1: for all each queue Q in streamid to queue do
2: if Q.sync infos contains entries under key -1 then
3: for all each sync event syncInfo in Q.sync infos[-1] do
4: if syncInfo.sync action is STREAM WAIT then
5: Add entry with key (STREAM WAIT, syncInfo.release seq id) to Q.wait sync infos.
6: else if syncInfo.sync action is EVENT WAIT then
7: Add entry with key (EVENT WAIT, syncInfo.release event id) to Q.wait sync infos.
8: else if syncInfo.sync action is WORK WAIT then
9: Add entry with key (WORK WAIT, syncInfo.release seq id) to Q.wait sync infos.

10: else if syncInfo.sync action is SYNCHRONIZE WAIT then
11: Add entry with key (SYNCHRONIZE WAIT, syncInfo.sync id) to Q.wait sync infos.
12: else
13: raise error “Unknown sync action with key -1”.
14: end if
15: end for
16: end if
17: Set Q.state← WAITING.
18: end for

Algorithm 2 identifies queues that are currently in the WAITING state but have no remaining synchronization conditions and
updates their state to READY. This ensures that queues are able to proceed with execution as soon as all their dependencies
have been cleared, which is a key part of dynamic dependency resolution in the simulator.

Algorithm 2 maybe resolve waiting queues

Ensure: Mark each queue as READY if it is WAITING and has no pending wait conditions.
1: for all each queue Q in streamid to queue do
2: if Q.state is WAITING and Q.wait sync infos is empty then
3: Set Q.state← READY.
4: end if
5: end for

Algorithm 3 simulates global synchronization mechanisms by incrementally releasing queues that are blocked on a global
synchronize event. It continues to iterate while all queues are in the WAITING state, increasing a global synchronization
counter each round. For each queue, it removes any pending synchronization condition that matches the current round’s
global sync identifier. When a queue has no remaining synchronization dependencies, it is marked as READY. The algorithm
guarantees forward progress and avoids deadlock by asserting that at least one sync condition must be cleared in each round.

Algorithm 4 checks whether all queues have completed their work. A queue is considered complete if it is in the READY
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Algorithm 3 maybe resolve global sync

Ensure: Resolve global synchronization waits until at least one queue is READY.
1: while all queues in streamid to queue are in WAITING state do
2: Increment global counter simulate sync count.
3: for all each queue Q in streamid to queue do
4: Let key← (SYNCHRONIZE WAIT, simulate sync count).
5: if Q.wait sync infos contains key then
6: Remove key from Q.wait sync infos.
7: if Q.wait sync infos is now empty then
8: Set Q.state← READY.
9: end if

10: else
11: assert that a sync condition exists (else, deadlock).
12: end if
13: end for
14: end while

state, has no remaining operations, and no pending or unresolved synchronization events. If all queues meet these criteria,
the function returns True; otherwise, it returns False. This serves as the termination condition for the simulation loop.

Algorithm 4 Check All Queues Completed

Ensure: Return True if every queue is COMPLETE.
1: for all each queue Q in streamid to queue do
2: if Q.state is READY and Q.ops is empty and both Q.sync infos and Q.wait sync infos are empty

then
3: Set Q.state← COMPLETE.
4: end if
5: end for
6: return True if every queue in streamid to queue has state COMPLETE; otherwise, False.

Algorithm 5 performs resource scheduling by allocating available hardware resources to operations in READY queues. It
filters the list of queues to only those that are READY and have pending operations. After sorting them by priority and
sequence ID, it checks if the operation’s required resources are available. If they are, it assigns those resources, marks the
queue as RUNNING, and updates the resource occupancy table. This ensures fair and efficient use of limited compute and
communication resources across multiple queues.

G.2. Simulation Loop

The main simulation loop, outlined in Algorithm 6, advances simulated time and models the execution of all queues until
every queue is marked as COMPLETE. At each iteration, it determines the minimum remaining execution time among all
head operations, advances time by that amount, and updates queue states and resource allocations accordingly. When an
operation finishes, it is removed from the queue, its resources are released, and relevant synchronization events are processed.
The loop also invokes helper functions to resolve synchronization and queue readiness. The total simulated time is returned
at the end. Figure 11 illustrates the runtime simulator in action.

Table 11 presents the algorithm for processing the synchronization events. It handles all synchronization events associated
with a completed operation. Depending on the event type, such as event release/wait, stream release/wait, work release/wait,
or global synchronize wait, it updates the global state or other queues’ wait conditions accordingly. For release events, it
notifies dependent queues so they can proceed; for wait events, it adds new dependencies if the required condition is not yet
satisfied. This enables correct modeling of inter-operation dependencies and synchronization across streams.
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Algorithm 5 Allocate Resources

Ensure: Allocate available resources to operations in READY queues.
1: Identify all queues in state READY with pending operations; denote as Q ready.
2: assert: Each queue in Q ready has at least one op.
3: Sort Q ready by (priority, sequence ID of the first op).
4: for all each queue Q in Q ready do
5: Let op← first element in Q.ops.
6: if any resource in op.resources is already occupied (exists in resource occupancy) then
7: continue to next queue.
8: end if
9: for all each resource in op.resources do

10: Update resource occupancy to map the resource to Q.
11: end for
12: Set Q.state← RUNNING.
13: end for

Algorithm 6 Simulate

Ensure: Total simulated time T sim.
1: // Pre-check: Verify that all waited events are recorded.
2: Initialize simulation time: T sim← 0.
3: Initialize simulation state:
4: resource occupancy← empty,
5: completed ops← empty set,
6: recorded events← empty set.
7: Call Initialize Queue States to set all queues to WAITING.
8: while not all queues are COMPLETE do
9: Call Allocate Resources to mark READY queues as RUNNING.

