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Abstract—Data science research has found great success with
algorithms that leverage the structure of the topological space
that the high-dimensional data lies on. In particular, low-rank
tensor models which represent low-dimensional latent factors in a
succinct and parsimonious way have become indispensable tools.
These low-rank models have been utilized in a variety of appli-
cations including tensor completion from corrupted or missing
entries. In the standard tensor completion problem, the different
modes of the tensor are assumed to be completely independent
of each other. However, in many real-world problems such as
those involving spatio-temporal data, there exist relationships
between the different modes. This information can be encoded
in terms of graphs which can bring additional structure to the
tensor completion problem. In this paper, we introduce methods
for structured tensor completion where both the low-rank and
smoothness of tensor are incorporated into the optimization
problem. In particular, we model tensor data as graph signals
on Cartesian product graphs and use the Dirichlet energy to
quantify the smoothness of tensor data with respect to the graph.
We evaluate the performance of this tensor recovery approach
for different types of data, i.e. low-rank, smooth and low-rank
plus smooth, and compare with existing methods.

I. INTRODUCTION

Higher-order tensors preserve the complicated innate multi-
way structural properties of data [1]. Tensor completion, which
is a missing data imputation task based on the observed data,
has attracted significant amounts of research in areas such as
image processing and machine learning [2], [3].

Since tensor completion is an underdetermined problem, it
is usually necessary to constrain the problem by imposing
some structure. The most commonly used structural constraint
is the low rank assumption which restricts the degree of
freedoms of the missing entries. Since a tensor has different
types of rank definitions, various low rank tensor completion
approaches have been developed corresponding to the different
norm definitions [4], [2], [5], [6]. The resulting low-rank
minimization problems have been extended using tools from
robust data analysis which plays an instrumental role in
dealing with outliers in the completion problem [7]. Drawing
upon the advances in robust PCA analysis [8], robust tensor
completion is to complete a tensor Y by separating it into a
low-rank part, X , plus a sparse part, S, to capture the different
noise patterns. The completion problem could be addressed by
the joint minimization of trace norm and ℓ1 norm.

While the robust low-rank tensor representations capture
the global structure of tensor data, they do not preserve

the local geometric structure and capture the relationship
between modes. Manifold learning addresses this issue and has
been successfully implemented for tensors [9], [10]. However,
current manifold learning approaches typically focus on only
one mode of the data. Yet for many data matrices and tensors,
correlations exist across all modalities. Several recent papers
[11], [12], [13], [14], [15], [16], [17] exploit this coupled
relationship to co-organize matrices and infer underlying row
and column embeddings.

In this paper, we introduce a robust tensor recovery ap-
proach that simultaneously takes both the low-rank and ge-
ometric structure into account. While the low-rank structure
is captured through nuclear norm minimization, the geometric
structure is captured by minimizing the total variation norm
(Dirichlet energy) of the tensor data with respect to the
underlying product graph structure. Taking graph structure into
account while processing data has well-documented merits for
several signal processing and machine learning tasks like sam-
pling, denoising and clustering [18], [19]. The graph structure
can help us to take into account any auxiliary information
available such as the location of sensors in a sensor network. In
this paper, we present the optimization problems correspond-
ing to the different assumptions, i.e. low-rank, smooth and
low-rank+smooth tensor recovery. The resulting algorithms are
evaluated on simulated and real data.

II. BACKGROUND

A. Tensor Notation and Algebra

A multidimensional array with N modes
X ∈ RI1×I2×...×IN is called a tensor, where xi1,i2,...,iN
denotes the (i1, i2, . . . , iN )th element of the tensor X .
Vectors obtained by fixing all indices of the tensor except the
one that corresponds to nth mode are called mode-n fibers.
Tensor unfolding: Process of reordering the elements of the
tensor into a matrix is known as matricization or unfolding.
The mode-n matricization of tensor X is denoted as X(n) and
is obtained by arranging mode-n fibers to be the columns of
the resulting matrix.
Tensor Rank: Unlike matrices, which have a unique definition
of rank, there are multiple rank definitions for tensors includ-
ing tensor rank and tensor n-rank. In this paper, we will focus



on the n-rank of X defined as the collection of ranks of mode
matrices X(n) :

n-rank(X ) =
(
rank(X(1)), rank(X(2)), . . . , rank(X(N))

)
.