10: Let resource independent queues be the set of queues currently occupying resources.
11: Let head ops be the first operation from each queue in resource independent queues.
12: Determine min rem time as the minimum op.rem time among head ops.
13: Set Delta t← min rem time.
14: Update simulation time: T sim← T sim + Delta t.
15: for all each head operation op in head ops do
16: Decrease op.rem time by Delta t.
17: if op.rem time equals 0 then
18: Let Q be the queue corresponding to op.stream id.
19: Remove op from Q.ops.
20: Set Q.state← READY.
21: for all each resource in op.resources do
22: Remove the resource from resource occupancy.
23: end for
24: Add op.seq id to global set completed ops.
25: Call Process Sync Events with Q and op.
26: end if
27: end for
28: Call maybe resolve waiting queues().
29: Call maybe resolve global sync().
30: end while
31: return T sim.
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SyncAction Simulator Action
EVENT RELEASE Add syncInfo.release event id to recorded events

For each queue Q’ in streamid to queue:
If Q’.state is WAITING and
Q’.wait sync infos contains key

(EVENT WAIT, syncInfo.release event id),
remove that key.

EVENT WAIT If syncInfo.release event id /∈ recorded events:
Add key (EVENT WAIT, release event id)

to Q.wait sync infos
Set Q.state to WAITING.

STREAM RELEASE For each queue Q’ in streamid to queue:
If Q’.state is WAITING and
Q’.wait sync infos contains key

(STREAM WAIT, syncInfo.release seq id),
remove that key.

STREAM WAIT If syncInfo.release seq id /∈ completed ops:
Add key (STREAM WAIT, release seq id)

to Q.wait sync infos
Set Q.state to WAITING.

WORK RELEASE For each queue Q’ in streamid to queue:
If Q’.state is WAITING and
Q’.wait sync infos contains key

(WORK WAIT, release seq id),
remove that key.

WORK WAIT If syncInfo.release seq id /∈ completed ops:
Add key (WORK WAIT, release seq id)

to Q.wait sync infos
Set Q.state to WAITING.

SYNC WAIT Add key (SYNC WAIT, sync id) to Q.wait sync infos
Set Q.state to WAITING.

Table 11. Process Sync Events for a given syncInfo and Q

Figure 11. TORCHSIM Runtime Simulator in action.
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TRAIN TEST

OPERATOR RMSE (MS) MAPE (%) ACC (%) RMSE (MS) MAPE (%) ACC (%)

MM 0.17 1.25 99.7 0.44 2.8 95.7
BMM 1.07 1.47 99.32 2.62 3.3 94.1
SDPA 1.31 0.65 99.8 2.58 1.77 97.5
SDPA BACKWARD 2.41 0.8 99.7 5.90 2.13 96.9
CONV2D 12.89 4.20 92.9 40.3 11.2 81.0
CONV2D BACKWARD 48.68 4.08 92.5 125.5 10.96 74.8

Table 12. Regression and Accuracy Results for the Learned Compute-Bound Model on H100s

TRAIN TEST

OPERATOR RMSE (MS) MAPE (%) ACCURACY (%) RMSE (MS) MAPE (%) ACCURACY (%)

MM 0.27 1.2 99.7 0.71 2.51 97.7
BMM 0.53 0.9 99.5 1.34 1.76 98.1
SDPA 1.72 0.76 99.6 3.81 2.1 96.6
SDPA BACKWARD 3.64 1.25 99.3 9.64 3.32 93.5
CONV2D 28.5 4.93 89.93 52.02 9.46 77.5
CONV2D BACKWARD 105 5.33 88.73 187.6 10.5 74.6

Table 13. Regression and Accuracy Results for the Learned Model on A100s.

H. Experimental Results
H.1. Compute Time Prediction

This section describes how we fitted the learned models for predicting operator runtime using benchmarking data collected
for NVIDIA A100s and H100s. We ran two warmup iterations for each operator configuration, and took the median runtime
of five iterations. To evaluate our models’ performances, we reserve 15% of each dataset as the test set to get root mean
squared error (RMSE), mean absolute percentage error (MAPE), and ±10% accuracy.

As shown in Table 12 and Table 13, we find that our models have good test evaluation results.

In Figures 12 and 13, we see that most of the differences between predicted time and measured time happen when the
measured time is large. This implies that our learned model can predict the runtime of the operators with low RMSE and
MAPE and high accuracy, with only access to operator-level features.

H.2. Communication Time Prediction

The analytical and statistical models for predicting collective communiation time were fitted and evaluated with bench-
marking data collected on cluster X, with NVIDIA H100 GPUs arranged with 4 GPUs per server connected by Infiniband
interconnects, and cluster Y, with H100 GPUs with 8 GPUs per server and RoCE support. We benchmarked the AllReduce,
AllGather, and ReduceScatter collectives on a series of world sizes ranging from 4 to 32 nodes (16 to 128 GPUs) on cluster
X and from 4 to 64 nodes (32 to 512 GPUs) on cluster Y, and data sizes ranging from 15KB to 4GB. The benchmarking
experiment for each data size and world size was run 10 times, after a small number of warmup iterations. Furthermore, we
benchmarked each collective in two settings: inter-node and intra-node communication (1D parallelism) and inter-node
only communication (2D parallelism). Including both settings in a predictive model for communication time is relevant for
ensuring that our models are performant in both DP-only (1D) configurations and in setups where both DP and TP are used
along different dimensions of the topology.

For comparison, we use the GenModel communication model as a baseline for AllReduce latency predictions in 2D
parallelism settings. Since the co-located PS benchmarking toolkit used to fit GenModel is not publically available, we
approximate the model by using the Recursive Halving-Doubling formula for inter-node only AllReduce, with the learned
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Figure 12. The predicted runtime plotted against the measured runtime for the operators on NVIDIA A100s. The red line denotes the line
y = x. We binned measured runtimes and took a mean per bin.
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Figure 13. The predicted runtime plotted against the measured runtime for the operators on NVIDIA H100s. The red line denotes the line
y = x. We binned measured runtimes and took a mean per bin.
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Figure 14. 75th percentile AllReduce communication time from benchmarking data and predictions by the collective communication
prediction model for each data size on cluster X. (a)–(c) show data from world sizes of N = 16, 64, 128 for 1D parallelism whereas (d)
shows data for 2D parallelism for N = 64.

constants α, β, γ, δ in the expression fitted with least-squares regression. We demonstrate that, for predicting AllReduce
in 2D parallelism settings, our model demonstrates up to 6× of improvement in RMSE for predicting collective latency
compared to GenModel. A full table of model performance statistics is shown in Table 14.

Figures 14, 15, and 16 demonstrate the performance of the statistical model in predicting AllReduce, AllGather, and
ReduceScatter communication time, respectively, on cluster X. With small data sizes (S < 256 MB) on the logarithmic
scale, we can see that the linear model fits equally well in the non-linear regions of the time-size curve as in the linear
regions where data sizes are larger. It is important to note that we only need to fit the communication time and straggler
delay ratio models once for each collective; in other words, the model is able to explain the variability in communication
time across data sizes and world sizes, thanks to the use of the log-sigmoid bandwidth function, the topology-aware nature
of the analytical model and the interaction terms of the learned statistical model.

Figure 17 visually compares our proposed statistical model and GenModel’s performance at predicting AllReduce communi-
cation times in inter-node only communication for 16, 64, and 128 GPUs on cluster X. Not only does GenModel fail to
capture the non-linearities in AllReduce time, but it also systematically underestimates the collective time. By capturing
straggler delay, non-linear bandwidths, and NCCL algorithms for different topologies as well as supporting both 1D and 2D
parallelism, our learned communication models are a significant improvement over existing work.
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Figure 15. 75th percentile AllGather communication time from benchmarking data and predictions by the collective communication
prediction model for each data size on cluster X. Data size refers to the size of the output tensor in the AllGather operation, since the
communication overhead scales with the output dimensions. (a)–(c) show data from world sizes of N = 16, 64, 128 for 1D parallelism
whereas (d) shows data for 2D parallelism for N = 64.
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Figure 16. 75th percentile ReduceScatter communication time from benchmarking data and predictions by the collective communication
prediction model for each data size on cluster X, with the same log-linear scale as Figure 14. (a)–(c) show data from world sizes of
N = 16, 64, 128 for 1D parallelism whereas (d) shows data for 2D parallelism for N = 64.

Figure 17. 75th percentile AllReduce collective times on cluster X with predictions by the statistical communication model and the
GenModel baseline predictions for 2D parallelism on N = 16, 64, 128 GPUs.
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Table 14. Root Mean Squared Error (RMSE) of Collective Communication Model and GenModel on Cluster X and Y. Baseline perfor-
mance data from GenModel are shown for AllReduce in 2D parallelism only using an approximation of the Recursive Halving-Doubling
model, since GenModel can only predict non-hierarchical AllReduce

WORLD SIZE (N) MODEL RMSE (MS) GENMODEL RMSE (MS) IMPROVEMENT

CLUSTER X
ALLREDUCE (2D)

16 2.363 5.385 2.278×
64 0.756 5.162 6.825×

128 1.302 5.304 4.0725×

ALLREDUCE (1D)

16 2.374 - -
64 1.951 - -

128 0.676 - -

ALLGATHER (2D)

16 0.287 - -
64 0.692 - -

128 0.973 - -

ALLGATHER (1D)

16 0.289 - -
64 0.691 - -

128 0.969 - -

REDUCESCATTER (2D)

16 0.128 - -
64 1.203 - -

128 1.990 - -

REDUCESCATTER (1D)

16 0.130 - -
64 1.204 - -

128 1.987 - -

CLUSTER Y
ALLREDUCE (2D)