B. Cartesian Product Graphs

Consider N graphs, Gk = (Vk, Ek,W
k), corresponding to

each mode of an N -mode tensor each with Ik nodes. The
graph Laplacian matrix Lk associated with the graph Gk is
defined as Lk = diag[Wk1Ik ] −Wk, where the first term is
a diagonal matrix of the degrees of the graph. The Cartesian
product graph is defined as G = G1 ⊕G2 ⊕ . . .⊕GN , where
V = V1 × V2 × . . . × VN . The Laplacian of this product
graph can be written as the Kronecker sum of the individual
Laplacians as LG1⊕G2⊕...⊕GN

= L1 ⊕ L2 ⊕ . . .⊕ LN [15].
The smoothness promoting Dirichlet energy of the data

tensor, X with respect to the Laplacian of the product graph
can be explicitly expressed in terms of its graph factors as∑N
i=1 tr(X

T
(i)LiX(i)) [20].

C. Higher Order RPCA

For two-way data, robust PCA (RPCA) was introduced
to address the limitations of PCA against outliers and non-
Gaussian errors [8]. In this approach, a given data matrix is
decomposed into a low-rank plus a sparse model:

minX,S{rank(X) + λ||S||0|X + S = Y }. (1)

Goldfarb and Qin [7] have extended RPCA to higher-order
data, i.e. tensors. In higher-order RPCA (HoRPCA), (1) is
modified by replacing the nuclear rank of a matrix by the
Tucker rank (Trank) of a tensor. Similar to RPCA, Trank and
l0 norms are replaced with their convex counterparts CTrank
and l1 norm yielding

minX ,S{CTrank(X ) + λ||S||1|X + S = Y}. (2)

Goldfarb and Qin [7] proposed various models to solve this
optimization problem. One such model is the Singleton model,
which estimates the nuclear norm of the tensor as the sum of
the nuclear norms of the mode-n matricizations of the tensor
yielding

minX ,S{
N∑
i=1

||X(n)||∗ + λ||S||1|X + S = Y}. (3)

III. LOW-RANK PLUS SMOOTH TENSOR RECOVERY ON
CARTESIAN PRODUCT GRAPHS

A. Smooth Tensor Recovery on Cartesian Product Graphs
(SmoothTR)

First, we consider the problem of tensor reconstruction
from corrupted observations with possibly missing entries
with the assumption that the underlying tensor is smooth or
low-frequency with respect to the product graph. The notion
of smoothness is quantified by the Dirichlet energy of the
tensor. Our goal is to decompose the observed tensor Y into
a smooth (low-frequency) part, X , and a sparse part, S, that
corresponds to the outliers. The existence of missing elements

in the observed data is taken into account through a projection
operator, PΩ[Y], where Ω ∈ {1, . . . , I1}×{1, . . . , I2}× · · ·×
{1, . . . , IN} denotes the indices of the observed entries. This
goal can be formulated through:

min
X ,S

N∑
i=1

αitr(X
⊤
(i)LiX(i)) + λ∥S∥1 s.t. PΩ[X + S] = PΩ[Y],

(4)

where αi is the weight of the smoothness assigned to each
mode and λ is the regularization parameter controlling the
sparsity level. This problem can be rewritten by by applying
variable-splitting to X and introducing N auxiliary variables
X1, . . . ,XN and defining another auxiliary variable Z = Xi.

min
Xi,Z,S

N∑
i=1

αitr(X
⊤
i(i)
LiXi(i)) + λ∥S∥1,

s.t. PΩ[Z + S] = PΩ[Y]

Z = Xi, i = 1, 2, . . . , N. (5)

This problem can be solved through two block ADMM
algorithm, where the Augmented Lagrangian of the problem
is,

L(Z,S,X i,Λ,Λi) =

N∑
i=1

αitr(X
⊤
i(i)
LiXi(i)) + λ∥S∥1

+
ρ

2
∥PΩ[Z + S − Y +

Λ

ρ
]∥2F +

ρ

2

N∑
i=1

∥Z − X i +
Λi
ρ
∥2F .

The update equations for the different variables are then
derived as follows.
Xi update:

X k+1
i(i)

= (αiLi + ρI)−1(ρZk
(i) − Λki(i)) for i = 1, . . . ,N.

S update:

PΩ[Sk+1] = PΩ

[
Tλ/ρ

(
Y − Z

k

− Λk

ρ

)]
,

where T is the soft-thresholding operator.
Z update:

PΩ[Zk+1] = PΩ

[
1

N + 1

( N∑
i=1

(X k+1
i +

Λk

ρ
) + Y − Sk+1 − Λk

ρ

)]
,

P⊥
Ω [Zk+1] = P⊥

Ω

[
1

N

( N∑
i=1

(X k+1
i +

Λk

ρ
)
)]

.

Dual Updates:

Λk+1 = Λk + ρ(Z + S − Y),

Λk+1 = Λki + ρ(Z − X i) for i = 1, ...,N.