16 0.411 1.176 2.860×
64 0.277 1.234 4.460×

128 0.633 1.782 2.814×

ALLREDUCE (1D)

16 0.246 - -
64 0.366 - -

128 0.467 - -

ALLGATHER (2D)

16 0.130 - -
64 0.266 - -

128 0.624 - -

ALLGATHER (1D)

16 0.174 - -
64 0.264 - -

128 0.626 - -

REDUCESCATTER (2D)

16 2.678 - -
64 0.525 - -

128 0.808 - -

REDUCESCATTER (1D)

16 2.680 - -
64 0.542 - -

128 0.794 - -

39



TorchSim: High Fidelity Runtime and Memory Estimation for Distributed Training

H.3. Runtime Simulation

We now demonstrate the accuracy and speed of our tool across diverse models, training configurations, model sizes,
architectural features, for single and distributed workflows.

MODEL NUM. PARAMS NUM. HEADS HEAD TYPE HIDDEN DIM NUM. LAYERS

GEMMA 2B 2.02 B 8 GROUPED-QUERY ATTENTION 18432 26
TIMM VIT 632 M 16 MLP 1280 32

HF CLIP 428 M 16 STANDARD SELF-ATTENTION 4096 24
LLAMA V3 1B 1.24 B 16 GROUPED-QUERY ATTENTION 4096 24

Table 15. Model configurations used in single device simulator experiments.

H.3.1. EXPERIMENTAL SETUP

We evaluate on 4 state-of-the-art models Google Gemma 2B (Team et al., 2024), Meta Llama 3.2 1B(Dubey et al., 2024),
Open AI CLIP (Radford et al., 2021), and PyTorch-Image-Models Vision Transformer (Steiner et al., 2021; Alexey, 2020)
for single GPU training. We utilize Meta Llama 3.1 70B model for our distributed training experiments(Dubey et al., 2024).
We vary the batch-size, sequence-length (for large-language models) and image-size (for vision models). For measuring
actual model execution times, we run three warm-up iterations and measure five actual iterations and use the mean value.
For benchmark estimation mode for each operator, we perform 2 warm-up iterations and 3 actual measurement iterations
and take the mean. For estimation experiments with our learned and statistical cost-models, we just run one single iteration
of training since it is execution free. All our experiments are on the latest NVDIA H100 GPUs. For distributed settings,
each machine has 4 GPUs connected with NVLinks, and the 16 machines are connected via Infiniband.

H.3.2. SINGLE-MODEL TRAINING

For single model training we experiment with 3 types of precisions Full Precision (FP), Mixed Precision (MP) and Half
Precision (HP), to analyze the performance for different data types. We also toggle Activation Checkpointing (AC), to
evaluate the recomputation overhead. Our benchmark model, per-form per operator execution to get the final run-time. Our
Cost-Model represents the roofline-model that is fine-tuned. Learned model is our approach. We can estimate end-to-end
model times within 30 seconds. Table 16 shows our results. We achieve a mean accuracy of 90% for Learned model
approach against the 76% for Roofline-model and 85% with Benchmark model.

H.3.3. DISTRIBUTED TRAINING

We evaluate our distributed workflow, to demonstrate the effectiveness of of our communication models and our distributed
simulator. We use Llama 3.1 70B model on 128 GPUs. Table 17, shows our results for training with FSDP (1D Fully
Sharded Data Parallel) training and Table 18 shows our results while applying FSDP+TP (2D Fully Sharded and Tensor
Parallel) parallelism.

H.4. Memory Simulation

H.4.1. EXPERIMENTAL SETUP (HARDWARE, MODELS AND NETWORK)

We evaluate on 7 state-of-the-art models Google Gemma 2B (Team et al., 2024), Meta Llama 3.2 1B(Dubey et al., 2024),
Open AI CLIP (Radford et al., 2021), Google T5 (Raffel et al., 2020), Open AI GPT (Achiam et al., 2023). PyTorch-
Image-Models Vision Transformer (Alexey, 2020) and ConvNextV2 (Steiner et al., 2021) for single GPU training memory
estimation . We utilize Meta Llama 3.1 70B model for our distributed training memory estimation experiments(Dubey
et al., 2024). We vary the batch-size, sequence-length (for large-language models) and image-size (for vision models). For
measuring actual model memory, we run three warm-up iterations and measure five actual iterations and use the max value.
For estimation experiments with Memory Simulator, we just run one single iteration of training since it is execution free.
All our experiments are on the latest NVDIA H100 GPUs.

40



TorchSim: High Fidelity Runtime and Memory Estimation for Distributed Training

Table 16. Runtime Simulator Accuracy Across Cost Models for Configurations of Deep Learning Models

BATCH
SIZE

SEQ LENGTH
IMG SIZE

PRECISION
ACTIVATION

CHECKPOINTING
ESTIMATION TYPE PREDICTED (MS) PREDICTION TIME (MS) ACTUAL (MS) ACCURACY

(ACTUAL / PRED)

GEMMA 2B

2 4096 HP TRUE BENCHMARK 460.41 6481.63 424.03 0.92
2 4096 HP TRUE ROOFLINE MODEL 315.87 1342.92 424.03 1.34
2 4096 HP TRUE LEARNED 426.36 7218.43 424.03 0.99

4 2048 HP TRUE BENCHMARK 442.71 6372.82 407.84 0.92
4 2048 HP TRUE ROOFLINE MODEL 312.85 1359.28 407.84 1.30
4 2048 HP TRUE LEARNED 409.33 7336.92 407.84 1.00

4 1024 FP TRUE BENCHMARK 1648.08 13001.56 1605.04 0.97
4 1024 FP TRUE ROOFLINE MODEL 1068.72 1306.18 1605.04 1.50
4 1024 FP TRUE LEARNED 1579.44 7117.60 1605.04 1.02

8 1024 HP FALSE BENCHMARK 390.49 5631.34 356.99 0.91
8 1024 HP FALSE ROOFLINE MODEL 214.02 2426.29 356.99 1.67
8 1024 HP FALSE LEARNED 361.40 6970.04 356.99 0.99
TIMM VIT

32 224 FP FALSE BENCHMARK 831.66 8233.67 795.94 0.96
32 224 FP FALSE ROOFLINE MODEL 485.11 3925.25 795.94 1.64
32 224 FP FALSE LEARNED 780.23 6555.14 795.94 1.02

64 224 FP TRUE BENCHMARK 1858.68 15154.25 1820.54 0.98
64 224 FP TRUE ROOFLINE MODEL 1176.45 4474.60 1820.54 1.55
64 224 FP TRUE LEARNED 1851.27 7238.46 1820.54 0.98

128 224 HP TRUE BENCHMARK 440.07 7414.49 395.18 0.90
128 224 HP TRUE ROOFLINE MODEL 326.36 5610.18 395.18 1.21
128 224 HP TRUE LEARNED 451.91 7221.01 395.18 0.87

256 224 HP TRUE BENCHMARK 815.67 11073.03 764.06 0.94
256 224 HP TRUE ROOFLINE MODEL 645.36 5925.16 764.06 1.18
256 224 HP TRUE LEARNED 885.13 7353.14 764.06 0.86
HF CLIP

32 20/336 FP FALSE BENCHMARK 999.47 10050.04 936.18 0.94
32 20/336 FP FALSE ROOFLINE MODEL 609.15 3659.49 936.18 1.54
32 20/336 FP FALSE LEARNED 950.12 7161.46 936.18 0.99

64 20/336 FP TRUE BENCHMARK 2263.38 18999.18 2193.21 0.97
64 20/336 FP TRUE ROOFLINE MODEL 1474.87 2362.47 2193.21 1.49
64 20/336 FP TRUE LEARNED 2299.78 7894.58 2193.21 0.95
LLAMA

1 16384 HP TRUE BENCHMARK 649.53 7410.70 616.67 0.95
1 16384 HP TRUE ROOFLINE MODEL 371.86 1185.89 616.67 1.66
1 16384 HP TRUE LEARNED 620.61 6994.24 616.67 0.99

2 8192 HP TRUE BENCHMARK 551.96 6701.48 525.06 0.95
2 8192 HP TRUE ROOFLINE MODEL 363.62 1120.93 525.06 1.44
2 8192 HP TRUE LEARNED 513.50 7054.34 525.06 1.02

4 4096 HP TRUE BENCHMARK 498.16 6546.15 458.82 0.92
4 4096 HP TRUE ROOFLINE MODEL 353.22 1158.24 458.82 1.30
4 4096 HP TRUE LEARNED 459.63 7090.61 458.82 1.00

8 2048 FP TRUE BENCHMARK 3217.58 22517.67 3199.76 0.99
8 2048 FP TRUE ROOFLINE MODEL 2206.64 1700.23 3199.76 1.45
8 2048 FP TRUE LEARNED 3236.30 6945.94 3199.76 0.99

LOCAL
BATCH
SIZE

SEQ LEN AC EST.
(MS)

ACTUAL
(MS)

ACC.
(EST./ACTUAL)

PRED.
OVERHEAD (S)

2 64 SELECTIVE 4953.20 5503.55 0.90 17.78
2 256 SELECTIVE 4934.07 5423.15 0.91 17.81
2 1024 FULL 5042.39 5480.86 0.92 18.24
1 4096 FULL 5477.02 6018.70 0.91 18.01
1 8192 FULL 9597.48 10663.87 0.90 18.10

Table 17. Runtime simulator accuracy for 1D FSDP across 128 GPUs for Llama 3 70B training. We achieve a mean accuracy of 90% in
predicting iteration time while incurring minimal prediction overhead (shown in the final column).
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LOCAL
BATCH SIZE

SEQ LEN AC EST.
(MS)

ACTUAL
(MS)

ACC.
(EST. / ACTUAL)

PRED.
OVERHEAD (S)

8 1024 FULL 4955.56 5445.67 0.91 31.53
4 4096 FULL 5383.30 5851.41 0.92 30.37
4 8192 FULL 10075.91 11195.45 0.90 30.59

Table 18. Runtime simulator accuracy for 2D FSDP across 128 GPUs for Llama 3 70B training. We achieve a mean accuracy of 91% in
predicting iteration time while incurring minimal prediction overhead (shown in the final column).