B. Smooth and Low-rank Tensor Recovery on Cartesian Prod-
uct Graphs (GRHoRPCA)

In the second problem, we focus on simultaneous robust
low-rank and smooth tensor recovery. This goal can be
achieved by minimizing the following optimization problem:

min
X ,Y,S

N∑
i=1

αitr(X
⊤
(i)LiX(i)) + ψi∥X(i)∥∗ + λ1∥S∥1,

PΩ[X + S] = PΩ[Y], (6)

where ψi is the weight of the nuclear norm across the ith
mode. Similar to the formulation in the previous section, we
will introduce auxiliary variables for each mode of the tensor,
Z and W , to disentangle the different terms in the optimization
such that Z = Xi = Wi and rewrite the problem as:

min
{Xi,Wi},Z,S

N∑
i=1

αitr(X
⊤
i(i)
LiXi(i)) + ψi∥Wi(i)∥∗ + λ1∥S∥1,

PΩ[Z + S] = PΩ[Y],

Z = Xi = Wi. (7)

This problem can be solved through two block ADMM
algorithm, where the Augmented Lagrangian of the problem is
divided into two blocks, i.e., {Wi,Xi,S} and {Z}, where each
variable in a block is separable with dual variables Γi,Λi,Λ
respectively.

L(Z,S,Xi,Wi,Λ,Λi,Γi) =

N∑
i=1

(
αitr(X

T
i(i)
LiXi(i))

+ψi∥W(i)∥∗ + λ1∥S∥1
)
+
ρ

2

∥∥PΩ[Z + S − Y +
Λ

ρ
]
∥∥2
F

+

N∑
i=1

(ρ
2
∥Z − X i +

Λi
ρ
∥2F +

ρ

2
∥Z −Wi +

Γi
ρ
∥2F

)
. (8)

The update steps for each variable are,
Wi update:

W k+1
i(i)

= Dψi/ρ(Z(i) +
Γi(i)
ρ

) for i = 1, ...,N,

where D is the proximal operator corresponding to singular
value thresholding.
Xi update:

Xk+1
i(i)

= (αiLi + ρI)−1(ρZk
(i) − Λki(i)) for i = 1, ...,N.

S update:

PΩ[Sk+1] = PΩ

[
Tλ1/ρ(Y − Zk − Λk

ρ
)

]
.

Z update:

PΩ[Zk+1] =PΩ

[ N∑
i=1

(
X k+1
i +Wk+1

i − Λki + Γki
ρ

)
+ Y − Sk+1 − Λk

ρ

]
,

P⊥
Ω [Zk+1] =

1

2N
P⊥
Ω

[ N∑
i=1

(X k+1
i +Wk+1

i − Λki + Γki
ρ

)
]
.

Dual updates:

PΩ[Λ
k+1] = PΩ[Λ

k + ρ(Zk+1 + Sk+1 − Y)],

Λk+1
i = Λki + ρ(Zk+1 −X k+1

i ) for i = 1, ...,N,

Γk+1
i = Γki + ρ(Zk+1 −Wk+1

i ) for i = 1, ...,N.

IV. RESULTS

A. Simulated Data

The performance of the proposed optimization algorithms
was first evaluated for different types of simulated tensor data
with respect to HoRPCA.

Within each experimental setting, we generated three differ-
ent types of data: Smooth Data, Low-rank and Smooth Data,
Low-rank Data. Smooth tensor data is generated by randomly
generating three factor graphs, G1, G2, G3 with number of
nodes equal to n1, n2, and n3, respectively, corresponding
to the three modes of the tensor data. We then constructed
the a Cartesian product , GPG, whose Laplacian matrix
LPG ∈ Rn1n2n3×n1n2n3 is used to construct a filter h(LPG)
with heat kernel as in [21]. The smooth tensor data Y in its
vectorized form is vec(Y) = h(LPG)x0 ∈ Rn1n2n3 where
x0 ∈ Rn1n2n3 is a random graph signal with entries from
standard normal distribution. The filter h(L) is defined as
h(L) = U [

∑n1n2n3

i=1 exp(−αλi)]U⊤ where U is the eigen-
vector matrix of L and λis are the eigenvalues.

Low-rank tensors are constructed by randomly generating
three orthonormal mode factor matrices Ai ∈ Rni×ri and
a random core tensor C ∈ Rr1×r2×r3 whose entries are
drawn from the standard normal distribution with dimensions
corresponding to the n-rank of the data. Low-rank data is then
generated by mode-n products as Y = C ×1 A1 ×2 A2 ×3 A3.