H.4.2. SINGLE-GPU

For single model training we experiment with 3 types of precisions Full Precision (FP), Mixed Precision (MP) and Half
Precision (HP), to analyze the performance for different data types. We also toggle Activation Checkpointing (AC), to
estimate the memory savings. Table 19 shows the effectiveness of our approach. We get close to 100% accuracy in almost
all settings.

H.4.3. MULTI-GPU

We evaluate our distributed workflow, to demonstrate the effectiveness of Memory Simulator at scale. We use Llama 3.1 70B
model on 64 GPUs for FSDP configuration (1D Fully Sharded Data Parallel) and on 128 GPUs for FSDP + TP (2D Fully
Sharded Data Parallel and Tensor Parallel). Each machine has 4 GPUs connected with NVLinks and the 16/32 machines are
connected via Infiniband. Table 20, shows our results for training with FSDP (1D Fully Sharded Data Parallel) training
and Table 21 shows our results while applying FSDP+TP (2D Fully Sharded and Tensor Parallel) parallelism. We achieve
≥ 99% accuracy in all cases even with complex memory management of FSDP and TP. We use TorchTitan (Liang et al.,
2024) to evaluate Memory Simulator.

I. Extended Related Work
I.1. Runtime Simulators

Despite the recognized importance of model training simulation, there are few studies due to its inherent complexity (Geoffrey
et al., 2021; Li et al., 2023; Lee et al., 2025b). Existing approaches do not focus on identifying and capturing the
synchronization primitives that are critical for simulating the diverse range of distributed training setups, which involve
mixed parallel paradigms and collective primitives. As a result, existing methods are limited to supporting only a few specific
simple parallel training paradigms, namely, Gpipe PP, DDP, and ring all-reduce-based TP (Lee et al., 2025b). Moreover,
their reliance on computational graphs prevents their deployment in real-world model training, as obtaining these graphs in
large-scale distributed environments remains an open problem.

In contrast, TORCHSIM Simulator is the first simulation solution that supports all off-the-shelf parallel paradigms and
accurately models the communication-compute overlap, without relying on computational graphs.

I.2. Memory Estimation

Current real-time memory tracking tools (Shi & DeVito, 2023; PyT, 2025b), primarily designed to identify Out-of-Memory
(OOM) errors and analyze memory usage, have significant limitations. They collect memory profiling statistics during
job execution, making the analysis inherently post-hoc. Even if expert users identify memory inefficiencies and adjust
configurations, there is no reliable method to estimate the precise impact on peak memory consumption or to guarantee the
absence of OOM errors.

Analytical methods for estimating peak memory (Narayanan et al., 2021) offer an alternative but require specialized
expertise, detailed knowledge of model architectures, and familiarity with the internal mechanics of automatic differentiation
engines like PyTorch Autograd. These methods demand understanding mathematical formulations for each operator and
intricate memory allocation policies, which becomes increasingly complicated when considering algorithmic features like
prefetching, lazy initialization, dynamic resizing, and scheduling. Typically, researchers skilled in machine learning theory
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Table 19. Memory usage estimates and actual for various models and configurations. Memory Simulator achieves approximately 99%
accuracy in all scenarios across the 7 models with different batch sizes, sequence lengths, precisions and memory optimizations techniques
like activation checkpointing.

MODEL NAME BATCH SIZE SEQ LEN/IMAGE SIZE PRECISION AC ESTIMATED (GIB) ACTUAL (GIB) ACCURACY

GEMMA 2B

8 512 MP NO 59.75 59.81 0.99
4 1024 FP YES 43.34 46.74 0.99
8 1024 HP NO 66.41 66.47 0.99
2 2048 FP YES 43.38 46.74 0.99
2 2048 MP NO 59.78 59.84 0.99
4 2048 HP YES 44.96 45.02 0.99
2 4096 HP YES 45.00 45.06 0.99

HF CLIP

32 336 FP NO 39.85 39.93 0.99
64 336 FP YES 12.81 12.89 0.99
64 336 HP YES 6.41 6.51 0.99
64 336 MP NO 47.42 47.50 0.99

128 336 HP YES 10.18 10.29 0.99

HF GPT2
16 512 MP NO 44.34 44.47 0.99
8 1024 MP NO 44.34 44.48 0.99

16 1024 HP NO 49.93 49.95 0.99

HF T5

6 512 MP NO 32.06 32.20 0.99
2 1024 FP YES 33.70 33.75 0.99
4 1024 HP NO 49.08 49.14 0.99
1 2048 FP YES 53.50 53.55 0.99
1 2048 HP YES 38.69 38.87 0.99
1 2048 MP YES 44.95 45.00 0.99

LLAMA 1B

4 1024 FP NO 33.04 33.09 0.99
4 1024 MP NO 31.52 31.58 0.99
4 2048 HP YES 24.94 24.99 0.99
8 2048 FP YES 54.60 54.63 0.99
8 2048 HP YES 42.97 43.02 0.99
4 4096 HP YES 42.97 43.02 0.99
2 8192 HP YES 42.98 43.03 0.99
1 16384 HP YES 38.56 38.61 0.99

CONVNEXT

16 224 FP NO 22.70 22.98 0.99
32 224 FP YES 14.46 14.67 0.99
32 224 MP NO 27.79 28.02 0.99
64 224 HP NO 33.64 33.91 0.99
64 224 MP NO 46.91 47.18 0.99

128 224 FP YES 31.45 31.54 0.99
128 224 HP YES 15.74 15.86 0.99
256 224 HP YES 27.38 27.51 0.99

TIMM VIT

32 224 FP NO 27.45 27.65 0.99
64 224 FP YES 11.29 12.08 0.99
64 224 HP NO 23.92 24.12 0.99
64 224 MP NO 31.29 31.59 0.99

128 224 HP YES 7.74 7.82 0.99
256 224 HP YES 11.94 12.00 0.99
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Table 20. Memory Simulator achieves ≥ 99% accuracy with distributed 1D FSDP training and is able to get the estimation within 30
seconds for Llama 70 billion model.

BATCH SIZE SEQ LEN AC EST.(GIB) ACTUAL(GIB) ACC TIME (S)

2 64 SELECTIVE 30.10 30.20 0.995 31.909
2 256 SELECTIVE 30.65 30.97 0.989 31.858
2 1024 FULL 30.50 30.70 0.995 30.360
1 4096 FULL 32.15 32.28 0.996 31.552
1 8192 FULL 40.13 40.18 0.998 31.095

Table 21. Memory Simulator achieves ≥ 99% accuracy with distributed 2D FSDP+TP training and is able to get the estimation within 30
seconds for Llama 70 billion model.

BATCH SIZE SEQ LEN AC EST.(GIB) ACTUAL(GIB) ACC TIME (S)

2 64 SELECTIVE 12.87 12.98 0.992 29.569
2 256 SELECTIVE 12.87 12.98 0.992 29.627
2 1024 FULL 12.88 12.98 0.992 28.423
1 4096 FULL 12.88 12.99 0.990 28.277
1 8192 FULL 13.10 14.27 0.991 28.452

and algorithms lack the complementary systems expertise necessary for effectively utilizing these analytical techniques.

DNN-Mem (Gao et al., 2020) depends on analytical formulas, rendering it impractical for maintenance given PyTorch’s
large number of operators. It also lacks support for eager execution mode and offers minimal support for distributed training,
being limited to simple Distributed Data Parallel (DDP) scenarios.

Boom (Su et al., 2024) only reports peak memory consumption without offering memory categorization, attribution, or
snapshot capturing. It requires source-level modifications to PyTorch for the FakeMemoryAllocator, which despite its name,
actually performs real memory allocations on a single GPU, providing no demonstrated compatibility with distributed
training scenarios.

Skyline (Yu et al., 2020) categorizes memory only into weights and activations, omitting critical categories such as activation
gradients, weight gradients, and optimizer states. It lacks distributed training results and does not accommodate loop-based
workflows common in pipeline parallel training.

Approaches using TorchDispatchMode (He et al., 2022) and FakeTensorMode (Contributors, 2025) primarily focus on
operator-level dispatch without modeling peak memory, categorizing memory usage, or attributing memory to specific
modules. Accurate and efficient tensor liveness tracking and maintaining memory usage snapshots demand substantial
additional effort, as described in Section D.

In contrast, TORCHSIM addresses these limitations comprehensively. It extends PyTorch by adding FakeTensor and
FakeProcessGroup support for all communication and synchronization collectives, essential for accurate simulation of
distributed training algorithms. TORCHSIM accurately categorizes tensors generated through collectives, integrating closely
with native PyTorch distributed training techniques such as Fully Sharded Data Parallel (FSDP) and Tensor Parallel (TP).
Additionally, TORCHSIM provides deep integration with tensor subclasses like DTensors, KeyedTensor, and JaggedTensors
by appropriately flattening and unflattening tensors to access local device storage. Furthermore, it tracks heterogeneous
device usage, crucial for CPU offloading scenarios, and effectively supports complex parallel strategies like Pipeline Parallel
(PP), accurately reflecting variations in peak memory consumption across different pipeline stages and schedules.
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I.3. Compute Time Prediction

Existing approaches to predicting GPU operator runtime can broadly be categorized into operator-level (Justus et al., 2018)
and kernel-level (Geoffrey et al., 2021; Li et al., 2023; Lee et al., 2025b; Zhang et al., 2022b; Li et al., 2022) methods. Given
an AI model, operator-level methods extract all its operators and estimate the compute time of each operator. Kernel-level
methods further extract the kernels dispatched to compute each operator, and then estimate the kernel compute time. The
predicted compute time for individual operators or kernels are then aggregated to get the model compute time.

Kernel-level predictions have demonstrated high accuracy by directly modeling hardware execution characteristics (Zhang
et al., 2022b). However, identifying the kernels dispatched from an operator and understanding the orchestration of
dispatched kernels for an operator is by itself a challenging research problem (Zhang et al., 2022b; Li et al., 2022). In
practice, these analyses require unaffordable hardware-specific profiling techniques (NVIDIA, 2025; AMD, 2025) and
reverse engineering efforts (Geoffrey et al., 2021).