Low-rank and smooth data is generated by combining these
two concepts. We first generate a low-rank tensor and filter
it with respect to the Cartesian product graph as described
above.
Experiment 1: In the first experiment, we created three-mode
tensors Y ∈ R12×12×12 that are low-rank, approximately low-
rank and smooth and only smooth with r1 = r2 = r3 = 5.
In this first setting, we set S = 0, i.e., there are no outliers
added to the tensor. We varied the ratio of observed entries
from 10% to 90%. In order to generate smooth tensor data
and approximately low-rank smooth data, we generated three
connected random factor graphs using Erdős-Rényi model with
edge probability p = 0.15 each with 12 nodes. Factor graphs
are then used to produce a Cartesian product graph, which is
used as a graph filter with smoothness regularization parameter
α = 20. The optimal values of the hyperparameters are found
by searching over the grid for the best relative error. This
experiment was repeated for 10 random product graphs and
the mean relative error for the three data types and three
methods are shown in Fig. 1. From this figure, it can be seen
that when the data is purely low-rank HoRPCA performs the



Fig. 1. Relative Reconstruction Error vs. Observed Ratio: (Top) Low-Rank
Tensor; (Middle) Approximately Low-Rank and Smooth Tensor; (Bottom)
Smooth Tensor

best with graph regularized HoRPCA peforming similar to it.
When the data is smooth, HoRPCA does not perform well and
GRHoRPCA and SmoothTR perform better as expected.

B. Real Data

COIL-20 dataset consists of grayscale pictures of 20 differ-
ent objects taken from different views by rotating the objects
every 5◦. The original pictures were downsampled to 48× 48
and sampled every every four views. From this downsampled
data, we construct a tensor Y ∈ R20×18×48×48, where 20 is
the number of objects, 18 is the number of views and the last
two modes correspond to the size of the images. We construct
k-NN graphs across views, rows and columns. The similarity
graph for the views is constructed using a 3-NN graph with
Gaussian kernel, where σ is chosen proportionately to the
Frobenius norm of Y . The row and column graphs are con-
structed with 2-NN graphs with binary edges using Euclidean
distance. In this experiment, we compare the reconstruction
performances of the GRHoRPCA, HoRPCA and SmoothTR
algorithms by varying the percentage of observed entries from
10% to 100%.

The smoothness parameters (α2, α3, α4) are set as γ ·
(0.05, 1, 1). The weights for the nuclear norms are set to ψi =
p · tr(cov(Y(i)) where p is selected such that max({ψi}) = 1.
For a fair comparison, we ran grid search on the hyperpa-
rameters γ and λ1 for all three algorithms and report the
results in Fig. 2. It can be seen from this figure, similar to
the simulated smooth tensor, the performances of GRHoR-
PCA and SmoothTR are close to each other with HoRPCA
performing much worse. This is due to the fact that most real
data are not exactly low-rank across all modes of the tensor. In
Fig. 3, we illustrate a reconstructed object from COIL-20 with
60% missing data and impulsive noise. It can be seen that the
quality of the reconstructed image is better for SmoothTR and
GRHoRPCA compared to HoRPCA. While SmoothTR and
GRHoRPCA perform similar to each other, the run time for
SmoothTR (48 sec) is less than the run time for GRHoRPCA
(129 sec).

Fig. 2. Reconstruction error vs. observed entry ratio for Coil-20

Fig. 3. An example of a reconstructed object from COIL-20 dataset with
60% of its entries missing and with impulsive noise drawn from i.i.d. uniform
distribution U(−70, 70) added to randomly selected 10% of the pixels.

V. CONCLUSIONS

In this paper, we introduced two tensor recovery algorithms
incorporating the geometric structure of tensors. The first
algorithm recovers tensors with the assumption that the tensor
is smooth with respect to the underlying product graph. This
assumption is equivalent to low pass graph filtering the data
with respect to the underlying product graph structure. The
second algorithm takes into account both the low-rank and
geometric structure of the tensor by minimizing the tensor
rank while simultaneously minimizing the Dirichlet energy,
resulting in robust tensor recovery on graphs. The proposed
algorithms are tested on different types of simulated and real
data under different noise and missing data conditions. The
results imply that when the underlying tensor is low-rank
across all modes, HoRPCA performs the best. However, for
real data where the low-rankness across each mode is hard to
satisfy, SmoothTR and GRHoRPCA are superior to standard
HoRPCA. This is due to the fact that real data are rarely
low dimensional in a linear subspace while they may be low
dimensional in nonlinear manifolds.



In the proposed work, we assumed that the product graph
underlying the observed tensor data was known a priori or can
be constructed using k-NN. While this assumption is valid for
certain applications, in a lot of applications the underlying
graph structure is not known. For this reason, future work
will consider simultaneous graph learning and robust tensor
recovery similar to recent work for matrix based data [20].
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