Operator-level predictions rely primarily on hardware-agnostic features, such as batch size and input dimensions, making it
easier to get tested and employed in existing software. However, we notice most existing operator-level predictions only
explore a small range of input features for single-node settings (Justus et al., 2018; Zhang et al., 2022b; Lee et al., 2025b).
This cannot fulfill the emergent demands of predicting cutting-edge AI models (Tazi et al., 2025), which have input ranges
in 1 to 1e6, depending on the operator types, and compute time in 1e-2 to 1e5 ms. A large range of input features and
compute time not only impedes the model convergence by introducing exponentially-increased instability, but also demands
dedicated model designs to capture the expanded intricate relationships between the operators and the dispatched kernels.

In TORCHSIM, we predict at the operator level and encompass a 100x larger input space, catering for all modern AI models.
We resolve the technical challenges of increased convergence instability and expanded mapping complexity by embedding
the intuition of learning the kernel dispatching implicitly in the choice and design of the models, namely a Random Forest
model and a Mixture-of-Experts model. For the first time, we achieve beyond 90% accuracy using the Random Forest model
for all compute-bounded operators in PyTorch on all practical input ranges.

I.4. Communication Time Modeling

The time for any data to be communicated across a link of bandwidth is typically modeled with the standard α− β model,
where α, β ∈ R+, α is the link latency, and β is link bandwidth (Lee et al., 2025a; Won et al., 2023; Mohammad et al.,
2017). While this model yields sufficient accuracy in predicting communication time in some applications, it falls short in
multiple ways for modeling communication in multi-GPU training settings. For instance, the α-β model does not account
for the presence of straggler delay in distributed settings involving communication amongst multiple GPUs. The model
also assumes that bandwidth β is a scalar quantity–the link bandwidth can vary significantly between inter- and intra-node
communication and, as we show in Figure 10b, β for a single link is in fact a non-linear function of data size. Furthermore,
the model does not account for the fact that backends such as NCCL use different algorithms for inter-node and intra-node
communication in some collectives.

(Xiong et al., 2024) builds upon the α− β model for AllReduce collectives by first using the α− β − γ model, where γ
represents computational cost of the collective, and adding two additional terms, δ and ε, to capture memory access cost
and incast, respectively. By analyzing the computational, communication, and memory access cost of different AllReduce
algorithms, the proposed learned model, GenModel, is fitted to data from a co-located Parameter Server-based benchmarking
suite as well as two additional microbenchmarks for memory access cost and full mesh communication congestion. While
GenModel seeks to be topology-aware and congestion-aware like our proposed models, they have multiple limitations.
Firstly, the benchmarking required to fit the model may not always be possible, given that the physical topology of a
cluster may not make a Parameter Server (PS) benchmark or full mesh communication possible. Secondly, the algorithms
included in GenModel only use a single type of algorithm such as Ring-AllReduce, Recursive Halving Doubling (RHD), or
Co-located Parameter Server; however, the vast majority of large GPU clusters today use hierarchical topologies with some
combination of these topologies. Finally, GenModel is only evaluated on a PS topology involving up to 15 nodes connected
to a single switch with a constant network bandwidth of 10 Gbps and the MPI library backend, limiting its applicability to
large scale deployments of inter-GPU communication.

The learned communication models in our solution are a fully topology-aware, algorithm-aware approach to modeling
large-scale inter-GPU communication collectives. Our analytical cost models isolate inter-node and intra-node bandwidths,
reflecting GPU clusters with hierarchical topologies and different interconnects between GPUs on the same and across
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nodes. Our models also only require a much simpler, topology-agnostic benchmark to fit our models. We demonstrate the
scalability and adaptability of our models on different clusters and across world sizes, evaluating it on collectives between
up to 128 GPUs across 32 nodes.

J. Future Directions
While TORCHSIM achieves high accuracy in simulating dense, deterministic training workloads, several promising extensions
remain.

J.1. Modeling Data-Dependent Computation.

One important next step is extending TORCHSIM to support data-dependent computation, particularly in architectures such
as Mixture-of-Experts (MoE) (Cai et al., 2025a;b). These models dynamically route inputs to different expert sub-networks,
introducing variability in execution paths and runtime. To simulate this behavior, TORCHSIM can be extended to sample
expert selection patterns from a range of distributions, such as uniform, power-law, or Zipfian, to represent varying degrees
of skew in expert activation. For each sampled configuration, runtime can be estimated independently. Aggregated statistics
such as the median or higher percentiles can then be used to report end-to-end runtime, providing robust estimates under
uncertainty without requiring full enumeration of all possible routing decisions.

J.2. Simulating Sparse Computation.

Another direction is supporting sparse computation, which differs from MoE in that execution is not conditional on input
routing but on the sparsity pattern of the data itself (Cai et al., 2025c; Gao et al., 2023). To handle this, TORCHSIM can
incorporate parametrized cost models that reflect the performance characteristics of sparse kernels. These models can be
driven by probabilistic distributions over sparsity levels, enabling runtime estimation as a function of expected sparsity.
Similar to the approach for MoE, repeated sampling and aggregation can be used to produce stable performance estimates,
while incorporating known overheads and scaling inefficiencies associated with sparse GPU execution.
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